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Abstract
This article reports the flow stress behaviour of two P92 steels at a temperature range of 850–1000°C and a strain rate of 
0.1–10 s−1 using the Gleeble® 3500 thermomechanical simulator. A physically-based constitutive model was used to analyse 
the effects of deformation conditions on the flow stress behaviour during deformation. This model incorporates the influ-
ence in the variation of Young’s modulus and the self-diffusion coefficient as affected by temperature. The study developed 
constitutive equations that predict the flow stress behaviour of the two steels investigated. From the constitutive analysis of 
the results, the stress exponent n was: 9.8 (steel A) and 10.3 (steel B). The model used the self-diffusion activation energy of 
steel. The statistical parameters: correlation coefficient of 0.99 (for steel A and B), the absolute average relative error of 2.18% 
(steel A) and 2.20% (steel B) quantified the applicability of the model. The quantification results show that the constitutive 
equations developed have high accuracy in predicting the workability of the two P92 steels. The study has shown that this 
method is applicable in predicting the metal flow pattern of two P92 steels in the metalworking processes.

Keywords  P92 steel · Hot deformation · Constitutive analysis · Stress exponent · Flow stress

1 � Introduction

The creep-resistant steels of the family 9–12 wt% Cr steels 
are now used widely in modern power plant components [1]. 
Thermal efficiency and reduced CO2 emissions from power 
plants require more research on these steels [2]. The most 
commonly used 9–12 wt% Cr steels for power plant compo-
nents are: P91, P122, E911, and P92 [1, 3]. These steels have 

become popular due to their excellent creep strength, weld-
ability, creep resistance and fabricability [4, 5]. For example, 
P92 steel, which has ~ 30% higher creep strength than P91 
steel [6], has replaced P91 steel and other older steel for 
power plant components such as turbine and boiler tubes 
and pipes. This steel can achieve a high steam temperature 
of up to 650℃ than the 9–12 wt% Cr steels [7].

The processing route for most components after casting 
involves rolling, forging, drawing, and extrusion [8]. The form-
ing process can eliminate defects like voids formed during 
casting and cause grain refinement of the microstructure. The 
metal flow behaviour during forming is of great concern to 
the engineers and the designers [9]. To improve the mechani-
cal properties of these steels, forming parameters must be 
controlled [10]. Constitutive equations provide information 
on metal flow patterns [11]. These equations can accurately 
describe the workability of any material under different form-
ing conditions [12]. These equations act as input in the Finite 
Element Method (FEM) simulation codes for studying forming 
process [13]. However, FEM accuracy depends on the consti-
tutive equations developed for the material [14]. Computer 
simulation reduces production costs and time, especially in 
metal processing [15]. Moreover, FEM modules provide a 
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cost-effective way of designing and optimising metal forming 
techniques commonly used in the production industry [16].

Constitutive modelling of flow stress during hot forming 
is of great importance. Most works on the hot workability of 
metal have used the conventional Arrhenius equations to deter-
mine the material constants [17–20]. The hyperbolic sine-law 
Arrhenius model, as given in Eq. 1.1 [21], has been accepted 
widely as the constitutive model for analysing the metal flow 
pattern of most materials, such as P91steel [22] and P92 steel 
[17, 23, 24], and Titanium alloys [25]. This equation relates 
the deformation conditions and the flow stress as:

where A, α and n are material constants, Q is the thermal 
activation energy, 𝜀̇ is the strain rate, σ is the flow stress, T is 
the deformation temperature, and R is the universal gas con-
stant (8.314 kJ. mol−1). The constitutive constants obtained 
in Eq. 1.1 do not account for any internal microstructure 
evolution during deformation, thus referred to as apparent 
values [26]. The equation assumes that the microstructure 
remains constant during forming [27]. The obtained n and Q 
values are higher than 270 kJ.mol−1 for iron [28]. The devia-
tion of activation energy is due to a variation of Young’s 
Modulus E (T) and self-diffusion coefficient, which varies 
with temperature [26]. Therefore, to account for these fac-
tors, Eq. 1.1 for the general physically-based equation (n = 5) 
is given as follows [27, 29, 30]:

where D(T) is determined using D(T) = D0 exp(Qsd/RT), D0 
is the pre-exponential constant. Qsd and E(T) are self-dif-
fusion activation energy, and temperature affected Young’s 
Modulus of the material, respectively. These values (D0 Qsd, 
E(T)) are obtained from the Ashby table [31].

