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Abstract
Digitisation offers manufacturing companies new opportunities to improve their operations and competitiveness in the market 
by unleashing potentialities related to real-time monitoring and control of operating machines. Through condition-based 
and predictive maintenance, the knowledge about the health state and probability of failure of the machines is improved for 
better decision-making. Amongst them, CNC machine tools do represent a complex case from a maintenance viewpoint as 
their operations are ever-changing and their high reliability brings to a lack, or limited set, of run-to-failure data. To address 
the problem, the research work proposes an operations-aware novelty detection framework for CNC machine tools based on 
already-in-place controllers. The framework is based on statistical modelling of the behaviour of the machine tools, namely 
through gradient boosting regression and Gaussian mixture models, to identify the health state considering varying operations 
through time. The proposed solution is verified on sixteen multi-axis CNC machine tools in a large manufacturing company. 
The results show that the proposed solution can effectively support maintenance decisions by informing on the health states 
while discerning between varying operations and abnormal/faulty states of interest. This solution represents a brick in a 
cloud-edge-based industrial information system stack that can be further developed for shop floor-integrated decision-making.

Keywords  Novelty detection · Condition-based maintenance · Prognostics and health management · Machine tool · CNC · 
Manufacturing

1  Introduction

The digital transformation is bringing new opportunities to 
improve the business and operations of industrial companies. 
New business models, better engagement of suppliers and 
customers along the supply chain as well as enhanced opera-
tions management are some of the benefits companies could 

gather thanks to digitisation [1, 2]. Especially, on the shop 
floor, new ways for production and maintenance manage-
ment are offered by advanced sensing solutions empowered 
by data analytics to extract useful information [3]. This, in 
turn, becomes essential to improve decision-making pro-
cesses that are no more only reactive, but rather proactive so 
as to anticipate future possible scenarios and promptly adjust 
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the current situation, if necessary [4]. Specifically, main-
tenance is perceived as one of the most impacted areas by 
digitisation, given the shifts from corrective and time-based 
maintenance to condition-based and predictive maintenance 
[5]. These offer the possibility to have insights into the cur-
rent working state of an operating machine, its health state 
and the remaining useful life (RUL) [6]. This information 
finally leads to improve maintenance performances in terms 
of reduced downtimes, improved availability, increased 
product quality as well as production performances, adapt-
ing to contingent situations [7, 8]. The body of knowledge 
that collects all the steps (referred also as “levels”) necessary 
to build a system able to bring these benefits is often referred 
to as Prognostics and Health Management (PHM) [9]. As it 
is well-established, PHM can build on standards, such as the 
ISO 13374-1 [10], to determine a methodological approach 
for the PHM program development.

The cornerstones of PHM reside in suitable sensing tech-
nologies and data analytics, both fit for purpose. Sensors 
and transducers must be installed and configured to collect 
condition monitoring data from the machine components, 
which is key to improving knowledge about failure modes 
the machine may experience. Furthermore, work orders 
and manually inputted data are essential to combine condi-
tion monitoring data from the field with events recorded by 
operators. Once the data are available, proper multi-nature 
algorithms should be put in place to transform raw data into 
useful information for decision-making. Algorithms may be 
either physics-based, artificial intelligence (AI) or statistical 
[11]; recently, also hybrid models, mainly based on physics-
informed AI algorithms, are gaining momentum [12].

Notwithstanding its potentialities, PHM suffers from 
some issues. Firstly, PHM program development should 
exploit run-to-failure (RTF) data: these mainly refer to event 
data that allow labelling condition monitoring data with 
respect to the real states of the operating machine, finally 
distinguishing faulty states (complete or partial faults) from 
healthy state; nevertheless, this potentiality is limited when 
RTF data are not, or scarcely, available [13, 14]. Besides, 
even condition monitoring data may be not available if a 
proper monitoring system fit for the purpose of mainte-
nance decision-making is not put in place, or a monitoring 
campaign has not yet been established [15]. A further issue 
relates to the varying working conditions that may result 
from the intrinsic flexibility of the operations made by the 
operating machine, which could undermine the reliability of 
the information provided by PHM tasks [16].

All these issues are experienced in the case of extant CNC 
machine tools. Indeed, CNC machine tools represent a com-
plex case where to apply PHM programmes, for different 
reasons [17–19]: (i) CNC machine tools are an ensemble 
of electro-mechanical and hydraulic systems that interact 
with each other; (ii) the part programmes CNC machine 

tools perform are time-varying in the light of the flexibility 
of the operations required to make multiple product types; 
(iii) CNC machine tools are highly reliable, which limits the 
availability of RTF data; and (iv) an integrated condition 
monitoring system fit for the purpose of maintenance deci-
sion-making is not originally in place in extant machines. 
These characteristics lead to a challenging PHM application, 
to be developed considering the following requirements: 
PHM solutions should take into account the interactions 
between subsystems and components of the machine tools 
in order to improve the maintenance decision-making [17]; 
PHM solutions should be able to adapt to ever-changing 
working conditions dictated by new part programmes intro-
duced to satisfy continuously evolving production require-
ments [20]; and PHM solutions should be capable to cope 
with any limitations concerning RTF and condition monitor-
ing data for maintenance decisions [14].

Overall, the reduction of options in terms of AI and sta-
tistical algorithms is a consequence, and this research work 
proposes to employ supervised learning models within the 
novelty detection framework, leaving aside diagnostic and 
prognostic analyses.

1.1 � Research scope and objective

The research scope this work addresses with peculiar con-
sideration is the so-called state detection (SD) level of the 
PHM process, where machine states need to be identified. 
In this scope, the assumption is to rely only upon the data 
fed by the operations run by the machine tool and made 
available by means of controllers (such as CNC or PLC) or 
sensors and transducers already-in-place for the machining 
process, without any need of integration with a condition 
monitoring system fit for maintenance tasks such as diagnos-
tics or prognostics. Therefore, at the SD level, the research 
objective this work pursues is the development of a novelty 
detection (ND) framework for CNC machine tools enabling 
three major tasks: to identify when a new operation is car-
ried out featuring different working conditions, to recognise 
if a failure is going to occur by means of the detection of 
an anomaly (alias partial fault), and, eventually, to classify 
the health state of the machine, either being in healthy or 
unhealthy state.

In detail, the developed solution should consider the capa-
bility to recognise ever-changing operations and to guaran-
tee ND adequate for the maintenance decision-maker. The 
industrial viability is demonstrated through the application 
to a fleet of sixteen multi-axis CNC machine tools of a large 
manufacturing company in Italy. Indeed, the challenge faced 
in this research work is to improve the capabilities of old, 
less sensitised CNC machine tools so as to embrace the 
Machine tool 4.0 paradigm [21].
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The remainder of the paper is so organised: section 2 
revises current PHM approaches applied to CNC machine 
tools, giving a particular emphasis to ND; section 3 depicts 
the proposed solution, section 4 introduces the case com-
pany and section 5 describes the application to the case; 
section 6 then provides discussion and lessons learnt from 
the industrial experience; finally, section 7 draws some con-
clusions and envisions future works.

2 � PHM program and novelty detection 
for CNC machine tools

The advent of PHM has been promoted by the availability 
of sensors and increased computational capability, ena-
bling a shift from “fail-and-fix” to “predict-and-prevent” 
[22], whose development is strongly based on the ISO 
13374-1 [9]. This norm structures the process into six lev-
els: data acquisition, data manipulation, state detection, 
health assessment, prognostic assessment and advisory 
generation.

The applicability of the PHM process is independent of 
the specific asset or component under analysis, showing 
validity throughout different indenture levels [11, 23–25], 
including the equipment/asset itself, like a CNC machine 
tool, a centrifugal pump, or an industrial fan, and the sub-
systems/components, such as bearings, drive belts, or rotors. 
Moreover, the reviews propose specific insights on each level 
of the ISO 13374-1, sometimes showing different but com-
patible aggregation of the levels.

2.1 � Role of novelty detection in the PHM program

ND can be defined as the “task of recognising that test data 
differ in some respect from the data that are available during 
training” [26]. With respect to the PHM process, as defined 
by ISO 13374-1, this task applies to the SD level. The states 
in which the machines could be are identified and then, dur-
ing machine operations, if new data are significantly differ-
ent from previously identified patterns, a “novelty” is alerted 
so that maintenance technicians and managers could take 
proper actions.

