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Abstract
Tool condition monitoring (TCM) is a mean to optimize production systems trying to use cutting tool life at its best. 
Nevertheless, nowadays available TCM algorithms typically lack robustness in order to be consistently applied in industrial 
scenarios. In this paper, an unsupervised artificial intelligence technique, based on Growing Self-Organizing Maps 
(GSOM), is presented in synergy with real-time specific force coefficients (SFC) estimation through the regression of 
instantaneous cutting forces. The conceived approach allows robustly mapping the SFC, exploiting process parameters 
and similarity to manage the variability of their estimation due to unmodelled phenomena, like machine dynamics and tool 
run-out. The devised approach allowed detecting the tool end-of-life in cutting tests with variable lubrication, machine tool 
and cutting speed, through the adoption of a self-starting control chart running on real-time clustered data. The solution 
was validated through the comparison of the GSOM framework with respect to the optimized self-starting control chart 
applied without GSOM clustering. The GSOM reached a root mean squared percentage error (RMSPE) of 13.2% with 
respect to 56.1% obtained with the analogous control chart in a full-set optimization scenario. When optimised on tests 
for a unique machine tool and tested on another machine tool, GSOM scored an RMSPE of 34.5%, whereas the optimized 
control chart scored 64.5%.

Keywords  Unsupervised tool wear monitoring · Robust monitoring · Growing-self organizing maps

1  Introduction

Manufacturing systems require increased accuracy, flexibility, 
and reliability to face market demand. Being capable 
of assessing the tool condition in real-time, is receiving 
increasing attention from the production system manufacturers 
[Bernini et al. [6]], since such information can reduce machine 
downtimes and maintenance costs, as well as being introduced 
in process optimization algorithms [Mia et al. [28]]. Tool 

condition monitoring (TCM) techniques allow for the detection 
of worn cutting tools either from direct wear measurements 
(i.e., quantities directly associated to the tool wear like 
cutting edge pictures) or from indirect wear measurements 
(i.e., from quantities underlying information about wear). 
The development of an indirect TCM solution is the main 
focus of this paper. In general, tool condition monitoring and 
prognostics strategies belong to four categories [Peng et al. 
[30], Baur et al ([4, 5],Pimenov et al. [31]]: knowledge-based, 
model-based, statistical-based and data-driven. Knowledge-
based approaches include fuzzy logics and expert systems, 
trying to translate experts’ knowledge in rules. Model-based 
approaches exploit dynamical models of wear evolution: they 
typically outperform other methods but generally they are not 
available for complex degradation phenomena. Statistical-
based methods allow to identify model parameters from 
the data, introducing the concept of confidence of the tool 
condition estimation. Data-driven approaches build the model 
and estimate the model coefficients directly from data, learning 
complex correlations between signals and degradation but, in 
general, preventing model interpretation.
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Dealing with milling operations, the main limitation 
associated to TCM techniques based on indirect measure-
ments regards the management of variable regimes or pro-
cess conditions. The most used signals in TCM are vibra-
tions (e.g. [Cheng et al. [11], McLeay et al. [27]]), cutting 
forces or torque (like in [Colosimo et al. [13], Cheng et al. 
[11], Jim´enez et al. [19]; McLeay et al. [27]]) and acoustic 
emissions [McLeay et al. [27], Wickramarachchi et al. [34]], 
which are typically pre-processed through machine learning 
approaches [Liang et al. [24],Tao et al. [32]] or by manu-
ally extracting features like rms, skewness and kurtosis, like 
in [Cheng et al. [11]]. These quantities are dependent on 
process parameters, such as depth of cuts, feed per tooth 
as well as lubricating conditions and materials; this repre-
sents the main limitation for a consistent application of TCM 
approaches in industrial scenarios. Indeed, it would be nec-
essary to perform run-to-failure tests with all the parameter 
combinations.

In order to overcome the above limitations related to tra-
ditional TCM algorithms, an unsupervised TCM strategy 
for gradual wear assessment is proposed in this paper, based 
on the online identification of Specific Force Coefficients 
(SFC) and artificial intelligence. SFC are estimated from the 
mechanistic milling model introduced in [Bernini et al. [7, 
8], referring to the Altintas’ model Altintas [3]. Mechanistic 
milling models include a geometric description of the cutting 
process, thus, relating undeformed chip thickness formula-
tion to the cutting forces based on the SFC. The development 
of a TCM strategy based on SFC estimation allows, at least 
from a theoretical point of view, reducing the dependence 
of measured indirect variables (i.e., cutting forces) from 
process parameters. Many improvements have been intro-
duced by researchers to the Altintas’ model: Kumanchik and 
Schmitz, together with Matsumura and Tumura included 
run-out and teeth trochoidal trajectory in the model [Kuman-
chik and Schmitz [22],Matsumura and Tamura [26]]; Wan 
et al. decomposed the cutting forces in nominal and run-out 
effects Wan et al. [33]; Kilic and Altintas developed a gen-
eral model for chip removal operations including machine 
dynamics and run-out Kilic and Altintas [20, 21]; Li et al. 
included the contribution of more than one previous teeth 
in the computation of undeformed chip thickness Li et al. 
[23]; Zhang et al. included minimum chip thickness [Zhang 
et al. [40]] while Zhou et al. introduced elastic recovery and 
variable entry/exit angles [Zhou et al. [42]]; Zhang et al. 
proposed the associated average uncut chip thickness formu-
lation [Zhang et al. [41]]; Wojciechowski et al. proposed an 
original force model that included micro end milling kine-
matics, geometric errors of the machine tool-toolholder-mill 
system, both elastic and plastic deformations of workpiece 
correlated with the minimum uncut chip thickness, tool 
flexibility and a novel instantaneous area of cut formulation 
[Wojciechowski et al. [35]]; at last, Hajdu et al. proposed a 

curved uncut chip thickness formulation [Hajdu et al. [17]]. 
In the conceived approach, the used mechanistic milling 
model considers variable engagement along the mill axis 
and cutter double-phased geometry.

