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Abstract
Quantitative quality characteristics of additive manufactured parts are influenced by parameters selected in the preparation 
process (pre-process), especially in the material extrusion process. As a result, a prediction of the tensile strength of manufac-
tured parts is hardly possible, which significantly reduces the usability of the process. In this paper a neural network approach 
is used to predict the tensile strength during the pre-process. The parameters investigated are print speed, number of shells, 
layer thickness, nozzle temperature and infill density. A prediction with a mean absolute percentage error (MAPE) of 2.54% 
could be achieved for randomly generated process parameters using a training data set of 243 samples. This exceeds the best 
prediction accuracies of the current literature which is between 2.56 and 3.34%. However, this research is particularly dif-
ferent in that, unlike the existing literature, the developed prediction models were tested with untrained random parameter 
values in a properly conducted test. With a data reduction to a data volume of 32 samples the used approach achieved already 
a MAPE of 4.15%. The neural network approach outperformed a multiple linear regression even at low training data volume. 
This publication differs from previously published research activities due to the achieved prediction accuracies on random 
parameter sets, the number of investigated parameters and the sample size. Users are provided with an algorithm and its 
procedure to predict the tensile strength which can be adapted to the respective application with the help of company data.

Keywords Material extrusion · Neural networks · Prediction · Parameter optimization · Quality

1 Introduction

The Material Extrusion (MEX) process, also known as 
Fused Layer Modeling or Fused Deposition Modelling 
(MEX-TRB/P), matured into a lucrative production alterna-
tive due to low machine hour rates, low and wide ranged 
printer prices as well as low infrastructural requirements. 
Due to the nature of additive manufacturing, process param-
eters–such as infill density, number of shells, and layer thick-
ness–are more important compared to conventional manu-
facturing. They are selected prior to the printing process and 
have a significant impact on the print result. Since properties 

such as tensile strength do not depend solely on material 
properties, the quality of the finished part is often unknown. 
On the one hand, this leads to high filling densities to ensure 
the required strength, which increases material costs and 
printing time. On the other hand, this limits the applicabil-
ity of the MEX process for stressed parts. With an accurate 
prediction, the strength of the part can be compared to the 
already estimated printing time and material cost, which is 
usually output in the slicer program. In this way, an optimal 
print job can be found based on quality, time and costs.

However, existing literature typically lacks data and test 
volume, lacks varied parameters, lacks a proper testing of 
the prediction accuracy, or achieves unsatisfactory predic-
tion accuracy. Furthermore, the current literature mostly 
predicts solely trained parameter steps, which reduces the 
usability of the developed models. In addition, the required 
data volume and the impact on data reduction methods are 
unknown. Moreover, it is questionable whether neural net-
works can achieve better prediction accuracy than simpler 
methods such as multiple linear regression, as the literature 
often lacks a comparison.
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This paper aims at answering the described open gaps 
of current literature by predicting the tensile strength in the 
state of the pre-process with a feed forward neural network 
based on freely selectable parameter values. This research 
give novel insights on how the data volume affects the pre-
diction accuracy, how a new parameter should be introduced 
in an existing neural network approach and how the training 
data can be reduced in order to still achieve a still satisfying 
prediction accuracy. The prediction accuracy achieved on 
randomly selected parameters outperformed previously pub-
lished models in the literature, even though they predicted 
known data steps. In addition, the results of the developed 
neural network are compared to a multiple linear regression 
approach.

At first the tensile strength is predicted using four vari-
able parameters and a data set of 81 samples for training. 
Then, print speed is added as a new parameter to improve 
prediction accuracy and to investigate how to introduce a 
new parameter into existing data. Effects of the total sample 
size on the prediction accuracy are investigated using data 
reduction methods. Subsequently, the prediction of samples 
with parameter sets outside of the learned value range are 
observed. Concluding the achieved results are discussed and 
recommendations are given.