The importance of the SD level (and ND) in PHM pro-
gram development is recognised for diagnostic as well as 
prognostic purposes:

•	 ND is relevant for diagnostics since the identified new pat-
tern of data, i.e. a novelty, enables the diagnosis of what 
has happened [27, 28]. Also, in case of missing failure 
data, ND and abnormal state labelling almost coincide as 
anything new is a potentially damaging state [14].

•	 ND is necessary also for prognostics since the variables’ 
prediction and related RUL estimation, highly depend 

on the current state information; prediction may be trig-
gered as soon as a novelty comes across so as to identify 
future trends [11, 29].

Overall, ND represents a critical point in the develop-
ment of effective PHM programmes since diagnostics and 
prognostics analyses are enabled by the identification of the 
actual states in which the equipment/asset or related subsys-
tem/component is.

2.2 � Novelty detection applied to CNC machine tools

A pool of scientific articles published in the last few years 
is hereinafter reported in order to shed light on the research 
trend on ND applied to CNC machine tools; the pool excludes 
those works focused on diagnosis and prognosis only.

Recently, in Schlagenhauf and Burghardt [30], an expert 
system is realised with the aim of detecting defects on a ball 
screw drive through convolutional neural network (CNN) on 
images. Also, the authors realised a prediction model able 
to forecast the area of the defect so as to anticipate future 
evolution. Also in Denkena et al. [31], ball screw anoma-
lies are identified through a semi-supervised ND algorithm 
based on an ensemble approach, built on local outlier fac-
tor, k-nearest neighbours, angle-based outlier detection 
(LOF-kNN-ABOD). These are selected since no previous 
assumption about data distribution is needed. Experiments 
are carried out to understand the variation of performance 
of the ensemble approach with a varying set of features from 
the measured variables, and the results show that frequency 
domain-related features outperform time domain ones for 
ball screws condition monitoring.

Another relevant component for CNC machine tools, and 
in general for any machine including rotating parts, is the 
bearing. In the research by Wu et al. [32], bearing faults 
are analysed. To this end, CNN is used to detect and clas-
sify bearings faults together with variational mode decom-
position (VMD) and autocorrelation function (ACF) as 
they allow for the reduction of the number of layers in the 
CNN. In Goyal et al. [33], kNN and WkNN (weighted kNN) 
are used to detect and diagnose bearings faults using non-
contact laser-based vibration sensors instead of accelerom-
eters. The work supports that vibration remains one of the 
main diagnostic signals for CNC machine tools even though 
improvements are foreseen both on the side of algorithms 
and on the physical sensors.

Regarding the hydraulic subsystem, Bernini et al. [34] 
set up an experimental campaign based on a digital twin 
that reproduces the behaviour of the targeted CNC machine 
tool subsystem to generate healthy and faulty data. A pool 
of several algorithms is used to detect, diagnose and pre-
dict hydraulic subsystem faults, like CNN, random forest 
classifier (RCF), quadratic discriminant analysis (QDA) 
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and AdaBoost classifier. (ADB). The application shows that 
there is no unique answer for ND, but some algorithms per-
form better than others for different components: QDA for a 
pump, and CNN for sensors and valve faults.

Instead of relying on AI for ND, Du et al. [35] adopt 
proportional hazards modelling to model failure events and 
condition monitoring data, namely vibration, for electro-
spindle. Proportional hazards modelling allows extracting 
health indicators that are controlled in real-time thanks to 
statistical process control (SPC) to trigger maintenance 
actions in case of anomalies.

As one of the most critical components, the spindle has 
received a lot of attention in CNC machine tools as it guar-
antees product quality [36]. In this regard, many attempts 
were made to improve monitoring and controlling of the 
spindle for chattering, tool wear prediction and thermal error 
compensation [37]. Vibration monitoring is widely adopted 
both in continuous and discrete checking modes, to later 
compare with predefined thresholds defined as a function 
of operations requirements or manufacturers’ manual [38]. 
Recent reviews show current advancements and future out-
looks for spindle-related applications. For example, a com-
prehensive review of AI and ML has been developed by 
Soori et al. [39], while the review by Kuntoğlu et al. [40] 
investigated which signals are currently used for advanced 
applications, especially for spindle monitoring.

Overall, the picture resulting from the selected scien-
tific literature shows that CNC machine tools are widely 
addressed in all their units and components, ranging from 
ball screw and bearing diagnostics to the identification of 
anomalies for the hydraulic system and machining unit, 
focusing on the spindle. Nonetheless, most works rely on 
laboratory experiments so as to have the entire set of faults 
available, resulting in many applications being supervised 
in nature. In case these data are available, the proposed 
works enable deep investigation on the health state of the 
CNC machine tools, with information related to possible 
causes (diagnostics). On the other hand, in case of miss-
ing a priori knowledge, there are still gaps to overcome, 
with some tentative to transfer knowledge from one CNC 
machine tool to another, as in the work by Denkena et al. 
[41], which is focused on how to transfer ND thresholds 
specific for a certain CNC machine tool to similar machines 

without the need to perform any simulation. Nonetheless, 
differences between machines like different operations to 
perform and different signal properties prevent success at 
the current state-of-the-art. Indeed, the review by Baur et al. 
[42] confirms the above-mentioned trends; they made clear 
that at the moment the implementation of PHM in all or 
some of its steps is subordinated to the knowledge of faults, 
the machine experiences over its history. This somehow 
prevents the full exploitation of such methods in industrial 
environments if no prior knowledge of faults and related 
measurements is available.

Table 1 summarises the literature findings, synthesising 
some relevant insights, grouped by relevant meta-variables, 
namely the indenture level targeted by the ND solutions, 
the models adopted in such solutions, and the application 
contexts where the solution is tested.

Overall, several are the research streams and approaches 
for ND, and PHM in general, regarding CNC machine tools. 
Firstly, given the complexity of such machines, specific sub-
systems, such as hydraulic or electrical subsystems, and com-
ponents, such as bearings and ball screws, are usually analysed 
one at a time. There are efforts in relating failures of different 
subsystems/components, but this research stream is at its early 
stage [43]. Secondly, feature extraction and selection are vital 
to guarantee the downstream algorithms so that ND performs 
well. Hence, signals, especially vibrations, are transformed in 
time, frequency and time-frequency domains, and features are 
selected based on the current fault to be detected [44]. Lastly, 
AI algorithms are currently playing the lion’s share for ND of 
machine tools. Specifically, CNN is often engaged due to its 
ability to approximate even complex phenomena without the 
need to know the underlying failure mechanism [45]. Ensem-
ble and hybrid approaches are also used in order to combine 
the advantages of multiple algorithms and outperform the 
single, standalone application [17].

2.3 � Concluding remarks and gaps

Despite the promising trends and approaches to ND evident 
in literature findings, there are some gaps that are needed to 
be filled in. Amongst the gaps, the following appear the most 
relevant to remark:

Table 1   Summary of selected literature findings

Meta-variable Finding

Indenture level Developed ND solutions work at subsystem or component as indenture level; also, the influence of faults between multiple 
subsystems/components is not well studied

Adopted model Current ND solutions embrace both statistical and AI algorithms; however, as the phenomenon’s complexity increases, 
most authors look for AI as a way to approximate the failure mechanism

Application context Usually, ND solutions are developed and tested in controlled environment, as laboratories, or are developed based on 
numerically generated dataset via multi-physics simulation



4495The International Journal of Advanced Manufacturing Technology (2023) 128:4491–4512	

1 3

1.	 AI algorithms, such as CNN, require a huge amount of 
data to be properly trained. However, most of the time, 
RTF data are not available in the industry [13] and not 
affordable to be replicated in practice or generated by 
simulations [34]. Then, opportunities offered by AI 
algorithms appear at least challenging in their full reali-
sation when data are scarcely available.

2.	 There are few works that consider the wide set of avail-
able data from CNC machine tools. Condition moni-
toring data such as vibrations and temperatures are the 
most used, but CNC and PLC could provide valuable 
information regarding the part program and tool num-
ber that allow for improving algorithm performance [46, 
47]. Thus, there is a lack of emphasis in the extant scien-
tific literature on how to better tune PHM thanks to the 
knowledge of the working conditions of the machines.