SFC were selected as monitoring features for the tool 
condition by Nouri et al. [Nouri et al. [30], using a method 
based on mean forces, following the classical approach from 
[Altintas [3]]. Anyway, this method required experimental 
tests with continuously varying feed (not the typical case 
of parts production). Recently, methods based on instan-
taneous forces were introduced, relaxing such need [Guo 
et al. [16],Farhadmanesh and Ahmadi [15]]. Nevertheless, 
such method brings to a higher uncertainty of estimated 
cutting coefficients, both due to machine dynamics, non-
homogeneous materials and imperfect cutting models. Thus, 
it is necessary to properly analyse instantaneous SFC data. 
Another novelty of this paper is to introduce a real-time 
post-processing layer on the estimated instantenous SFC, in 
order to improve the robustness of the solution with respect 
to state of the art TCM techniques.

In this paper, a TCM method based on instantaneous SFC 
mapping is introduced, not requiring a predefined database 
of cutting operations for all the cutting combinations. The 
uncertainty in the estimation of SFC with instantaneous 
forces is shown to prevent a correct detection of an out-
of-control cutting process. Thus, an unsupervised cluster-
ing technique (growing self-organising maps — GSOM) 
is introduced to deal with the estimation variability, adapt-
ing the solutions from [Liu et al. [25],Cholette et al. [12]] 
applied in other scenarios. The paper structure follows: in 
Sect. 2, the experimental activities are presented in details, 
starting from the experimental set-ups, the milling strate-
gies and cutting tools, up to the experimental campaign; the 
algorithm development and the validation procedures are 
explained in Sect. 3; in Sect. 4, the results are presented for 
two scenarios: optimisation on the full set of experiments; 
an industrial portability context. In Sect. 5, final considera-
tions about the developed approach are drawn to the reader 
attention.

2 � Materials

The objective of this section is to introduce the experimental 
activities at the base of this research work. The structure 
of this section follows Fig. 1. The experimental campaign 
was conducted on two different machine tools for mill-
ing applications (Fig. 1A). The first one is a Mandelli M5 
machine tool (M5, from now on), featured by a horizontal 
spindle system. The other machine tool is a Sigma Flexi 
FFG group (Flexi, from now on), featuring a vertical spin-
dle unit. The machine tools were shown in Fig. 1B and C, 
respectively, together with the mill and the workpiece. The 
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experiments were conducted on two machining centers in 
order to validate the robustness of the proposed approach. 
With the goal of highlighting the differences between the 
machine tools, Table 1 shows the comparison between their 

identified modal parameters. The tooling system was com-
posed of a Mitsubishi AJX06R203SA20S milling tool held 
by HSK80 and HSK63 tool-holders, for the M5 and Flexi, 
respectively. The milling tool, featuring a nominal diameter 

SFC Es�ma�on Variability

SFC

Time

Experimental Campaign

Five experimental run-to-failures
with variable:
• Machine Tools

(M5 - Flexi)
• Lubrica�ng Condi�ons

(Conventional - Cryogenic)
• Cutting speed

( )

A B

C

D

E

Fig. 1   Paper experimentation: (A) experimental campaign param-
eters; adopted machining centers: (B) M5 and (C) Flexi; (D) milling 
kinematics and representation of the mill trajectory; (E) qualitative 

representation of the effect of unmodeled terms in specific force coef-
ficients estimation and their link with machining direction

Table 1   Comparison between modal parameters (eigenfrequencies and damping ratios) of the M5 and Flexi machine tools
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of 20mm , was equipped with three high-feed cutting inserts 
(JOMT06T216ZZER-JL MP9140). The high-feed cutting 
inserts were made of a double-phased cutting edge, with 
two consecutive sections with different lead angles ( 12.5◦ 
and 24.5◦ ). The clearance angle major was equal to 13.0◦ and 
the corner radius was equal to 1.6mm . The high-feed cutter 
also presented a wiper edge, 1.2mm long. The rake angle was 
3.9◦ in the first phase of the cutting tool, 3.7◦ in the second 
phase. The flank angles were equal to 9.1◦ and 9.3◦ , for the 
first and second phase, respectively. The helix angle of the 
tool was 4.0◦.

