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Abstract
Material Extrusion (MEX) is an Additive Manufacturing technology widely used for the fabrication of polymeric, metallic 
and composite parts with clear advantages. In the last decades, the growing interest of such industries like aerospace, medical, 
automotive and R&D has driven technological improvements of MEX to make the technology more reliable and repeatable. 
Although, defects and geometric dimensional inaccuracies are still known to affect the process, limiting the applicability 
of MEX for the realization of functional parts. Recently, in-process monitoring methods have been implemented for a rapid 
detection of defects and process anomalies, activating, eventually, the control of the process. In this work, an innovative 
layerwise monitoring methodology based on a high-resolution blue laser line profilometer applied to a MEX process, was 
proposed. By analyzing the point clouds of each layer, with proper quality indexes, it was possible to compute the layer height 
deviation and to evaluate the surface quality in terms of occurrence of defects. In particular, the quality indexes presented in 
this work were representative of the layer height accuracy, the occurrence and distribution of defects on the layer surface and 
the stability of the process (respectively the so-called indexes were ADLH, RAD and the slope s). Different process conditions 
were generated by varying the raster angle and the sample location on the building platform.
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1  Introduction

Until a decade ago, AM was merely used for prototyping, 
while nowadays it is increasingly used to produce also 
functional parts [1] even for industries where reliability and 
quality certification are strictly required, e.g., aerospace, and 
medical fields [2, 3], proving that AM can be used to create 
functional products with a high added value. Currently, the 
most used materials for AM are polymers and metals [4, 5].

Material Extrusion (MEX) is one of the most widespread 
technologies, thanks to its ease of use and cost-effectiveness 
[6]. In accordance with the ISO/ASTM 52900:2021 [7] 
Material Extrusion is a “process in which material is 
selectively dispensed through a nozzle or orifice” where a 
filament is heated up in an heater block until it reaches the 
molten state, then this material is pushed through the orifice 
of a nozzle, mounted at the end of the heated block, and the 

object is produced layer by layer by moving selectively the 
printhead on the built-plate. Over the past decade, MEX has 
experienced great technological growth and it is increasingly 
used in certain industries [2, 8] including automotive, 
biomedical and aerospace that focus more on the production 
of high-quality and complex geometry products [1, 3]. Some 
of the main benefits are the decreased production time and, 
most importantly, the possibility to control the product 
properties (physical, chemical, mechanical, and thermal) by 
using a wide range of materials and by creating optimized 
and lightweight structures, i.e., lattice [9].

Despite all these advantages, there are many issues 
limiting the spreading of MEX across the industrial 
landscape. The current MEX technological level does not 
guarantee either reliability or repeatability of processes, 
which are key features for those sectors where high precision 
is required. Furthermore, the metrology for AM is still 
lacking [10] and the presence of many defects within parts, 
as well as low dimensional and geometric accuracy, brought 
the attention of researchers and industrial players operating 
in the AM sector toward systems and methodologies 
capable of capturing the most important information on 
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both process and product inline. Defects occurring during a 
MEX process are many, such as warping, first layer issues, 
layer misalignments, missing layers, cracks and pillowing, 
stringing, over-extrusion, under-extrusion. All these defects 
can be explained if one considers the high number of 
parameters affecting a single print [3, 11–13]. One of the 
easiest ways to deal with these issues is to find the so-called 
“process signatures”, i.e., measurable quantities able to 
explain the relationship between process parameters and the 
generation of defects [14]. This is made possible by using 
proper monitoring systems able to detect the occurrence of 
defects in time and eventually, by enabling the correction 
of printing parameters during the process through a closed 
loop. It would result in reduced production time, reduced 
waste of both energy and material, making MEX more 
sustainable and more accessible even to less experienced 
users. Such a system would also give the possibility to 
conduct quality inspection and analyses on external and 
internal features, both real-time and off-line.

Optical sensors have been widely used for the purpose 
of in-process monitoring [15], as they can provide 
fundamental information of the part while it is built 
without touching the object. In literature, there are already 
works dealing with optical monitoring systems for MEX 
processes [3, 10, 16, 17]. Among the optical methods 
implemented for in-process monitoring purposes, it is 
possible to distinguish between 2D image-based methods 
and 3D scanning methods. The typical output of the first 
group is in the form of 2D images which can provide useful 
information about geometry and dimensions, as reported 
in [18, 19], but with some issues related to the fact that 
they are limited by the two dimensions. The second group 
is instead well represented by 3D scanning systems laser-
based or structured light based [20] and they can provide a 
higher amount of topological information, but at a higher 
cost in terms of equipment and computational time for data 
processing.