3.	 The industrial viability of proposed solutions needs to be 
better investigated since, at present, datasets are generated 
numerically through multi-physics simulation or from 
laboratory tests. Few are applications considering CNC 
machine tools working in a real industrial environment.

4.	 Most of the work concentrates on diagnosis, usually 
referred to as fault detection and diagnosis (FDD) 
rather than prognosis. Indeed, given labelled or unla-
belled data, many studies focus on the application of 
supervised or unsupervised approaches to identify which 
failure modes are evolving or which failure has been 
experienced. Prognostic assessment may be empowered 
in future developments.

In this research work, the focus is on the first three gaps, 
while the last is out of scope, but worth for the future scien-
tific effort. Amongst the focused gaps, it is worth remark-
ing that the industrial viability of the method is a key fea-
ture addressed by this work. Firstly, it relates to the need 
to demonstrate implementation of PHM in CNC machine 
tools; secondly, it implies the adoption of a real setting in 
the actual evolution of the production requirements, enabling 
an industrial testbed inclusive of the variations of the actual 
working conditions of the machines, which is a key item 
under concern in the present work.

3 � Proposal of the operations‑aware novelty 
detection framework for CNC machine 
tools

The evidence from the literature shows several 
approaches to ND for CNC machine tools, to further 
enable diagnostic and prognostic analyses. However, 
what emerged is that there are few examples that rely 
on CNC and PLC data only and that show the indus-
trial viability of the proposed solutions, including other 

aspects rather than model performance, like reliability 
and usability of the provided information to the mainte-
nance decision-makers. Therefore, stemming from the 
gaps identified in the scientific literature and accord-
ing to the authors’ experience in industrial contexts, the 
goal of this research work is to realise a framework with 
associated models, organised in an integrated, indus-
trially viable solution for ND of CNC machine tools. 
This research considers CNC and PLC data also to tune 
the PHM with the working conditions of the machines, 
besides supporting the ND task aimed at fault detec-
tion as required by maintenance decision-making. It is 
worth recalling that diagnostic and prognostic analyses 
are considered out of scope in this research work and the 
proposed operations-aware ND framework, whereas fault 
detection is addressed with the main purpose to sup-
port information for the decision-maker that an anomaly 
arose and a functional failure is then incipient.

To tackle every aspect of the proposed solution, the 
remainder of the section is organised as follows: subsec-
tion 3.1 describes the proposed framework, the ground 
theory it refers to, the overall structure and the peculiari-
ties that make it novel with respect to the extant state of art 
solutions; subsections 3.2 and 3.3 deal with the SD level 
of PHM, clearing out the novel part of it; subsection 3.4 
presents the health assessment and related health indicator 
definition; and finally, subsection 3.5 depicts the working 
flowchart of the framework that enables it to be operative 
in an industrial environment.

3.1 � Overview of the framework

The ground theory of the proposed framework is provided 
by the ISO 13374-1 [10], which allows structuring the 
solution around an agreed-upon flow to realise the PHM 
program. The hypotheses to which the framework and the 
related algorithms are constrained are listed hereinafter as 
long as the effects on the modelling decisions.

•	 RTF data are assumed not to be available (or to be 
scarcely available). It prevents embracing pure super-
vised learning built upon failure labels, as failures are 
not (or, at least, are poorly) recorded. Then, specifi-
cally for ND, this learning is sometimes referred to as 
“semi-supervised” [26] as, on the one hand, it leverages 
upon a kind of unsupervised modelling as there are no 
pre-established labels, but, on the other hand, the nor-
mality is assumed to represent the healthy state, which 
enables a labelling process, therefore a kind of super-
vised modelling. Within the ND framework, specific 
models—gradient boosting regression and Gaussian 
mixture models—are then implemented.
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•	 No condition monitoring data are adopted at the SD 
level, as it is assumed a limited machine retrofitting, 
without the need to integrate a condition monitor-
ing system fit for maintenance purposes; hence, “tra-
ditional” techniques for CNC machine tools, such as 
vibration analysis, are not applied.

•	 Multiple machining operations are performed by the 
CNC machine tool and the entire set of part programmes 
is supposed not to be entirely known a priori as prod-
uct requirements may change; therefore, the developed 
models must consider the variability of part programmes 
to be realised so as to provide reliable information to 
maintenance decision-makers.

•	 CNC and PLC data are available so that operations, 
determining the working conditions, may be recognised. 
Particularly, CNC and PLC data available are those char-
acterising the part programmes and operations, such as 
active program, program status, actual spindle speed, 
nominal spindle speed and actual current absorbed by 
the spindle. The models developed should integrate such 
CNC and PLC data to achieve relevant information for 
the maintenance decision-maker.

It is worth remarking that ND is hereinafter focused on 
the spindle and axes as critical equipment of the machine 
tool. Nevertheless, the framework, in its inherent logic, 
could be applied to other critical subsystems/components 
that are monitored and for which an ND model exists or 
could be developed, to finally come up with the definition 
of the health states of the CNC machine tool.

The framework is presented in Fig. 1, where the ISO 
13374-1 is taken as a reference and extended in the level 
named “state detection”. Health assessment is considered 
only as a matter of labelling the health state of the CNC 
machine tool, without any effort towards diagnosis; also, 
prognostic assessment is skipped as it is not within the scope 
of this work.

The first two levels entail the collection of data from sen-
sors, transducers and manual inputs, and the pre-processing 
and processing of data to guarantee high-quality data flow-
ing towards the state detection data-driven models. Then, the 
SD level is implemented, which is focused on the developed 
ND models of whatever nature to determine how many and 
which states the machine may experience. Within this level, 
the newly added step is designated “operations consistency 
checking” (righthand grey-coloured box in Fig. 1); this is 
combined with the development of “fault detection” (lefthand 
grey-coloured box in Fig. 1). Both are data-driven models, fed 
by only CNC and PLC data, namely part programmes, opera-
tions ID, tool number and other program-related variables 
from the former, and linear speed, rotational speed, current 
drive load and other process-related variables from the latter.

The “operations consistency checking” is in charge of 
assessing if the results derived by running the data-driven 
model could be used or not to judge maintenance-related 
decisions. In particular, only when the operations are compa-
rable (i.e. training data are comparable with testing data), the 
fault detection and health assessment may take place to then 
support maintenance decisions. Otherwise, if the operations 
are not comparable, the results are not directly adopted for a 

Fig. 1   Proposed novelty detection framework for CNC machine tools
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maintenance reason; however, they are used to inform about 
a newly performed operation with respect to the history 
of the machine under analysis. In this way, failure-related 
information can be trusted by the decision-maker as they do 
really represent an incipient functional failure and not pos-
sible changes due to production requirements, e.g. in terms 
of material or processing parameters. This is assessed sta-
tistically as explained in subsection 3.2. Indeed, the “opera-
tions consistency checking” step is not in charge of assessing 
model accuracy and precision as this should be done during 
training and testing of the “fault detection” model itself. The 
novelty this framework claims does not refer to the single 
data-driven statistical model, but relies on the combination 
of those models for improved fault detection based on opera-
tions consistency checking, as better described hereinafter.

3.2 � State detection level with a focus on operations 
consistency checking

The SD level represents the cornerstone of every well-con-
ceived PHM program. The recognition of the state is sub-
ordinated to the identification of the machining operation 
the CNC machine tool is undergoing [48]. Nevertheless, 
given the specific goal of FDD, most studies from the lit-
erature concentrate on the development of well-performing 
algorithms for specific failure modes/causes, whereas few 
applications consider more than one machining operation at 
a time. Besides, the current state-of-the-art shows that most 
of the applications target ND, or equivalently fault detection 
in FDD, of CNC machine tools in a controlled environment 
or leveraging upon simulated datasets from multi-physics 
models. Therefore, to deal with the variations from a real 
industrial context, the current proposal aims at accompany-
ing the application of the data-driven fault detection model 
with automatic checking of machining operations consist-
ency; this aims to inform the decision-maker if the provided 
information is usable or not, for maintenance purposes.