Both the machines were equipped with two lubrication 
systems: a conventional lubrication system and a cryogenic 
system. Measurement set-up consisted of two hardware 
parts. From the machine side, the SinuCom NC acquisition 
system from Siemens was used to access and store quanti-
ties (axis positions, speeds and torques) from the Numeric 
Control of the machine tools at a frequency of 250Hz . On 
the workpiece side, a dynamometric plate was installed in 
order to measure the cutting forces generated during the 
milling operations. The dynamometer was a Kistler 9255B, 
connected to a Kistler 5070A charge amplifier. The cutting 
forces were acquired through a NI cDAQ-9174, with a NI 
9215 acquisition card at a sampling frequency of 5kHz . 
Despite dynamometric plates are the most accurate force 
transducers, they are not affordable in industrial scenarios 
due to their limited size, mounting constraints and high cost. 
For industrial applications, indirect force estimation methods 
have been developed, which make use of acceleration and 
displacement measurements, and observers like the Kalman 
filter [Albertelli et al. [1]]. In order to tune such systems, 
a proper excitation of the structure should be introduced 
through the use of dynamometric hammers or ad-hoc load-
ing devices [Zhang et al. [39]]. Indeed, the development of a 
TCM strategy on cutting forces like the one presented in this 
paper is not limiting its application. For the inspection of 
wear on cutters, a Keyence VHX-7000 microscope was used.

A set of experimental run-to-failure tests was performed, 
bringing any cutter from a “new” condition to a fully 
degraded condition. Run-to-failures were considered as 
concluded either when an average flank wear of 300�m or a 
maximum flank wear of 600�m was reached. The workpiece 
was a 255 x 262mm block made of Ti6Al4V  , grade 5 . The 

experimentation was performed with variable cutting con-
ditions, i.e. changing machine tools (M5 and Flexi), cutting 
speeds ( 50m∕min , 70m∕min and 125m∕min ) and lubrication 
set-ups (lubricant and cryogenic). The set of experimental 
tests consisted of five run-to-failures, for which the vari-
able cutting conditions were reported in Table 2. The axial 
depth of cut a was set to 0.4mm , while the feed per tooth c 
was fixed to 0.7mm . Each experimental test consisted in a 
sequence of face-milling high-feed operations. The cutting 
process was performed following a down-milling strategy. 
The radial depth of cut b was set to 13mm and was constant 
throughout the experiments. This was achieved through a 
mill trajectory featured by a spiral-inspired shape, as shown 
in Fig. 1D, offset by b when the whole perimeter of the 
workpiece was machined. Figure 1E shows the qualitative 
effect of unmodeled terms on the estimation of the specific 
force coefficients (explained in Sect. 3.1 and the link with 
the direction of cut. A summary of the experimental cam-
paign was reported in Fig. 1A.

3 � Methods

In this section, the algorithm is described, following the 
framework proposed in Fig. 2. The algorithm starts with 
the identification of SFC coefficients from the instantaneous 
cutting force measurements, by fitting a mechanistic cutting 
force model. Then, the Growing Self-Organizing Maps algo-
rithm allows for anomaly detection and robust tool condition 
monitoring.

3.1 � SFC estimation

The conceived approach is based on the estimation of SFC 
during the milling test by means of multivariate linear 
regression on instantaneous forces (Fig. 2A–B). Since the 
geometrical features of the mill cutter are not traditional, 
it was necessary to apply an adequate formulation for the 
uncut chip thickness. In this case, the reference model was 
the one proposed in [Bernini et al. [7]]. The mathematical 
formulations for the high-feed tangential ( Ft ) and radial ( Fr ) 
instantaneous cutting forces are here re-proposed (Eq. (1)):

Table 2   Design of experiments
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where Ktc , Kte , Krc and Kre are the SFC; Ap and Ac are the 
areas underneath the previous and current tooth passes; l is 
the chip edge length. Cutting forces in the feed ( Fx ) and nor-
mal ( Fy ) directions are obtained by projecting and summing 
up each cutter contribution. The Ap and Ac areas are not 
typical components of cutting force models. We thus report 
a graphical representation of their meaning in Fig. 3. As can 
be seen in the figure, the difference between the above two 
terms represents the uncut chip area of the milling operation. 
The reader can find complete details about their computation 
in [Bernini et al. [7]]. A comment must be added about the 
choice of omitting Kac and Kae , too. This is related to the 
industrial implementation of the developed algorithm. Since 
a dynamometric plate is typically not affordable in an indus-
trial scenario, indirect force estimation methods should be 
used, as explained in Sect. 2. Such methods are developed to 
estimate only the in-plane components of cutting forces and 
not axial ones [Albertelli et al. [1]]. Indeed, no information 
about the Kac and Kae can be retrieved.

Ft = Ktc

(
Ap − Ac

)
+ Ktel

(1)Fr = Krc

(
Ap − Ac

)
+ Krel

At this point, it is possible to formulate the instantaneous 
SFC identification procedure. The SFC estimation �̂

(o)
 for 

the generic o-th package of cutting forces consisting of 3 
mill rotation is obtained through Eq. (2) [Bernini et al. [8]]:

where the SFC (elements of �̂
(o)

 ) estimated through this for-
mula will be indicated as K̂(o)

tc  , K̂(o)
te  , K̂(o)

rc
 and K̂(o)

re
 ; �(o) is the 

design matrix; �(o) is the vector containing the instantaneous 
cutting forces samples [Bernini et al. [8]]. The proposed 
method was based on linear regression, however other meth-
ods could be used for model identification [Farhadmanesh 
and Ahmadi [15],Wu et al. [36]].

