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Abstract
Inconel 718 is a superalloy with a high nickel content that is widely used in applications requiring solid mechanical behavior 
and resistance to oxidation and corrosion at high temperatures. This alloy has numerous applications in manufacturing steam 
turbine and jet aircraft interiors, aviation sector manifolds, and rotary spindles. It can be classified as a difficult-to-cut material 
unsuitable for traditional machining. The purpose of this paper is to develop prediction models for a wire electrical discharge 
machining (WEDM) process using response surface methodology (RSM), artificial neural networks (ANN), and adaptive 
neuro-fuzzy inference systems (ANFIS) and to determine which model is better at making accurate predictions. Pulse_ontime, 
pulse_offtime, servo voltage, flushing pressure, and wire feed were considered the main factors affecting volumetric material 
removal rate (VMRR) and arithmetic surface roughness (Ra), which were evaluated as WEDM performance characteristics. 
I-optimal design made with a computer algorithm was employed to develop experimental models. The results reveal that 
the wire feed and pulse_ontime were the most vital factors influencing VMRR, respectively, and the most significant factor 
influencing Ra is the pulse_ontime. The total percentage error of the three models demonstrated that the ANN and ANFIS 
models are more reliable and accurate than the RSM mathematical model. Finally, multiobjective optimization using the 
Pareto search algorithm was used to optimize mathematical, ANN, and ANFIS models to determine the optimum WEDM 
process parameters for machining Inconel 718 superalloy.

Keywords I-optimal design · Response surface methodology · Artificial neural network · Adaptive neuro fuzzy inference system

1 Introduction

The challenge of working with materials that are tough to cut 
was a significant factor in the development of advanced machin-
ing techniques; among such techniques is wire electrical dis-
charge machining (WEDM), which is extensively used in the 
aircraft, automobile, and medical device industries [1]. Recently, 
(WEDM) has been used to machine various machining min-
iature and micro parts made from metallic, alloy, powdered, 
carbide, and ceramic materials [2]. Inconel 718 superalloy is a 
prevalent and extensively utilized nickel-based alloy. In 2019, 
Inconel 718 superalloy, comprising approximately 54% of the 
nickel superalloy market, was valued at over $4 billion [3].

In 2021, the commercial aviation engine business was 
worth over $80 billion. Inconel 718 superalloy, which con-
stitutes over 50% of the total weight of these engines, has 
proven that this alloy is a significant contributor to this mar-
ket [4].

The precipitate strengthening process and the distribution 
of the particles of chrome and iron, niobium, molybdenum, 
titanium, and aluminum throughout the nickel γ matrix allow 
Inconel 718 to retain its mechanical characteristics even at 
650 degrees Celsius [5]. This lead Inconel 718 is utilized 
significantly in various applications, such as the interiors of 
steam turbines and jet aircraft, and rotary spindles [6]. Cut-
ting Inconel 718 superalloy using conventional machining 
techniques is problematic, due to high cutting forces with 
generated stresses exceeding 450 *  106 Pa and temperature 
exceeding 1100 degrees Celsius on the cutter’s edge. These 
issues shorten the cutter edge’s lifespan, which increases 
expenses [7]. The challenges of cutting hard materials can 
be reduced to a manageable level using (WEDM). However, 
choosing the appropriate machining settings for this process, 
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which are controlled by several primary and secondary fac-
tors like peak current, pulse_ontime, pulse_offtime, servo 
voltage, wire tension, gap voltage, Arc ontime, Arc offtime, 
Flushing Pressure, wire feed, and thermo-mechanical prop-
erties of the workpiece and electrode wire for the necessary 
performance characteristics of (WEDM) process machin-
ing such as the volumetric material removal rate (VMRR), 
arithmetic surface roughness (Ra), kerf width (KW), and 
others, has always been one of the industry's most complex 
challenges.

2  Literature review

Many research have been made to improve the performance 
characteristics of the WEDM process, such as (VMRR), 
(Ra), and (KW), by using a wide range of traditional multi-
criteria-making decisions and evolutionary optimization 
techniques. Nevertheless, due to the complexity and stochas-
ticity of the process and the inclusion of many factors, its 
full capabilities have yet to be discovered; besides that, find-
ing a reasonably accurate relationship function between the 
performance characteristics and process parameters is hard. 
Aggarwal et al. [8] developed a mathematical model using 
RSM to predict, with an error of less than 5%, the cutting 
rate, and the (Ra) by WEDM when machining Inconel 718 
superalloy with different operating settings (peak current, 
pulse_ontime, pulse_offtime, wire tension, gap voltage, and 
wire feed). Cutting rate and (Ra) were improved to 2.55 mm/
min and 2.54 μm, respectively, using multi-response optimi-
zation to determine the best machining settings. Yusoff et al. 
[9] developed a model called OrthoANN that was created by 
combining the Taguchi design orthogonal array technique 
L256 with an artificial neural network (cascade forward back 
propagation neural network (CFNN)). This model was suc-
cessful in predicting the performance characteristics (cutting 
speed, Ra, VMRR, and sparking gap) with an average error 
of 5.16% while machining Inconel 718 superalloy under var-
ying operating settings such as (peak current, pulse_ontime, 
pulse_offtime, servo voltage, and flushing Pressure), dem-
onstrating the effectiveness of OrthoANN in modeling the 
performance characteristics of the WEDM on Inconel 718 
superalloy compared to conventional ANN. Lalwani et al. 
[10] utilized two models, first a mathematical model using 
the RSM and second the ANN model, to predict the (Ra), the 
(KW), and the (VMRR) by WEDM while machining Inconel 
718 superalloy under varying operating settings (pulse_
ontime, pulse_offtime, servo voltage, and wire tension), and 
concluded that the prediction accuracy of the established 
ANN model was found to be superior to the RSM model. 
The lower value of the mean square error for ANN (1.49%) 
than the mean square error for RSM (5.71%), which further 
validates the better fitting of the neural network, otherwise 

