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Abstract
The proposed Kirchhoff-Love shell stress resultant plasticity model extends a previously reported model for plates by com-
plementing the constitutive law of elastoplasticity with membrane effects. This enhanced model is designed for bending
dominant settings with small to moderate membrane forces. It is thus implemented in a purpose-built nonlinear mixed
Eulerian–Lagrangian finite element scheme for the simulation of sheet metal roll forming. Numerical experiments by impos-
ing artificial strain histories on a through-the-thickness element are conducted to test the model against previously reported
stress resultant plasticity models and to validate it against the traditional continuum plasticity approach that features an
integration of relations of elastoplasticity in a set of grid points distributed over the thickness. Results of actual roll forming
simulations demonstrate the practicality in comparison to the computationally more expensive continuum plasticity approach.

Keywords Metal plasticity · Stress resultant shell plasticity · Kirchhoff–Love shell · Roll forming · Finite element analysis ·
Mixed Eulerian–Lagrangian formulation

Nomenclature
Geometry, material and numerical parameters
L, w, h length, width and thickness of the metal

sheet
E, ν elastic modulus and Poisson ratio of the

metal sheet
k yield strength
P contact penalty

Coordinates, kinematic description, differential
operators and strain measures

x, y, z global Cartesian coordinates of the actual
configuration

i, j , k global Cartesian basis
◦
x,

◦
y material coordinates of the reference con-

figuration of the shell model
ζ material thickness coordinate in the 3D

body of the shell
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◦
r, r position vector of the reference and the

actual configuration
u, ux , uy, uz displacement vector and its Cartesian com-

ponents
v, u̇x axialmaterial transport rate and axialmate-

rial velocity
◦∇, ∇ differential operators of the reference and

the actual configuration
F deformation gradient tensors

ε⊥, εe⊥, ε
p
⊥ in-plane parts of the total strain tensor, elas-

tic strain tensor and plastic strain tensor in
the 3D body of the shell

E, K total membrane and bending strain tensor
of the shell

Ee, Ke elastic parts of membrane and bending
strain tensor of the shell

Ep, Kp plastic parts of membrane and bending
strain tensor of the shell

Stresses and related variables
σ , N, M tensors of stresses, membrane forces and

bending moments
IN , INM , IM invariants of the stress resultants N and M
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Forming parameters andmeasures of the forming
process

ρ, ϕ roll-gap-reduction andbending angle of the
profile

RLi resulting contact force (roll force) on lower
roll i

Ap, Ȧp densities of plastic dissipation work and
dissipation power

1 Introduction

In this paper a stress resultant shell plasticity model for met-
als, which is suited for bending dominant applications such
as roll forming of sheet metal, is introduced. State-of-the-art
finite element schemes to model elastic-plastic forming of
thin sheet metal typically rely either on full 3D-continuum
elements or on continuum shell elements, where the shell
deformations, which obey the kinematic hypothesis of the
structural theory, are imposed on the 3D-body to treat plas-
ticity on the continuum level. This approach is accurate and
widely established [1–5], but computationally expensive in
general, because it requires a through-the-thickness integra-
tion of the 3D continuum elastic-plastic constitutive laws to
arrive at the stress resultants and the strain energy density of
the shell.

Consequently, so-called stress resultant plasticity models
are developed [6–12], where the elastic-plastic constitutive
laws are stated directly in the space of the stress resul-
tants, thus rendering the through-the-thickness integration
obsolete. Oftentimes, these publications make use of some
variants of the Ilyushin yield criterion [6]. This criterion
represents the vonMises yield surface in terms of stress resul-
tants, meaning bending moments and membrane forces. The
Ilyushin criterion is aimed at plastic limit load analysis and
merely detects elastic or fully plastic states, but does not
account for the gradual spreading of the plastic zone through
the thickness. Crisfield [8] augmented the Ilyushin yield cri-
terion by introducing a pseudo-hardening variable, namely
the effective plastic curvature, such that the yield criterion is
now able to approximate the plastification process through
the thickness. Applications of Crisfield’s model are available
in the open literature [9, 10].

Another attempt to augment the Ilyushin yield criterion
was carried out in [12] for geometrically linear plate bending,
meaning only the bending moments enter the yield criterion.
The evolution of the yield surface was described by means
of an isotropic hardening function, which uses the dissipa-
tion work as an internal hardening variable. This isotropic
hardening function was identified with the help of reference
solutions of a continuum through-the-thickness element and
bymeans of analytical solutions for simple cases like elastic-

plastic uniaxial bending. Results were convincing and in a
better agreement with continuum solutions when compared
to the yield criterion of [8].

To overcome certain limitations of the previously reported
stress resultant plasticity models, the plate model of [12] is
modified here in an effort to treat large deformation problems
of Kirchhoff–Love shells. This enhanced shell stress resul-
tant model is obtained by appropriately pairing the isotropic
hardening law of [12] with the augmented yield surface pro-
posed by Crisfield [8]. The thus derived yield criterion is still
approximate, but in contrast to the plate-model of [12] fea-
tures an additional account for small to moderate membrane
forces. The two established stress resultant plasticity models
and the novel one are put to the test in a series of numeri-
cal experiments. The comparison against reference solutions
obtained with the continuum plasticity approach reveals the
capabilities of the enhanced model, which, as compared to
Crisfield’s approach, also exhibits an improved convergence
of the time integration scheme. Furthermore, the resolution of
the plastification process in terms of isotropic work harden-
ing facilitates the account for material hardening, which may
be achieved by simple extension of the hardening function
that is thus far limited to an elastic ideal-plastic material.

With regard to the aforementioned application of sheet
metal roll forming, the model is implemented in the mixed
Eulerian–Lagrangian (MEL) finite element framework pro-
posed in [13]. While there are various publications on roll
forming simulations [14, 15], most of them utilize a classical
Langrangian kinematic formulation. However, for processes
featuring axially moving continua such as a moving metal
sheet passing through a roll forming mill, the Lagrangian
kinematic formulation is inefficient and causes numerically
induced oscillations [16, 17]. An elegant way to mitigate
these drawbacks is the use of the Arbitrary Lagrangian
Eulerian (ALE) methods [18], where a Lagrangian step is
succeeded by a Eulerian step within a time increment. ALE
methods have successfully been applied in the context of roll
forming [19] and, more recently, in an investigation on con-
figurational forces in problems of sliding shells [20]. Here,
the efficient mixed Euerlian–Lagrangian (MEL) kinematic
description is employed [13, 21, 22], which – in contrast
to more traditional variants of ALE – allows for a solution
scheme that limits the Eulerian update step to the transport
of plastic variables.