3.2 � Growing Self‑Organising Maps adaptation

Besides the approach of [Bernini et al. [8]], where prin-
cipal component regression was used to reduce the effect 
of multi-collinearity, an AI approach capable of mapping 
similar behaviours of SFC and managing the SFC variabil-
ity may be appropriate. Furthermore, this may also apply 
to different sources of variability for the SFC: the vari-
ability in machine dynamics along the cutting axis, tool 

(2)�̂
(o)

= (�(o)T�(o))−1�(o)T�(o)

FX Experimental FX Identification
FY Experimental FY Identification

Specific Force Coefficients Iden�fica�on

Instantaneous forces regression GSOMs clustering and
self-star�ng control charts

A

B

C

Inserts
superposi�on

Fig. 2   Algorithm framework: (A-B) identification of the specific 
force coefficients through the multivariate linear regression approach 
based on instantaneous cutting forces; (C) the unsupervised cluster-

ing of SFC based on GSOM (Growing Self-Organising Maps), where 
a self-starting control chart is run inside each GSOM’s region
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variable run-outs, material heterogeneity are just some 
examples of possible causes for SFC variability issues. 
Here, an adaptation of the GSOM is proposed (Fig. 2C).

The GSOM is an unsupervised neural network that 
divides the input space in a variable number of regions 
(i.e. creating a map), through the Voronoi tessellation [Liu 
et al. [25]]. Each region Vm is defined by a centroid �m 
with m = 1, 2, ...,M (being M the total number of regions), 
Eq. (3):

where � is a point belonging to the input space. Thus, a point 
of the input space belongs to the region with the nearest cen-
troid. The centroids have the possibility to move over time, 
giving the self-organisation property to the map. Differently 
form Self-Organising Maps, GSOM are allowed to grow, 
i.e. to increase the number of centroids (and consequently 
regions) as time passes. This makes GSOM a particularly 
suitable tool for unsupervised learning scenarios. For the 
purposes of this paper, the GSOM process begins with an 
initialisation phase. In this phase, the input space for the 
GSOM deployment is firstly selected. The input vectors are 
assumed to be constituted by p elements (here p = 6 ), as 
reported in Eq. (4):

where c is the feed per tooth and �c is the angle between 
the feed direction and the x-axis in the x–y reference frame 
(i.e. the cutting direction). It has to be notice that any other 

(3)Vm = {� ∶ min
m∈[1,M]

∥ � − �m ∥}

(4)�T = K̂tcK̂teK̂rcK̂rec�c

cutting parameter or measured quantity may be included 
here. Obviously the more the input space dimension is 
increased, the slower the algorithm is. The feed per tooth 
was included since it may influence the estimation of the 
SFC (e.g. as assumed by exponential mechanistic models 
[Budak [10],Dang et al. [14],Yang et al. [38]]), whereas the 
cutting direction influences cutting forces due to the differ-
ent dynamical compliance of the machine tool in the x and y 
directions. The initialisation phase includes also the choice 
relative to the initial number of regions M (here, M = 1 is 
selected) and the definition of the associated centroid (here, 
the first measured input vector is proposed as the centroid 
initial position). From here on, the deployment of the GSOM 
takes place.

A new SFC estimation is available every 3 mill revo-
lutions. Indeed, an input vector �(o) is ready, too. First of 
all, the GSOM computes the Best Matching Unit (BMU, 
Eq. (5)):

bmu represents the index of the region with the nearest cen-
troid to the input vector (according to the Euclidean dis-
tance). Once the BMU is selected, the input vector is 
assigned and stored only within the BMU. A first hyper-
parameter n of the network is here defined and referred to as 
memory factor. n is the number of past input vectors retained 
within each region. Once a region collects n input vectors, 
their mean value �m and their estimated covariance matrix 
�m are computed. In order to decide whether the GSOM 
should enter in a growing phase or a learning phase, the 

(5)bmu = arg min
m∈[1,M]

∥ �(o) − �(o−1)
m

∥

Fig. 3   Graphical representa-
tion of the high-feed mill cutter 
and its engagement in a general 
face-milling operation. The two 
details show the contributions 
of Ap and Ac to the uncut chip 
area
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squared Mahalanobi’s distance d2
M

(
�(o), �

(o−1)

bmu

)
 between the 

input vector �(o) and �(o)
bmu

 is computed (Eq. (6)):

where 
(
�
(o−1)

bmu

)−1

 is the inverse of the previously estimated 
covariance matrix �m for the BMU at sample o . Equation (6) 
represents a measure of how far the new input vector is from 
the distribution of the previous n samples. Since matrix �m 
may result to be singular, the generalised inverse is com-
puted. Thus, the eigenvalues ( �m,i ) and the eigenvectors 
( �m,i ) of the matrix �m are firstly derived such that 
�m�m,i = �m,i�m,i . Each eigenvalue is then normalised in 
order to represent the fraction of described variance by 
�m,i =

�m,i∑
i�m,i

 . The generalised inverse is then computed 
through Eq. (7):