However, the stress exponent n = 5 (Eq. 1.2) is an absolute 
value [32]. The equation assumes that no microstructure evolu-
tion such as DRX, DRV and dynamic precipitates occurs dur-
ing forming, which affects the stress exponent. The n-value is, 
therefore, not a constant but a variable parameter [27, 33, 34], 
and the equation is as follows:

(1.1)𝜀̇ = A(𝑠𝑖𝑛h(𝛼𝜎))nexp

[

−Q

RT

]

(1.2)
𝜀̇

D(T)
= B

[

sinh(𝛼σ∕E(T))
]5

(1.3)
𝜀̇

D(T)
= B

[

sinh(𝛼σ∕E(T))
]n

A few studies have reported results on using the phys-
ically-based model to analyse the flow stress behaviour 
of metals and alloys [27, 32, 33, 35, 36]. To this end, no 
study has reported on the applicability of the new physi-
cally-based constitutive equation in describing the defor-
mation behaviour of creep-resistant steels. The novelty in 
this article refers to the effectiveness of the physically-
based model in studying the workability of two P92 steels 
having variation in chromium and tungsten content, which 
is conspicuously missing in the literature. The present 
study aims to develop a suitable physically-based con-
stitutive equation for evaluating and analysing the flow 
behaviour of P92 steel. The output of this study will pro-
vide more insight into this method for future applications 
in research and industrial application. Hot compression 
tests were conducted at different deformation conditions 
using Gleeble® 3500 equipment. The flow stress–strain 
curves were analysed to develop mathematical rate equa-
tions for predicting the flow stress behaviour of P92 steel 
under the investigated conditions.

2 � Experimental procedure

Table 1 shows the chemical composition (in wt%) of the two 
P92 steel with variations in chromium and tungsten content 
studied. Test specimens measuring 8 mm diameter and 12 mm 
height underwent a uniaxial compression test using the Glee-
ble-3500 simulator under vacuum. Experimental test condi-
tions were: a temperature range of 850–1000°C at an interval 
of 50℃ and strain rates of 0.1, 1 and 10 s−1. These deformation 
temperatures were in the austenite region. Hence, the deforma-
tion tests in this study were in a single phase. These forming 
conditions have been used previously for this steel [37]. Ther-
mocouples at the mid-height of the specimen assisted in moni-
toring temperature during testing. Nickel paste and graphite 
foil are applied between the sample and the anvil to reduce 
friction. Before testing, the samples were heated at a rate of 
5°C/s to 1100°C and held for 180 s. Then, cooled at 10°C/s 
and soaked for 60 s at the deformation temperature before 
compression to a strain of 0.6. After deformation, samples 
were air-cooled rapidly to room temperature. At the austeniti-
sation temperature (1100°C), the complete dissolution of most 
carbides, especially M23C6, occurs. Dissolution temperature of 
chromium carbide starts at 900°C and completely dissolves at 
1100°C [1]. At 1100°C, the P92 steel transforms into the auste-
nitic phase. At this temperature, deformation resistance is low 
due to the absence of carbides [2]. Carbide dissolution occurs 

Table 1   Chemical compositions 
(wt.%) of the two steels

Steel C Mn Si Cr Mo Ni Cu Al V Nb W Co Fe

Steel-A 0.10 0.39 0.2 8.29 0.65 0.19 0.08 0.012 0.16 0.09 2.07 0.015 Bal
Steel-B 0.11 0.32 0.25 9.48 0.61 0.17 0.00 0.023 0.20 0.08 2.34 0.024 Bal
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below 920°C according to ThermoCalc calculations, as shown 
in Fig. 2 (also, Table 2) for the two steels. The information 
above justifies the selection of 1100°C as the austenitisation 
temperature during forming in this study.