Given the nature of the CNC machine tools, i.e. character-
ised by the ability to perform multiple operations, a relevant 
assumption must be stated: machining operations whose rep-
resentative variables values are closer to each other have the 
same effect on the health state of the machine tools. The impli-
cations of this general assumption are hereinafter detailed:

1.	 Machining operations should be described with the dis-
tributions of the variables and machining parameters 
(such as rotational speed of the spindle, feed rate, and 
axis movement). These distributions can be known after 
one or more monitoring periods. They also do take into 
account exogenous variables not directly collected, such 
as material, which influences the operations, and so the 
variables, measured at runtime.

2.	 Machining operations could be compared by analysing 
the distance between the distributions of the representa-
tive variables. This enables to determine the statistical 
comparability.

3.	 Machining operations that are statistically compara-
ble determine the same working condition, which is 
assumed to lead to the same effects on the CNC machine 
tools and their degradation, and so health state.

Therefore, as anticipated in Fig. 1, the operations con-
sistency checking corresponds to proving the similarity 
between operations by comparing the distributions of the 
representative variables, enabling robust information about 
health state, and incipient functional failure, delivered to the 
decision-maker.

The idea is detailed in Fig. 2, which also introduces 
an index, between 0 and 1, that brings information about 
the operations consistency checking. This index is called 
“Affinity Index” and refers to the measurement of similar-
ity between varying operations through time. The higher 
the Affinity Index, the higher the similarity between two 
operations, and vice versa. For the sake of simplicity, only 
two Gaussian distributions are drawn in Fig. 2, whereas the 
consistency check in its full deployment adopts a mixture of 
Gaussian distributions.

For a practical deployment, the solution relies on the 
definition of a threshold, designated as THaffinity, in order to 
discriminate between comparable and not comparable opera-
tions; the reader should refer to subsection 5.3.1 for informa-
tion on how to set THaffinity. Being based on statistical analy-
sis, the consistency check then verifies if similar machining 
operations are performed by the analysed machine over dif-
ferent monitoring periods, then bringing reliable and usable 
information for maintenance purposes.

3.3 � State detection level with a focus on fault 
detection

The development of the fault detection model follows the 
approach by Pimentel et al. [26], which is inspired by sta-
tistical process control: if the difference between the pre-
dicted value by the ND model defined for fault detection, 
and the current measured value monitored from the running 
machine, exceeds a predefined threshold, then an anomaly 
has arisen. This is meant as a partial fault, activating a con-
dition-based maintenance intervention.

To determine the predicted value, alias the response, a 
gradient boosting regression (GBR) is selected as the ND 
model. The selection of GBR comes from a comparison with 
other statistical models, namely, linear regression and sup-
port vector regression. GBR is indeed recognised as one of 
the most popular regression algorithm for tabular datasets. 
Its capability lies in its ability to effectively capture complex 
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and nonlinear relationships between the target variable and 
the input features. Moreover, it offers remarkable usability 
by handling missing values, outliers, so mitigating the need 
for any special treatment [49, 50].

The goodness of the GBR model is validated via 
the coefficient of determination R2, which is generally 
expressed as in Eq. 1.

The model is trained and then tested over historical data 
gathered during past operations of the machines in healthy 
state. Then, the model is used at runtime to evaluate the ND 
score, looking for anomalies, i.e. partial faults, by comput-
ing the difference between the predicted value (so called 
response) of the target variable and the measured actual 
value (alias the current value as it is measured), as in Eq. 2.

In this way, the score acts as the ND metric later used to 
assess possible anomalies. Indeed, once the score has been 
evaluated on the test data, its distribution is computed, such 
as its standard deviation σS. These values will be used in the 
ND algorithm to define when an anomaly arose, i.e. when 
the actual value is different from the response more than 3 
times the σS (which means the score, measured during the 
machine monitoring, is higher than 3 times the σS). This 
decision is commonly applied for novelty detection purposes 

(1)

R2 =

�

1 −

∑

(current value − response)2

∑

(current value − mean(current value))2

�

(2)score = current value − response

[26]. Grubbs identified that the mean plus three times the 
standard deviation represents a well-established definition 
for the novelty thresholds [51], as confirmed by industrial 
experiences [52, 14]. It is anyhow important to underline 
that the novelty threshold definition is an open challenge and 
depends on available a priori knowledge about probabilistic 
distributions of the signals [26].

Here in the present work, ND also comes the contribution 
of the Affinity Index: the ND score has validity only when-
ever data comes from comparable machining operations, as 
summarised in subsections 3.4 and 3.5.

3.4 � Health assessment level with health indicator 
definition

Once the SD level has been formalized, it is possible to 
assess the health state of the CNC machine tool, or, more 
precisely, of the monitored subsystems and for which ND 
models are available. Since no RTF data are available, 
a ND learning approach is implemented [26]: only the 
healthy state is characterized and, as soon as a novelty 
(anomaly) arose, then a new degraded state (abnormal 
state) is experienced by the machine.

In practice, it is also worth observing that true-neg-
ative or false-positive may happen due to uncontrolla-
ble variations, as the operations on the machine are not 
deterministic and the production operators may change 
parameters due to contingent situations. As such, mainte-
nance decision-makers may be mistakenly alerted along 
the day even for several reasons, not necessarily requiring 

Training data distribution on
which the models were trained

Current value of the data
collected from field

HIGH AFFINITY INDEX:
The undergoing operation is comparable

to the ones used for training.
Results of the model could be used for

health assessment.

LOW AFFINITY INDEX:
The undergoing operation is not

comparable to the ones used for training.
Results of the model could NOT be used

for health assessment.

Training data Real time data

Training data Real time data

TBN: the example above is based on two gaussian distributions for which statistical testing may be performed (e.g. paired t-
test). They are just used to explain the concept of Affinity Index, since each operation is characterised by multiple distributions
and the comparison is based on mixture of gaussian distributions.

Fig. 2   Evaluation of Affinity Index by means of Gaussian mixture models
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a maintenance intervention. Therefore, the modelling deci-
sion is to smooth this behaviour by setting a proper fre-
quency of alerts as a relevant feature for decision-making, 
in the case under study daily frequency is decided. The 
daily frequency of alerts falert has been modelled as fol-
lows in Eq. 3:

where:

•	 Nalerti
 is the daily number of alerts during the day i;

•	 Nscorei
 is the daily number of evaluated scores during the day i.

Building on the score definition (Eq. 2), the alert is 
released every time the score exceeds the 99.7% confi-
dence interval of the response of the ND model for fault 
detection, which corresponds to the anomaly occurrence. 
It means that the alert is released whenever the difference 
between the measured and predicted values is higher than 
3 times the standard deviation of the error evaluated on 
the test dataset.

The health state indicator (HI) is based on the daily 
alert frequency and is modelled as its moving average 
(MA(k)) as in Eq. 4:

 where k is the order of the moving average MA(k).
To properly define the health indicator so as to be useful for 

decision-making, two additional open points need to be solved:

1.	 The assessment of the order k of the moving average. The 
selection depends on the required promptness of change 
of the indicator while avoiding useless spikes, thus, it 
should result after analysing real data available from the 
shop floor to properly run the health assessment.

2.	 The definition of the thresholds of the health indica-
tors so as to label the values of HI in a discretized way, 
treatable for decision-making. According to the work-

(3)falerti =
Nalerti

Nscorei

(4)HI = MA(k) =

∑k

i=0
falerti

k

ing hypotheses, no RTF data are available, hence, it is 
only possible to set these thresholds according to the risk 
the company would take. Therefore, the decision is to 
model these thresholds as follows, considering healthy, 
abnormal, or faulty states for discretizing the behaviour 
of the CNC machine tool:

a.	 Healthy state, when HI < μ + 3σ, where σ is the 
standard deviation of HI and μ is the mean value.

b.	 Abnormal state, when HI ≥ μ + 3σ and HI < μ + 4σ.
c.	 Faulty state, elsewhere.

This builds on similar considerations expressed for the 
novelty threshold definition (subsection 3.3). Besides, it 
should be noted that the number of health states is case-
dependent; the authors assume a three-state model so to 
include a “warning” period described by the abnormal state, 
before the failure (faulty state).