Based on Mahalanobi’s distance it is possible to gener-
ate a prediction region for a new input vector:

where F(p, n − p) is a Fisher distribution with a numera-
tor having p degrees of freedom and a denominator having 
n − p degrees of freedom. This relation is valid for normally 
distributed past input vectors and creates an elliptical region 
in the input space: thus, fixing a confidence level � , the asso-
ciated ellipse squared radius is given by the F1−alpha,n,n−p 
quantile. If this assumption is not verified, the ellipse radius 
can be tuned, for example through Monte-Carlo approaches. 
Since in this context, no assumptions can be made on the 
distribution of the past input vectors, the ellipse radius will 
be referred to as Rt (growth threshold). The left hand side 
term in Eq. (8) will be referred to as R . Thus, the GSOM is 
allowed to grow only when R > Rt . This condition, implies 
that the input vector is dramatically changed with respect to 
the previous n , thus representing a different cutting condi-
tion. It is assumed that gradual wear produces a more pro-
gressive evolution of the input vector.

It has to be noticed that Eq. (6) can be computed only 
once n input vectors are stored in the BMU. Thus, the 
GSOM is allowed to grow only when a significant sample 
size is collected within the BMU. If the n samples are not 
yet collected, or if R ≤ Rt , the BMU is only allowed to 
learn. The learning phase consists of a smoothing process 

(6)
d2
M

(
�(o), �

(o−1)

bmu

)
=

=
(
�(o) − �

(o−1)

bmu

)T(
�
(o−1)

bmu

)−1(
�(o) − �

(o−1)

bmu

)

(7)
(
�
(o−1)

bmu

)−1

=
∑

i,�m,i≠0

1

�m,i
�m,i�

T
m,i

(8)
(n − p)n

(n − 1)p
d2
M
(�(o),�

(o−1)

bmu
) ∼ F(p, n − p)

where the centroid �bmu is shifted towards the current input 
vector by Eq. (9):

where � is a hyper-parameter called learning rate [Liu et al. 
[25]] and governs the nervousness of the centroids.

The described procedure, allows to automatically clus-
ter the input vectors and consequently the SFC as soon as 
they arrive to the GSOM. From here, a post-process of the 
SFC is carried out online, inside each region. When �(o) is 
assigned to the BMU, and the growth or learning phases 
are performed, the computation of two important synthetic 
coefficients is carried out following the approach presented 
in [Nouri et al. [30]. These two coefficients ( K(o)

t  and K(o)
r

 ) 
are computed through Eq. (10):

where Ktc , Kte , Krc and Kre are the SFC means computed 
on the first N input vectors collected in the BMU. It is then 
possible to compute a summary indicator K(o) , starting from 
K

(o)
t  and K(o)

r
:

while K(o)
t  and K(o)

r
 are representative of the effect of tool 

wear on the tangential and radial forces, respectively, K(o) 
carries global wear information [Nouri et al. [30]. These 
coefficients are computed in order to try to reduce the mul-
ticollinearity effect [Nouri et al. [30]; Bernini et al. [8]].

From now on, the focus is redirected inside the bmu 
region. Indeed, the index o − 1 will refer to the last element 
of the bmu collected before the o-th one. The moving range 
of K(o) is computed through Eq. (12):

Following the processing method proposed in [Nouri 
et al. [30], every N  samples collected by the BMU, it is 
possible to compute a mean moving range which will be the 
monitored variable vk,bmu (Eq. (13)):

Thus, each time N samples are collected within a region 
of the GSOM, a sample for the monitored variable vk,bmu 

(9)�
(o)

bmu
= �

(o−1)

bmu
+ �

(
�(o) − �

(o−1)

bmu

)

K
(o)
t =

K
(o)
tc K

(o)
te

KtcKte

(10)K(o)
r

=
K(o)
rc
K(o)
re

KrcKre

(11)K(o) =

√(
K

(o)
t

)2

+
(
K

(o)
r

)2

(12)MR
(o)

bmu
= |K(o)

bmu
− K

(o−1)

bmu
|

(13)vk,bmu =

N∑

o=1

MR
(o)

bmu

N
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becomes available. The monitoring process is performed 
through a self-starting control chart within each region of 
the GSOM. It has to be noticed that in the GSOM, only one 
region per time is activated and monitored. The control chart 
is thus reported following [Bernini et al. [8]] and [Mont-
gomery [29]. The running average is updated once vk,bmu 
becomes available (Eq. (14)):

The sum of squared deviations becomes (Eq. (15)):

The running standard deviation is updated through 
Eq. (16):

The k-th observation undergoes a standardisation per-
formed through Eq. (17):

where Tk,bmu is the standardised monitored variable. Follow-
ing [Montgomery [29]; Bernini et al. [8]], the Uk,bmu vari-
able computed through Eq. (18) is distributed as a standard 
normal:

where Φ−1(⋅) is the inverse normal cumulative distribution; 
CDFt,k−2(⋅) is a k − 2 degrees of freedom cumulative t dis-
tribution; ak,bmu =