Moretti et al. [21] mounted multiple different sensors 
on a low-cost MEX printer to evaluate the inspection 
defect capability of different sensors. They highlighted 
the powerfulness of the 2D images acquired by a camera 
mounted next to the printer head, to evaluate the poor 
cohesion between infill and walls that would have been 
impossible to detect relying on the other sensors mounted on 
the printer. In subsequent works [22, 23], the same authors 
mounted a digital microscope on a low-cost 3D printer and 
from the acquired 2D images they evaluated the reliability 
of different machine learning classifiers in individuating 
surface defects, such as the voids between walls and rasters 
[23]. While, in [22], they created a digital twin of the 
printer and performed an in-process monitoring able to 
compare the ideal contour of the printed object generated 
from the digital twin with the actual one, acquired by the 

digital microscope. Holzmond et al. [24] showed another 
example of MEX monitoring based on 2D images: their 
work relied on the 3D-DIC (Digital Image Correlation), 
where two cameras were mounted on a 3D printer and took 
images of each layer. Then, the point cloud of each layer 
was compared with the ideal point cloud obtained from the 
CAD model and the surface defects were extracted, such 
as holes and blobs, by comparing the height differences 
between the two point clouds. Liu et  al. [25] mounted 
two borescopes on the opposite sides of the nozzle of a 
3D printer to monitor the state of the surface and evaluate 
either under-fill, over-fill or normal condition through an 
image textural analysis algorithm. The major critical issue 
with 2D image-based systems is that the quality of the 
results obtained is highly dependent on the environment 
light conditions [18], furthermore these systems can detect 
surface defects but they are not always able to obtain 
quantitative information about them and, most importantly, 
they are not able to provide the height information (the third 
dimension). Moreover, the accuracy of the data provided 
by those systems is not always assured. On the other hand, 
3D scanning-based monitoring technique are able to obtain 
a point cloud either of the layer or the entire object to 
assess the quality of the printed part directly during the 
manufacturing phase. They allow the detection of miniature 
shifts on the layer surface (according to the resolution 
capabilities), but also to obtain quantitative results from 
the surface analysis. The working principle of these optical 
monitoring systems can be laser-based or structured 
light-based. Ye et al. [26] mounted a 3D structured-light 
scanner on a low-cost 3D printer and they used a deep 
cascade model to compare the point clouds obtained from 
the 3D scan with the reference ones for evaluating the 
effect of the variation of some printing parameters, such 
as nozzle temperature and flow rate. Charalampous et al. 
[27] exploited a structured-light layerwise monitoring 
system, mounted on a consumer 3D printer, to compare the 
geometrical deviation of the point cloud of the scanned layer 
with the one generated from the G-code, the theoretical one, 
showing the effectiveness of such a system for obtaining 
quality information about the printed part. In other works 
[28, 29], to reduce the computational cost of the point cloud 
analysis, it was applied a well-established procedure: the 
point cloud was rasterized, transformed into a depth image 
and compared with the nominal one, i.e. an image generated 
from either simulation or directly from the G-code. The 
above-mentioned procedure is well suited for subsequent 
applications of neural networks to establish if there is the 
presence of a surface defect or not. More in details, Lyu 
et al. [28] mounted a red-light profilometer on a 3D printer 
and observed the occurrence of surface defects (over-fill or 
under-fill) by transforming the point cloud of the layer in a 
depth image and sending it into a neural network. Lin et al. 
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[29] used as well a laser line scanner and the monitoring 
method consisted of subtracting the theoretical depth image, 
obtained from the nominal point cloud, from the real depth 
image, obtained from the rasterization of the profilometer 
point cloud, in order to point out the occurrence of surface 
defects. They were also able to obtain a 3D reconstruction of 
the morphology of the defects. Other in-process monitoring 
approaches based on 3D scanning are also applied on other 
Additive Manufacturing processes, such as powder bed 
fusion [14, 30] and direct energy deposition [31–34], where 
optical sensors have been used also for the characterization 
and morphology analysis of the powder [35] among others, 
while the literature regarding MEX monitoring through 3D 
scanning systems need to be widened.