Actual roll forming simulations are carried out to test the
proposed stress resultant plasticity model in an application
oriented context and to conclude on improvements over its
predecessors. The practical relevance of the enhanced model
for the simulation of the roll forming process lies in its use
as an auxiliary computational tool for the design and opti-
mization of roll forming lines. It is capable of producing
accurate results at significantly reduced computation time as
compared to the continuum plasticity model.
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2 Shell plasticity in the framework of the
through-the-thickness integration
approach

In the following, the essentials of the shell plasticity model
in the framework of the usually employed through-the-
thickness integration approach, are briefly recapitulated. For
the sake of generality, the governing equations of the theory
are all presented in invariant form.

The deformation of a Kirchhoff–Love shell is understood
as a mapping between the undeformed reference config-
uration of the material surface and its actual deformed
configuration [23, 24]. Material particles in each configu-

ration are identified with the position vectors
◦
r and r for the

reference and the actual state, respectively. Two correspond-

ing differential operators
◦∇ and ∇ may be defined with the

help of the total differential of a field quantity φ on the sur-
face:

dφ = d
◦
r · ◦∇φ = dr · ∇φ. (1)

These planar operators implicitly contain the derivativeswith
respect to the two material (Lagrangian) coordinates that are

typically used to parametrize the surface. The gradients of
◦
r

and r are the first metric tensors:

◦
a = ◦∇◦

r, a = ∇r, (2)

which define lengths and angles of the surface in the two
configurations. In accordance with (1), the deformation gra-
dient tensor F provides a mapping between the differential
line elements:

dr = F · d◦
r, F = ◦∇rT . (3)

The bending deformation in terms of the unshearable
Kirchhoff–Love theory is connected to the change of the unit
normal vector to the deformed surface n, which is expressed
through the second metric tensor b:

b = −∇n, (4)

where n fulfills the constraint of orthogonality a · n = 0.
The membrane and bending strain measures correspond to
the change of the components of the first and second metric
tensors, respectively. Their invariant forms read:

E = 1

2

(
FT · F − ◦

a
)

, K = FT · b · F, (5)

where a planar reference configuration is assumed in the def-
inition of the curvature tensor K.

In terms of the through-the-thickness approach, the
shell deformations are kinematically imposed on the three-
dimensional continuum, which allows to resolve the elastic-
plastic rate equations on the continuum level. In accordance
with the Kirchhoff kinematic hypothesis, the in-plane part of
the strain tensor of the 3Dbodyε⊥ varies linearly in thickness
direction ζ :

ε⊥ = E − ζK. (6)

The now employed additive decomposition of the planar
strain tensor into an elastic and a plastic part

ε⊥ = εe⊥ + ε
p
⊥ (7)

rests on the small strain assumption for ε⊥. This prerequi-
site does not preclude large overall deformations, but it does
require themembrane strainsE to remain small and the thick-
ness coordinate to vary in a narrow range −h/2 ≤ ζ ≤ h/2.
An elastic-ideal plastic material behavior with constant yield
strength k is assumed for simplicity and the von Mises yield
criterion is adopted to distinguish elastic and elastic-plastic
states with the function

f = 3

2
σ · · σ − 1

2
(tr σ )2 ≤ k2. (8)

Elastic states are identified by f < k2 and yield happens at
f = k2.The planar stress tensor σ is connected to the elastic
part of the planar strain tensor according to Hooke’s law for
the plane stress assumption:

σ = E

1 + ν
εe⊥ + Eν

1 − ν2
◦
a tr εe⊥ = 4

C · ·εe⊥, (9)

with the elasticmodulus E and the Poisson ratio ν ; the fourth
rank plane stress elasticity tensor 4C provides amore concise
representation. It is important to acknowledge the incon-
sistency introduced through (9) that connects the Cauchy
stresses σ related to the actual state to the Green type of
strain measure ε⊥ related to the reference state. However,
owing to the small strain assumption this subtle distinction
is of little importance here [13]. The system of equations
is complemented by the associated flow rule, which deter-
mines the evolution of the plastic strains and follows from
the postulate of maximum plastic dissipation [25]:

ε̇
p
⊥ = λ̇

∂ f

∂σ
,

∂ f

∂σ
= 3σ − ◦

a tr σ . (10)

The consistency parameter λ̇ ≥ 0 is either zero (elastic state,
ε̇
p
⊥ = 0) or positive (elastic-plastic state, ε̇p⊥ �= 0). At yield

the consistency condition ḟ = 0 requires the stress state to
remain on the yield surface. It is evaluated in the usual way
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[25], to derive the stress-strain relation in terms of time rates
for elastic-plastic states:

σ̇ =
(
4
C −

4
C · · ∂ f

∂σ
∂ f
∂σ

· · 4C
∂ f
∂σ

· ·4C · · ∂ f
∂σ

)
· · ε̇⊥. (11)

The fourth rank tangent stiffness tensor in brackets is sym-
metric in consequence of the associated flow rule [26].
The strain energy density per unit reference area expressed in
terms of the through-the-thickness integration approach reads:

U =
ˆ h/2

−h/2

1

2
εe⊥ · · 4C · · εe⊥dζ, εe⊥ = ε⊥ − ε

p
⊥. (12)

Since the energy density of the shell is obtained via a
thickness integration, this approach is henceforth referred
to as “continuum plasticity model” or “cp-model” in short.
Regarding the finite element implementation of Sect. 5, the
integration with respect to ζ is accomplished by means of a
Gaussian quadrature rule with several points ζi in thickness
direction.