The information on the health state is then provided to the 
maintenance decision-maker in order to judge the decision 
to make. Indeed, the information is not provided directly, 
but is firstly filtered by joining together the Affinity Index 
as expressed in Table 2.

3.5 � Working flowchart of the proposed framework

The working flowchart, characterized by the logical 
sequence of data management and computational steps, and 
decision points, completes the specification for the PHM 
program application according to the proposed approach in 
the case of CNC machine tools. Therefore, Fig. 3 reports the 
overall flowchart, also drawing, on its left-hand side, the ISO 
13374-1 used as reference structure to build the framework.

Starting from the set of CNC and PLC data, the first step 
is the data pre-processing, integration, and homogenisation. 
This step is fundamental so that the data later analysed by 
the ND models are of high quality. Especially, data fusion is 
central as all data samples must be related to the very same 
timestamp. Later, the data are used to evaluate the score, 
for fault detection, and the Affinity Index, for operations 
consistency checking. Both results are used in the first two 
decisional points:

Table 2   Information provided to the maintenance decision-makers according to Affinity Index

Health indicator (HI)

HI < μ + 3σ HI ≥ μ + 3σ and HI < μ + 4σ elsewhere

Affinity Index Not comparable operations (< THaffinity) The operation/s performed by the CNC machine tool is/are not comparable to those 
known a priori. No information on the health indicator is available.

Comparable operations (≥ THaffinity) The operation/s performed by the CNC machine tool is/comparable to those known a 
priori. Information on the health indicator is available.

Healthy Abnormal Faulty
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•	 The score for fault detection is analysed so to identify 
possible anomalies. If the score is within the pre-defined 
thresholds (three times the standard deviation, building 
on Eq. 2), then there is no release of the alert and the 
monitoring of the machine still goes on; otherwise, if 
the score exceeds thresholds (more than three times the 
standard deviation, building on Eq. 2), an alert is released 
and stored to be later used for the feature evaluation; the 
feature is then evaluated (both alert daily frequency, see 
Eq. 3, and moving average HI, see Eq. 4), this happens if 
and only if also the Affinity Index is verified.

•	 The Affinity Index is compared with a threshold THaffinity (in 
this case, set to 75%, that is the probability that the gathered 
data are similar to those used to train the model is higher than 
75%, please see subsection 5.3.1 for further information). If 
the Affinity Index is higher, then the score could be used to 
evaluate the alert daily frequency and the health indicator for 
the decision-maker; otherwise, the information is not thrown 
away, but it is used to inform the decision-maker (mainte-
nance technician or manager), that the current operation is 
too different from those within the training dataset of the 
model, so nothing could be said on the health state.

Every time both conditions are satisfied, an alert is released 
and stored to evaluate the alert daily frequency. Then, the health 
indicator is computed and, if the feature goes over the average 
value plus 3 times the standard deviation (HI ≥ μ + 3σ), the 
unhealthy state is identified, and an alarm is released to trigger 
a call out to the maintenance decision-maker. Otherwise, the 
healthy state is set, and no alarm is released.

4 � Company overview and machines 
under study

The proposed framework for operations-aware ND of CNC 
machine tools, is tested in the real case of a large manufac-
turing company. This section 4 presents the company and 
the machines under study, while section 5 describes how the 
framework is applied in this context.

In fact, as industrial deployment, the solution has been 
developed during a three-year collaborative project based 
on action research where multiple parties are involved, such 
as an Italian manufacturing company, researchers, and small 
and medium-sized enterprises (SMEs) each with specific 
objectives. The Italian manufacturing company produces 
critical components for gas and steam turbines, later used in 
the power generation sector to generate electric energy for 
several applications. The company has a long-lasting story 
in this field, with more than 100 years of experience in the 
design, production, and maintenance of turbines. The prod-
ucts are sold all over the world, making the company one of 
the global leaders in this sector.

The Italian plant where the project was performed 
includes the machine tools under study, i.e. those in charge 
of producing the blades for the gas/steam turbines. The qual-
ity related to this kind of product must be at the highest 
possible standards; therefore, the health state of the machine 
tools producing the blades must be kept under control and 
any possible anomaly be noticed to avoid waterfall effects 
on the quality of the final assembly, i.e. the turbine. Specifi-
cally, the CNC machine tools under study are the following:

Fig. 3   Working flowchart of the 
proposed framework
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•	 4-axis CNC machines tools and 5-axis CNC machine 
tools (5 and 1 machines, respectively, for a total of 6 
machines) in charge of realising the blade roots;

•	 5-axis CNC machine tools (total of 8 machines) in charge 
of realising the blades; and

•	 Newly bought 6-axis CNC machine tools (total of 2 
machines) in charge of realising the blades.

The implementation of the proposed solution for 
operations-aware ND required the definition of a robust 
methodology, grounded on the ISO 13374-1 and PHM 
body of knowledge. Indeed, it was within the goal of the 
3-year project to realise a PHM solution almost from 
greenfield, i.e. machines were not connected, and no 
platform was available for data storage and analysis. 
Therefore, the solution described in section 5 required 
some propaedeutic activities.

Amongst them, it is worth remarking on the need for 
criticality analyses, in this case, carried out by a failure 
mode effects and criticality analysis (FMECA), aimed to 
understand the machines and their critical items; moreo-
ver, the development of an ICT architecture was required 
in order to collect, elaborate and store data. In particular, 
it is worth pointing out that the results of the FMECA 
show that the spindle and the axes are those with the 
highest criticality in terms of risk priority number (RPN) 
considering occurrence, severity and detectability. Other 
details of the propaedeutic activities will not be treated 
as they are out of the scope of the insights provided in 
this research work.

5 � Application of the operations‑aware 
novelty detection framework for CNC 
machine tools

This section illustrates the development of the solution, 
following ISO 13374-1 and applied to the company case. 
Some insights on the data acquisition are provided in sub-
section 5.1; the data manipulation is described in subsec-
tion 5.2; the state detection is presented in subsection 5.3; 
and finally the health assessment in subsection 5.4.

5.1 � Data acquisition

As one of the main assumptions of this research work, the 
only available data from the CNC machine tools are those 
coming from the CNC and related PLC controlling various 
subsystems. Hence, for streamlined data acquisition, those 
data must be automatically read and made available for fur-
ther use, i.e. data storage and analysis. Therefore, the CNC 
and the PLC are connected via a gateway that is in charge of 
collecting the data and sending them to the cloud after some 
computations on edge, as represented in Fig. 4.

Given the constraint on the data effectively stored in the 
cloud, higher sampling frequencies required an aggregation 
computed on edge.

Specifically, the setup of a correct sampling frequency 
for each variable is of paramount importance to guarantee 
the correct functioning of the solution. This is combined 
with the identification of meaningful features from the meas-
ured variables, as obtained in the data manipulation phase. 

Fig. 4   Data acquisition system
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Hence, an iterative approach was established between the 
data acquisition and the data manipulation, to identify the 
best trade-off between the number of variables/features and 
their sampling frequency.

As a result of the iterations, the sampling frequencies 
were fixed in the range from every second to every 2 min 
depending on the variable, while the aggregation was 
required at 2 min due to the constraint in the cloud storage.

5.2 � Data manipulation

In PHM programmes, data manipulation typically entails 
data preparation, data cleaning and feature extraction and 
selection.

To enable high-quality data, an important data cleaning 
was made. Hereinafter, it is worth discussing one specific 
objective: the isolation of only active operation (i.e. metal 
cutting) by the CNC machine tool. In fact, during the execu-
tion of a part program, the machine tool undergoes both 
active and non-active operations from a product perspec-
tive: an active operation implies contact between the tool-
ing head and the workpiece, while a non-active operation 
refers to correct positioning or tool changing. Given that 
non-active operation may impact the model performance and 
the constraint of 2-min aggregation time for cloud storage, it 
was decided to use an ad-hoc variable named “working state 
percentage” to estimate how much time, in a 2-min interval, 
the CNC machine tool spent in active operation or not. The 
working state percentage ranges from 0 to 1, where 1 means 
that all gathered data points within the 2 min represent active 
operation. The evaluation of the working state percentage 
works as follows:

1.	 For each data point, the “working state” is evaluated, 
which is based on the analysis of the CNC program 
string and its specific codes: if the CNC machine is 
in active operation, working state is equal to 1, 0 else-
where.