One of the major advantages of using a 3D scanning 
hardware for monitoring purposes is the high amount of 
information which is possible to extract and analyze able 
to depict a complete picture of the process. Few works have 
implemented 3D scanning methodology for the in-process 
monitoring of MEX processes and most of them did not 
analyze the raw point cloud but the rasterized one, loosing 
fundamental information about the layer quality.

This paper discusses a novel in-process MEX monitoring 
methodology that uses a blue-light laser line profilometer 
to scan the surface of each layer and assess the layer height 
accuracy, the occurrence of a defect and, more generally, 
the quality of the printed part, thanks to its high resolution. 
The use of a blue laser source allowed to reduce errors 
due to the subsurface scattering which is known to affect 
the measurements on parts made of polymers [36]. The 
analyses were performed on the raw point clouds with the 
aim to provide a comprehensive picture of the quality of 
the process/part by using different indexes, computed layer 
by layer, able to evaluate height inaccuracies and to detect 
typical surface defects, such as blob, material accumulation 
and lack of material.

2 � Material and method

2.1 � Hardware description

The monitoring system used in this work was composed by 
a blue-light laser profilometer (MicroEpsilon scanControl 
2900–50 BL) embedded in a consumer 3D printer (GeeeTech 
A10), through a frame that fixed the position of the laser 
scanner with respect to the printing platform, see Fig. 1a.

The GeeeTech A10 (Fig. 1a) has a cartesian architecture 
with a printing volume of 220 × 220x260 mm3, a heated bed 
(up to 100 °C), an extruder capable of reaching 250 °C as 
maximum temperature with a 0.4 mm nozzle diameter. The 
feedstock material is provided in filament form (the compat-
ible filament has a 1.75 mm diameter) and it is fed into the 
hot end through a bowden architecture. Thus, the MEX pro-
cess performed in this study could be referred to the widely 
used Fused Filament Fabrication (FFF). The maximum 
printing speed is 180 mm/s from manufacturer’s specifica-
tions. In Fig. 1b, the three axes movement directions of the 
3D printer are shown: the printing head moves on the gantry 
along the x-axis and the z-axis, while the movement along 
the y-axis is performed by the printing platform.

The MicroEpsilon scanControl 2900–50 BL is a laser 
line profilometer with 405 nm wavelength. The measur-
ing range is 50 mm along the z-axis and 50 mm along 
the x-axis. The resolution along the z axis, which is also 
the object building direction is 4 µm (from manufacturer’s 
specifications). The optimal working distance between the 
sensor and the object is equal to 95 mm. At this distance, 
the resolution along the x-axis is equal to 39 µm. The first 
output of the considered monitoring system is a 2D profile 
displayed on the xz plane. To achieve a 3D point cloud of 
the entire object, it is necessary to add another movement 
orthogonal to the profile plane, along the y-axis. Consider-
ing the implemented system, this movement was executed 

Fig. 1   (a) Hardware set-up; (b) 
Axis-direction of the GeeTech 
A10
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by the build platform. This way, the laser line profilometer 
can record a profile series along the y-axis direction and 
return the point cloud of the scanned surface. The resolu-
tion along the y-axis depends on the scan speed and on the 
frequency of the acquired profiles, according to Eq. (1). For 
the experiments conducted in this work, the scanning speed 
was set to 5 mm/s and the profile frequency to 135 profile/s, 
which were the maximum allowed values to achieve a reso-
lution along the y axis comparable with the x-axis one 
(39 µm). Thus, the resolution yielded in the y direction 
was equal to 37 µm.

To keep the y-resolution constant, each scan was performed 
with the same parameters of scan speed and profile frequency.

The implemented monitoring system is a layerwise 
monitoring method. After the deposition of each layer, the 
printhead reaches an endstop mounted at a specific machine 
location (Fig.  1a), which works as scan trigger. Thus, 
once the endstop circuit is closed, it triggers the sensor 
to acquire profiles. Meanwhile, the building platform 
moves along the y axis, forcing the sample to pass under 
the laser line, allowing to collect surface profiles of the 
layer surface. Following the above mentioned procedure 
and by setting the scan speed and the profile frequency, a 
3D point cloud was obtained, composed by the acquired 
and registered profiles.