2  Predicting tensile strength in material 
extrusion: state of the art

The use of neural networks is common in the area of MEX 
for example to identify print errors [1]. Predictions of quanti-
tative quality characteristics such as surface roughness [2–6] 
and dimensional accuracy [7–10] are performed by several 
researchers. Ali and Chowdary used neural networks to pre-
dict dynamic mechanical characteristics of MEX-fabricated 
parts, in detail the natural frequency [11]. Predictions of 
the compressive strength of MEX parts were performed by 
Panda et al. [12] and Sood et al. [13].

Besides neural networks a fuzzy logic approach was used 
by Trivedi and Gurrala to predict the tensile strength of 
FDM-fabricated parts [14]. Deshwal et al. used a neural net-
work to optimize the tensile strength of polylactic acid parts 
(PLA) by varying the infill density, print speed and nozzle 
temperature. They found that the neural network approach 
had a better performance than other tested approaches [15]. 
This could also be stated by a research of Tura et al. [16]. 
Grozav et al. predict the tensile strength with a neural net-
work varying nozzle temperature and print speed. They 
used in total 36 samples processed on two different MEX 
printers and two different materials–glycol-modified poly-
ethylene terephthalate (PETG) and PLA–to train their net-
work. They found that the size and variety of the available 
data were the most influencing and limiting factors of the 

used approach [17]. Bayraktar et al. predicted the tensile 
strength by observing 36 possible parameter combinations 
varying the nozzle temperature, layer thickness and raster 
orientation with a data volume of 108 samples. For nine 
selected samples within their parameter steps they achieved 
a MAPE between 3.34% [18]. Yadav et al. used a neural 
network to predict the tensile strength of multi material parts 
by stacking layers of acrylonitrile butadiene styrene (ABS) 
and PETG. With a data set of 30 samples they achieved a 
prediction accuracy between 2.5 and 2.6% for three chosen 
and trained parameter sets [19]. Tura et al. reached a MAPE 
of 2.21% on validation data for the tensile strength of PLA 
samples by varying infill density, extrusion temperature and 
print speed [16]. A prediction accuracy on test data was not 
stated.

In the presented literature the reachable accuracy was 
determined using training data and test only pre-defined 
parameter steps. This reduces the applicability of the devel-
oped neural networks significantly as they can solely guaran-
tee the stated prediction accuracy for their defined parameter 
sets. In addition, several of the research papers have only 
validated their prediction accuracy on the training data used 
to develop the prediction model, thus lacking a proper test 
to prove their prediction accuracy. The available research 
papers also lack sample size, test data volume (if tested), 
and number of varied parameters. Additionally, information 
on the sample size required to predict tensile strength with 
sufficient accuracy is missing. This paper fills the mentioned 
research gaps and provides an approach to predict the tensile 
strength of random parameter sets with a similar accuracy.

3  Methods and approach

3.1  Observed parameters, value range 
and resulting data set

The tensile strength of MEX produced parts is mainly deter-
mined by the material, the Z-orientation and the selected 
process parameters [20]. This research focus on the latter 
and therefore keeps the orientation and material fixed.

The mechanical properties of MEX-manufactured parts 
is especially influenced by the nozzle temperature, the layer 
thickness [21] and the infill density [22]. The density of a 
part is affected by the parameters infill density representing 
the percentage filling level of the free space inside a part 
and the number of shells. Shells are defined as the walls of 
the print that are exposed to the outside of the part. In the 
following the number of outer perimeters, top and bottom 
layers are chosen with the same count and are called number 
of shells. The infill pattern gyroid was used for all samples.

Firstly, the infill density, nozzle temperature, layer thick-
ness and number of shells are observed. It is expected that 
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they have the strongest effect on the tensile strength. The 
limits of the value ranges are chosen in such a way that the 
effect of the parameters can be observed in their entirety, 
yet a prediction still seems possible (see Table 1). For each 
parameter the minimum, middle and maximum values are 
determined to fill the value range.