3 Stress resultant model of elastic-plastic
Kirchhoff-Love shell for large overall
deformations

In order to avoid the computationally expensive time inte-
gration of the constitutive equations of elastoplasticity in
multiple points over the thickness, inherent to the cp-model
discussed above, a stress resultant model to treat elasto-
plasticity directly in the framework of the direct approach
featuring the shell as material surface is developed here. In
particular, a representation of the strain energy density in
terms of the elastic parts of the shell strainmeasures is sought:

U = 1

2

(
A1(tr Ee)2+A2Ee · ·Ee+D1(tr Ke)2+D2Ke · ·Ke) , (13)

which stands in contrast to the definition (12) used in the
through-the-thickness approach. Like in (7) the additive
decomposition of shell strain components

E = Ee + Ep, K = Ke + Kp (14)

is based on the assumption of small local strains, which also
justifies the particular choice of the strain energy density as
a quadratic form in the elastic strain measures with the usual
stiffness coefficients: A1 = Eνh/(1 − ν2), A2 = Eh/(1 +
ν), D1 = A1h2/12 and D2 = A2h2/12. The tensors of
membrane and bending stress resultants follow from (13) by
means of partial differentiation:

N = ∂U

∂Ee = A1
◦
a tr Ee + A2Ee, M = ∂U

∂Ke = D1
◦
a tr Ke + D2Ke.

(15)

To close the formulation, the governing equations of plas-
ticity in terms of these stress resultants and a small number of
internal plastic variables are restated following the concept
developed in [12]. It features the plastic dissipation work Ap

as internal variable that governs the evolution law for the
effective yield stress. This approach is based on the observa-
tion that the yield progress in a thickness element from initial
yield up to limit yield (plastic hinge) resembles isotropic
hardening. This phenomenon of “structural hardening” is
not to be confused with actual material hardening, which is
neglected here owing to the elastic-ideal plastic material law.
The model proposed in [12] is limited to the geometrically
linearized framework of the plate bending problem, whereN
can be neglected and only the bending moments M need to
be considered. This simplification is no longer feasible in the
present context of the geometrically nonlinear shell theory
owing to the inherent coupling of membrane and bending
forces. The enhanced stress resultant plasticity model for the
Kirchhoff–Love shell to be developed in the following shall
be addressed as “shell srp-model”, in contrast to the “plate
srp-model” model proposed in [12].

The derivation rests upon an augmentation of the von
Mises yield criterion (8), which is defined with respect to
the plane stress tensor σ . Provided the current state is purely
elastic, it is possible to reconstruct σ in terms of the stress
resultants:

σ = −12

h3
Mζ + 1

h
N, (16)

which can be easily verified by means of a substitution of (6)
in the elasticity law (9) and comparison to the constitutive
relation (15) for the stress resultants. Initial yield occurs in an
elastic limit state that is first reached at an outer fiber (upper
surface or lower surface of the shell) at ζ = ±h/2:

σmax = ∓ 6

h2
M + 1

h
N. (17)

Hence, the initial yield surface follows by substitution of (17)
in (8), which is rearranged to reach the convenient represen-
tation:

f0 = IN + 2|INM | + IM − 1, (18)

with f0 = 0 corresponding to first yield; the absolute value
of |INM | ensures positivity of the corresponding term. The
scalar variables IN , INM and IM are invariants of the mem-
brane force tensor and the bending moment tensor:

IN = 1

N 2
0

(
3

2
N · ·N − 1

2
(tr N)2

)
,

123

784 The International Journal of Advanced Manufacturing Technology (2024) 130:781–798



INM = 1

N0M0

(
3

2
N · ·M − 1

2
tr N trM

)
, (19)

IM = 1

M2
0

(
3

2
M · ·M − 1

2
(trM)2

)
.

For later usage, the partial derivatives of these invariants
are also provided:

∂ IN
∂N

= 1

N 2
0

(
3N − ◦

a tr N
)

,

∂ INM

∂N
= 1

N0M0

(
3

2
M − 1

2
◦
a trM

)
,

∂ INM

∂M
= 1

N0M0

(
3

2
N − 1

2
◦
a tr N

)
, (20)

∂ IM
∂M

= 1

M2
0

(
3M − ◦

a trM
)

.

The expressions are normalizedwith respect to themembrane
force N0 and the bending moment M0 that correspond to first
yield under the distinguished load cases of uniaxial tension
and uniaxial bending, respectively:

N0 = kh, M0 = kh2

6
. (21)

The yield surface of (18) describes initial yielding exactly,
but is incapable of capturing the advancement of the plastic
zone in the thickness element beyond that.

In an attempt to resolve this issue, the limit yield surface is
considered as the second limiting case, which corresponds to
the fully plastified thickness element. Lacking exact means
of derivation for this case, it is assumed that the state of limit
yield can be mathematically described in the same way as
initial yield. Therefore, the limit yield surface is sought as a
linear combination of the invariants in the form of (18) but
with a-priori unknown coefficients a, b and c:

fL = aIN + b|INM | + cIM − 1. (22)

Simple thought-experiments based on the general uniaxial
stress state N = Nx i i and M = Mx i i in direction i are
carried out to determine these constants. In the limit state,
the uniaxial stress distribution is piecewise constant and the
position of the neutral fiber is offset by an amount η owing
to the action of the tensile force Nx :

σx =
{
k, −h/2 ≤ ζ < η

−k, η < ζ ≤ h/2
, (23)

with the neutral fiber being located at ζ = η. Themagnitudes
of the stress resultants follow by thickness integration to:

Nx (η) =
ˆ h/2

−h/2
σx dζ = 2kη,

Mx (η) = −
ˆ h/2

−h/2
ζσx dζ = 1/4k(h2 − 4η2). (24)

These distributions are evaluated for three distinguished
types of uniaxial stress states defined by:

η1 = h

2
, η2 = 0, η3 = h

2
√
3
, (25)

where the first corresponds to uniaxial tension, the second to
uniaxial bending and the third to the special state, where the
mixed invariant INM becomes maximal:

∂ INM

∂η
= 0 ⇒ η3 = h

2
√
3
. (26)

Evaluation of (22) for all three cases yields a system of linear
equations, with the solution:

a = 1, b = 2

3
√
3
, c = 4

9
. (27)

The resulting limit yield surface of (22) turns out to be
identical to the one proposed by Ilyushin [6]. In an effort
to represent states in-between initial and limit yielding,
Crisfield [8] augmented the Ilyushin yield criterion by intro-
ducing a dimensionless pseudo-hardening variable γ which
is identified by the uniaxial bending experiment:

fCr = IN+ 1√
3γ

|INM |+ 1

γ 2 IM−1, γ = 1

2

(
3 − e−4χp

)
.

(28)

Here, χp corresponds to the dimensionless effective plastic
curvature that is derived from the plastic curvature tensorKp:

χp = Eh

3k

√
2

3

(
Kp · ·Kp + (tr Kp)2

)
(29)

By comparison to (18) and (22) with constants according to
(27) one can observe that for pure bending the Crisfield yield
surface exactly captures the initial yield surface; χp = 0
and γ = 1 as well as the limit yield surface; χp → ∞ and
γ = 3/2.