indicates that (pulse_ontime) has the highest impact on the 
machining of Inconel 718 superalloy by the WEDM pro-
cess. Ultimately, the non-dominant sorting genetic algorithm 
(NSGA-II) used multiple objectives to find the best WEDM 
conditions. Lijun Liu et al. [11] attempted to use a zinc-
diffused-coated brass wire electrode and the Taguchi-Data 
Envelopment Analysis-based Ranking (DEAR) methodol-
ogy while machining Inconel 718 superalloy under varying 
operating settings (pulse_ontime), (pulse_offtime), (Servo 
Voltage), and (wire tension) to improve the WEDM process’ 
performance characteristics ((Ra), (VMRR), and (KW)) and 
proposed that the ideal input factor configuration discovered 
in WEDM be 140 µ.s (pulse_ontime), 50 µ.s (pulse_offtime), 
60 Volt (Servo Voltage), and 5 kg (wire tension), with an 
error accuracy of 1.1%. Finally, state that the (pulse_off-
time) is the most important factor influencing the average 
surface roughness due to its importance in deionization 
in the machining process. Wan Azhar et al. [12] utilized 
a model that considers material properties such as thermal 
conductivity, melting point, and electrical resistivity. Coac-
tive Neuro-Fuzzy Inference Systems (CANFIS) is a promis-
ing method to model the µEDM performances on different 
materials to predict the material removal rate (MRR), total 
discharge pulse, overcut, and taperness under variable input 
parameters. The material properties, feed rate, capacitance, 
and gap voltage are in a three-level design based on a full 
factorial experiment, and it was determined that the mean 
average percentage error of various outputs for test datasets, 
including MRR, total discharge pulse, overcut, and taper 
angle, was 4.5%, 6.8%, 15.4%, and 15.2% respectively. Bis-
was et al. [13] used genetic algorithms (GAs) and particle 
swarm optimization (PSOs) to make models of multiobjec-
tive, multilayer neural networks (MOMLNNs). To discover 
effective methods for optimizing multimaterial systems, the 
MOMLNN with the (13–300-300–4) architecture was paired 
with GA and PSO techniques to discover the ideal process 
parameters by the WEDM for machining Inconel 625 and 
Inconel 718 superalloy. Six process parameters (pulse_
ontime, pulse_offtime, servo voltage, Arc ontime, Arc off-
time, and wire feed), seven elements (Fe, Nb, Cr, Mo, Al, Si, 
and Ti), and four performance characteristics of the WEDM 
process ((VMRR), (KW), (Ra), and recast layer thickness 
(RLT)) make up this model. When comparing GA and PSO 
integrated models, GA has somewhat higher accuracy. It 
concludes that the (VMRR) and (KW) increase when pulse_
ontime and Arc ontime increase. (Ra) decreases when Arc 
ontime and wire feed decrease. As Arc offtime increases, so 
does the recast layer’s thickness (RLT). The alloying ele-
ments most significantly impacting VMRR, KW, and Ra 
are Cr, Mo, and Si, while Fe, Nb, Ti, and Al mainly govern 
the RLT. Finally, the error fraction between the optimal and 
experimental answers was often less than 5%, showing that 
the GA-integrated model has strong predictive accuracy.
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This literature review highlighted the significant work 
produced over the past few years by numerous authors in 
machining Inconel 718 superalloy. This review gives our 
study some direction and introduces path analysis as a valu-
able tool to model the relationships between various WEDM 
process parameters and performance characteristics. Accord-
ing to the literature review cited above, none of the authors 
used the I-optimal design of mixture experiments when cre-
ating the experimental design for the WEDM process. Addi-
tionally, only a few studies have employed multi-response 
optimization strategies for the ANN and ANFIS models of 
the WEDM process of Inconel 718 superalloy. Almost all 
authors have utilized coded values for input process param-
eters, resulting in more intricate and challenging models to 
implement in industrial settings.

This study aims to construct a predictive model using 
actual values of processing parameters (pulse_ontime, 
pulse_offtime, servo voltage, Flushing Pressure, and wire 
feed) to make it more realistic and valuable for machining 
the Inconel 718 superalloy by the wire electrical discharge 
cutting process. The experimental design for the WEDM 
process will use an I-optimal design of mixture experiments 
to make accurate mathematical, ANN, and ANFIS models 
that can predict performance characteristics ((VMRR) and 
(Ra)). By using the percentage error and regression analysis, 
it will determine which model is more reliable and accurate 
than the others. A parametric analysis will investigate the 
impact of input processing parameters on performance char-
acteristics such as (VMRR) and SR. The performance of the 
WEDM process will be optimized using the Pareto search 
algorithm to the mathematical, ANN, and ANFIS models.

3  Experimental procedures

3.1  Specimen material

Inconel 718 superalloy was the material of the specimen 
tested in this experiment (16 mm in diameter). The combi-
nation of chemical elements in the workpiece specimen is 
displayed in Table 1. It has a density of 8.32401 g/cm3 and 
a melting temperature that ranges from 1210 to 1344 °C.

3.2  Experimental setup

The WEDM process’ schematic design and the initial setup 
are seen in Figs. 1 and 2, respectively. There are 32 experi-
ments in Fig. 3 carried out on an ACCUTEX AU-500IA 
CNC as shown in Fig. 4 (with other experimental details). 
These experiments were performed by generating a pulsed 
spark between a wire made of uncoated brass CuZn377 with 
a diameter of 0.25 mm and an Inconel 718 superalloy speci-
men (16 mm in diameter). 

Table  2 provides an overview of all the machining 
settings.

Most CNC wire EDM machines cannot determine opti-
mal process parameters for various workpiece materials, 
even though this information is essential in the precise man-
ufacturing business. Basic materials, including steel, alu-
minum, and carbides, are listed in the commercial WEDM 
machine catalog. However, WEDM is required to process 
various materials because of their unique thermophysical 
characteristics. Each workpiece material, such as Inconel 
718 superalloy, requires the machine’s end user to conduct 

Table 1  Workpiece chemical 
composition (wt%)

Element Weight Element Weight Element Weight Element Weight

Ni 55.4 Fe 17.7 V 0.0622 Mg 0.0013
Si 0.139 Co 0.136 C 0.0312 Ta 0.0025
Mn 0.183 Ti 1.49 P 0.0040 Zr 0.0010
Cr 16.9 Al 0.612 S 0.0003 B 0.0048
Mo 2.17 Nb 4.60 Sn 0.0049 N 0.305
Cu 0.0802 W 0.0372 Hf 0.0856 Pb 0.0317

Fig. 1  WEDM process’ 
schematic design
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time-consuming experiments to determine the best process 
settings. This paper studies the WEDM performance of 
Inconel 718 superalloy utilizing uncoated brass wire and 
analyzes the impact of process parameters ((Pulse_ontime), 
(Pulse_offtime), (Servo Voltage), (Flushing Pressure), and 
(wire feed)) on the responses (VMRR) and the (Ra). The is 
specified using the following equation:

(1)
VMRR (mm3∕min) = (sample weight prior to machining (gm) − sample weight following machining (gm))

∕Density of Inconel 718 superalloy

(gm∕cm3) ∗ 1000 ∗ Machining time (min)

A highly accurate electrical balance, capable of measur-
ing with a resolution of 0.1 mg, is utilized to determine the 
weight of the specimen both before and after the machin-
ing process. To determine the effect of WEDM processing 
parameters on the machinable surface, each specimen’s (Ra) 
is measured with a surface roughness meter (TR210, Bei-
jing). Using a surface roughness meter, Ra was measured in 
three distinct locations on the same face, and the average of 
those three readings was taken as the actual Ra value. The 
indicator has been set to the following parameters: the digi-
tal filter (RC) and the cut-off length (λc) (0.8 mm). Finally, 
scanning electronic microscopic pictures with a microscope 
(JSM-6390 series, Japan) was used to analyze the surface 
topography and shed light on the surface roughness.

4  Design of experiments

The RSM technique is a statistical technique that may be 
used to model, analyze, and optimize problems when the 
interaction of the input factors influences the output response 
to be studied because of its efficiency and adaptability. The 
I-optimal design of mixture experiments can characterize 
and optimize a process with great precision. In this experi-
ment, an I-optimal design made with a computer algorithm 
is used to improve the accuracy of predictions across the 
design space [14]. There are several benefits to using an 
I-optimal design instead of a traditional (RSM) design. First, 
fewer runs are needed than in traditional RSM approaches. 
For example, an experiment with five factors that use usual 
(RSM) approaches must have 50 trials with the central com-
posite design (CCD) and 46 runs with the Box Behnken 
design (BBX) without duplicating the design runs in order 
to improve the accuracy of predictions. On the other hand, 
the I-optimal design of mixture experiments requires just 21 
trials and a small number of duplicated design points. Also, 
the I-optimal design is a custom criterion that usually leads 
to a more even spread of design points in extreme regions. 