Combining all possible parameter combinations result in 
a data set of 81  (34) samples called M1. This is used to train 
and validate the neural network. Later M1 will be extended 
with three differing print speeds resulting in a data volume 
of 243  (35) samples (M2). Random parameter combinations 
which are outside the parameter steps and within the param-
eter limits are determined to test the prediction accuracy of 
the resulting neural network. This data set T has a volume 
of at least 10% of the total training data to test the predic-
tion accuracy. As a loss function, the mean squared error 
was selected (see Eq. 1). To evaluate the performance of 
the model the mean absolute error is calculated using the 
predicted value pi , the measured value xi and the number of 
samples n (see Eq. 2). The prediction accuracy is given as 
the mean absolute percentage error MAPE (see Eq. 3), the 
mean absolute error MAE and the root mean square error 
RMSE [23]. Additionally, the number of outliers is used to 
describe the prediction results. An outlier is detected when 
the MAPE is more than one and a half times the interquartile 
range below the first quartile or above the third quartile.
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3.2  Used neural network

A feed forward neural network consisting of an input layer, 
two hidden layers with built-in dropout and an output layer is 
used to predict the tensile strength, as shown in Fig. 1. Each 
variable parameter has an associated neuron in the input 
layer. Dropout is used to switch off neurons randomly in the 
learning process. It helps the neural network to prevent over-
fitting. In the output layer one neuron provides the predicted 
tensile strength value.

The learning process itself is shown in Fig. 2. First the 
correlation of the input parameters is performed using the 
Pearson correlation coefficient. In all observations no cor-
relation between the input data was found. Therefore, the 
data sets could be used to train the neural network. The 
data set M is used for training and validation using a cross-
validation approach dividing the data set randomly in four 
separate partitions. A hyperparameter tuning with a random 
grid search is used as pre-defined hyperparameters have a 
significant impact on the success of the learning phase. The 
varied hyperparameters are shown in Table 2. In the epochs 
selection phase epochs are varied iteratively from 1 up to 
500. The best performing neural network is determined cal-
culating the minimum average MAE of all four partitions 
achieved on the validation data. This neural network is then 
trained again and afterwards tested with the data set T.

3.3  Used multiple linear Regression

The neural network approach shown is compared with a 
multiple linear regression approach for predicting tensile 
strength. Linear regression offers simpler applicability and 
better understanding as the prediction is represented by a 
function. The function is given by Eq. 5, where P is the 
predicted tensile strength, b is the constant indicating the 
intersection with the ordinate, �

1
 to �

5
 are the regression 

coefficients and x
1
 to x

5
 are the set parameters [24].

Table 1  Overview of the value range of each parameter

Parameter Minimum Middle values Maximum

Infill density 20% 50% 80%
Layer thickness 0.1 mm 0.2 mm 0.3 mm
Nozzle temperature 230 240 250
Number of shells 2 layers 4 layers 6 layers
Print speed mode Quality Medium Speed
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Fig. 1  Exemplary structure of the used neural network approach
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3.4  Sample, measurement and used equipment

The tensile strength was investigated according to the stand-
ards DIN EN ISO 527–1 and 3167. The flat sample of type 
A1 was used with a length of 150 mm visualized in Fig. 3. A 
horizontal orientation (XYZ-orientation) was used (see Fig. 4).

For the measurement of the tensile strength an Inspekt 200 
from Hegewald & Peschke Meß- und Prüftechnik GmbH was 
used with a load cell of 10 kN, a test speed of 3 mm/min, a 
break-off criterion of 75% and a safety criterion of 8 kN. The 
prints were produced with a Prusa i3 MK3S + from Prusa 
Research out of glycol-modified polyethylene terephthalate 
(Prusament PETG) from Prusa Polymers on a plain PEI-coated 
spring steel build platform.