Instead of γ , the newly proposed model makes use of the
isotropic hardening function of the dissipative work kM (Ap)

introduced for the plate srp-model developed in [12], which
was identified for the uniaxial bending continuum reference
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solution. This modification amounts to the replacement of γ

in (28) with kM (Ap)/M0:

f = IN + 1√
3 kM (Ap)

M0

|INM | + 1
k2M (Ap)

M2
0

IM − 1, (30)

where the hardening function is defined such, that it repro-
duces the elastic-plastic response of a plate at pure uni-axial
bending:

k2M (Ap) = − 1

36
h3

(
3E Ap − 3

√
E Ap

√
2hk2 + E Ap

+2
√
3hk2 arctan

√
E Ap

√
6hk2 + 3E Ap

)
+ h4k2

36
.

(31)

In contrast to Crisfield’s approach, the dissipation work per
unit surface of the shell Ap appears as additional state vari-
able that determines the hardening behavior in terms of the
evolution of the effective yield strength k2M (Ap). This imple-
mentation in the spirit of work hardening not only captures
initial yield (k2M = M2

0 , A
p = 0) and limit yield (k2M = M2

L ,
Ap → ∞) accurately for the case of pure bending, but also
facilitates the additional account for actual isotropic mate-
rial hardening bymeans of a proper augmentation of k2M (Ap)

[12]. Moreover, the contribution of plastic membrane strains
to the work hardening can be consistently accounted for in
the definition of the dissipation power:

Ȧp = N · · Ėp + M · · K̇p
. (32)

The plate srp-model and the one suggested by Crisfield lack
this ability. Two associated flow rules with a single consis-
tency parameter λ are stated for the plastic strain rates:

Ė
p = λ̇

∂F

∂N
, K̇

p = λ̇
∂F

∂M
, (33)

where the original yield equation f = 0 has been replaced
with the modified one F(N,M) = k2M (Ap), which in terms
of the stress invariants reads:

F =
h4k2

(
|INM | +

√
12IM (1 − IN ) + I 2NM

)2

432(1 − IN )2
= k2M (Ap). (34)

The thus achieved separation of yield criterion and effective
yield strength is beneficial when it comes to the evaluation
of the consistency condition:

Ḟ = ∂F

∂N
· ·Ṅ + ∂F

∂M
· ·Ṁ = 2kMk′

M Ȧp, (35)

which binds the stress state to the actual yield surface in case
of plastic flow.Application of the chain rule of differentiation
yields:

∂F

∂N
= ∂F

∂ IN

∂ IN
∂N

+ ∂F

∂ INM

∂ INM

∂N
,

∂F

∂M
= ∂F

∂ IM

∂ IM
∂M

+ ∂F

∂ INM

∂ INM

∂M
, (36)

which, for the sake of conciseness, is not expanded further
with the help of (20). Likewise, the lengthy total deriva-
tive of k2M (Ap) that follows from (31) is omitted. With the
dissipation power given in (32), it remains to evaluate the
constitutive law (15) to relate the rates of the stress and strain
resultants:

Ṅ = A1
◦
a tr Ė

e + A2Ė
e = ∂N

∂Ee · ·
(
Ė − Ė

p
)

,

Ṁ = D1
◦
a tr K̇

e + D2K̇
e = ∂M

∂Ke · ·
(
K̇ − K̇

p
)

,

(37)

where the elastic strain rates are replaced according to the
additive decomposition (7). The tensor derivatives of N and
M with respect to the corresponding elastic strain tensors
constitute two forth order tensors that resemble the elasticity
tensor 4C of the continuum theory (9). With the rates of the
stress resultants (37) as well as the dissipation power (32)
written in terms of strain rates, we utilize the flow rules (33)
to solve (35) for the consistency parameter:

λ̇ =
∂F
∂N · · ∂N

∂Ee · ·Ė + ∂F
∂M · · ∂M

∂Ke · ·K̇
∂F
∂N · · ∂N

∂Ee · · ∂F
∂N + ∂F

∂M · · ∂M
∂Ke · · ∂F

∂M + 2kMk′
M

(
N · · ∂F

∂N + M · · ∂F
∂M

) .

(38)

In analogy to (11), backward substitution in (37) reveals the
tangential elastic-plastic constitutive law in the framework
of the stress resultant plasticity theory. The appearance of
the total strain rates Ė and K̇ in (38) expresses the inher-
ent coupling of membrane and bending deformations in the
elastic-plastic regime. Therefore, curvature rates will in gen-
eral evoke plasticmembrane strain rates according to the flow
rules (33) and vice versa.

Now that all prerequisites for the implementation of a
numerical solution scheme are met, the return mapping
algorithm from [12] is adapted by replacing the governing
equations of the original plate srp-model with the ones of the
enhanced shell srp-model.

4 Elastic-plastic response of a
through-the-thickness element

Here, all three previously mentioned stress resultant plas-
ticity models (Crisfield srp-model, plate srp-model, shell

123

786 The International Journal of Advanced Manufacturing Technology (2024) 130:781–798



srp-model) are subjected to simple load cases and are com-
pared to the results of reference solutions obtained with the
continuum plasticity model (cp-model) of Sect. 2. Specifi-
cally, different kinds of kinematic loading are imposed on a
through-the-thickness element by means of a time incremen-
tation of the membrane strain and curvature tensor:

K=αK (t) Kmax (i i−ν j j) , E=αE (t) EmaxP · (i i−ν j j) · PT ,

(39)

where i and j denote the in-plane Cartesian basis vectors
of the element. The rotation tensor P is used to adjust the
relative angular alignment of the strain measures:

P = P(�) = cos�(i i + j j) − sin�(i j − j i). (40)

The primary directions coincide for � = 0, in which case
an uniaxial stress state in i-direction is obtained in the elas-
tic range; small additional components of membrane forces
and bending moments in the orthogonal direction arise once
plastic flow occurs. A multi-axial state may be enforced by
� �= 0. Alternatively, a force driven approach that would
allow for a direct specification of stress states could be pur-
sued, but the deformation driven one is preferred for ease
of implementation. The kinematic loading (39) is biased
towards a bending dominant application (like roll forming)
with the maximum amplitudes:

Kmax = 4
12M0

Eh3
= 8k

Eh
, Emax = 1

2

N0

Eh
= 1

2

k

E
, (41)

that correspond to four-times the curvature of first yield for
pure bending and just half of the membrane strains required
for yielding in the state of pure tension, respectively. The
actual values are controlled with the load factors αK and αE

that range from zero to one and are defined as piecewise
linear functions in the timespan 0 ≤ t ≤ 1.