Therefore, this method yields lower standard errors, more 
accuracy, and higher accuracy for predicting. Third, unlike 
traditional RSM, the I-optimal method may match compli-
cated empirical regression models. The I-optimal method is 
used to solve issues with numerous constraints. For example, 
the levels of parameters are limited to specified values or a 
variable number of levels within parameters. This is done 

by taking out a specific area of study where responses could 
not be evaluated well (e.g., in WEDM parameters optimi-
zation) [15]. There were 32 trials in the I-optimal model 
matrix displayed in the table. The table below is an I-optimal 
model matrix consisting of 32 trials, 21 of which were for 
the basic model, 7 for extra model points in support of this 
model, 3 for estimating lack of fit, and 1 for replications. The 

Fig. 2  Initial setup

Fig. 3  32 samples cutting on wire Edm machine
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process parameters at different levels are displayed in the 
Table 3. All statistics from the experiments were analyzed 
using Design Expert software. Table 4 displays the outcomes 
of the experiment.

5  Results and discussion

5.1  Prediction and modeling for (VMRR) and (Ra) 
using response surface methodology

The response surface technique is a way to figure out the 
relationship between the output response to be studied and 
the input factors (process parameters of WEDM) and how 
these factors affect the responses [14]. In order to investigate 
the impact that WEDM processing parameters have on the 
(VMRR) and (Ra) when machining Inconel 718 superalloy, 
a second-order polynomial response can be included in the 
following equation: 

Fig. 4  Experimental details and framework

Table 2  Wire electrical discharge machine operating conditions

Parameters Description

Wire polarity Positive
Wire material Brass (Cu_Zn_377)
Wire diameter (mm) 0.25
Open voltage (volt) 82
Pulse-ontime (nanosecond) (250 – 750)
Pulse-offtime (microsecond) (10 – 20)
Arc ontime (nanosecond) (Pulse_ontime – 50 n.s)
Arc offtime (microsecond) (Pulse_offtime + 2 µ.s)
Servo voltage (volt) (35 – 55)
Flushing pressure (bar) (4.00—6.50)
Wire feed (mm/second) (1.00 – 3.00)
Wire tension (gf) (1400)
Wire-speed (mm/second) 80
Water level (litre) 80
Dielectric fluid De-ionized water including

(de-ionizing agent zeolite)
Water resistance kΩ.cm 17
Peak current (A) Determined by the machine itself based on 

the parameter of the feeding rate
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where,
x (0) is the free term.
a; b; c; d; and e are values of the machining process 
parameters.
x (1); x (2); x (3); x (4); and x (5) are values of linear 
coefficients.
x (12); x (13); x (14); x (15); x (23); x (24); x (25); x (34); x 
(35); and x (45) are values of interaction coefficients.
x (11); x (22); x (33); x (44); and x (55) are values of squared 
coefficients.
£ is the fitting error of the uth observation + 0.000075.
The final response equations were formulated using multiple 
regression analysis for the (VMRR) and (Ra).

In the VMRR equation, using a transformer for linear 
regression with the square root makes the determination 
factor (R2) and prediction (R2) larger, which supports this 
model.

where  Ton (n.s),  Toff (µ.s), S.V (volt), P (bar), and W.F (mm/
second) are (Pulse-ontime), (Pulse-offtime), (Servo Volt-
age), (Flushing Pressure), and (Wire feed) respectively.

Design of Expert 13 and Minitab 21 were used to test the 
models’ adequacy using ANOVA. Nominal model terms 
were eliminated using backward elimination. In this experi-
ment, all of the adequacy measures (squared R, adj squared 
R, and predicted squared R) were closer to one, suggesting 
that the model was adequate and fit. The R2 value for VMRR 
is 97.34%, and Ra is 89.87%. The high adj R2 and predicted 
R2 values, 94.61% and 92.29% for VMRR and 83.47% and 

(2)

Predicted Response = × (0) + ×(1)a + ×(2)b + ×(3)c + ×(4)d + ×(4)e + ×(12)ab

+ ×(13)ac + ×(14)ad + ×(15)ae + ×(23)bc + ×(24)bd + ×(25)be

+ ×(34)cd + ×(35)ce + ×(45)de + ×(11)a2 + ×(22)b2 + ×(33)c2

+ ×(44)d2 + ×(55)e2 ± £

(3)

VMRR =
(

2.6507457 − 0.000217128 ∗ Ton − 0.288503 ∗ Toff

+ 0.2066369 ∗ S.V − 0.9456873 ∗ P + 0.5724595

∗ W.F + 7.46812191 ∗ 10
−05 ∗ Ton ∗ Toff + 0.000532204

∗ Ton ∗ P + 0.00183019 ∗ Ton ∗ W.F − 0.003000084

∗ Toff ∗ S.V + 0.007696312 ∗ S.V ∗ P + 0.10160268

∗ P ∗ W.F − 5.3301719 ∗ 10
−06 ∗ Ton

2 + 0.0131177350

∗ Toff
2 − 0.002187750 ∗ S.V2 − O.3338437703 ∗ W.F2

)2

(4)

Ra =
(

−0.083028455 + 0.0015128181 ∗ Ton + 0.070355985 ∗ Toff

+ 0.050550919 ∗ S.V − 0.19759415 ∗ P − 0.37672159 ∗ W.F

− 7.206721 ∗ 10
−05 ∗ Ton ∗ Toff + 0.OO02884426 ∗ Ton ∗ W.F

− 0.0020588609 ∗ Toff ∗ S.V + 0.003541168 ∗ S.V ∗ P

+ 0.0049794922 ∗ S.V ∗ W.F + 0.002147321 ∗ Toff
2

− 0.00051503584 ∗ S.V2
)

Ta
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72.7% for Ra as shown in Fig. 5, demonstrate the validity of 
these models. Both predicted R2 and modified R2 were found 
to be consistent. Lack of fit was deemed non-significant in 
each case, as needed. The 95% confidence level was used to 
find the significant machining factors that impact the response 
variables, namely VMRR and Ra. As seen in Fig. 6, the (wire 
feed) has the highest contribution percentage to (VMRR), 
with a contribution percentage of 50.67%. This implies that 
the (wire feed) in which the wire is fed into the workpiece 

significantly impacts the VMRR due to an increase in con-
sumed applied current, which increases the heat energy rate 
and, thus, the melting and evaporation rate [16]. Furthermore, 
(pulse_ontime) has a significant contribution percentage of 
30.67%. This indicates that the pulse duration significantly 
impacts the VMRR because increased discharge energy melts 
more material from the workpiece [17]. Furthermore, the 
“water pressure” parameter has a contribution percentage of 
2.43%, indicating that the WEDM machine’s water pressure 

Table 4  Design of experiments 
matrix and results

Exp.no (Pulse-
ontime) (n.s)

(Pulse-off-
time) (µ.s)

(Servo volt-
age) (volt)

(Flushing pres-
sure) (bar)