(5)P = b + β
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1
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2
x
2
+ β

3
x
3
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4
x
4
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5
x
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4  Results and discussion

4.1  Effect of parameters on the tensile strength

The printed samples achieved a tensile strength between 
16.41 N/mm2 and 46.04 N/mm2. The training data has a 
span of 29.63 N/mm2 and the test data of 19.56 N/mm2 (see 
Fig. 5). As expected, the obtained tensile strength of the test 
data was within the training data since the parameters were 
chosen randomly within the parameter limits of the training 
data. The differing parameter sets changed the break behav-
ior of the sample. While some break instantly after reaching 
maximum stress (see (a) in Fig. 6) others had phases of a 
strong decrease in stress followed by a plateau and a phase 
with an almost linear stress–strain curve before breaking 
(see (b) Fig. 6). These samples showed delamination of the 
outer perimeter and infill during tensile testing, indicating 
that the process parameters influence this effect.

Fig. 2  Used learning process for 
the neural network

Table 2  Hyperparameters Parameter Values Parameter Values

Neurons 32, 64, 128 Batch size None, 8, 16, 32
Batch normalization False, True Optimizer Adam, RMSprop, SGD
Dropout None, 0.05, 0.1, 0.5, 

0.8
Learning rate 0.01, 0.001, 0.0001,

Epochs 200 Activation function ReLu

Fig. 3  Tensile strength sample
x

y

a

d

(a-d)/2

(b
-c
)/2

c

b

Fig. 4  Top view of build plate
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The relative standard deviation of samples with equal 
parameter sets was 0.63% tested with five additionally 
manufactured specimens. This indicates a repeatable data 
generation process.

The effect size of the varied parameters was examined 
using the mean value of each parameter value represented 
in a main effects plot (see Fig. 7). The slope of the resulting 
functions indicates the strength of the parameter influence. 
The sign of the slope indicates the direction of the opti-
mization. By increasing the number of shells, infill density 
and layer thickness the mean value of the tensile strength 
was increased. The tensile strength seems to be particularly 
dependent on the number of shells, as the function shows 
the strongest slope. This indicates that the layers aligned 
with the direction of pull had the highest influence on ten-
sile strength, even though the other layers were aligned with 
the direction in a gyroid shape. The infill density showed a 

slightly higher slope than the layer thickness. In contrast, 
nozzle temperature seemed to have a small influence on the 
tensile strength. This indicates that the nozzle temperature 
had less of an effect on layer adhesion than the other effects. 
Print speed had the highest mean value at the medium 
speed setting and had small deviations in the mean value. 
The medium speed mode could be an optimum or a local 
optimum, and therefore an optimization direction could not 
be identified. This could be caused by the different speeds 
within the speed mode depending on the nozzle location.

4.2  Predicting the tensile strength via a neural 
network

After performing the mentioned learning approach on M1 
(see 3.2) a MAPE of 3.21% (MAE of 0.99 N/mm2) was 
achieved on the random test data T. The neural network 

Fig. 5  Tensile strength of (a) 
training data and (b) test data
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Fig. 6  Stress–strain diagram of 
(a) a cracked sample after maxi-
mum stress and (b) a cracked 
sample after a delamination 
phase
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achieved a RMSE of 1.32 N/mm2 and had 2 outliers (8% of 
test data T). The used hyperparameters of the best neural 
network are shown in Table 3.

4.3  Resulting prediction accuracy and data volume 
by adding a parameter

In the following the parameter print speed is integrated as it 
was used by several research activities to optimize the tensile 
strength [25, 26]. As the used print speed highly depends on 
the print head location and print task, existing print speed 
modes quality and speed were used given by the machine 
associated slicer (PrusaSlicer). Additionally, a speed mode 
medium is created by calculating the mean value of both 
referred speeds (see Table 4). All samples of M1 used the 
quality speed mode.

With an increased data set M2 (243 sample) a MAPE of 
2.54% could be achieved (see test A in Table 5). Three out-
liers were identified. Test A resulted in the most powerful 
neural network found in this paper.