The rate equations of the particular plasticity models
under consideration are integrated numerically with a simple
explicit scheme and a sufficiently fine time discretization.
The parameters of the particular numerical experiments are
specified inTable 1; Nζ is the number of thickness integration

points that are used for the continuum plasticity model. The
element with the given material parameters and thickness h
is subjected to four different load histories that are stated in
terms of the angle � and tabulated values for the load fac-
tors αE and αK , which are interpolated linearly between the
designated points t = {0.0, 0.5, 1.0}. Cases 1 and 2 feature a
simultaneous increase of the imposed strains (41) and differ
solely in the angle�. The angular alignment is varied in cases
3 and 4 as well, but, more importantly, the kinematic loads
are applied sequentially, i.e.: first bending then tensioning
and vice versa.

The tabulated values for the load factors are indicated at
the topof the respective grid lines in the correspondinggraphs
of Figs. 1, 2, 3 and 4 that depict the simulated time histories
of the primary invariants IN and IM . These variables are
bounded by their uniaxial limit yield values, namely: IN ≤ 1
and IM ≤ 9/4. An exception is the plate stress resultant
model of [12], which may be recovered from (30) by simply
setting IN = IMN = 0. Hence, the membrane stress resul-
tants do not enter the elastic-plastic constitutive of the plate
srp-model in any way and the invariant IN is unbounded
in consequence thereof. Analyzing the results presented in
Figs. 1 – 4, good agreement of the novel shell srp-model
with the exact continuum model is observed, which in terms
of IM also poses a slight improvement over the stress resultant
plasticity model of Crisfield; regarding IN , both models are
almost indistinguishable. The great importance of including
the membrane forces in the plasticity model is highlighted in
comparison to the plate srp-model, which produces the same
purely elastic response for IN regardless of the imposed load-
ing. This deficiency is most pronounced for the cases 1, 2 and
4, where the corresponding graphs of the plate srp-model for
IN deviate from the others as soon as plastic flow occurs and
the purely elastic regime, for which all models are equal, is
left. Interestingly, the coupling of membrane and bending
resultants in these cases primarily affects the distribution of
the membrane forces, but its impact on the bending behavior
is weak, such that the distributions for IM remain in close
proximity to the continuum reference model. In this respect
case 3 of Fig. 3 is different, because the late application of
the kinematic membrane loading must cause additional plas-

Table 1 Parameters and specific
load histories for the numerical
experiments on the
through-the-thickness element:
The angle � determines the
angular alignment of the
prescribed strain states

E [N/m2] ν k [N/m2] h [m] Nζ

2.8 × 1011 0.3 362 × 106 0.003 50

load case � [rad] αE (0) αE (0.5) αE (1.0) αK (0) αK (0.5) αK (1.0)

1 0 0.0 0.5 1.0 0.0 0.5 1.0

2 π/2 0.0 0.5 1.0 0.0 0.5 1.0

3 π/4 0.0 0.0 1.0 0.0 1.0 1.0

4 0 0.0 1.0 1.0 0.0 0.0 1.0

The time evolution of the load factors αE and αK is given by piecewise linear interpolation of the tabulated
values for t = {0.0, 0.5, 1.0}
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Fig. 1 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 1 of
Table 1

Fig. 2 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 2 of
Table 1

Fig. 3 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 3 of
Table 1

123

788 The International Journal of Advanced Manufacturing Technology (2024) 130:781–798



Fig. 4 Comparison of simulation results of the through-the-thickness element between the four different plasticity models for the load case 4 of
Table 1

tic curvature strains in the extended models owing to the
inherent coupling best illustrated by (38). Hence, the limited
capabilities of the plate srp-model show in the distribution
for IM in this special case. Evidently, the inclusion of plastic
membrane strains is crucial for an accurate resolution of the
stress resultants.

To investigate the essential differences of the novel shell
srp-model and the one proposed by Crisfield, comparisons of
the respective hardening functions kM (Ap)/M0 and γ (χp)

are presented in Figs. 5 and 6 for all considered load cases.
The values of both dimensionless hardening functions are
initialized with 1, which is the limit for initial yielding. Once
plastic flow occurs, the hardening functions grow towards the

limit yield value 3/2. Owing to the exponential law (28), the
Crisfieldmodel always saturates very quickly. In contrast, the
shell srp-model approaches the limit yield boundary slower
without ever reaching it. Being based onwork hardening, this
model also accounts for the contribution of plasticmembrane
strains to the plastic work Ap that determines the progres-
sion of plastic flow in the thickness element. However, the
impact is negligible in all cases, which is best illustrated by
the graphs corresponding to load case 3 in Fig. 6, where the
hardening function kM/M0 remains practically constant for
t > 0.5 after the curvature loading has been fully applied.

The results presented so far, demonstrate the obvious
advantages of the proposed shell srp-model over its prede-

Fig. 5 Comparison of the hardening functions for load case 1 (left) and load case 2 (right) of Table 1
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Fig. 6 Comparison of the hardening functions for load case 3 (left) and load case 4 (right) of Table 1

cessor for the plate bending problem discussed in [12]. The
primary benefits in comparison to the Crisfield stress resul-
tant model comprise:

• modest improvements of accuracy with respect to the
continuum reference solution

• the formulation in terms of a work hardening law that
facilitates the inclusion of isotropic material hardening

• a significantly better convergence of the numerical time
integration scheme

Regarding the last point, it is found, that the Crisfield model
requires about three times more time steps than the shell
srp-model in order to reach results of comparable numeri-
cal accuracy. An elaborate discussion on the time integration
scheme of the Crisfield model and related limitations of [10]
is available in [10]. Similar concerns regarding actual imple-
mentations of the Crisfield model were expressed in [27,
28]. Later in Sect. 7, the comparison of plasticity models by
imposing the results of actual roll forming simulations on a
through-the-thickness element is continued.