(Wire feed)
(mm/second)

VMRR 
(mm^3/min)

Ra (µ.m)

1 450 17 47 6.5 1 3.64848 1.274
2 750 20 49 5 1.6 8.59081 1.55367
3 600 10 41 5 1 4.50864 1.48267
4 700 12 45 5 2 9.0293 1.389
5 750 18 35 4 1 4.17707 1.56467
6 250 17 55 5 2.4 3.88995 1.01
7 450 10 47 6.5 2.4 10.6475 1.3
8 550 20 43 4 3 13.8227 1.293
9 250 19 35 4 2.7 6.3455 1.388
10 750 10 55 5 1 4.51585 1.569
11 350 12 50 5 2.6 10.4865 1.22
12 400 20 35 5 1.6 7.34502 1.351
13 400 13 35 5 3 6.62061 0.92
14 750 13 49 5 3 14.6804 1.701
15 250 14 42 4 1.8 6.3467 1.10767
16 250 10 55 5 1 4.04252 1.09533
17 250 20 55 5 1 3.33493 1.09333
18 750 16 35 6.5 2.2 9.58192 1.384
19 250 10 35 5 1 3.43224 0.934
20 650 20 35 6.5 1 4.53387 1.46467
21 750 19 55 4 2.7 13.1631 1.55867
22 250 10 55 5 3 5.49254 0.958333
23 650 20 55 6.5 3 16.1641 1.394
24 250 14 42 4 1.8 6.64343 0.999333
25 550 13 45 5 2.3 11.4068 1.40967
26 600 16 50 4 2.6 12.4495 1.511
27 250 17 55 6.5 2.4 3.91518 0.961333
28 250 20 39 6.5 3 4.51345 1.05433
29 600 14 55 4 1.8 7.44953 1.37267
30 750 10 35 4 2.6 12.1852 1.621
31 600 15 44 6.5 1.5 5.06847 1.30667
32 750 15 52 6.5 3 15.8085 1.66067

Fig. 5  The predicted values versus the experimental values for a VMRR and b Ra of the mathematical model (RSM)
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has a minor effect on the VMRR. Furthermore, the (Servo 
Voltage) and (pulse_offtime) contribute 0.27% and 0.14%, 
respectively, indicating that these factors have a smaller 
impact on VMRR. Finally, the wire feed rate and pulse on 
time are the most influential factors on the VMRR of the wire 
EDM machine. These parameters must be optimized to maxi-
mize the efficiency and effectiveness of the WEDM process, 
and it was found that the (pulse_ontime) has the highest per-
centage contribution (75.61%) to the arthritic surface rough-
ness (Ra). This implies that changing the (pulse_ontime) 
can significantly impact the surface roughness. Increased 
(pulse_ontime) causes increased spark intensity and increases 
the size of the craters on the machine surface, resulting in 
poor surface quality [10]. On the other hand, contribution 
percentages for (pulse_offtime, servo voltage, Flushing Pres-
sure, and wire feed) are relatively low (0.93%, 0.37%, 2.44%, 
and 0.07%, respectively). This means that these factors have 
a minor impact on surface roughness than (pulse_ontime). 
However, it is important to note that even minor changes in 
these parameters can affect surface roughness.

5.2  Prediction modeling for (VMRR) and (Ra) using 
artificial neural networks

The artificial neural network is a machine learning technique 
that employs neural networks to derive a continuous output 
variable from discrete input variables. It is a powerful tool for 
modeling complex, nonlinear relationships and can be applied 
to various disciplines, including finance, economics, engineer-
ing, and more. There are two principal types of artificial neural 

networks (ANNs): feed-forward backpropagation and recurrent 
neural networks. Backpropagation feed-forward neural net-
works are the most common type and consist of layers of neu-
rons that process input data and generate output. In contrast, 
recurrent neural networks are designed to process sequential 
data and have loops that allow information to travel through the 
network multiple times. Both types of ANNs have advantages 
and can be used depending on the problem and data set [18]. 
The ANN architecture was designed using MATLAB R2022b 
software in this experiment. The input layer is associated with 
(pulse_ontime, pulse_offtime, servo voltage, Flushing Pres-
sure, and wire feed). The output layer is proportional to the 
(VMRR) and the (Ra). The hidden layer of neurons is con-
nected to the input layer to the output layers as shown in Fig. 7. 
The ANN models for the (VMRR) and the (Ra) were created 
after extensive testing and use of the network. The ANN model 
feed-forward back propagation neural network with a 5–10-2 
structure with the learning algorithm Bayesian regularization 
(BR), data split into 15% test data and 85% training data, was 
used to predict WEDM attributes. The correlation coefficient 
(R) value for VMRR and Ra in the present neural network 
model is 0.9996%. From a statistical standpoint, a network may 
properly compare input and output properties if the coefficient 
correlation is close to 1. This demonstrates that the measured 
and predicted values of VMRR and Ra using a feed-forward 
backpropagation neural network (FFBP) agree. Finally, using 
SPSS Statistical 27 for running regression tests on predicted 
and experimental data to compare to other predicted models, 
the R2 value for VMRR is 99.72%, and Ra is 94.77% as shown 
in Fig. 8. The adj R2 and predicted R2 values for VMRR are 

Fig. 6  Percentage contribution of WEDM input parameters in controlling the performance characteristics (VMRR and Ra)

Fig. 7  The Structure of using artificial neural network
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99.71% and 99.7%, respectively, while the values for Ra are 
94.59% and 94.23%.

5.3  Prediction modelling for (VMRR) and (Ra) using 
adaptive neuro‑fuzzy model

ANFIS is a hybrid guessing model that uses neural net-
works and fuzzy logic to create a mapping between inputs 
and outputs. In the hybrid technique, the neural network is 
trained with data, while fuzzy logic is based on language 
rules called “if–then rules.” If the rules are combined with 
training data, the system generated is known as a fuzzy 
inference system, which is the most crucial soft computing 
technique [19]. Here, the ANFIS method was employed to 
establish a connection between the various inputs of the 
process (pulse_ontime, pulse_offtime, servo voltage, Flush-
ing Pressure, and wire feed) and the most important perfor-
mance characteristics ((VMRR) and (Ra)). It follows that 
a unique ANFIS model could be created for every output 
as seen in Fig. 9. For instance, to predict the (VMRR) and 
(Ra), two models represent the first layer of the ANFIS 
structure, the input layer, which has five nodes. The output 
layer contains a single node representing the first model’s 
(VMRR) values and the (Ra) for the second model. With 
the help of this method, a map is established between the 
process inputs and the (VMRR) and (Ra). The ANFIS tool-
box, available in MATLAB R2022b, was used for this pur-
pose. The prediction of (VMRR) and (Ra) by ANIFS has 
two basic steps: training and testing. Therefore, the ANFIS 
network has been trained using the 27 data sets. After train-
ing, the network was tested using the remaining five data 

