Skip to main content
Log in

Understanding the tribo-corrosion mechanisms of friction stir processed steel deposited by high-pressure deposition additive manufacturing process

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The present study investigates the application of friction stir processing (FSP) on the degradation (wear, corrosion, and wear-corrosion synergism) response of cold spray additive manufactured (CSAM) 316L SS components. All tribological-based tests were conducted using a reciprocating ball-on-flat configuration in 3.5 wt% NaCl solution. Each degradation response was then correlated with the atomic, microstructural, and mechanical characteristics of the pre-and-post-FSP surfaces. In pure wear conditions, the austenitic phase transformation induced by FSP treatment decreased the frictional response and slightly increased the wear rate compared to the unprocessed CSAM substrate. In pure corrosion conditions, the densified surface enabled by FSP resulted in improved electrochemical resistance and a lessened corrosion rate. In wear-corrosion synergism conditions, the influence of FSP decreased the cumulative wear loss and wear-corrosion synergism of the CSAM substrate. It is believed that the combination of phase change, surface densification, and microstructural refinement induced by FSP are responsible for the improved wear-corrosion resistance. Based on these findings, it can be suggested that FSP is indeed a useful technique to improve the wear, corrosion, and wear-corrosion characteristics of CSAM 316L SS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Shan L, Wang Y, Li J, Li H, Wu X, Chen J (2013) Tribological behaviours of PVD TiN and TiCN coatings in artificial seawater. Surf Coat Technol 226:40–50. https://doi.org/10.1016/j.surfcoat.2013.03.034

    Article  Google Scholar 

  2. Wang Y, Zhao X, Xue Y, An Y, Zhou H, Chen J (2022) Effect of the microstructure of corrosion products on tribo-corrosion performance of HVOF-sprayed NiCrWMoCuCBFe coating. Corros Sci 207:110597. https://doi.org/10.1016/j.corsci.2022.110597

    Article  Google Scholar 

  3. Blau P et al (2013) “Future needs and challenges in tribo-corrosion research and testing”, presented at the Third International Symposium on Tribo-Corrosion. ASTM Int 214–226. https://doi.org/10.1520/STP156320120051

  4. Chitty W-J, Falcand C (2013) “Tribocorrosion in Pressurized water reactors”, presented at the Third International Symposium on Tribo-Corrosion. ASTM Int 125–138. https://doi.org/10.1520/STP156320120040

  5. Dalmau A, Rmili W, Richard C, Igual-Muñoz A (2016) Tribocorrosion behavior of new martensitic stainless steels in sodium chloride solution. Wear 368–369:146–155. https://doi.org/10.1016/j.wear.2016.09.002

    Article  Google Scholar 

  6. Dalmau A, Richard C, Igual-Muñoz A (2018) Degradation mechanisms in martensitic stainless steels: wear, corrosion and tribocorrosion appraisal. Tribol Int 121:167–179. https://doi.org/10.1016/j.triboint.2018.01.036

    Article  Google Scholar 

  7. Neale M, Gee M (2001) A guide to wear problems and testing for industry. William Andrew

    Google Scholar 

  8. Ronen A, Etsion I, Kligerman Y (2001) Friction-reducing surface-texturing in reciprocating automotive components. Tribol Trans 44(3):359–366. https://doi.org/10.1080/10402000108982468

    Article  Google Scholar 

  9. Wood RJK (2007) Tribo-corrosion of coatings: a review. J Phys D: Appl Phys 40(18):5502–5521. https://doi.org/10.1088/0022-3727/40/18/S10

    Article  Google Scholar 

  10. Niu D et al (2023) Tailoring the tribo-corrosion response of (CrNbTiAlV)CxNy coatings by controlling carbon content. Tribol Int 179:108179. https://doi.org/10.1016/j.triboint.2022.108179

    Article  Google Scholar 

  11. Tan L, Wang Z, Ma Y, Yan Y, Qiao L (2021) Tribocorrosion investigation of 316L stainless steel: the synergistic effect between chloride ion and sulfate ion. Mater Res Express 8(8):086501. https://doi.org/10.1088/2053-1591/ac1825