√
k−1

k
 . A tabular Cusum control chart is 

then applied on Uk,bmu.
The accumulation of the two deviations above ( C+

k,bmu
 ) 

and below ( C−
k,bmu

 ) the target value are initialised to be 
null ( C+

0,bmu
= 0 and C−

0,bmu
= 0 ) and updated as follows 

(Eq. (19)):

where Kcc is set to 1
2
�0 ; �0 and �0 are the mean and stand-

ard deviation of U ( �0 = 0 and �0 = 1 ). Then, the BMU is 
considered out of control when either C+

k,bmu
 or C−

k,bmu
 over-

come the threshold H , which becomes here a GSOM hyper-
parameter (typically set to 5 , [Nouri et al. [30]; Montgomery 
[29]). If a region goes out-of-control, it is not allowed to 

(14)vk,bmu = vk−1,bmu +
vk,bmu − vk−1,bmu

k

(15)wk,bmu = wk−1,bmu +
(k − 1)(vk,bmu − vk−1,bmu)

2

k

(16)sk,bmu =

√
wk,bmu

k − 1

(17)Tk,bmu =
vk,bmu − vk−1,bmu

sk−1,bmu

(18)Uk,bmu = Φ−1
[
CDFt,k−2

(
ak,bmuTk,bmu

)]

C+
k,bmu

= max
[
0,Uk,bmu − (�0 + Kcc) + C+

k−1,bmu

]

(19)C−
k,bmu

= max
[
0, (�0 − Kcc) − Uk,bmu + C−

k−1,bmu

]

return an in-control output for future samples. Having gener-
ated a clustered growing map of SFC values, it is necessary 
to define a method for determining the out-of-control state 
at the GSOM level (not only at a regional level). Thus, a 
combination of the out of control outputs of each region is 
proposed through Eq. (20):

where Δ(o) is the combined GSOM output indicator at the 
current o-th sample, varying between 0 and 1 ; m is the region 
index, while M(o) is the current number of regions in the 
GSOM; �(o)

m
 is a quantity equal to 0 or 1 , if the m-th region 

is, at the current sample, in control or out of control, respec-
tively; n(o)

m,bmu
 is the current number of times that region m 

was selected as the BMU; o is the current sample number. 
This indicator takes into account the control condition of 
each region through a weighted mean operation. The weight 
is heavier if the region is older and more frequented. The 
GSOM is considered out-of-control when Δ(o) overcomes 
the threshold Δt , which constitutes the last hyper-parameter 
of the GSOM.

4 � Results

The whole algorithm, starting from the SFC estimation up to 
the GSOM and control charts, was implemented in Python 
from scratch, using standard libraries (Numpy, Pandas, 
Scipy and Matplotlib). The analyses were performed on a 
Dell XPS 15 7590 featuring an Intel Core i7-9750H CPU 
@ 2.60 GHz.

As presented in Sect. 2, a set of five run-to-failure tests 
was run. The instantaneous cutting forces of the five tests 
were used to fit the mechanistic force model presented in 
[Bernini et al. [8]]. In Fig. 4, the estimations of SFC were 
presented for the whole experimental set. The evolution of 
the SFC based on instantaneous cutting forces shows some 
peculiarities. The SFC in fact present the multicollinear-
ity effect.1As shown in [Bernini et al. [8]], the instantane-
ous identification process, tends to confuse between the 
effects of the four regressors on the predicted output (cut-
ting forces). This implies a phenomenon in the SFC which 

(20)Δ(o) =

M(o)∑

m=1

�(o)
m

n
(o)

m,bmu

o

1  From a geometrical perspective, multicollinearity is easily 
explained in a bivariate regression problem. When two regressors are 
correlated, during the acquisition of a sample the points tend to be 
aligned in the 2D input space. Indeed, the regression curve (a plane) 
should be fitted to a cloud of points distributed nearly as a line. This 
means that random errors (points farther from the line) have a strong 
influence on the plane orientation, which is defined by the regression 
coefficients.
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is referred to as see-saw effect. This phenomenon consists 
in a correlation between the oscillations of the SFC. For 
instance, when the estimated Ktc increases, the Kte decreases. 
Such phenomenon is particularly evident in tests 2 (Fig. 4b) 
and 3 (Fig. 4c). This phenomenon is responsible for a high 
variability and instability of the SFC estimation over time, 
which hides tool wear influence on their values. Neverthe-
less, the oscillations are governed by unmodelled phenom-
ena that cause cutting forces measurements to vary during 
workpiece machining. These phenomena may be related to 
run-out, cutting temperature, or by the different dynamic 
compliance of the machine tool with respect to the cutting 
directions.

In order to face the undesired variability of the SFC, 
the GSOM was introduced. A visual representation of the 
GSOM application to each experimental test was shown in 
Fig. 5. Figure 5 is a qualitative figure, summarising most 
of the information included in the GSOM clustering. The 
hexagonal cells are the representation of the regions created 
by the GSOM. In general, the number of generated cells is 
correlated to the overall variability of the estimated coef-
ficients and to the number of samples of the test. In fact, 

when a sudden difference is found in two consecutive input 
vectors, it is more probable that the Mahalanobi’s distance 
overcomes the growth threshold. Furthermore, the longer is 
the test, the higher is the probability of finding high varia-
tions in data. A second level of information is provided by 
the background colour of the cells. The figure shows the 
state of the GSOM map when a GSOM level out of control 
detection is observed. Thus, a grey cell background colour 
stands for an in-control cell at the end of the detection pro-
cess; on the contrary, a red background colour represents 
an out-of control cell. Test cases number 2 and 3 present 
GSOM maps, where all the cells are out-of-control at the 
end of the process; whereas the remaining tests show also 
in-control cells. This behaviour is associated to the fact that 
the GSOM level out-of-control indicator Δ(o) returns a detec-
tion when a Δt threshold is overcame. Δ(o) varies between 0 
and 1 . Being Δt less than 1 (in this case, it is set to 0.7), it is 
not necessary that all the cells are out-of-control. Another 
useful point of view is represented by the scatter plots drawn 
inside any cell. These plots represent the pairs of Kr and Kt 
summary coefficients collected in the associated cell. The 
two coefficients are normalised and centred in the cell, thus 