sets. The accuracy of ANFIS predictions depends on several 
factors, such as the type of fuzzy-based rule, the number of 
membership functions (MFs), and the type of membership 
functions. The paper’s prediction model was built using a 
first-order TSK-type fuzzy-based rule. Then, several itera-
tions with different membership function numbers were 
attempted. The RMSE error objective was set to 0, and the 
number of iterations was 30, so all possible networks could 
be compared and the most accurate one chosen. In other 
words, the training epochs will continue until the RMSE is 
less than 0 or the epoch count reaches 30. Since the same 
RMSE metric is used to evaluate all networks, their per-
formance can be compared. By trying out different ANFIS 
model structures for each response ((VMRR) and (Ra)), it 
was found that structures with 11 membership functions 
(2–2-3–2-2 topography) had the lowest root-mean-square 
deviation (RMSE) value. The selection of membership 
functions can also affect the ANFIS model's precision. Sev-
eral different membership functions (MFs), including trian-
gular, trapezoidal, modified bell, and Gaussian, can be used 
and give the lowest root-mean-square deviation (RMSE) 
value that can be chosen. Training has been completed on 
the 2–2-3–2-2 structure with Gaussian membership func-
tions. Root-mean-square deviation (RMSE) has been deter-
mined for VMRR, 0.00010736 and 0.78252 for training and 
test data, respectively, and Ra 8.3397*10^−06 and 0.06484 
for training and test data, respectively. Finally, using IBM 
SPSS Statistical 27 for running regression tests on predicted 
and experimental data to compare to other predicted mod-
els, the R2 value for VMRR is 99.48%, and Ra is 98.68% 
as shown in Fig. 10. The adj R2 and predicted R2 values 

Fig. 8  The predicted values versus the experimental values for a VMRR and b Ra of the ANN model

Fig. 9  The structure of using the ANFIS model for a VMRR and b Ra
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for VMRR are 99.46% and 97.96%, respectively, while the 
values for Ra are 98.59% and 97.84%.

5.4  Comparison of response surface methodology, 
artificial neural networks and adaptive 
neuro‑fuzzy mode

Based on the work of Hasan M Saleh et al. [20], the analysis 
method employed to justify the findings in Table 5, which 
presents the results of a study comparing the performance of 
three different prediction models (RSM, ANN, and ANFIS) 
with their respective performance metrics ((the total per-
centage error: represents the percentage difference between 
the predicted results and the actual values obtained from 
experiments), (R2 indicates the proportion of variance in 
the data that is accounted for by the model), (adj R2 taking 
into account the number of predictors in the model), and 
(predicted R2 indicating how well the model predicts new 
data)) for predicting two variables: (VMRR) and (Ra). For 
the VMRR predictions, the RSM model yielded a predicted 
value with a total percentage error of 6.39%. On the other 
hand, the ANN and ANFIS models produced more accurate 
predictions, with total percentage errors of 0.87% and 1.54%, 
respectively. These low errors percentage indicate that the 
ANN and ANFIS models performed well in predicting 
the VMRR values. However, for Ra predictions, the RSM 
model predicts Ra with an error of 4.30%, while the ANN 
and ANFIS models show lower percentage errors of 2.11% 
and 1.07%, respectively. This indicates that the ANN and 
ANFIS models provide more accurate Ra predictions than 
the RSM model. The R2 values for VMRR, all three models 
show relatively high values, indicating that they can explain 
a significant proportion of the variance in the data. The ANN 

model has the highest R-sq value (99.72%), followed by the 
ANFIS model (99.48%) and the RSM model (97.34%). 
These prove that the ANN and ANFIS models captured a 
significant portion of the variance in the VMRR values. For 
Ra, the R2 values for the RSM, ANN, and ANFIS models 
are 89.87%, 94.77%, and 98.68%, respectively. These values 
suggest that the ANFIS model has the highest level of accu-
racy in predicting Ra, followed by ANN. The RSM model 
has the lowest level of accuracy in this regard. Addition-
ally, for VMRR, the RSM model’s adj R2 value is 94.61%, 
while the ANN and ANFIS models have adj R2 values of 
99.71% and 99.46%, respectively. These values suggest that 
the ANN and ANFIS models have higher predictability and 
are less prone to overfitting than the RSM model, but for Ra, 
the adj R2 values for the RSM, ANN, and ANFIS models are 
83.74%, 94.59%, and 98.59%, respectively, and these lead 
to the conclusion that the ANFIS model demonstrates the 
highest level of accuracy, while the RSM model shows the 
lowest level. Lastly, looking at the predicted R2 values for 
VMRR, the ANN model performs the best (99.70%), fol-
lowed by the ANFIS model (97.96%) and the RSM model 
(92.29%). These values indicate how well the models are 
expected to perform on new data. However, for Ra, the pre-
dicted R2 values for the RSM, ANN, and ANFIS models are 
72.70%, 94.23%, and 97.84%, respectively. Prove that the 
ANFIS model outperforms the others in terms of predictive 
ability. The results show that the ANN and ANFIS models 
outperform the RSM model in predicting both VMRR and 
Ra. The ANN model has the lowest total percentage error for 
VMRR predictions, while the ANFIS model has the lowest 
percentage error for Ra predictions. Additionally, both the 
ANN and ANFIS models have higher R2 values, indicating 
that they can explain a significant proportion of the variance 

Fig. 10  The predicted values versus the experimental values for a VMRR and b Ra of the ANFIS model

Table 5  The percentage error 
and regression analysis for 
RSM, ANN, and ANFIS models

Predicted (Rsm) Predicted (ANN) Predicted (ANFIS)

VMRR Ra VMRR Ra VMRR Ra

Total percentage error 6.387% 4.301% 0.8738% 2.111% 1.539% 1.069%
R2 97.34% 89.87% 99.72% 94.77% 99.48% 98.68%
Adj R2 94.61% 83.74% 99.71% 94.59% 99.46% 98.59%
Predicted R2 92.29% 72.70% 99.70% 94.23% 97.96% 97.84%
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in the data. The ANN model also performs best regarding 
adj R2 and predicted R2 values for VMRR, while the ANFIS 
model has the highest accuracy in predicting Ra. Overall, it 
was determined that the ANN and ANFIS models are more 
reliable and accurate than the RSM model.

5.5  Response surface analysis of VMRR and Ra 
using an ANN model

The parametric analysis has been carried out to study the 
influences on performance characteristics such as (VMRR) 
and (Ra) by processing parameters (pulse_ontime, pulse_
offtime, servo voltage, Flushing Pressure, and wire feed). 
Three-dimensional responses surface plots were created 
using the ANN model with NCSS 2021 software. In con-
trast, all previous studies used mathematical and ANFIS 
models to evaluate the change in the response surface. These 
surfaces further explained the relationship between the input 
process parameters and responses and demonstrated that the 
ANN model could estimate the (VMRR) and (Ra).

5.5.1  The ANN surfaces of the (VMRR) for the interaction 
terms

The response surface of (VMRR) versus (pulse_ontime) 
and (pulse_offtime) (hold values: (Servo Voltage) = 45 V 
(Flushing Pressure) = 5.25 bar (wire feed) = 2 mm/second 
is presented in Fig. 11.

From this Fig.  11, it was observed that the VMRR 
increased with an increase in (pulse_ontime) value due to an 
increase in the discharge energy melting more material from 
the workpiece, thus increasing the VMRR values. Addition-
ally, a higher (pulse_ontime) means maintaining the high 
heating temperatures for longer [17].