    Article  Google Scholar 

  12. Wang HW, Stack MM (2000) The erosive wear of mild and stainless steels under controlled corrosion in alkaline slurries containing alumina particles. J Mater Sci 35(21):5263–5273. https://doi.org/10.1023/A:1004865107688

    Article  Google Scholar 

  13. Siddaiah A, Mao B, Liao Y, Menezes PL (2019) Effect of laser shock peening on the wear–corrosion synergistic behavior of an AZ31B magnesium alloy. J Tribol 142(4). https://doi.org/10.1115/1.4045500

  14. Shen M-X, Rong K-J, Liu D-J, Xiong G-Y, Ji D-H, Wang X-G (2020) Anti-corrosion and corrosive wear properties of AISI 316L stainless steel with surface nanocrystallization by surface mechanical rolling treatment. Surf Topogr Metrol Prop 8(3):035009. https://doi.org/10.1088/2051-672X/aba7a4

    Article  Google Scholar 

  15. Ji X, Luo C, Jin J, Zhang Y, Sun Y, Fu L (2022) Tribocorrosion performance of 316L stainless steel enhanced by laser clad 2-layer coating using Fe-based amorphous powder. J Market Res 17:612–621. https://doi.org/10.1016/j.jmrt.2022.01.046

    Article  Google Scholar 

  16. Ralls A, Mao B, Menezes P (2023) Tribological performance of laser shock peened cold spray additive manufactured 316L stainless steel. J Tribol 1–28. https://doi.org/10.1115/1.4062102

  17. Ashokkumar M, Thirumalaikumarasamy D, Sonar T, Deepak S, Vignesh P, Anbarasu M (2022) An overview of cold spray coating in additive manufacturing, component repairing and other engineering applications. J Mech Behav Mater 31(1):514–534. https://doi.org/10.1515/jmbm-2022-0056

    Article  Google Scholar 

  18. Li W, Yang K, Yin S, Yang X, Xu Y, Lupoi R (2018) Solid-state additive manufacturing and repairing by cold spraying: a review. J Mater Sci Technol 34(3):440–457. https://doi.org/10.1016/j.jmst.2017.09.015

    Article  Google Scholar 

  19. Xie J, Nélias D, Walter-Le Berre H, Ogawa K, Ichikawa Y (2015) Simulation of the cold spray particle deposition process. J Tribol 137(4). https://doi.org/10.1115/1.4030257

  20. Ralls AM et al (2022) Tribological and corrosion behavior of high pressure cold sprayed duPlex 316 L stainless steel. Tribol Int 169:107471. https://doi.org/10.1016/j.triboint.2022.107471

    Article  Google Scholar 

  21. Zou Y (2021) Cold spray additive manufacturing: microstructure evolution and bonding features. Acc Mater Res. https://doi.org/10.1021/accountsmr.1c00138

    Article  Google Scholar 

  22. Vaz RF, Garfias A, Albaladejo V, Sanchez J, Cano IG (2023) A review of advances in cold spray additive manufacturing. Coatings 13(2, Art. no. 2). https://doi.org/10.3390/coatings13020267

  23. Shrestha D, Azarmi F, Tangpong XW (2022) Effect of heat treatment on residual stress of cold sprayed nickel-based superalloys. J Therm Spray Technol 31(1):197–205. https://doi.org/10.1007/s11666-021-01284-x

    Article  Google Scholar 

  24. Zhizhong W, Chao H, Huang G, Bin H, Bin H (2021) Cold spray micro-defects and post-treatment technologies: a review. Rapid Prototyp J. https://doi.org/10.1108/RPJ-12-2020-0302

  25. Ralls AM, Daroonparvar M, Kasar AK, Misra M, Menezes PL (2022) Influence of friction stir processing on the friction, wear and corrosion mechanisms of solid-state additively manufactured 316L duplex stainless steel. Tribol Int 108033. https://doi.org/10.1016/j.triboint.2022.108033