5 Mixed Eulerian–Lagrangian finite element
scheme

The different plasticity models, except for the one pro-
posed by Crisfield, are implemented in a mixed Eulerian–
Lagrangian shell finite element scheme that is designed for
the simulation of sheet metal roll forming. Since a detailed
discussion of this program is available [13], only a brief
explanation of themost essential aspects is provided, namely:

• the mixed Eulerian–Lagrangian kinematic description

• the contributions that constitute the total potential energy
in the weak formulation

• frictionless contact
• the convective transport of internal plastic variables in
the two-step solution procedure

Though purpose-built for the process of sheet metal forming,
the simulation framework is equally applicable to certain
static problems [13]; actual roll forming simulations are
addressed in Sects. 6 to 8.

Since the raw material of the roll forming process is a flat
metal sheet a rectangular reference configuration can now
explicitly be stated:

◦
r = ◦

x i + ◦
y j , −w/2 ≤ ◦

y ≤ w/2, (42)

where
◦
x and

◦
y denote the Lagrangian material coordinates

in axial direction and lateral (width) direction, respectively.
Originally, the undeformed sheet is aligned in the xy-plane
of the spatial Cartesian coordinate frame with the basis vec-
tors i and j ; the complementary vector k = i × j points

in z-direction. The lateral coordinate
◦
y is bounded by the

total width w of the metal sheet, but the axial coordinate
◦
x is

unbounded, because roll forming is viewed as a continuous
process in a spatial control domain 0 ≤ x ≤ L . There-
fore, as forming progresses the axially moving sheet (and its
material particles) will be continuously transported through
this domain, which renders the purely Lagrangian perspec-
tive inefficient and suggests a coordinate transformation to a
mixed set that decouples the actual deformations sustained
during the forming process from the axial travel of the struc-
ture. Thus, the position vector to a material particle r in the
actual configuration is parametrized in a mixed coordinate
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space that comprises the Eulerian axial coordinate x and the

Lagrangian lateral coordinate
◦
y:

r = x i +
(◦
y + uy

)
j + uzk,

◦
x = x − ux . (43)

Together the mixed pair {x, ◦
y} constitute a rectangular inter-

mediate configuration of the part of the metal sheet currently
enclosed by the boundaries of x ∈ [0, L] (activematerial vol-
ume). The Cartesian components of the displacement vector

u(x,
◦
y, t) = ux (x,

◦
y, t)i + uy(x,

◦
y, t) j + uz(x,

◦
y, t)k (44)

serve as primary unknowns.More specifically, the nodal vari-
ables of a single four-node rectangular finite element, which
resides in the intermediate configuration, comprise the dis-
placements themselves, their first derivatives and the mixed
second derivative with respect to the local finite element
coordinates. This choice of nodal degrees of freedom paired
up with bi-cubic polynomial shape functions ensures a C1

continuous approximation of the position vector. The used
finite elements are therefore an extension of the Bogner-Fox-
Schmit plate elements [29, 30].

The mixed parametrization is advantageous because it
enables a spatial resolution of the deformations imposed
by the roll stands at given x-positions. Consequently, mate-
rial particles are free to travel through the finite element
mesh that is fixed in axial direction. This change of per-
spective necessitates a corresponding transformation of the
basic kinematic relations. In particular, the material differ-
ential operator needs to be restated in terms of the partial

derivatives with respect to x and
◦
y:

◦∇ = i (1 − ∂xux )
−1 ∂x + j∂◦

y
, (45)

such that its application to
◦
r with

◦
x = x − ux still yields the

planar unit tensor. The first coefficient represents the deriva-
tive of the Eulerian coordinate x with respect to its material

counterpart
◦
x . Consequently, its reciprocal value determines

the Jacobian determinant to transform the material area inte-
gral for the total strain energy:

U� =
¨

Ud
◦
xd

◦
y =

ˆ L

0
dx

ˆ w/2

−w/2
(1 − ∂xux )Ud

◦
y, (46)

where either (13) or (12) need to be inserted for the strain
energy densityU depending on the particular choice of plas-
ticity model.

The second contribution to the total potential energy is
attributed to the contact of the metal sheet with the rolls
that impose the plastic bending on the initially flat metal
sheet during the roll forming process. It is modelled as a
frictionless contact of a solid body (metal sheet) with rigid

bodies of revolution (rolls). The assumption of frictionless
contact is justified with the following reasoning:

• In reality, the interface between rolls and sheet metal is
lubricated to reduce tool wear, which reduces friction and
significantly complicates the identification of the friction
parameters [31].

• Friction seems to have no significant impact on resulting
geometry and contact normal forces [15, 31, 32].

The penalty-regularization method is employed to state the
contact potential as

V� =
ˆ L

0
dx

ˆ w/2

−w/2
(1 − ∂xux )

1

2
Pγ 2d

◦
y, (47)

with a large factor P to penalize any penetration γ ≥ 0 of the
metal sheet into the roll surface; details are provided in [13].
The sum ofU� and V� constitutes the total potential energy,
which is minimized numerically to compute a quasistatic
equilibrium state in the first phase of the transient simulation
procedure.

Since the inner variables that identify the plastic state are
strictly attached to the material particles, their flow through
the Eulerian–Lagrangian finite element mesh in axial direc-
tion must be rigorously accounted for. This is done by means
of solving an advection equation, which constitutes the sec-
ond (Eulerian) step of the solution scheme and concludes the
time increment. A forward in time backwards in space finite
difference method is used to perform the incremental time
integration of this equation; its implemenation in the finite
element scheme is discussed in [13].

6 Roll forming simulation for a single roll
stand

In this section the enhanced shell srp-model is tested in an
actual roll forming simulation with a single roll stand and
its response is compared to corresponding simulations con-
ducted with the plate srp-model of [12] and the continuum
plasticity model. The same assumptions (rigid rolls, fric-
tionless contact etc.) and simulation procedure as described
in [13] is followed, which features the mixed Eulerian–
Lagrangian finite element scheme outlined in Sect. 5

A control domain 0 ≤ x ≤ 0.8 m with one roll stand act-
ing at x = 0.4 m is considered, with simulation parameters
according to Table 2; an axial mesh refinement (with Nx ele-
ments) such, that the elements at the contact region are half
the size of the elements in the outer regions is employed. The
edge at x = 0 corresponds to a fully (in-plane and out-of-
plane) clamped edge with material particles flowing through
at the constant transport rate v. The final (steady state) con-
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Table 2 Default parameters of
the simulation model with one
roll stand

Geometry Material

L [m] w [m] h [m] E [N/m2] ν k [N/m2]
0.8 0.1 0.003 2.08 × 1011 0.3 362 × 106

Forming Transport Numerical

ρ [m] v [m/s] �t [s] Nx Ny Nζ P [N/m3]
0.004 0.8 0.005 26 10 8 1 × 1013

figuration with a cross-sectional view of the roll gap in the
center is depicted in Fig. 7.