However, when (pulse_offtime) was low, it was found 
that increasing (pulse_ontime) at a specific value did not 
change VMRR because there was not enough time to flush 

the molten material. At low (pulse_ontime), it was observed 
that the VMRR decreased with an increase in (pulse_off-
time) due to more time passing between two successive 
electrical discharges [10], as seen from Fig. 11, but at high 
(pulse_ontime), it was found that the (pulse_offtime) did not 
much influence the VMRR.

The response surface of (VMRR) versus (Servo Voltage) 
and (Flushing Pressure) (hold values: (pulse_ontime) = 500 
n.s (pulse_offtime) = 15 µ.s (wire feed) = 2 mm/second) is 
presented in Fig. 12.

From this Fig. 12, it was observed that the VMRR improved 
when the (Servo Voltage) was raised from 35 to 45 V when 
the (Flushing Pressure) over 5 bar because the discharge pulses 
increased to the arcing, short-circuiting, and open pulses; this is 
indicative of an appropriate inter-electrode gap, which is very 
important for efficient flushing and discharge formation. There-
fore, it leads to a high VMRR. Suppose the (Servo Voltage) is 
raised to above 45 V. In that case, the VMRR slightly decreases 
because there are excessive open pulses in the machining zone 
due to the wide separation between the electrodes [21]. Finally, 
it was found that if the (Flushing Pressure) is lower than 5 bars, 
the (Servo Voltage) does not influence the VMRR. The VMRR 
increases with an increase in the (Flushing Pressure) and then 
decreases after the (Flushing Pressure) exceeds 5 bars, as seen in 
Fig. Because the increase in (Flushing Pressure) enhances debris 
removal and improves discharge when the (Flushing Pressure) 
is increased to 5 bars, the debris concentration within the gap 
is insufficient to generate a continuous and effective discharge, 
resulting in a decreased VMRR [22].

The response surface of (VMRR) versus (wire feed) and 
(pulse_ontime)(hold values: ((pulse_offtime) = 15 µ.s (Servo 
Voltage) = 45 V (Flushing Pressure) = 5.25 bar)) is presented 
in Fig. 13.

From Fig. 13, it was observed that the VMRR increased 
with increasing (wire feed) value due to the rise in consumed 
applied current, which increases the rate of heat energy and 

Fig. 11  Response surface of VMRR vs (pulse_ontime) and 
(pulse_offtime)

Fig. 12  Response surface of VMRR vs (Servo Voltage) and (Flush-
ing Pressure)
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hence the rate of melting and evaporation [16], and the 
VMRR increased with increasing (Pulse_ontime) value due 
to an increase in the discharge energy melting more material 
from the workpiece and thus increasing the VMRR [17].

5.5.2  The ANN surfaces of the (Ra) for the interaction term

The response surface of (Ra) versus (pulse_ontime) and 
(pulse_offtime) (hold values: (Servo Voltage) = 45 V (Flush-
ing Pressure) = 5.25 bar (wire feed) = 2 mm/second) is pre-
sented in Fig. 14.

From Fig. 14, it was observed that the Ra increases with 
an increase in (Pulse_ontime) value due to an increase in the 
size of craters on the machine surface as a result of increased 
spark intensity, resulting in poor surface quality; however, 
the Ra slightly decreased with an increase in (Pulse_off-
time) value due to there being more time in between two 

consecutive electrical discharges, the molten material is bet-
ter flushed, thus leading to discharges, thus improving the 
surface quality [10].

The response surface of (Ra) versus ((Servo Voltage) and 
(Flushing Pressure) (hold values: (pulse_ontime) = 500 n.s 
(pulse_offtime) = 15 µ.s (wire feed) = 2 mm/second) is pre-
sented in Fig. 15.

From Fig. 15, it was found that Ra goes up as (Servo 
Voltage) goes up because reducing the (Servo Voltage) 
results in a decrease in wire vibrations and deflection, 
which in turn leads to an improvement in surface quality 
characterized by a reduction in craters and cracks; how-
ever, wire breakage is observed to be higher happened 
with decreasing (Servo Voltage) values because the dis-
tance between the wire electrode and the workpiece is 
smaller, which causes wire breakage commonly occur due 
to slight variations. The Ra decreases with an increase in 

Fig. 13  Response surface of VMRR vs (wire feed) and (pulse_
ontime)

Fig. 14  Response surface of Ra vs (pulse_ontime) and (pulse_off-
time)

Fig. 15  Response surface of Ra vs (Servo Voltage) and (Flushing 
Pressure)

Fig. 16  Response surface of Ra vs (wire feed) and (Pulse_ontime)
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the (Flushing Pressure), as seen in Fig. 15. Because the 
low (Flushing Pressure) leads to a low degree of cooling, 
which affects the workpiece electrode interaction area by 
generating more significant heat, which leads to acceler-
ating the material evaporations; thus, a higher degree of 
flushing action is required to reduce the redeposition of 
debris on the machined surface, which ultimately improves 
surface quality [23].

The response surface of (Ra) versus (wire feed) and 
(pulse_ontime) (hold values: ((pulse_offtime) = 15  µ.s 
(Servo Voltage) = 45 V (Flushing Pressure) = 5.25 bar)) is 
presented in Fig. 16.

From Fig. 16, it was observed that the Ra increases with 
an increase in (Pulse_ontime) value due to an increase in the 
size of craters on the machine surface as a result of increased 
spark intensity, resulting in poor surface quality [10], but the 
(wire feed) did not much influence the Ra.

5.6  Surface integrity analysis of machined 
specimens

The present investigation looked at the effect of differ-
ent process parameters on the surface quality of WEDM-
machined specimens. An investigation of the machined 

Fig. 17  SEM images of the 
WEDMed surface and 3D 
images at the lowest and highest 
Ra values
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surfaces was carried out using a scanning electron micro-
scope. Specimens were explored for a surface morphologi-
cal study through the SEM technique at 500 × magnifica-
tion. (SEM) micrographs and a 3D image were generated 
using Gwyddion 2.61 software using the SEM images and 
the specimen's (Ra) to better understand the surface integ-
rity aspects. 

In Fig. 17, the surfaces machined to have the lowest 
Ra were observed to have the fewest craters, small-
est pockmarks, and most little globules of debris; no 
microcracks were found. However, the maximum (Ra) 

is caused by numerous craters, uneven material deposi-
tion, pockmarks, and microcracks are the largest they 
can be. From Fig. 18, the machined surfaces with the 
lowest VMRR had the tiniest craters, pockmarks, and 
small globules of debris. Eventually, they found some 
microcracks. Nevertheless, the maximum VMRR shows 
that many craters, uneven material deposits, pock-
marks, and microcracks are as giant as possible. This 
shows that there is a connection between VMRR and 
Ra. When VMRR goes down, Ra goes down, and when 
VMRR goes up, Ra goes up. the lowest and highest 

Fig. 18  SEM images of the 
WEDMed surface and 3D 
images at the lowest and highest 
VMRR values
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VMRR values. From Fig. 19, the machined surfaces 
with the low (Pulse_ontime) had the tiniest craters, 
many pockmarks with small sizes, and many small 
globules of debris. Eventually, they found some small 
microcracks.