3 � Results and discussion

3.1 � Microstructure of as‑received steels

Before being put into service, P92 steel undergoes nor-
malisation and tempering conditions. The chemical com-
position of the two P92 steel (named steel A and B) are 
listed in Table 1 and have the following relative ‘amounts’ 
of Cr, W and Mo:

The optical micrographs (Fig. 1) show the tempered 
martensite microstructure of the as-received steels. The 

Table 2   Dissolution temperature of phase in the two steels investigated
Dissolution temperature (°C)

Steel M23C6 MX Laves phase

A 888 1250 720
B 911 1192 770

Steel: Steel A Steel B
Cr medium high
W medium high
Mo high high
Creq 13.10 13.92
Nieq 4.58 4.40

b) Steel B

PAGBs

Triple point

a) Steel A 

PAGBs

Martensite 

Fig. 1   Optical microstructures of as-received samples

Fig. 2   Thermo-Calc predicted 
volume % of M23C6, MX and 
Laves phases vs. temperature 
under equilibrium condition for 
the two steels

a) steel A
b) steel B
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two steels had a tempered microstructure with well-defined 
prior austenite grain boundaries and triple points.

After heat treatment, precipitation occurs along the grain 
and lath boundaries and in the matrix. M23C6 (M = Fe, Mo, 
W, Cr) carbides precipitate along the prior austenite grain 
boundaries PAGBs [38], while MX (M = V, Nb; X = C, N) 
precipitates are usually randomly distributed in the matrix 
[39]. The carbides along the prior austenite grain boundary 
hinder the movement of the PAG boundaries and the sub-
grain dislocations, thus improving the creep resistance [40]. 
M23C6 carbides improve the creep strength by pinning the 
grain boundary movement [41], while the MX precipitates 
impede dislocation movement during deformation [4].

Thermo-Calc software with the TCFe5 database predicted 
the equilibrium transformation and precipitate dissolution 
temperatures for the two steels investigated. Figure 2 shows 
the change in the phase volume (%) as a function of tempera-
ture predicted using ThermoCalc under equilibrium condi-
tions for the commonly observed phases: M23C6 carbides, 
MX, and Laves phase. Dissolution of precipitates increases 
with an increase in temperature. The precipitate volume 
fraction increased as temperature decreased below the equi-
librium dissolution temperature (Fig. 2).

The ThermoCalc results show that MX precipitates 
have higher dissolution temperatures, as shown in Fig. 2. 
At higher austenitising temperatures, the precipitates will 
dissolve into the solid solution and precipitate during tem-
pering. The ThermoCalc results (Fig. 2) provided the basis 
for choosing 1100℃ for austenitisation temperature during 
deformation.

3.2 � Flow stress behaviour

In this study, the flow stress–strain curves were friction cor-
rected. During the uniaxial compression test, deformation 
at a lower strain rate caused “sticking” friction. Hence, the 
study accounted for interfacial friction correction on flow 
stress. However, the study did not consider adiabatic heating 
during deformation. The temperature variation between the 
pre-set and measured temperature in all deformation con-
ditions was approximately below 20°C. The temperature 