It visualizes the symmetrical roll profiles and also shows
the forming angle ϕ as well as the roll-gap-reduction param-
eter ρ. The latter is used to position the rolls vertically by
means of a symmetrical shift of ρ/2 towards each other and
the angle ϕ corresponds to the tangential direction at the end
of the cross section. As postprocessing variables the resulting
contact force acting on the lower rolls RL and the bending
angle ϕ(x = 0.6 m) are viewed.The angle is evaluated at this
particular x-coordinate because the forming angle of an end-
less profile is best approximated about halfway between the
roll-stand and the free end, i.e.: sufficiently far away from the
rolls and the right boundary. A parameter study for varying
roll-gap-reduction ρ is carried out and the resulting force RL

and the bending angleϕ(x = 0.6m) are plotted in Fig. 8. Evi-
dently, the results produced by the proposed shell srp-model
are mostly in line with the ones of the reference computation
with the cp-model.
The good correspondence of all models regarding the bend-
ing angle is owed to the fact that the shape of the final cross
section is primarily determined by the kinematically imposed
roll profiles. However, the force distribution obtained for
the plate srp-model deviates significantly, which can be
attributed to the neglection of the membrane forces in the
elastic-plastic constitutive law. Hence, though the forming
operation is bending dominant, the impact of membrane
effects on the forming forces is not negligible. The slight
“waviness” of the curves in Fig. 8 is owed to the coarse dis-
cretization according to Table 2. This does not impede the
comparison of plasticity models, but could, in principle, be

resolved by a mesh-refinement to improve the contact reso-
lution [13].

To conclude this experiment the intensities of the mem-
brane forces represented by IN as a contour plot for the
cp-model, the novel shell srp-model and the plate srp-model
are plotted in Figs. 9, 10 and 11, respectively. Expectedly,
the proposed shell srp-model matches the continuum behav-
ior significantly better than the plate srp-model. It is also
noteworthy, that the largest intensities of IN occur at the
outermost fibers before entering the roll gap. This is a well
established fact in practice: Material particles moving along
the curved side edges are stretched as they must travel a
greater distance than particles following the shorter path in
the center.

7 Response of a through-the-thickness
element subjected to a roll forming strain
history

To facilitate a comparison of the shell srp-model with
Crisfield’s model in the practical scenario of roll forming,
the numerical experiments on the through-the-thickness ele-
ment of Sect. 4 are reconsidered, but this time the thickness
element is subjected to strain histories of actual roll forming
simulations. This presents an easy way to continue the vali-
dation without having to implement Crisfield’s model in the
finite element framework.

For this sake, the results obtained in Sect. 6, from the
reference simulations with the cp-model for the particular
choice ρ = 0.004m are taken. More specifically, the steady

Fig. 7 Final, steady state configuration of the roll forming experiment with one roll stand (left); annotated view of the cross section at the roll stand
showing the roll-gap-reduction parameter ρ and the bending angle ϕ (right)
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Fig. 8 Comparison of the different plasticity models in terms of the roll force on the lower roll RL and the bending angle ϕ(x = 0.6 m) for
increasing values of the roll-gap-reduction ρ

Fig. 9 Intensities IN of the shell
as obtained for the continuum
plasticity model of [13] in the
steady state configuration of the
roll forming experiment with
one roll stand and ρ = 0.004m

Fig. 10 Intensities IN of the
shell as obtained for the
proposed shell stress resultant
plasticity model in the steady
state configuration of the roll
forming experiment with one
roll stand and ρ = 0.004m

Fig. 11 Intensities IN of the
shell as obtained for the plate
stress resultant plasticity model
of [12] in the steady state
configuration of the roll forming
experiment with one roll stand
and ρ = 0.004m
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state strains E and K encountered by a material particle on
its way through the control domain 0 ≤ x ≤ L are imposed
on the through-the-thickness element by means of:

E(x(t), y�), K(x(t), y�), x(t) = t/L, (48)

where y� is the lateral position of an axial fiber and the load-
application is controlled with the pseudo-time 0 < t ≤ 1 in
resemblance of (39). The strain histories are evaluated for
the outermost line of integration points at y� = 0.049m and
the innermost line at y� = 0.0011m. A piecewise quadratic
interpolation is used to obtain a smooth strain history from
the discrete integration point values. The time-histories of
IN and IM as well as the hardening functions are depicted in
Figs. 12, 13 and 14.

It is important to note that the thus produced time histories
for the plate srp-model, the shell srp-model and the Crisfield
model are artificial to a varying degree. This is due to the fact,
that the strain history of the simulation with the continuum
plasticity model is imposed, which generally differs from
the corresponding strain histories obtained from simulations
with the stress resultant plasticity models.

From Fig. 12 it can be concluded that the shell srp-model
very closely replicates the reference solution of the cp-model
for the outermost fiber. The plate srp-model is equally accu-
rate with regard to the bending invariant IM but exhibits a
strong deviation in the membrane invariant IN . Crisfield’s
model produces reasonably accurate results, which are how-
ever harder to obtain numerically owing to the less favorable
convergence behavior of the time integration scheme already
noted in Sect. 4.

The time histories for the innermost fiber depicted in
Fig. 13 show, however, significant differences between the
continuum and the stress resultant plasticity models. In order
to investigate this discrepancy, the time history of the domi-
nant components of the bending moments Mx (t) and My(t)
are presented in Fig. 15. Here, the non-monotonous charac-
teristic of the axial bending moment Mx , which relates to
the axial curvature induced by the rolls, entails a significant
change of the load case that even induces reverse plasticity.
The stress resultant plasticity models fail to reproduce such
load histories accurately, because the employed isotropic
hardening functions that govern the progression of plastic
flow rest upon the assumption of a monotonously increasing
loading. However, for the considered type of profile geome-
try these discrepancies remain confined to the proximity of
the center fiber and, as depicted in Fig. 8, do not percep-
tively deteriorate the correspondence in terms of the primary
variables of the forming process.