The integration of the parameter print speed tripled the 
data set resulting in an increased effort in data generation. 
Therefore, M2 is reduced by the middle values to test the 
effect of a reduced added data volume (test B). With the 
resulting 162  samples the prediction accuracy reduced 

slightly (see Table 5). One outlier could be identified. Data 
sets with a layer thickness of 0.15 mm resulted in a signifi-
cantly worse prediction than other unknown data sets in all 
observations. It seems that this parameter influence is dif-
ficult to predict with the used approach. In test A the effect 
is higher compared to test B resulting in a higher RMSE.

To extend existing models, it is recommended to first add 
the minimum and maximum values of the new parameters. 
The achieved prediction accuracy could already be in a sat-
isfactory range as the observation show.

4.4  Parameter sets outside the learned value range

The following tests are performed with the most powerful 
neural network found with the total data set M2 (test A). The 
hyperparameters of the neural network remain unchanged 
and are given in Table 6.

The chosen data ranges were tighter than the original 
parameter ranges to guarantee a high prediction accuracy 
(see chapter 3.1). Therefore, five samples with randomly 
chosen parameters with at least one parameter outside of the 
value range are tested to observe the effect on the reachable 
accuracy (test C). Additionally, the minimum and maximum 
of the original value range is tested (test Min and Max). 
A minimal infill density of 5% was used since a 0% infill 
density was not printable due to long bridging resulting in 
fatal print errors.

The prediction accuracy decreased significantly for 
parameter sets outside the pre-defined value range (see 
Table 7). Likewise, the RMSE of test C (3.91 N/mm2) is 
higher compared to test A. Therefore, the needed value range 
should be known before data generation to choose a tight 
parameter range which covers the needed parameter values.

Table 3  Used hyperparameters for the prediction based on four 
parameters

Parameter Values Parameter Values

Neurons 128 Batch size 32
Batch normalization False Optimizer RMSprop
Dropout None Learning rate 0.01
Epochs 160 Activation function ReLu

Table 4  Used print speed modes

Print speed at Quality mode Medium mode Speed mode

Contours 45 mm/s 52.5 mm/s 60 mm/s
Thin outer contours 25 mm/s 25 mm/s 25 mm/s
Outer contours 25 mm/s 30 mm/s 35 mm/s
Infill 80 mm/s 140 mm/s 200 mm/s

Table 5  Prediction accuracy 
in dependence of added data 
volume

Test Added speed modes Data volume MAE 
in
N/mm2

MAPE 
in
%

RMSE 
in
N/mm2

Outliers

Added Total

A Quality, medium and speed 162 243 0.76 2.54 1.13 3
B Quality and speed 81 162 0.87 3.00 1.03 1

Table 6  Hyperparameter of most powerful neural network found (test A)

Parameter Values Parameter Values

Neurons 128 Batch size None
Batch normalization False Optimizer Adam
Dropout 0.05 Learning rate 0.01
Epochs 190 Activation function ReLu
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4.5  Effects of sample size on prediction accuracy

In the following, the training sample size is varied to 
investigate how the prediction accuracy degrades with a 
reduction of the training data volume. For this purpose, the 
achieved accuracy of the developed models is compared to 
the best model test A, which is based on the largest data 
set M2. This approach provides insight into how to reduce 
the data collection effort with little impact on prediction 
accuracy.

The sample size is reduced by eliminating the middle 
values of each parameter resulting in 32 parameter combi-
nations (test D). In a second observation parameters with a 
seemingly high influence–layer thickness, number of shells 
and infill density–are represented with the minimum, mid-
dle and maximum value. The remaining parameters are 
trained with the middle values (test E). In a third approach 
the Taguchi method is used resulting in a data set of 27 
samples (test F) [27]. To test the prediction accuracy data 
set T is used.