2.2 � Monitoring system calibration

As already explained, the laser line profilometer needs a 
further movement to collect the object profiles along the 
scan direction. In order to correctly register those profiles, 

(1)Resy =

scanspeed
(

mm

s

)

profilefrequency(
profile

s
)

the scan speed and the profile frequency should be accu-
rately known. In this case, the scan movement was executed 
by the build platform and the scan speed set to 5 mm/s. 
Although, the former value is not assured due to possible 
cinematic errors, and a prior calibration is required. With 
this aim, a proper artefact was designed, based on the fol-
lowing requirements:

•	 Geometric – The geometry should allow an easy evaluation 
of distances along the scan direction to compute a 
correction factor.

•	 Dimensional – The overall dimensions should cover the 
entire scanning volume of the monitoring system.

Based on these two criteria, the calibration artefact was 
composed by a support plate characterized by 50 × 70x8 
mm3 of overall dimensions and six spheres (ø12 mm) made 
of steel placed at a certain distance to each other, see Fig. 2.

The designed artefact was then scanned by the laser line 
profilometer using the same scan speed and profile frequency 
used for the acquisition of each layer surface, i.e., 5 mm/s 
and 135 profile/s, respectively. Thus, spheres diameters and 
distances between spheres were measured. As reference, the 
same artefact was scanned using a structured-light scanner 
GOM Atos Q 8 M equipped with 100MV lenses, having a 
measuring volume of 100 × 70x60 mm3 and certified accuracy 
(0.005 mm of Length Measurement Error assessed according 
to the VDI/VDE 2634- Part 3). The calibration spheres were 
shiny and highly reflective and for this reason they were sprayed 
with a sublimation matting spray before executing the scanning 
operation both on the blue-light profilometer (BLP) and the 
structured light scanner (SL). After the data acquisition, all the 
conducted analysis were carried out using the GOM Inspect 
software. Six spheres were fitted with the 3σ Gaussian method. 
Spheres diameters and centres coordinates were then extracted 
with their relative distances, as reported in Table 1. These 

Fig. 2   Calibration artefact. All 
dimensions are expressed in mm
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values were then used to compute the correction factor c along 
the y direction, according to Eq. (2) and (3).

where, ∆yBLP, was the i-th distance measured on the point 
cloud obtained with the BLP, while ∆ySL,i was the same 
quantity measured on the mesh obtained from the structured 
light scanner. As shown in Table 1, it was found an error 
of 0.41 mm on 34.72 mm along the y-direction. By using 
Eq.  (2) and (3), the correction factor c was found to be 
1.012, highlighted in bold in Table 1. This simple calibration 

(2)c =
1

N

N∑

i=1

ci

(3)ci =
ΔySL,i

ΔyBLP,i

method allowed to compute the error along the scan 
direction caused by non-precise cinematic and correct for it 
by properly re-scaling the point cloud. After the correction 
procedure, the spheres distances were re-measured and it 
was found a maximum error of 0.02 mm. 

2.3 � Experimental plan and layerwise monitoring 
method description

The experimental plan was designed considering prism-
shaped samples characterized by 15 × 15 × 2 mm3 of overall 
dimensions, see Fig. 3a. The first step consisted of generating 
the STL file based on the CAD model of the object. This file 
was loaded into the slicer CURA, one of the most widely 
used to handle MEX prints. The material used was white 
PLA supplied by Fabbrix ®. The main printing parameters 
used are reported as follow: layer height of 0.2 mm, nozzle 
printing temperature of 210 °C, printing platform tempera-
ture of 60°, solid infill (100%) and 40 mm/s as printing speed.

To effectively test the implemented in-process monitoring 
system, different process conditions were generated to 
induce defects and process deviations and non-optimized 
printing parameters were used. The process shifts induced 
in the experiment were obtained by varying the location 
of the specimens on the building platform and the raster 
deposition angle (ɵ), according to the experimental plan 
reported in Table 2. This way, it was possible to vary the 
process conditions and the surface quality of the obtained 
samples by using the same printing parameters.

Table 1   Errors evaluated on the y-direction

SL [mm] BLP [mm] Dev. [mm] c_i [mm]

1—3 17.38 17.18 0.20 1.011
1—5 34.70 34.29 0.41 1.012
2—4 17.34 17.15 0.19 1.011
2—6 34.72 34.31 0.41 1.012
3—5 17.33 17.11 0.22 1.013
4—6 17.38 17.16 0.22 1.013

c[mm]  1.012

Fig. 3   In (a) the sample geometry and dimensions; in (b) the positioning of the samples on the building platform; in (c) the infill line direction 
considered (raster deposition angle)
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A total of 12 samples were printed, as combinations of 
three sample positions, named TOP, MID, BOT (see Fig. 3b) 
and four raster deposition angles (ɵ), 0°, + 45°, −45° and 90° 
(Fig. 3c). Then, each sample was monitored layer by layer 
by using the procedure described in Fig. 4.