2.	 The ratio between the number of data points with a 
working state equal to 1 over total data points provides 
the working state percentage.

The working state percentage threshold, above which the 
interval was considered good for the prediction of the health 
state, was 0.7, i.e. most of the time the CNC machine tool 
was in active operation. Furthermore, two additional con-
straints were superimposed to guarantee the correct func-
tioning of the model: within the 2-min aggregation inter-
val, there should be no more than 5 rapid movements and 
2 tool-changing operations. These specific thresholds for 
rapid movements and tool-changing operations have been 
fixed after numerous tests and considering the manufactur-
ing technology knowledge background.

Overall, the final value of the working state percentage 
aims at guaranteeing high-quality data for the actual machin-
ing operation, assuming that the higher the working state 
percentage, the more representative the description of the 
machining operation and its impact on the health state.

Building on high-quality data, the identification of mean-
ingful variables/features requires typical methods such as 
dimensionality reduction looking for constant-value vari-
ables and highly correlated variables. It is worth mention-
ing that, for the correlation analysis, a combined physics/
data-driven analysis was performed in this case, adopting: 
(i) a physical analysis based on empirical rules that relate 
manufacturing variables, like, e.g. the feed rate and the spin-
dle speed; and (ii) a data-driven analysis based on the linear 
correlation coefficient. Overall, this enables the selection of 
relevant variables, for each CNC machine tool: the current 
of spindles and axes, the drive load of spindle and axis, the 
rotary speed of the spindle and the absolute velocity of the 
axes, together with the operation identifier.

5.3 � State detection

State detection runs the ND data-driven models for oper-
ations checking and fault detection. These entail the 
following:

1.	 Definition of an index to measure the affinity/similarity 
between the operations; and

2.	 Definition of a score to measure the existence of an 
anomaly, i.e. a functional failure.

The following subsections 5.3.1 and 5.3.2 provide 
insights on the application, completing what was presented 
in subsections 3.2 and 3.3.

5.3.1 � Definition of the Affinity Index

Knowing that the CNC machine tool is in active operation—
as obtained from the working state percentage—does not 
prevent obtaining a result that is not coherent if the new 
operation is significatively different from those in the train-
ing dataset. As reported in Fig. 5, the probability density 
functions of three relevant variables collected by the CNC 
machines, namely, the spindle drive load, the spindle actual 
speed value and the current on one of the axes, depend on 
the specific operation the CNC machines performed over 
the acquisition time.

Therefore, it is of utmost importance to compare, time 
by time, if the gathered values are comparable or not with 
those present in the training dataset as this should allow reli-
able information for maintenance decision-making: if the 
operations are comparable, information on how the machine 
behaves could be extracted in order to make the health 
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assessment; otherwise, it is known only that the current opera-
tion is different from historical ones, whereas it is not possible 
to draw any conclusion on the health state of the machine.

Therefore, building on the general idea already presented 
in Fig. 2, the Affinity Index has been implemented through 
the following steps:

•	 A statistical model of the possible states that the CNC 
machine goes through during the training period is cre-
ated from the data.

•	 Each state is represented as a multivariate Gaussian 
in the space of the variables describing the system 
(current, drive load, speed, etc.), with mean μi and 
covariance matrix Σi.

•	 The model has learnt automatically from the training set 
by using a Gaussian mixture model. The number of states 
K (i.e., the number of components of the mixture model) 
is inferred from the data by using the Bayesian informa-
tion criterion (BIC).

•	 For each new test point x, the probability of belonging to 
the state i that the CNC machine has visited during the 
training process is evaluated as in Eq. 5:

•	 The Affinity Index of the point x is defined as the highest 
probability amongst the states composing the model as 
defined in Eq. 6 (where A.I. stands for Affinity Index):

The application of the Affinity Index enables discerning 
between already known operations, different operations, 
and similar operations, as noticeable in Fig. 6, based on the 
statistical comparison of collected variables. On the y-axis 
of the upper plots, there is the Affinity Index value for each 

(5)pi(x) = exp
[

−
1

2

(

x − �i

)T
Σ−1
i

(

x − �i

)

]

(6)A.I.(x) = max
i=1..K

pi(x)

two-interval data point (x-axis). Instead, on the y-axis of the 
bottom plots, there are operation IDs for each two-interval 
data point (x-axis). Therefore, it is possible to read, for each 
operation, the related Affinity Index, thus shedding light on 
the comparability of the operations.

Indeed, it is possible to see that:

•	 Operation _N_N93Z99_S01_MPF is present both in the 
training and in the test dataset and the Affinity Index is 
high; then, it is a known operation already experienced 
in the past.

•	 Operation _N_N93Z99_S11_MPF is not present in the 
training dataset and the Affinity Index is indeed very low 
(around 0.6) in the test dataset; then, it is considered a 
different operation, with respect to the past experience, 
and is not comparable.

•	 Operation _N_OP006569_S02_MPF is not present in the 
training, but the Affinity Index is high as the related vari-
able values are similar to those already seen in the train-
ing dataset; even if not experienced, it appears similar, 
i.e. statistically comparable, with past operations.

Therefore, if operations are similar (such as the Operation 
_N_N93Z99_S01_MPF and the Operation _N_OP006569_
S02_MPF), then the ND model results can be trusted and, in 
case of novelty thresholds overshoot, an incipient functional 
failure is foreseeable. Otherwise, if operations are not simi-
lar (e.g. the Operation _N_N93Z99_S11_MPF), then the 
only information retrievable refers to the machine perform-
ing operations never seen and not comparable with respect to 
those observed during the period used to train the algorithm.

The scaled-up evaluation of the Affinity Index involved 
the adoption of the equal error rate (EER) assessment to 
identify the best threshold (THaffinity). Specifically:

1.	 The available dataset of operations was divided into 
training set and test set.

Fig. 5   Distribution of values for three relevant variables (same legend for all three plots, see bottom part)
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2.	 The operations consistency checking was carried out as 
a function of THaffinity; those operations with Affinity 
Index higher than THaffinity were consistent, and were not 
otherwise.

3.	 The confusion matrix was calculated considering the 
ground truth given by the labelling of the operations.

4.	 The false acceptance rate (FAR) and false rejection rate 
(FRR) were evaluated and the EER showed that 0.75 as 
THaffinity was the best option as visible in Fig. 7.

5.3.2 � Definition of the fault detection score

Building on the approach by Pimentel et al. [26], the dif-
ference between the predicted value due the ND model 
and the current measured value is computed and, if the 

correspondent score (see Eq.  2) exceeds a predefined 
threshold, then an anomaly has arisen. In particular, GBR 
is the ND model (as in subsection 3.3) and is used at the 
spindle and axis level so as to be able not only to notify an 
anomaly but also to locate the anomaly within the machine 
tool. As a matter of fact, a CNC machine tool with 3 axes, 
has 4 GBR models, one for the spindle, one for the x-axis, 
one for the y-axis and one for the z-axis. Table 3 sum-
marises the predictors for each type of model (spindle or 
axis) as well as the response. Predictors and responses 
have been identified starting from the variables/features 
identified as a result of data manipulation.

Each model is trained on a 2-month period and tested on 
a 1-month period. The dataset is selected based on feedbacks 
from the company about the continuous work of the machine 

Fig. 6   Affinity Index as a function of the performed operations

Fig. 7   EER for THaffinity defini-
tion (example for the 4-axis and 
5-axis CNC machines tools)
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along the considered monitored period. Also, the dates are 
compared with the maintenance interventions historian to 
avoid considering weeks in which maintenance revisions 
took place. Figure 8 shows the results for a 4-axis CNC 
machine tool; specifically, the value of the score is expressed 
for the training dataset (named “train”), the testing dataset 
without any filter (named “test”), and the testing dataset after 
filtering based on Affinity Index (named “test filtered”).

Using the box plots, and assuming the healthiness of the 
machine over the monitoring period during which the train-
ing and testing have been performed in this case, the reader 
may be sensitive to the improvement: leaving out the vari-
ability induced by the different/not comparable operations, 
the box plot should be closer to the one from the training 
phase. In Fig. 7, this happens for all axes.