  26. Espallargas N, Johnsen R, Torres C, Muñoz AI (2013) A new experimental technique for quantifying the galvanic coupling effects on stainless steel during tribocorrosion under equilibrium conditions. Wear 307(1):190–197. https://doi.org/10.1016/j.wear.2013.08.026

    Article  Google Scholar 

  27. Maher M, Iraola-Arregui I, Ben Youcef H, Rhouta B, Trabadelo V (2022) The synergistic effect of wear-corrosion in stainless steels: a review. Mater Today: Proc 51:1975–1990. https://doi.org/10.1016/j.matpr.2021.05.010

    Article  Google Scholar 

  28. Woo W et al (2005) Deconvoluting the influences of heat and plastic deformation on internal strains generated by friction stir processing. Appl Phys Lett 86(23):231902. https://doi.org/10.1063/1.1944207

    Article  Google Scholar 

  29. Ralls AM, Kasar AK, Menezes PL (2021) Friction stir processing on the tribological, corrosion, and erosion properties of steel: a review. J Manuf Mater Process 5(3, Art. no. 3). https://doi.org/10.3390/jmmp5030097

  30. Singh S, Raman RKS, Berndt CC, Singh H (2021) Influence of cold spray parameters on bonding mechanisms: a review. Metals 11(12):Art. no. 12. https://doi.org/10.3390/met11122016

    Article  Google Scholar 

  31. Bagherifard S et al (2021) Tailoring cold spray additive manufacturing of steel 316 L for static and cyclic load-bearing applications. Mater Des 203:109575. https://doi.org/10.1016/j.matdes.2021.109575

    Article  Google Scholar 

  32. Perard T et al (2021) Friction stir processing of austenitic stainless steel cold spray coating deposited on 304L stainless steel substrate: feasibility study. Int J Adv Manuf Technol 115(7):2379–2393. https://doi.org/10.1007/s00170-021-07295-w

    Article  Google Scholar 

  33. Metallographic etchants for stainless steels. https://www.metallographic.com/Metallographic-Etchants/Metallography-Stainless-steel-etchants.htm. Accessed Aug. 06, 2020

  34. G02 Committee. Test method for linearly reciprocating ball-on-flat sliding wear. ASTM Int. https://doi.org/10.1520/G0133-05R16.

  35. Dai Z, Liu M, Jiang S, Li M, Li S, Duan D (2022) Effects of different cathodic reactions on tribocorrosion behavior of AISI 430 in 0.5 mol/L sulfuric acid. J of Materi Eng Perform 31(4):2708–2714. https://doi.org/10.1007/s11665-021-06342-7

    Article  Google Scholar 

  36. Bozkurt YB, Kovacı H, Yetim AF, Çelik A (2022) Tribocorrosion properties and mechanism of a shot peened AISI 4140 low-alloy steel. Surf Coat Technol 440:128444. https://doi.org/10.1016/j.surfcoat.2022.128444

    Article  Google Scholar 

  37. Cuao-Moreu CA et al (2023) Effect of laser surface texturing and boriding on the tribocorrosion resistance of an ASTM F-1537 cobalt alloy. Wear 523:204799. https://doi.org/10.1016/j.wear.2023.204799

    Article  Google Scholar 

  38. Standard test methods for evaluating the corrosion resistance of stainless steel powder metallurgy (PM) parts/specimens by immersion in a sodium chloride solution. https://www.astm.org/b0895-16r20e01.html. Accessed Aug. 02, 2022

  39. Standard guide for determining synergism between wear and corrosion. https://www.astm.org/g0119-09r21.html. Accessed Jun. 28, 2022

  40. Calculation of corrosion rate. https://www.gamry.com/Framework%20Help/HTML5%20-%20Tripane%20-%20Audience%20A/Content/EFM/Introduction/Calculation%20of%20Corrosion%20Rate.htm. Accessed Dec. 08, 2020