(a) Test 1 (b) Test 2

(c) Test 3 (d) Test 4

(e) Test 5

Fig. 4   Specific force coefficients estimation based on instantaneous cutting forces fitting. For each test, a pair of graph is showed: on the left, the 
cutting SFC; on the right, edge SFC
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no absolute values can be retrieved from the graph. At the 
same time, the scatter plots are drawn with progressive col-
ours: blue points represent samples from the early stages 
of the cutting tool life, while red points refer to samples 
near the GSOM out-of-control detection. The scatter plots 

provide two levels of information. The first level is related 
to the efficacy of the region in describing the wear degrada-
tion. This can be noticed by a shift of the distribution of the 
two coefficients from the initial phases (blue), towards the 
cutting tool end-of-life (red). A strong separation within the 

Fig. 5   Representation of the 
GSOM maps at the GSOM 
level out of control condition. 
Regions are represented by hex-
agonal cells. Grey background 
stands for in-control cells, red 
for out-of-control cells. 2D scat-
ter plots represent the evolutions 
of the Kr and Kt coefficients in a 
normalised fashion. The colour 
represents the sample number 
from the first (blue) to the last 
(red)

(c) Test 3

(e) Test 5

(d) Test 4

(a) Test 1 (b) Test 2
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data points represents a clear correlation with tool wear. This 
is also supported by the fact that, by construction, a cell can 
represent only a gradual progression of the coefficients. In 
general, diverging distribution of coefficients correlate to 
out-of-control cells, as expected. The frequency at which a 
cell is chosen as BMU represents a second level of informa-
tion. The amount of times in which the cell was chosen as 
BMU is representative of the experience of the cell. In fact, 
frequently visited cells may be older than others, or more 
representative than other cells. It is important to notice that 
the Δ(o) coefficient was thought to give more attention to 
cells with more experience. In this way, false positive and 
false negative cells have a lower effect on the overall perfor-
mance of the GSOM. Some cells that present a meaningful 
trend of coefficients may be in-control because a significant 
number of expert cells already detected an out-of-control 
condition. The opposite case occurs in Fig. 5b, where the 
cell on top seems not to highlight a relevant shift in the 
coefficients, but it is still supported by expert out-of-control 
cells.

The results presented in the previous paragraph where 
obtained after an optimisation process of the GSOM hyper-
parameters. More specifically, the results were optimised 
with respect to an average flank wear of 200�m . This choice 
was related to the chosen cutting conditions following ISO 
standards indications [International Standards [18] and sci-
entific literature [Albertelli et al. [2]]. First of all, Ti6Al4V  
is a hard-to-cut titanium alloy. Cryogenic lubrication is a 
relatively new cooling technology, still more unstable than 
conventional media. Furthermore, some tests were per-
formed at very high cutting speed. All these aspects support 
a more conservative choice of the flank wear threshold. The 
optimisation results are reported according to two differ-
ent industrial scenarios: the first one, used for the above 

reported figures represents the optimisation of the approach 
over the full set of experiments; the second one represents 
the case where the solution is optimised for a machine tool 
and ported to another one.

4.1 � Full set optimisation

As previously explained, the proposed GSOM algorithm 
is a completely unsupervised solution for automatically 
clustering high variability SFC estimations and detecting 
the correct end-of-life of the cutting tool. Here, the hyper-
parameters of the GSOM are optimised in order to detect 
a tool with 200�m mean flank wear. An optimisation pro-
cedure over the full set of experimental run-to-failures is 
performed and the prediction error is measured on the full 
dataset. The optimisation method was performed through 
a two phases grid-search procedure [Cheng et al. [11]]. A 
grid of parameters was selected and fully explored in order 
to reduce the searching space. A second grid was determined 
to find the combination leading to the minimum root mean 
squared percentage error (RMSPE, [Botchkarev [9]]). The 
hyper-parameter combinations of the grids are reported in 
Table 3.

The grid-search optimisation procedure consists in the 
evaluation of the full set of hyper-parameter combinations. 
The combination with the minimum RMSPE is chosen as the 
best. For this scenario, the best combination was: � = 0.045 , 
Rt = 7 , n = 50 , N = 35 , H = 7 and Δt = 0.7 . The algorithm 
was capable of predicting the end-of-life time with a RMSPE 
of 13.2% , with a tendency to underestimate the end-of-life 
of cutting tools. The relative percentage errors for the single 
tests are instead reported in the first row of Table 4.