Below are the comparison plots with the results for the 
4-axis CNC machine tools (Fig. 9), the 5-axis CNC machine 
tools (Fig. 10) and the 6-axis machine tools (Fig. 11). On the 
y-axis of each figure, there is the average score, while on the 
x-axis is the specific axis or spindle to which the score refers to.

It is worth seeing that the model performance (test after 
AI versus test) for the 6-axis CNC machine tools, even 
acceptable, is overall worse than the 4- and 5-axis ones. As 
a reasonable hypothesis, this evidence could be motivated 
by the fact that the formers perform more complex and het-
erogenous operations compared with the latters.

Overall, the results obtained by the application of the 
GBR models confirmed first of all the goodness of the model 

Table 3   Predictors and response for the spindle and axis models

Predictors Response

Spindle model Drive load
Actual rotary speed
Working state percentage

Actual current

Axis model Drive load of all axis except the 
one under analysis

Working state percentage
Absolute velocity of all axes 

except the one under analysis

Actual current

Fig. 9   Model performance for the 4-axis CNC machine tools

Fig. 8   Scores for the 4-axis CNC machine tool
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in predicting the value of the current given the historical 
trend within the healthy state and, also, the capability of the 
Affinity Index to improve model performance by avoiding 
the evaluation for those operations different from the ones 
in the training dataset.

5.4 � Health assessment

Running the GBR models allows evaluating the health indi-
cators HI as expressed in subsection 3.4: the health indicator 
is the moving average of daily alert frequency. Figure 12 
shows the HI of the spindle for five 4-axis CNC machine 
tools, named 144 (blue line), 145 (orange line), 242 (green 
line), 243 (red line) and 244 (purple line) according to the 
company’s internal identification number.

It is possible to observe a constant trend for machine 
145, whose HI clearly deviates from the almost stable 

behaviour of the other HIs. However, to provide mean-
ingful information to the maintenance decision-maker, 
the health state should be determined. Hence, two 
thresholds should be defined, one that sets the limit 
between the healthy and the abnormal states, and the 
second one that separates the abnormal state from the 
faulty state.

The decision is to adopt the same two thresholds for all 
machines of the same type. This is established so as to have 
a reference baseline that the decision-maker could use to 
compare the HI of more machines. For the 4-axis CNC 
machine tools, the two thresholds are set at 0.10 and 0.12, 
which respectively, means that 10% and 12% of the calcu-
lated scores over the day bring an alert. Figure 13 shows 
the HI of the five monitored machines with highlighted the 
two thresholds that define the health states (healthy is green, 
abnormal is yellow and faulty is red).

Fig. 10   Model performance for 5-axis CNC machine tools

Fig. 11   Model performance for the 6-axis CNC machine tools
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As Fig. 13 shows, machine 145 is experiencing abnormal 
behaviour bringing it to a faulty state. In order to offer a 
shred of consistency to the results and given that, according 
to the company’s experience, CNC machine tools are very 
reliable, hence, no failures are expected at their components, 
an alternative way to validate the proposed method was 
defined. Specifically, an independent maintenance provider 
(IMP) expert in vibration analysis was asked to install its 
condition monitoring solution to measure anomalies of the 

spindles and axes. Therefore, along a few months, the two 
solutions—the one proposed in this work and the condition 
monitoring leading to vibration analysis—worked concur-
rently, assuming the traditional and reliable vibration analy-
sis as the state-of-the-art and ground truth. Indeed, vibration 
analysis as a meaningful technique to understand the health 
state comes from the experts’ knowledge and it is supported 
by previous scientific works as shown in section 2. It is 
important to point out that the installed condition monitoring 

Fig. 12   Health indicators of the spindle for the 4-axis CNC machine tools

Fig. 13   Health indicators of the spindle for the 4-axis CNC machine tools with highlighted thresholds
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solution worked under the same condition of no failure data 
as the proposed operations-aware ND framework.

For the specific monitoring period reported in Fig. 12, the 
time domain and frequency domain analyses from the accel-
erometers by the IMP performed on a daily basis, confirmed 
that the spindle of the CNC machine tool 145 was experi-
encing an important degradation trend as highlighted by the 
proposed solution. The observation of the physical state of 
the spindle confirmed that it was close to sudden breakdown. 
Hence, the double-check from the IMP and the company’s 
maintenance technicians confirmed that the proposed solu-
tion correctly represented the health state of the monitored 
spindle of the CNC machine tools. If already in place, the 
proposed operations-aware ND solution could have been 
able to foresee the spindle failure 10 days in advance with no 
additional sensor installation within the related architecture.

6 � Discussion and lessons learnt

This section 6 aims at reflecting on the developed opera-
tions-aware ND framework and the obtained results, in order 
to discuss the practical relevance and the managerial impli-
cations of the work.

The results obtained have been reached always consider-
ing the need to achieve a good balance between the model 
performance, the industrial viability and the cost-effective 
applicability and usability of the solution. In particular, it 
is worth summing up some considerations regarding the 
requirements and constraints requested for the development 
of the framework, before analysing the contributions this 
research work aims at bringing to the scientific literature.

Lessons learnt gained during the development and 
deployment of the proposed framework could be indeed 
summarised as follows, retracing the PHM model:

1.	 Data acquisition:

(a)	 The identification of items towards which modelling 
effort is worth being directed, comes from the results of 
the FMECA as well as the availability of already-in-place 
monitoring solutions, as a kind of digital readiness of the 
machines. Consequently, the spindle and the axes were 
identified as those of high criticality and already con-
nected to CNC and PLC; vice versa, high-critical items 
like swarf removal and refrigeration units were excluded 
due to the need for important retrofitting activities, in 
spite of their relevance in terms of impacts on downtime. 
They may be the target of the following projects.

(b)	 The sampling frequency for data collected from CNC 
and PLC is influenced by constraints on cloud storage. 
Setting a sampling time equal to 10 ms requires 560 GB 

per machine per month, scaling up to 9 TB of required 
storage per month for the 16 CNC machine tools. The 
cost-benefit analysis was, therefore, core in defining the 
final architecture with on-edge processing with 2-min 
aggregation for cloud storage and subsequent elabora-
tion.

2.	 Data manipulation:

(a)	 The selection of the relevant features used to train and 
run the models has required various interactions with 
the project partners, especially with the personnel 
working daily on the CNC machine tools; this enabled 
the exploitation of domain knowledge in terms of man-
ufacturing technology as well as industrial automation, 
thus reducing the “time-to-deploy” solution.

3.	 State detection:

(a)	 The choice not to go for artificial intelligence algo-
rithms, e.g. neural network or deep learning, was based 
on the request of having interpretable model outputs 
by maintenance technicians and managers. In manag-
ers’ minds, statistical modelling of the behaviour of the 
machines could have promoted adequate trustworthi-
ness by the future users of the solution, while artificial 
intelligence could be included in a roadmap of next 
project developments.

(b)	 The selected statistical model for fault detection, i.e. 
GBR, was identified based on (i) the previous experi-
ence the company in charge of algorithm development 
had, and (ii) the results from a trade-off between the 
scalability options and easiness in model maintenance 
in the long-term.

4.	 Health assessment:

(a)	 The selection of the health indicator was based on the 
trade-off between the model’s capability to identify a 
deviation and the “suitable” notification frequency so 
as not to overload the maintenance process. Therefore, 
the best health indicator was built based on the daily 
frequency of alerts, not the point alerts.

The final result is a cloud-based solution that informs 
the maintenance decision-maker about the health states of 
the monitored subsystems of the CNC machine tools on the 
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manufacturing shop floor. The availability of an alternative 
CBM solution based on vibrations signals allows the valida-
tion of the results obtained with the operations-aware ND 
models and health assessment. This proves it effectively 
detects anomalies in the spindle and potentially in the CNC 
machine tool axes, even though one failure only has been 
recorded during the monitored period. The information is 
accessible to multiple users with different privileges and 
can be integrated with the company’s CMMS for better 
decision-making in preventive and condition-based main-
tenance actions.