  41. Mueller JJ, Matlock DK, Speer JG, De Moor E (2019) Accelerated ferrite-to-austenite transformation during intercritical annealing of medium-manganese steels due to cold-rolling. Metals 9(9, Art. no. 9). https://doi.org/10.3390/met9090926

  42. Zhang W, Elmer JW, DebRoy T (2002) Kinetics of ferrite to austenite transformation during welding of 1005 steel. Scripta Mater 46(10):753–757. https://doi.org/10.1016/S1359-6462(02)00040-4

    Article  Google Scholar 

  43. Chen C et al (2019) Microstructure evolution and mechanical properties of maraging steel 300 fabricated by cold spraying. Mater Sci Eng A 743:482–493. https://doi.org/10.1016/j.msea.2018.11.116

    Article  Google Scholar 

  44. Ungár T (2004) Microstructural parameters from X-ray diffraction peak broadening. Scripta Mater 51(8):777–781. https://doi.org/10.1016/j.scriptamat.2004.05.007

    Article  Google Scholar 

  45. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31. https://doi.org/10.1016/0001-6160(53)90006-6

    Article  Google Scholar 

  46. Feng Q, Wu X, Jiang C, Xu Z, Zhan K (2013) Influence of annealing on the shot-peened surface of duplex stainless steel at elevated temperatures. Nucl Eng Des 255:146–152. https://doi.org/10.1016/j.nucengdes.2012.10.022

    Article  Google Scholar 

  47. Jeandin M, Koivuluoto H, Vezzu S (2015) Coating properties. In: Villafuerte J (ed) Modern cold spray: materials, process, and applications. Springer International Publishing, Cham, pp 107–224. https://doi.org/10.1007/978-3-319-16772-5_4

    Chapter  Google Scholar 

  48. Stendal J, Fergani O, Yamaguchi H, Espallargas N (2018) A comparative tribocorrosion study of additive manufactured and wrought 316L stainless steel in simulated body fluids. J Bio Tribo Corros 4(1):9. https://doi.org/10.1007/s40735-017-0125-9

    Article  Google Scholar 

  49. Li D, Guruvenket S, Azzi M, Szpunar JA, Klemberg-Sapieha JE, Martinu L (2010) Corrosion and tribo-corrosion behavior of a-SiCx:H, a-SiNx: H and a-SiCxNy: H coatings on SS301 substrate. Surf Coat Technol 204(9):1616–1622. https://doi.org/10.1016/j.surfcoat.2009.10.018

    Article  Google Scholar 

  50. Shivaram MJ, Arya SB, Nayak J, Panigrahi BB (2021) Tribocorrosion behaviour of biomedical porous Ti–20Nb–5Ag alloy in simulated body fluid. J Bio Tribo Corros 7(2):59. https://doi.org/10.1007/s40735-021-00491-x

    Article  Google Scholar 

  51. Zhang Y, Yin X-Y, Yan F-Y (2016) Tribocorrosion behaviour of type S31254 steel in seawater: identification of corrosion–wear components and effect of potential. Mater Chem Phys 179:273–281. https://doi.org/10.1016/j.matchemphys.2016.05.039

    Article  Google Scholar 

  52. Siddaiah A, Khan ZA, Ramachandran R, Menezes PL (2017) Performance analysis of retrofitted tribo-corrosion test rig for monitoring in situ oil conditions. https://doi.org/10.3390/ma10101145

  53. Sun Y, Haruman E (2011) Tribocorrosion behaviour of low temperature plasma carburised 316L stainless steel in 0.5M NaCl solution. Corros Sci 53(12):4131–4140. https://doi.org/10.1016/j.corsci.2011.08.021

    Article  Google Scholar 

  54. Kossman S et al (2020) Impact of industrially applied surface finishing processes on tribocorrosion performance of 316L stainless steel. Wear 456–457:203341. https://doi.org/10.1016/j.wear.2020.203341

    Article  Google Scholar 

  55. Gassner A, Conzelmann A, Palkowski H, Wilde J, Mozaffari-Jovein H (2022) Effect of electrochemical potential on tribocorrosion behaviour of AISI 420. J Bio Tribo Corros 8(3):80. https://doi.org/10.1007/s40735-022-00682-0