In this scenario, the GSOM was capable to predict well 
almost all the tests. Only the first and last test presented a 

Table 3   Grid-search hyper-parameters combinations for the two steps of optimisation. The optimisation algorithm tests all the combinations of 
hyper-parameter values

Table 4   Relative percentage errors on the run-to-failure. Both scenarios are compared between the optimised GSOM and the optimised refer-
ence control chart (CC)
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relative percentage error higher than 10% . The last cutting 
test remains the worst one, being overestimated with a rela-
tively high error. Nevertheless, it must be underlined that 
the algorithm performed well despite the different cutting 
conditions of the tests. Furthermore, the solution is com-
pletely unsupervised, and the map is self generated along the 
evolution of each test. The results of the conceived approach 
were compared to the control chart presented in [Bernini 
et al. [8]], applied to the SFC estimated with multivariate 
linear regression, in order to make them comparable. The 
control chart was not applied with standard threshold and 
15 samples as averaging dimension, as presented in [Bernini 
et al. [8]], but an optimisation of the Two parameters was 
performed. Here, the control chart was optimised with 
respect to the full set of tests. The prediction results for the 
reference control chart showed an underestimation behav-
iour with a RMSPE of 56.1% . The predictions improvement 
of the GSOM were not negligible. Furthermore, in Table 4 
it is possible to compare the two algorithms on each test, 
by looking at the first two rows of the table. The GSOM 
improved the prediction performances on every test, even 
if on Test 5 the GSOM leads to an overestimation of the 
cutting tool life.

4.2 � Portability scenario optimisation

This second scenario faces the case where the conceived 
solution is firstly optimised on the tests performed on a 
single machine tool (Flexi) and then, the algorithm needs 
to be used also for another machine tool. The proposed 
scenario allows to evaluate the portability of the conceived 
solution. The phases for the algorithm optimisation are 
the same and the associated hyper-parameter combinations 
can be found in Table 3. In this case, the algorithm is opti-
mised in order to minimise the RMSPE on the first three 
run-to-failures, run on the Flexi machine tool. The perfor-
mances of the algorithm are then tested on the fourth and 
fifth run-to-failures, performed on the M5 machine tool. 
The optimal combination of parameters was: � = 0.035 , 
Rt = 7 , n = 50 , N = 30 , H = 10 and Δt = 0.7 . The RMSPE 
on the optimised set of tests was found to be 2.9% , with 
a tendency to underestimate the cutting tool end-of-life. 
When testing the algorithm on the M5 set of run-to-fail-
ures, the predictions were underestimating the end-of-life 
with a RMSPE of 34.5% . The relative percentage errors for 
this scenario were reported in the third row of Table 4. In 
this context, a really high performance was reached on the 
first three experiments. The algorithm was accurate with 
negligible errors. Of course, when testing the algorithm 
on unseen run-to-failures, the prediction errors rose. The 
algorithm underestimated both the tests. Nevertheless, the 
last two tests consisted of a double change in the cutting 
parameters. First of all, the machine tool was changed; 

secondly the cutting speed was almost doubled. These 
two changes increased the complexity of the estimations. 
Furthermore the optimisation set was constituted by a low 
number of tests. As for the previous scenario, the results of 
the conceived approach were compared to the control chart 
presented in [Bernini et al. [8]]. The control chart was 
optimised with respect to the Flexi tests and tested on the 
M5 run-to-failures. An underestimation with RMSPE of 
58.8% and 64.5 were obtained, respectively. Thus, GSOM 
led to dramatical improvements of the predictions. In 
Table 4, the algorithm performances were compared on 
each test, by looking at the third and fourth rows. The 
GSOM improved the prediction performances on every 
test, both on Flexi and M5 machine tool.

5 � Conclusions

In this paper, a Growing-self Organising Map (GSOM) 
algorithm was introduced in order to perform tool condi-
tion monitoring in an unsupervised learning scenario. The 
algorithm was capable of managing the variability within the 
specific force coefficients (SFC) estimation, generated from 
the multicollinearity phenomenon and induced by unpre-
dicted sources of variability, like machine tools dynamics 
dependent on the cutting direction or run-out. The conceived 
approach allowed to:

• cluster the SFC, by the automatic creation of regions 
with a similar behaviour of the coefficients. Thus, each 
region tends to monitor a gradual evolution of the SFC, while 
separating fast and sudden variations in their estimations.

• monitor the tool wear according to a voting system. 
Control charts are run inside any region and each of them 
contributes to a combined out-of-control indicator. The 
weight associated to each region is based on the region 
experience, i.e. based on its rate of being chosen as the best 
matching unit and the time of its creation. The voting system 
gave stronger weights to expert regions.

• outperform the prediction results of an optimised ver-
sion of the control chart of [Bernini et al. [8], in two different 
scenarios. The first scenario analysed the performances of 
the GSOM and the reference approach when optimised on 
the full set of available run-to-failures. The GSOM reached 
a RMSPE of 13.2% , generally underestimating the tool life, 
whereas the optimised control chart was capable to reach 
only a 56.1% RMSPE, highlighting the improvements intro-
duced by the algorithm. A second scenario tested the port-
ability of the algorithm. Both the approaches were optimised 
on a machine tool and tested on run-to-failures performed on 
a different one. The GSOM RMSPE were of 2.9% and 34.5% , 
respectively, whereas the control chart application resulted 
in 58.8% and 64.5%.
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