In all tests performed, the prediction accuracy decreased 
with a minimized data set (see Table 8). Test D achieved 
better prediction accuracies than E. This indicates that 
if a parameter is varied in the test data a representation 
by solely a middle value in the training data should be 
avoided even if they have a small influence on the pre-
dicted value. The Taguchi method achieved almost the pre-
diction accuracy of test D by using less data. The RMSE 
of test D, E and F are higher compared to A. Test D and E 
had one outlier while test F had no outliers.

In our observations no clear preferred data reduction 
approach could be found. Should the data generation of 
test A exceed the affordable effort it is recommended to 
use the approach of test D.

4.6  Comparing the prediction accuracy 
with multiple linear regression method

The resulting prediction accuracy of the neural network 
approach performed best at a high data volume. Further the 
results are compared to the prediction accuracy of a multiple 
linear regression, as more simple prediction methods could 
achieve better prediction accuracies, especially at low data 
volume. Therefore, a multiple linear regression is used on 
the basis of the data sets A, D, E and F. The prediction 
accuracy is tested with the random data set T. Figure 8 shows 
the MAE, MAPE, RMSE, and outliers of the neural network 
and a multiple linear regression. The best multiple linear 
regression model achieved a MAPE of 4.82% using data set 
A. For all data reduction approaches the neural network out-
performed the linear regression regarding MAE, MAPE and 
RMSE (see (a), (b) and (c) in Fig. 8). The regression resulted 
in less outliers in test A and D. A multiple linear regression 
achieved a MAPE (12.15%), MAE (1.41 N/mm2), RMSE 
(6.84 N/mm2) and one outlier for parameter sets outside of 
the learned parameter range, which are all higher than the 
achieved characteristics of the neural network approach.

The results show that the neural network approach is 
superior to multiple linear regression considering even a 
low training data volume.

4.7  Critical appraisal and limitations

The investigations relate to the parameters print speed, num-
ber of shells, layer thickness, nozzle temperature and infill 
density. Therefore, a prediction using the shown approach 
is only possible if these parameters influence the tensile 
strength. The used approach needs to be adapted for print-
ers where other parameters play a predominant role.

The investigations are based on PETG material. Materi-
als with a deviating printability, that cannot be processed 
repeatably by the printer, could worsen the prediction accu-
racy. The infill pattern was not varied in this paper. This 
should be considered as a further parameter if variation of 
the infill pattern is required. This would extend the neural 
network by one neuron in the input layer.

Tensile strength is area dependent. The ratio of the num-
ber of shells and the infill density influences the degree 

Table 7  Prediction accuracy of randomly chosen parameter sets

Test MAE in N/mm2 MAPE in %

C 2.86 10.43
Min 2.19 17.75
Max 9.30 23.43

Table 8  Achieved prediction 
accuracy in dependence of used 
data volume and data generation 
approach

Test Data generation approach Data vol-ume MAE 
in
N/mm2

MAPE 
in
%

RMSE 
in
N/mm2

Outliers

A Minimum, middle and maximum values 243 0.76 2.54 1.13 3
D Minimum and maximum values 32 1.20 4.15 1.35 1
E Layer thickness, number of shells and infill 

with three values, rest with middle value
27 1.22 4.29 1.52 1

F Taguchi method 27 1.36 4.25 1.90 0
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of infill. It is therefore questionable if the used prediction 
approach can be used for predictions of tensile samples with 
cross-sections of differing sizes, or if new training data set 
is required.

A comparison of the achieved prediction accuracies 
with the current literature is shown in Table 9. The results 
highlight the novelty of the achieved results of this work, 

as for the first time the prediction accuracy was tested for 
parameters that differed from the trained parameter steps 
and still outperformed the presented literature in case of a 
properly tested prediction accuracy. Additionally, Test A was 
trained by varying five process parameters, which exceeds 
the number of parameters in the literature and therefore give 
more freedom in parameter optimization. Higher achieved 

Table 9  Comparing the achieved prediction accuracy of this work (Test A and Test B) with prediction models of the current literature