    Article  Google Scholar 

  56. Wang D, Wang B, Xie G, Li C, Zhang D, Ge S (2023) Effect of temperature on tribo-corrosion behaviors of parallel steel wires of main cable in the suspension bridge. Wear 512–513:204522. https://doi.org/10.1016/j.wear.2022.204522

    Article  Google Scholar 

  57. Sun Y, Bailey R (2020) Effect of applied cathodic potential on friction and wear behavior of CoCrMo alloy in NaCl solution. Lubricants 8(11, Art. no. 11). https://doi.org/10.3390/lubricants8110101

  58. Georgiou EP et al (2017) Effect of cathodic hydrogen charging on the wear behavior of 5754 Al alloy. Wear 390–391:295–301. https://doi.org/10.1016/j.wear.2017.08.013

    Article  Google Scholar 

  59. Olsson C-OA, Munoz ANI, Cao S, Mischler S (2021) Modeling current transients in a reciprocal motion tribocorrosion experiment. J Electrochem Soc 168(3):031503. https://doi.org/10.1149/1945-7111/abe6ed

    Article  Google Scholar 

  60. Haruman E, Sun Y, Adenan MS (2020) A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution. Tribol Int 151:106412. https://doi.org/10.1016/j.triboint.2020.106412

    Article  Google Scholar 

  61. Ruel F, Tite D, Gaugain A, Saedlou S, Wolski K (2014) On the depassivation mechanism of lean duplex stainless steels and the influence of the partitioning of the alloying elements. Corrosion 70(6):636–642. https://doi.org/10.5006/1173

    Article  Google Scholar 

  62. Ha H-Y, Jang M-H, Lee T-H, Moon J (2014) Interpretation of the relation between ferrite fraction and pitting corrosion resistance of commercial 2205 duplex stainless steel. Corros Sci 89:154–162. https://doi.org/10.1016/j.corsci.2014.08.021

    Article  Google Scholar 

  63. Yoon H et al (2019) Pitting corrosion resistance and repassivation behavior of C-bearing duplex stainless steel. Metals 9(9, Art. no. 9). https://doi.org/10.3390/met9090930

  64. Marinelli M-C et al (2009) Activated slip systems and microcrack path in LCF of a duplex stainless steel. Mater Sci Eng A 509(1):81–88. https://doi.org/10.1016/j.msea.2009.01.012

    Article  Google Scholar 

  65. Straffelini G, Molinari A, Trabucco D (2002) Sliding wear of austenitic and austenitic-ferritic stainless steels. Metall Mater Trans A 33(3):613–624. https://doi.org/10.1007/s11661-002-0123-4

    Article  Google Scholar 

  66. Besharatloo H et al (2020) Novel mechanical characterization of austenite and ferrite phases within duplex stainless steel. Metals 10(10, Art. no. 10). https://doi.org/10.3390/met10101352

  67. Turk A, Pu SD, Bombač D, Rivera-Díaz-del-Castillo PEJ, Galindo-Nava EI (2020) Quantification of hydrogen trapping in multiphase steels: part II – effect of austenite morphology. Acta Mater 197:253–268. https://doi.org/10.1016/j.actamat.2020.07.039

    Article  Google Scholar 

  68. Kheradmand N, Johnsen R, Olsen JS, Barnoush A (2016) Effect of hydrogen on the hardness of different phases in super duplex stainless steel. Int J Hydrogen Energy 41(1):704–712. https://doi.org/10.1016/j.ijhydene.2015.10.106

    Article  Google Scholar 

  69. Szummer A, Janko A (2013) Hydride phases in austenitic stainless steels. Corrosion 35(10):461–464. https://doi.org/10.5006/0010-9312-35.10.461

    Article  Google Scholar 

  70. Menezes PL, Kailas SV, Lovell MR (2013) Fundamentals of engineering surfaces. In: Menezes PL, Nosonovsky M, Ingole SP, Kailas SV, Lovell MR (eds) Tribology for Scientists and Engineers: From Basics to Advanced Concepts. Springer New York, New York, pp 3–41. https://doi.org/10.1007/978-1-4614-1945-7_1