Nevertheless, the high (Pulse_ontime) shows that many 
giant craters, extensive and complicated uneven material 
deposits, pockmarks, no globules of debris, and micro-
cracks are as giant as possible. This shows that there 
is a connection between (Pulse_ontime) and Ra. When 
(Pulse_ontime)  goes down, Ra goes down, and when 
(Pulse_ontime) goes up, Ra goes up. It can observe a rise 
in (Pulse_ontime) from 250 n.s to 750 n.s, enlarged pock-
marks and voids, and exacerbated uneven layer deposi-
tion. Furthermore, the discharge energy emitted per spark 

increases noticeably with a (Pulse_ontime) increase. 
More extensive and deeper craters can be formed due to 
greater spark intensity due to the higher discharge energy 
melting and vaporizing more material from the plasma 
channel [10]. From Fig. 20 the machined surfaces with 
the low (Servo Voltage) had tiny size craters, little pock-
marks with small sizes, and not found any globules of 
debris or microcracks. Eventually, they found some small 
microcracks. Nevertheless, the highest (Servo Voltage) 
shows small craters, little and medium uneven material 
deposits, many tiny pockmarks, globules of debris, and 
small microcracks. This shows that there is a connection 
between (Servo Voltage) and Ra. When (Servo Voltage) 
goes down, Ra goes down. When (Servo Voltage) goes 
up, Ra goes up because reducing the (Servo Voltage) 

Fig. 19  SEM images of the 
WEDMed surface and 3D 
images at the lowest and highest 
(Pulse_ontime) values
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decreases wire vibrations and deflection, improving sur-
face quality by reducing craters and cracks [23].

5.7  Multi‑objective optimization using the Pareto 
search algorithm for input parameters

When a company sets out to design a product with the low-
est possible manufacturing costs, it needs to determine the 
most effective ways to cut down on wasteful practices that 
would otherwise use an excessive amount of time, money, 
and resources. Therefore, in order to achieve successful 
machining with a WEDM process, it is essential to optimize 
the machine parameter settings, which requires achieving 
the seemingly conflicting goal of maximizing the VMRR 
while minimizing the Ra. For this reason, the obtained math-
ematical, ANN, and ANFIS models were optimized with the 

Pareto search algorithm, a very effective method that uses 
the pattern search algorithm’s iterative modification of point 
populations to find non-dominant optimal Pareto solutions 
for multiple objective functions. During each iteration, the 
population undergoes modifications to expand and enhance 
the Pareto front to assess the objective function values and 
ensure that all linear constraints and bounds are satisfied 
during each iteration of the pattern search. The procedures 
stop when small changes in the Pareto front are found, which 
are the non-dominant points found by the algorithm that 
have individuals with better fitness values, and these take a 
rank of 1 [24, 25].

The objective function (1).
MaxVMRR = −MinVMRR = Fun((Pulse_ontime), (Pulse_
offtime), (ServoVoltage), (Flushing Pressure), (Wire feed))

Fig. 20  SEM images of the 
WEDMed surface and 3D 
images at the lowest and highest 
(Servo Voltage) values
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The objective function (2).
MinRa = Fun((Pulse_ontime), (Pulse_offtime), (ServoVolt-
age), (Flushing Pressure), (Wire feed))
Constraint_to.
250 n.sec < (Pulse_ontime) < 750 n.sec
10 μ.sec < (Pulse_offtime) < 20 μ.sec
35 volt < (Servo Voltage) < 55 volts
4 bar < (Flushing Pressure) < 6.5 bar
1 mm/sec < (wire feed) < 3 mm/sec

The Pareto search algorithm ‘s precise stages are 
described in a flowchart as illustrated in (Fig. 21).

It needs to analyze the predicted optimum response 
for each model to compare the three models. For VMRR, 
which wants to maximize it, it can see that all three mod-
els predicted different optimal combinations of process 
parameters. The ANFIS model predicted the highest 
VMRR value of 19.9 mm^3/min as seen in Fig. 22 and 
Table 6, combining (Pulse_ontime) = 750 n.s, (Pulse_off-
time) = 20 µ.s, (Servo Voltage) = 55 V, (Flushing Pres-
sure) = 6.5  bar, and (wire feed) = 3  mm/second. RSM 

predicted a slightly lower VMRR value of 19.6892 mm^3/
min as seen in Fig. 23 and Table 7, combining (Pulse_
ontime) = 734.375 n.s, (Pulse_offtime) = 19.6875  µ.s, 
(Servo Voltage) = 45.6641 V, (Flushing Pressure) = 6.5 bar, 
and (wire feed) = 3 mm/second. ANN predicted the low-
est VMRR value of 18.9574 mm^3/min as seen in Fig. 24 
and Table 8, combining (Pulse_ontime) = 750 n.s, (Pulse_
offtime) = 20 µ.s, (Servo Voltage) = 54.375 V, (Flushing 
Pressure) = 5.4844 bar, and (wire feed) = 3 mm/second. 
For Ra, which wants to minimize it, it can be seen that all 
three models predicted different optimal combinations of 
process parameters. However, RSM and ANFIS predicted 
similar optimal combinations of process parameters for 
the lowest Ra value. As seen in the Fig. 25 the ANFIS 
model predicted the lowest Ra value of 0.311 µ.m, com-
bining (Pulse_ontime) = 250 n.s, (Pulse_offtime) = 10 µ.s, 
(Servo Voltage) = 35  V, (Flushing Pressure) = 6.5  bar, 
and (wire feed) = 3 mm/second. RSM predicted a slightly 
higher Ra value of 0.5813  µ.m, combining (Pulse_
ontime) = 250 n.s and (Pulse_offtime) = 20 µ.s, (Servo 
Voltage) = 35 V, (Flushing Pressure) = 6.5 bar, and (wire 
feed) = 3  mm/second. ANN predicted the highest Ra 
value of 0.7877 µ.m, combining (Pulse_ontime) = 250 n.s, 
(Pulse_offtime) = 10 µ.s, (Servo Voltage) = 35 V, (Flush-
ing Pressure) = 5.2812 bar, and (wire feed) = 2.375 mm/
second. Finally, it was found that the ANFIS model rep-
resents the best solutions in which the VMRR maximizes 
and the Ra minimizes. Overall, all optimum solutions 
generated from the optimization of three models must be 
validated with employed the input parameters chosen for 
the actual machining process to determine which model is 
the most reliable for the WEDM process; unfortunately, 

Fig. 21  Flowchart of Pareto search algorithm

Fig. 22  Pareto front of non-dominated solutions for (ANFIS) model
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the abovementioned solutions are entirely theoretical and 
cannot be employed to select input parameters for a given 
process. Even so, they can assist in identifying machine 

parameters that are near the solutions; however, these 
potential solutions could be implemented soon.

6  Conclusion

This study aimed to construct a predictive model for 
machining the Inconel 718 superalloy alloy by wire electri-
cal discharge cutting process. An I-optimal design response 
surface methodology was used to determine the WEDM 
process’ experimental design. Mathematical, ANN, and 
ANFIS models were devised to predict performance char-
acteristics. The effectiveness of the process optimization 
was determined using the Pareto search algorithm on the 
mathematical, ANN, and ANFIS models. The results dem-
onstrated that the optimized process could reduce process-
ing time and improve cost-effectiveness. The following 
conclusions were drawn based on the results obtained in 
this work.

1. The WEDM process has successfully demonstrated its 
capability to machine Inconel 718 alloy with an acceptable 
(VMRR) and (Ra) less than 1 μm.