Finally, Fig. 14 demonstrates, that plastic flow at outer-
and inner- fiber is initiated even before the sheet enters the
roll gap at x = 0.4m, which is a well established observation
in the engineering practice of roll forming [33, 34].

8 Practical example of U-shaped profile
formed by three roll stands

Here, a simulation with three roll stands in which a simple
U-shaped geometry with a final forming angle of ϕ = π/4 is
produced, is considered. The steady state configuration with
fully closed roll gaps is depicted in Fig. 16. The simulation
parameters are provided in Table 3. The edge at x = 0 is
again fully clamped (in- and out-of-plane) and the three roll
stands are positioned at xi = {0.39, 0.78, 1.17}m.

Table 4 presents the resulting forming forces RLi (resul-
tant contact forces) on the lower rolls as obtained from the
stress resultant plasticity models and the relative errors εLi
in comparison to the continuum plasticity approach, which
serves as reference solution. The shell srp-model provides
highly accurate results (at significantly lower computational
cost), whereas the plate srp-model significantly overesti-
mates these forces. This inability to produce accurate forming
forces is a consequence of the incomplete description of plas-
ticitywith respect to themembrane forces. On the other hand,
the evolution of bending angles along the axis x as depicted in
Fig. 17 shows good correspondence of all three considered
models. Hence, in accordance with the observations made
for the experiment with a single roll stand in Sect. 6, the
estimated membrane forces have a strong influence on the
required forming forces to obtain a given profile geometry.

In comparison to the cp-model the primary advantage
of the shell srp-model is, that it produces practically accu-
rate results at approximately one-fifth of the total simulation
time.1

9 Conclusion

The proposed Kirchhoff–Love shell stress resultant plastic-
ity model is designed for a bending dominant framework
in which membrane forces remain small to moderate. The
derivation rests upon a proper combination of a previously
reported stress resultant plasticity model for elastic-plastic
plate bending and an augmented version of the Ilyushin
yield criterion proposed byCrisfield. The thus deduced stress
resultant plasticity formulation presents a computationally
more efficient alternative to the usually applied continuum
approach with a trough-the-thickness resolution of plastic
states. This advantage is of crucial importance since econ-

1 Reaching a quasi-steady state solution for the parameter set from
Table 3 takes about 45 days for the cp-model vs. 9 days for the shell
srp-model and vs. 8 days for the plate srp-model on a 6-core Intel(R)
Core(TM) i7-8850H CPU at 2.60GHz. This comparison of simulation
times stands regardless of the inherent inefficiency of the in-house finite
element code. In the latter respect, preliminary studies show, that limited
optimization measures are easily capable of reducing the simulation
time with the shell srp-model to less than a day.
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Fig. 12 Comparison of simulation results of the through-the-thickness element between the four different plasticity models with the strain history
of the outermost fiber; y� = 0.049m and ρ = 0.004m

Fig. 13 Comparison of simulation results of the through-the-thickness element between the four different plasticity models with the strain history
of the innermost fiber; y� = 0.0011m and ρ = 0.004m

Fig. 14 Comparison of the hardening functions for outermost fiber (left) and innermost fiber (right)
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Fig. 15 Comparison of simulation results of the bending moments of the through-the-thickness element for the innermost fiber with y� = 0.0011m
and for ρ = 0.004m

Fig. 16 Final, steady state configuration of the roll forming experiment with three roll stands

Table 3 Parameters of the roll
forming simulation with three
roll stands

Geometry Material

L [m] w [m] h [m] E [N/m2] ν k [N/m2]
1.56 0.12 0.0015 2.08 × 1011 0.3 362 × 106

Forming Transport Numerical

ρ [m] v [m/s] �t [s] Nx Ny Nζ P [N/m3]
ρmax 0.8 0.005 56 20 8 1 × 1013

Table 4 Stationary forces and
relative errors with respect to
the continuum reference
solution for the simulation with
three roll stands

Model RL1 [N] RL2 [N] RL3 [N] εL1 [%] εL2 [%] εL3 [%]
cp-model 5396 7493 10710 - - -

shell srp-model 5480 7487 10491 1.56 −0.08 −2.05

plate srp-model 5838 10008 15607 8.19 33.57 45.72
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Fig. 17 Comparison of the
resulting stationary bending
angles ϕ(x) for the three
different plasticity models in the
simulation with three roll stands

omy of time is an important design goal when developing
simulation tools for industrial applications like the here con-
sidered process of sheet metal roll forming.

The proposed model is tested in a series of experiments
on a through-the-thickness element by imposing bending and
membrane strain histories. Moreover, it is implemented in an
existing mixed Eulerian–Lagrangian finite element scheme
that is designed for the simulation of the sheet metal roll
forming process. For the purpose of validation, reference
solutions are obtained with the established continuum plas-
ticity approach. In the considered scenarios, the new model
surpasses the previously reported stress resultant plasticity
models in terms of accuracy and computational efficiency.

Like its predecessors the model captures the evolution of
plastic zones through the thickness by means of a custom
isotropic hardening law. As such it is well applicable to cases
that feature amonotonous increase of a given type of loading,
whereas non-monotonous load histories that induce reverse
plastic bending cannot be captured accurately. It is interesting
to note that even in case of the roll forming process, which
features a progressive bending of an initially flat metal sheet,
the phenomenon of reverse plasticity may occur in certain
parts of the cross section. This is due to the curvature in axial
direction that the rolls impose on the sheet as it is passing
through the roll gap. Future research may focus on the res-
olution of this persistent limitation, which nonetheless does
not inhibit the usability of the proposed model as long as
reverse plasticity has no dominant impact on the outcome of
the forming process.

In the roll forming scenarios considered so far, which fea-
tured simulation models with one and three roll stands to
produce a V-shaped and a U-shaped profile, the novel shell
stress resultant plasticity model produces accurate results in
terms of contact forces and bending angleswhen compared to
reference simulations conducted with the continuum plastic-
ity approach. In contrast to the previously reported model for
elastic-plastic plate bending, the additional account formem-
brane effects in the plasticity model significantly improves

the estimates of the forming forces. Ultimately, the enhanced
shell stress resultant plasticity model paired with the mixed
Eulerian–Lagrangian finite element framework presents a
major step towards a both computationally efficient and accu-
rate simulation of the sheet metal roll forming process.
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