Source MAPE in % Training data 
volume

Test data vol-
ume

Prediction based 
on … parameter 
steps

Material Varied parameters

Count Names

Test A 2.54 243 24 unknown PETG 5 Print speed, number 
of shells, layer 
thickness, nozzle 
temperature and 
infill density

Test D 4.15 32 24 unknown PETG 5

Deshwal et al. [15] Not stated 39 Did not test known PLA 3 Infill density, print 
speed and nozzle 
temperature

Tura et al. [16] Not stated on test 
data

15 Did not test only 
validate

known PLA 3 Infill density, extru-
sion temperature and 
speed

Grozav et al. [17] Not stated on test 
data

36 Did not test only 
validate

known PETG and PLA 2 Nozzle temperature 
and print speed

Bayraktar 
et al. [18]

3.34 108 9 known PLA 3 Nozzle temperature, 
layer thickness and 
raster orientation

Yadav et al. [19] 2.56 30 3 known Multilayer PLA 
and PETG

3 Material density, infill 
density and extru-
sion temperature

Fig. 8  Comparison of the neural 
network (triangles) and linear 
regression approach (circles) 
using (a) MAE, (b) MAPE, (c) 
RMSE and (d) outliers
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prediction accuracies in the literature were not properly 
tested as they use the accuracy of the validation, which is 
more accurate since it has already been used for training. 
Proper testing requires separation of training and test data. 
Validation accuracies are typically used only for hyperpa-
rameter selection and are not commonly used to report the 
achieved prediction accuracy of a model.

5  Conclusion

In this paper, a neural network approach was used to pre-
dict the tensile strength of MEX-manufactured PETG parts 
based on process parameters. The effects of data volume 
on the prediction accuracy was investigated using different 
data reduction methods. A comparison with a multiple linear 
regression in dependence of the data volume was performed.

The achieved prediction accuracy (MAPE of 2.54%) 
on random test data within the parameter ranges exceeds 
published results even though they predicted solely known 
trained data. This indicates a high prediction accuracy of the 
developed neural network. With a lower sample size of 32 
samples a MAPE of 4.15% could be achieved. Increasing the 
data volume reduces the prediction error (MAPE, MAE and 
RMSE). However, it has been demonstrated that an increase 
in data is not necessarily accompanied by a decrease in the 
number of outliers. In all performed investigations the neural 
network outperformed a multiple linear regression. There-
fore, even at low data volume a neural network approach is 
recommended.

A secured prediction accuracy seems possible with the 
representation of minimum, medium and maximum values. 
However, it is recommended to firstly use a reduced data set 
with solely minimum and maximum values. A satisfying 
prediction accuracy could be already achieved with a signifi-
cantly lower effort in data generation. It is suggested to use 
the minimum and maximum value to add new parameters to 
the neural network. Additionally, it is recommended to only 
vary parameters with a high influence on the observed qual-
ity characteristic and avoid varying parameters which are 
represented by solely one value in the training data set. The 
prediction accuracy of parameter sets outside the defined 
value range is clearly worsened. The parameter range should 
be known beforehand and should not be exceeded.

The used approach could be transferable to other part 
orientations e.g. the Z-orientation, enabling the prediction 
of the tensile strength for most parts in practice. Therefore, 
future work targets the application of the presented approach 
to other printers, materials and orientations. It is planned 
to investigate how the existing data can be used to further 
reduce the data volume for new applications by using trans-
fer learning. In addition, it is planned to apply the approach 
to other quality characteristics such as dimensional accuracy 

and surface quality. This would allow the prediction of the 
most important quality characteristics of the MEX process. 
The presented approach could be extended to other additive 
processes, especially those in which strength plays a major 
role, e.g. laser beam melting (PBF-LB/M). For this, the 
input parameters have to be adapted to the respective addi-
tive process. A first test of a neural network approach could 
be performed using the minimum and maximum data reduc-
tion method and solely a few influential process parameters.
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