variation did not cause substantial variation in the flow 
stress values. Therefore, all the flow stress values used in 
this study were friction corrected. The relationship between 
the flow stress and temperature at a constant strain rate 
for the two steels is as given in Fig. 3. The plots show that 
the flow stress decreased as the deformation temperature 
increased at any strain rate. The decrease in flow stress is due 
to dynamic softening (dynamic recovery) [42], which is the 
dominant dynamic mechanism for P92 steel [18]. At higher 
deformation temperatures, the kinetic of atoms and disloca-
tion movement increases, causing low flow stress [43]. The 
flow stress values are higher at a higher strain rate since the 
deformation time is shorter for dislocation and rearrange-
ment to balance, resulting in work hardening and DRV as 
the dominant mechanisms. Table 3 shows the flow stress 
values obtained for the two steel at different deformation 
conditions. The flow stress results show that steel B had 
the highest flow stress values at 850℃ and in all strain rates 
investigated. High flow stress values at 850℃ were due to 
incomplete dissolution of carbides before deformation [18]. 
Hence, pinning dislocation results in an increase in flow 
stress values [44]. At higher temperatures (900–1000℃), the 
flow stress values for the two steels were relatively close. 
This deformation region (900–1000℃) lies in the austenitic 
zone for the two P92 steels. In this region, carbides dissolu-
tion of carbides occurs, causing low flow stress values. From 
the constitutive analysis, the stress exponent of the two steels 
was relatively the same, further suggesting less resistance to 
deformation under these conditions. The slight differences 
in flow stress values can be due to differences in Cr content. 

Fig. 3   Relationship between 
flow stress against temperature 
a) Steel-A, and b) Steel-B
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Table 3   Flow stress values obtained during forming

Steel Strain rate 850 900 950 1000

0.1 200 183 162 138
Steel-A 1 245 222 189 168

10 288 263 234 199
0.1 226 191 172 141

Steel-B 1 265 222 200 172
10 300 253 237 208
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Higher Cr content in steel B causes more carbides to form, 
thus hindering dislocation and causing high flow stress [44].

3.3 � The physically‑based constitutive equation

The Young’s modulus and the self-diffusion affected by 
temperature incorporated in the physically-based model can 
describe the metal flow pattern [28]. Therefore, Eq. 1.1 then 
becomes [27]:

where Tm is steel absolute melting temperature, B, n, α are 
material constants and 𝜀̇ is the strain rate (s−1), E0 and G0 are 
the Young’s modulus and the shear modulus at temperature 

(3.1)
𝜀̇

D(T)
= B

[

sinh(𝛼𝜎∕E(T))
]n

(3.2)D(T) = D
0
exp(−Qsd∕RT)

(3.3)E(T) = E
0

[

1 −
Tm

G
0

dG

dT

(T − 300)

Tm

]

of 300K respectively, the term Tm/G0.dG/dT is denoted as 
ƞ representing modulus as affected by temperature and D 
is the self-diffusion coefficient. The constants: D0, E0 and 
Qsd values are obtained from Ashby [31] tables, provided in 
Table 4. Then, α ≈ β′⁄n′. 

The unknown material constants in Eq. 1.2 are obtained 
by plotting graphs using Eqs. 3.5 and 3.6.

n′ and β′ values were obtained from plots in Fig. 4 (Steel-
A) and Fig. 5 (Steel-B) using linear regression analysis. 
Then, α ≈ β′/ n′. From Eq. 1.2, the slope and the intercept 
of the plots in Fig. 4c (Steel-A) and Fig. 5c (Steel-B) deter-
mined the stress exponent n (slope of the graph) and the 
ln B (slope intercept). Table 5 gives the calculated material 
constants for the two steels.

By substituting material constants into Eq. 1.2, the result-
ant constitutive equations for the two steels is obtained as:

(3.5)𝜀̇

D(T)
= B

1

(

𝜎

E(T)

)n�

(3.6)
𝜀̇

D(T)
= B

2
exp

(

𝛽�𝜎

E(T)

)

(3.7)

̇Steel − A ∶ 𝜀𝑒𝑥𝑝

(

270000

RT

)

= Z = 1.33 × 10
11
(

sinh(576.68𝜎
ss
∕E(T)

)9.8

Table 4   Data values obtained for P92 steel in Ashby tables [31]

D0/(m2/s) Qsd (kJ/mol) η E0 (MPa) G0 (MPa)

1.8 × 10–5 270 -0.91 2.16 × 105
6.4 × 10

4

Fig. 4   Plots for determining a) 
ln B, b) n′ and c) n for steel A

a) b)

c)

y = 7404.5x + 25.168
R² = 0.9808

32

34

36

38

40

42

44

0.0010 0.0015 0.0020 0.0025

ln
(

̇/D
(T

))