2. ANOVA results demonstrated that (wire feed) and 
(Pulse_ontime) were the most vital factors influencing 

Fig. 23  Pareto front of non-dominated solutions for (RSM) math-
ematical model

Table 6  Optimal combination of process parameters and non-dominated solutions for (ANFIS) model

Exp.no The optimal combination of process parameters Predicted optimum 
response

(Pulse_ontime) 
(n.s)

(Pulse_off-
time) (µ.s)

(Servo Volt-
age) (volt)

(Flushing 
Pressure) (bar)

(wire feed) 
(mm/second)

VMRR (mm^3/min) Ra (µ.m)

1 750 20 55 6.5 3 19.9 1.46
2 717.37 19.78 51.33 5.89 3 15.8 1.4
3 710.6875 20 50.75 5.8594 3 15.1 1.38
4 742.6875 20 48.75 6.1094 3 13.3 1.3
5 710.6875 20 48.75 6.1094 3 12.7 1.27
6 540 10 42.911 6.4572 2.992 11.5 1.12
7 531.25 10 41.25 6.5 3 10.2 1.02
8 628 10 40.6255 6.4905 2.9946 9.85 0.94
9 250 10 41 4.875 2.4219 8.09 0.801
10 260.25 10.6 40.18 5.06 3 7.67 0.706
11 471.25 10 37.5 6.5 3 5.59 0.682
12 531.25 10 35 6.5 3 5.31 0.646
13 342 10 38.5849 6.4759 2.9957 5.06 0.628
14 503.5625 10 35 6.5 3 4.79 0.614
15 468.75 10 35 6.5 3 4.17 0.573
16 408.75 10 35 6.5 3 3.28 0.502
17 375.5625 10 35 6.5 3 2.83 0.463
18 351.5625 10 35 6.5 2.9062 2.57 0.441
19 250 10 35 5.9922 2.9062 1.82 0.347
20 250 10 35 6.5 3 1.66 0.311
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VMRR because they contributed 50.67% and 30.67%, 
respectively, and the most significant factor influencing Ra 
is the (Pulse_ontime), which contributed 75.61%.

3. The I-optimal design was successfully used to estab-
lish the relationship between the performance characteristics 
((VMRR) and (Ra)) and input process parameters ((Pulse_
ontime), (Pulse_offtime), (Flushing Pressure), (Servo Volt-
age), and (wire feed)), and the results of ANOVA analysis of 
experimental data indicate that the RSM models for VMRR 
and Ra are well fitted with the experimental values, which 
had a total percentage error less than 6.387% for VMRR and 
4.301% for Ra.

4. The ANN model was employed, utilizing the Bayes-
ian regularization (BR) learning algorithm with 10 neurons. 
Additionally, the ANFIS model was utilized, with a topog-
raphy structure of (2-2-3-2-2) and a Gaussian membership 
function. These models were used to predict DM attributes. 
The total percentage error of the ANN model for VMRR was 
0.8738%, and for Ra, it was 2.111%, but the ANFIS model 
had 1.539% for VMRR and 1.069% for Ra; it was deter-
mined that the ANN and ANFIS models are more reliable 
and accurate than the RSM mathematical model.

5. Microstructure study revealed that WEDM machined 
surfaces with the lowest VMRR had the tiniest craters, pock-
marks, and small globules of debris. Eventually, they found 
some microcracks. Nevertheless, the maximum VMRR shows 

Table 7  Optimal combination of process parameters and non-dominated solutions for (RSM) mathematical model

Exp.no The optimal combination of process parameters Predicted optimum 
response

(Pulse_ontime) 
(n.s)

(Pulse_off-
time) (µ.s)

(Servo Volt-
age) (volts)

(Flushing 
Pressure) (bar)

(wire feed) 
(mm/second)

VMRR (mm^3/min) Ra (µ.m)

1 734.375 19.6875 45.6641 6.5 3 19.6892 1.5584
2 734.375 19.6875 42.5 6.5 3 19.5873 1.5523
3 734.375 19.6875 42.5 6.5 3 19.4793 1.5471
4 734.375 19.6875 41.875 6.5 3 19.2175 1.5353
5 734.375 19.6875 41.875 6.5 3 18.7956 1.5301
6 699.375 20 42.5 6.5 3 18.5264 1.5049
7 654 20 45.6641 6.5 3 17.5125 1.4685
8 609.375 20 36.875 6.4219 3 15.241 1.3895
9 619.375 17.5 37.5 6.5 3 13.1923 1.3267
10 531.25 10 41.25 5.7188 3 12.4911 1.2668
11 609.375 10 36.875 6.4219 3 12.4415 1.2402
12 531.25 10 41.25 6.5 3 12.2814 1.2265
13 579.375 10 35 6.1875 3 11.1132 1.1503
14 471.25 10 37.5 6.5 3 9.5169 1.0245
15 448.75 10 37.5 6.5 3 8.9445 0.9872
16 408.75 10 35 6.5 3 7.0789 0.8445
17 250 10 35.7422 4.0928 3 5.6133 0.7757
18 250 10 35 5.5625 3 4.1832 0.6504
19 250 10 35 6.1875 3 3.7172 0.6043
20 250 10 35 6.5 3 3.5008 0.5813

Fig. 24  Pareto front of non-dominated solutions for (ANN) model
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that many craters, uneven material deposits, pockmarks, and 
microcracks are as giant as they can be. This shows that there 
is a connection between VMRR and Ra. When VMRR goes 
down, Ra goes down, and when VMRR goes up, Ra goes up.
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Table 8  Optimal combination of process parameters and non-dominated solutions for (ANN) model

Exp.no The optimal combination of process parameters Predicted optimum response

(Pulse_ontime) 
(n.s)

(Pulse_offtime) 
(µ.s)

(Servo Voltage) 
(volt)

(Flushing Pres-
sure) (bar)

(wire feed) (mm/
second)

VMRR (mm^3/min) Ra (µ.m)

1 750 20 54.375 5.4844 3 18.9574 1.6868
2 750 20 50 5.875 3 18.5849 1.5668
3 750 20 48.75 6.0312 3 18.1145 1.5148
4 688.75 20 52.5 6.5 3 17.405 1.4412
5 628.75 20 48.75 6.0312 3 16.9955 1.3458
6 628.75 20 48.75 6.5 3 16.5483 1.2969
7 593.75 20 53.75 6.5 3 15.2273 1.2891
8 558.125 20 55 6.5 3 13.855 1.2334
9 656.25 20 36.25 5.0938 3 13.2662 1.1834
10 478.125 20 50 6.5 3 12.5165 1.1159
11 619.375 20 37.5 6.5 3 11.5522 1.0318
12 609.375 20 36.875 6.4219 3 11.1126 1.0155
13 609.375 20 35 6.4219 3 9.9493 0.973
14 579.375 16.25 35 6.1875 3 7.9117 0.962
15 296.875 10 39.375 6.1094 3 6.6798 0.9311
16 250 10 38.75 4.7812 2.375 6.4109 0.8887
17 250 10 37.5 4.625 2.2969 6.1641 0.8849
18 250 10 38 5.2812 2.375 5.373 0.8394
19 250 10 37 5.2812 2.375 4.903 0.822
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