Stemming from these results, it is worth digressing over 
the adaptation of the proposed framework to other CNC 
machine tools. From the technological point of view, the 
framework is able to adapt to multi-axis CNC machine tools; 
indeed, it was already applied to 4-, 5- and 6-axis CNC 
machine tools. Furthermore, if the CNC machine tool under 
study does perform always the same set of part programmes 
and operations, then the Affinity Index could be skipped as 
there is no need to dynamically adapt to ever-changing and 
unpredictable part programmes dictated by varying produc-
tion requirements. If run-to-failure data are available, the 
evaluation of the score as novelty detection could be skipped 
as it may be effective to move towards a complete supervised 
learning. In all other cases, the suggested framework may 
find applicability as it targets the most critical step in PHM 
that is state detection in the particular case of limited avail-
ability of failure data and limited knowledge of upcoming 
operations resulting from changing production requirements.

Discussing the advancements with respect to the scien-
tific state-of-the-art, this research work proposes an ND 
framework based on the concurrent use of two statistical 
models, each for a specific goal: the first one looks for auto-
matic operations consistency checking, and does represent 
the main novelty that this work brings about as it enables 
industrial viability in cases of different working conditions 
of the operating machines; the second one is focused on 
anomaly detection, once similar working conditions are 
identified. The joint evaluation of both in terms of Affinity 
Index and fault detection score allows robust information 
to be transferred to the decision-makers. In particular, it is 
worth remarking that the experimental observations (see 
section 5.3.2) confirmed that the effect of variability due 
to the changing operations, was absorbed, finally leading 
to a reliable fault detection score and, subsequently, health 
indicator to support decisions.

Considering the decision-makers’ perspective, the solu-
tion offers usability with limited retrofitting. It utilizes vari-
ables measured by the existing controllers for the machining 
process, allowing the maintenance decision-maker to make 
informed decisions by employing the ND and health assess-
ment on a regular basis, i.e. while the machining operations 
are running. Further condition investigation can be delegated 

to other technicians (i.e., experts in specific techniques such 
as vibration analysis). This cost-effective solution provides 
reliable information on the ongoing degradation risks during 
the machine runtime while optimising the usage of experts 
when required in further condition investigation.

Overall, the project demonstrates that developing, deploy-
ing and releasing a stable CBM solution for industrial 
machines like CNC machine tools requires looking for a 
good balance between model performance, industrial viabil-
ity, cost-effective applicability and usability.

7 � Conclusions and outlooks for future 
research

The research work aims at developing a framework for oper-
ations-aware ND for CNC machine tools with available data 
from already-in-place CNC and PLC. As the scientific state-
of-the-art confirms, most of the developed ND solutions rely 
on vibration or temperature signals so as to perform FDD 
of subsystems of machine tools. However, the availability of 
such data does often require an important retrofitting activ-
ity on the machines under study, while CNC and PLC data 
could be easier to gather as they are already installed. There-
fore, the research tackles this gap by proposing an ND solu-
tion based on CNC and PLC data, by assuming no vibration 
monitoring system available; indeed, the developed solution 
is able to cope with varying operations the machine tools 
could realise to enable reliable and usable information for 
maintenance decision-making.

The proposed framework is based on the PHM process 
guidelines and extends the SD level by adding the so-
called “operations consistency checking” step, towards the 
Machine Tool 4.0 paradigm. This additional step is in charge 
of guaranteeing that the data-driven models for ND are run-
ning under similar conditions between the runtime data gath-
ered from the machines and the training dataset. Specifically, 
an index called Affinity Index, is evaluated, which compares 
the current data with the historical one on which the models 
were trained, and measures the degree of similarity of the 
operations. If the Affinity Index is high enough, then the 
model response could be used to judge the health state of 
the CNC machine tools, triggering eventual maintenance 
actions. Otherwise, the maintenance decision-makers are 
informed about the different operations the machine is per-
forming with respect to its previous history and, through 
their expertise, a decision could be eventually judged.

The proposed solution has been developed and deployed 
during a 3-year industrial project, which allowed testing 
of the operations-aware ND framework over several CNC 
machine tools. After proper modelling of a GBR algorithm 
for each of the interested subsystems, namely the machin-
ing unit that includes the spindle and the axes, the solution 



4510	 The International Journal of Advanced Manufacturing Technology (2023) 128:4491–4512

1 3

effectively identified an abnormal state of the spindle of one 
of the CNC machine tools. If already operating, the model 
could have identified a real failure 10 days in advance. Also, 
this solution has been tested and compared via traditional 
monitoring solutions based on vibrations, which are rec-
ognised as the state-of-the-art in research and industry for 
this kind of machine, showing comparable health assess-
ment performance. Overall, the obtained results improved 
the information available to maintenance technicians and 
managers as the cloud-based system is accessible by multi-
ple users even remotely, highlighting the health state of the 
monitored subsystems of the CNC machine tools.

Concerning the scientific state-of-the-art, the proposed 
operations-aware ND framework overcomes current limita-
tions related to the need for RTF data to implement an effec-
tive condition-based maintenance solution. Also, the claim 
this research brings about is the possibility to establish a well-
performing ND solution even in case of no condition moni-
toring data, e.g. vibrations or temperatures, but relying only 
on CNC and PLC already-in-place. Finally, besides extensive 
data manipulation to enable data quality for the next PHM lev-
els, this research claims that CNC/PLC data are a key element 
to finally achieve reliable information, as they form the basis 
for adapting to the changing working conditions as dictated 
by new part programmes introduced to satisfy continuously 
evolving production requirements; this is an essential concept 
when multiple operations, determining varying working con-
ditions, impact on the health state evolution of the machine.

From an industrial point of view, the proposed frame-
work could be adapted, even made simple, to various situ-
ations. As described in section 6, according to the vari-
ability in part programmes and operations and/or in the 
availability of failure data, some step of the framework 
could be skipped (e.g. Affinity Index) or modified (e.g. 
complete supervised learning), respectively. Hence, the 
research could be of interest to any company willing to 
implement a condition-based maintenance solution with-
out important retrofitting activity. Indeed, this may repre-
sent the first implementation of Industry 4.0 technologies 
that could be then pushed forward by leveraging also on 
condition monitoring data and integration with informa-
tion systems, such as CMMS, to label events thanks to the 
register of maintenance work orders.

Current and main limitation of this work relates to the 
assessment of the solution with one failure only available. 
This has been counteracted by the concurrent evaluation 
of health by means of vibration analysis, somehow cer-
tifying the correct health state definition for the sixteen 
machines explored in the study. However, the capability 
of the framework and related algorithms to identify evolv-
ing failures should be better assessed, beyond the only 
one failure occurred during the project timeline, which 

represent per se a future endeavour. Furthermore, other 
operational contexts resulting from different production 
requirements, could be helpful to extend the validation of 
the automatic operations consistency checking and of its 
experimental proofs as herein reported (in subsection 5.3.1 
and, concerning the effect on fault detection, in subsec-
tion 5.3.2). Overall, this may inform future experimental 
works both in industrial settings and in laboratory settings. 
Due to controlled environment, laboratory tests are helpful 
to extend the experimentation to explore different influ-
ent factors, while variations that could result in specific 
industrial settings, are also relevant in order to align to 
challenges in real settings as well as needs and require-
ments from the decision-makers and other stakeholders 
involved in the industrial development.

Furthermore, additional future research works could first test 
the application of other algorithms for ND, searching for AI 
solutions to improve prediction performance. Also, the Affinity 
Index is currently based on a statistical comparison between his-
torical operations the machine performed and the current ones; 
also for this purpose, AI may be tested to verify any potential 
advantage in classifying similar and different operations. Sec-
ondly, the proposed solution does not consider any feedback 
to be included automatically to improve model performance; 
hence, an effort to establish a comeback of information from 
experts to be included is envisioned as a potential breakthrough 
to optimise the performance of the overall solution. Finally, 
integration with other data may be useful to extend diagnos-
tics and prognostics capabilities. This may come out in cloud-
edge-based solutions capable to combine the computational 
potentialities at different levels of the cyber-physical produc-
tion system built as a result of digitisation. Indeed, the proposed 
operations-aware ND framework is conceived as a core part of 
an industrial information system stack able to inform multiple 
actors for integrated decision-making on the shop floor.
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