σss/E(T)

y = 12.839x + 119.82
R² = 0.9836

32

34

36

38

40

42

44

-6.8 -6.6 -6.4 -6.2 -6.0

ln
(

̇/D
(T

)

ln(σss/E(T))

y = 9.7633x + 36.54
R² = 0.9843

33

35

37

39

41

43

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

ln
(

̇/D
(T

))

ln(sinh(ασss/E(T))

1507The International Journal of Advanced Manufacturing Technology (2023) 129:1503–1512



1 3

Then, Eq. 1.2 becomes:

Solving Eq. 11 gives Eq. 12:

Equation 3.10 can predict the flow stress under different 
forming conditions using Z = 𝜀̇exp

(

32475.34

T

)

 . Therefore, 
α, B and n values from Table 5, the following equations 
can describe the flow stress:

(3.8)Steel − B ∶ 𝜀̇𝑒𝑥𝑝

(

270000

RT

)

= Z = 9.53 × 10
10
(

sinh(669.32𝜎
ss
∕E(T)

)10.3

(3.9)
(

Z

B

)

1

n

= ���h

(

�
�ss

E(T)

)

=
e��ss∕E(T)

2
−

−e��ss∕E(T)

2

(3.10)�ss =
E(T)

�
��

[

(

Z

B

)

1

n

+

(

(

Z

B

)

2

n

+ 1

)]
1

2
From the above analysis, the calculated material constants 

of the two steels did not show any differences. Even though 
the two steels have a slight variation in the chemical com-
position (Cr Content), they have relatively the same stress 
exponent n values (difference of 4.7%). A study reported 
that n-values are affected by flow stress, which depends on 
the interaction between precipitates and mobile disloca-
tions [45]. The carbides pin dislocation hence, hindering 
the deformation process. The stress exponent is tempera-
ture-sensitive. The stress exponent n-value increases with 
a decrease in the deformation temperature and vice-versa 
[46]. However, deformation temperatures were slightly 
higher than the Ac3 of the two steels. Therefore, the flow 
resistance during deformation should be relatively the same 
as most carbides might have dissolved. The results further 
show that the variation in the chemical composition had an 
insignificant effect on the stress exponent.

(3.11)
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Fig. 5   Plots for determining a) 
ln B, b) n′ and c) n for steel-B:
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Table 5   Calculated consitutive constants of the two P92 steel

Material constant Steel-A Steel-B

α 576.68 565.00
B 1.33 × 1011 9.53 × 1010

n′ 12.84 11.16
n 9.80 10.30
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On the other hand, the B-value of steel A had one order 
of magnitude over steel B. Parameter B is proportional 
to the activation energy Q. Higher Q-value results in a 
higher B-value [47]. However, under the analysis method 
used, the Q-value was constant. Then, what might be the 
reason for this deference in B-value? B-value has no sim-
ple physical meaning [48]. Therefore, B-value is a func-
tion of forming conditions and microstructure orienta-
tion of the material [47]. The materials values given in 
Table 5 provide the necessary parameters to apply in the 
physically-based constitutive equation to determine pre-
cisely the flow stress behaviour during the deformation 
of this steel.

3.4 � Comparison of Zener parameter and flow stress

The Zener parameter describes the combined effects of 
deformation temperature and strain rate on the flow stresses. 
Figure 6 shows the relationship between the flow stress and 
the lnZ. The plots showed a linear relationship between the 
flow stress and lnZ.