    Chapter  Google Scholar 

  71. Singh K, Singh A (2018) Tribological response and microstructural evolution of nanostructured bainitic steel under repeated frictional sliding. Wear 410–411:63–71. https://doi.org/10.1016/j.wear.2018.06.005

    Article  Google Scholar 

  72. Fischer A, Dudzinski W, Gleising B, Stemmer P (2018) Analyzing mild- and ultra-mild sliding wear of metallic materials by transmission electron microscopy. In: Dienwiebel M, De Barrosbouchet M-I (eds) Advanced Analytical Methods in Tribology. Microtechnology and MEMS. Springer International Publishing, Cham, pp 29–59. https://doi.org/10.1007/978-3-319-99897-8_2

    Chapter  Google Scholar 

  73. Guo X et al (2007) Microstructure, microhardness and dry friction behavior of cold-sprayed tin bronze coatings. Appl Surf Sci 254(5):1482–1488. https://doi.org/10.1016/j.apsusc.2007.07.026

    Article  Google Scholar 

  74. Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corrosion 66(7):075005–075005-13. https://doi.org/10.5006/1.3462912

    Article  Google Scholar 

  75. Parakh A, Vaidya M, Kumar N, Chetty R, Murty BS (2021) Effect of crystal structure and grain size on corrosion properties of AlCoCrFeNi high entropy alloy. J Alloys Compd 863:158056. https://doi.org/10.1016/j.jallcom.2020.158056

    Article  Google Scholar 

  76. Rifai M, Miyamoto H, Fujiwara H (2015) Effects of strain energy and grain size on corrosion resistance of ultrafine grained Fe-20%Cr steels with extremely low C and N fabricated by ECAP. Int J Corros 2015:e386865. https://doi.org/10.1155/2015/386865

    Article  Google Scholar 

  77. Hall AC, Williamson RL, Hirschfeld DA, Roemer TJ. Mechanisms resulting in improved ductility of cold spray coatings after annealing

  78. Ralls AM et al (2022) Effect of gas propellant temperature on the microstructure, friction, and wear resistance of high-pressure cold sprayed Zr702 coatings on Al6061 alloy. Coatings 12(2, Art. no. 2). https://doi.org/10.3390/coatings12020263

  79. Singh J, Chauhan A (2016) Overview of wear performance of aluminium matrix composites reinforced with ceramic materials under the influence of controllable variables. Ceram Int 42(1, Part A):56–81. https://doi.org/10.1016/j.ceramint.2015.08.150

    Article  MathSciNet  Google Scholar 

  80. Li X, Olofsson U (2017) A study on friction and wear reduction due to porosity in powder metallurgic gear materials. Tribol Int 110:86–95. https://doi.org/10.1016/j.triboint.2017.02.008

    Article  Google Scholar 

  81. Siddaiah A, Mao B, Kasar AK, Liao Y, Menezes PL (2020) Influence of laser shock peening on the surface energy and tribocorrosion properties of an AZ31B Mg alloy. Wear 462–463:203490. https://doi.org/10.1016/j.wear.2020.203490

    Article  Google Scholar 

  82. Liu X et al (2018) Effects of loads on corrosion-wear synergism of NiCoCrAlYTa coating in artificial seawater. Tribol Int 118:421–431. https://doi.org/10.1016/j.triboint.2017.10.019

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Science Foundation (CHE-1429768) for allowing the use of the powder x-ray diffractometer.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by AMR. The first draft of the manuscript was written by AMR, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pradeep L. Menezes.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralls, A.M., Menezes, P.L. Understanding the tribo-corrosion mechanisms of friction stir processed steel deposited by high-pressure deposition additive manufacturing process. Int J Adv Manuf Technol 128, 823–843 (2023). https://doi.org/10.1007/s00170-023-11918-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-023-11918-9

Keywords

Navigation