Figure 6 shows that at any given value of lnZ, the two 
steels experience different flow stress. This result shows the 
influence of the deformation conditions (temperature and 
strain rate) during deformation. Generally, the value of lnZ 
increases as the deformation temperature decreases with an 
increase in the strain rate. When comparing steel A and steel 
B, the latter had higher resistance to deformation. Steel B 
had the highest lnZ value, especially at higher strain rates, as 
shown in Fig. 6. Steel B also had higher flow stress than steel 
A at any given lnZ value (Eq. 3.12). These results indicate 
that steel B had higher resistance to deformation, which can 
be due to higher Cr content which contributes to a higher 
precipitation strengthening, hence hindering deformation. 
The Z-value also depends on the deformation temperature. 
Lower Z-values occur at higher forming temperatures. 
Higher Z-values show that work hardening is the dominant 
deformation mechanism, and the material undergoes severe 
plastic deformation. Lower Z-values indicate that DRX 
and DRV occurred due to an increased dislocation move-
ment and reduced dislocation density. Work hardening and 
dynamic softening may simultaneously occur during form-
ing, thus affecting the resultant dislocation density and influ-
encing the flow stress behaviour [49]. Therefore, dynamic 
softening will occur depending on the initial thermal history 
of the sample subjected before deformation. For example, 
annealing before deformation can induce low dislocation 
density, which causes dislocation accumulation at the initial 
stages of deformation. As strain increases, a high generation 
of dislocation occurs, resulting in dislocation annihilation, 
hence initiating dynamic softening.

Equartion 3.12 gives the constitutive equations that can 
be used to predict the flow stress using the Zener parameter 
for the two steels investigated.

Steel A ∶ �
sat

= 17.41lnZ − 664.25

(3.12)Steel B ∶ �
sat

= 14.55lnZ − 475.07
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Fig. 6   Comparison of the flow stress and lnZ of the two steels

Fig. 7   Comparison of the calcu-
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4 � Model verification

The validity of the developed constitutive models (Eqs. 3.11 
and 3.12) to accurately predict the flow stress behaviour of 
the two steels investigated was done using statistical param-
eters: correlation coefficient R (Eq. 4.1) and the average 
absolute relative error AARE (Eq. 4.2). These models are 
widely used to predict the linear relationship between two 
variables [14, 50, 51].

where E is the flow stress values obtained form experimental 
data, C is the calculated flow stress and, E is the mean values 
of experimental data and  C  is the mean values caluculated 
flow stress.

Figure  7 shows the correlation of experimental and 
calculated (predicted) flow stress data. Table 6 shows the 
calculated statistical parameter values for the two steels 
investigated. The results indicate that the developed physi-
cally-based constitutive model has higher accuracy in pre-
dicting the flow stress of the two steels. The calculated flow 
stress values had an excellent correlation compared to the 
experimental flow stress values. The AARE values were 
2.18% (P92-A) and 2.20% (P92-B), while the R values were 
the same for the two steels (0.99). These parameter values 
show that models have excellent predictability of flow stress 
behaviour. The analysis indicates that the physically-based 
model is applicable in determining the stress flow pattern of 
P92 steels for any given deformation conditions. Hence, it 
can be of use in most industrial metal-forming applications.

5 � Conclusion

The study observed the following:

1.	 The flow stress values increase with a decrease in the 
temperature or an increase in strain rate and vice versa. 

(4.1)R =

∑N

i=1

�

Ei − E
��

Ci − C
�

�

∑N

i=1

�

Ei − E
�2

∑N

i=1

�

Ci − C
�2

(4.2)AARE(%) =
1

N

∑N

i=1

[

Ei − Ci

Ei

]

The results show that flow stress values depend on defor-
mation conditions.

2.	 It is possible to obtain the material constants B, n, and 
α in the physically-based model using the self-diffusion 
activation energy of austenite iron during forming at dif-
ferent loading conditions.

3.	 The constitutive analysis results show that this model is 
accurate and reliable in analysing the flow stress behav-
iour of metals and alloys, hence an alternative technique 
to analyse metal flow patterns. From the results, the 
effect of the chemical composition of the two steels on 
the flow stress behaviour was insignificant.

4.	 The statistical analysis results show that the physically-
based equations developed for the two steels exhibited 
high accuracy in predicting the metal flow pattern of the 
two P92 steel investigated. The predicted and experi-
mental data had a good correlation.
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