After the completion of each layer, the layer surface scan 
was performed automatically and analyzed according to 
the following procedure. Before starting the print, a scan of 
the build platform was executed and from the point cloud 
obtained a plane was fitted using the Gaussian method (3σ 
criterion). This plane was considered to have z = 0 and it 
was kept as reference plane for the subsequent analyses. 
From the latter, a series of parallel planes, called nominal 
planes, were constructed, spaced apart by an amount equal 
to the theoretical layer height (0.2 mm). Once the scan of 

the building platform was completed, the printing process 
could start, and after the completion of each layer, the 
data acquisition was carried out, as previously described 
(Section 2.1). The parameters used for the layer surface 
scan were previously selected in accordance with the optical 
properties of the printed material and the build plate. To 
avoid possible negative influences of the build platform, 
(transparent glass), it was coated with a white aluminum 
adhesive tape, high temperature resistant and with optical 
properties similar to the printed material. Moreover, thanks 
to the use of the endstop for triggering the monitoring 
process, the acquired point clouds were already aligned 
along the y direction, reducing the time needed for the 
alignment operations and derived errors.

The point cloud obtained from the BLP, as already stated, 
contains many topological information, but it was also nec-
essary to summarize the content of information by selecting 
proper process indexes easier and faster to compute and to 
interpret. In this preliminary study, the proposed monitor-
ing methodology was evaluated through the observation 
of four indexes. The first analysis (Fig. 4-1) was aimed at 
assessing the average height increase at each layer and then 
the cumulative height by computing distances between the 
surface points of each layer and the reference plane (build 
platform plan, z = 0). The second analysis (Fig. 4-2) which 
corresponded to the first quality index, was instead aimed 
at assessing the height deviation between the point cloud 

Table 2   Experimental plan

Factors Levels n

1. Location on the printing platform (3 
levels)

TOP (TOP), MIDDLE 
(MID) and BOTTOM 
(BOT)

2. Raster deposition angle (ɵ) (4 levels) 0°
90°
−45°
 + 45°

Fig. 4   Proposed in-process layerwise monitoring method based on surface analysis
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of the layer surface and the corresponding nominal plane, 
generated as a plane parallel to the reference plane (z = 0). 
It was called Layer Height Average Deviation (ADLH), and 
it was computed as the average distance d between all the n 
layer-belonging points measured by the monitoring system 
with respect to their relative nominal plane evaluated along 
the build direction (z-axis), as it is shown in Eq. 4:

Each distance was kept with its sign. The sign of the 
distances is worth of further considerations because it was a 
first indicator of the kind of deviation: negative means that 
the actual layer surface point lies under the nominal plan 
(having a z coordinate lower than the one of the reference 
plane); on the other hand, a positive deviation means that 
the layer surface lies above the nominal plane (having a z 
coordinate higher than the one of reference plane). Thanks to 
this parameter it was possible to retrieve precious information 
about the layer surface conditions enabling, eventually, the 
possibility to operate a typical process control. The second 
index was the Residual Absolute Deviation (RAD), and it was 
computed as the average value of the distances between each 
actual layer points and the plane fitted (Gaussian method, 
3σ criteria), using the same points. This index allowed to 
emphasize the occurrence of surface defects and geometric 
inaccuracies with respect to dimensional issues. Finally, the 
last index, identified as process stability indicator, was the 
slope s of the line segment generated by two subsequent 
ADLH values, which were the y-values, having the layer 
height on the x-axis. The resulting value was dimensionless 
and scale independent, and based on its absolute value, its 
sign and the sequence of subsequent values, it was a good 
indicator of the process stability.

3 � Result and discussion

In this section, the results obtained from the performed 
analyses are shown and discussed. As first output, the 
cumulative height was evaluated at each layer and for each 
sample (Fig. 5). Different raster deposition angles led to 
different results. Moreover, keeping fixed the raster angle, 
also the sample location on the building platform produced 
different results. Among the locations analyzed, the location 
called MID led to results close to the nominal (1.9–1.96 mm), 
while the TOP and BOT locations produced more variable 
results and higher dimensional deviations (the worst was 
1.84 mm). The cumulative height allows to monitor the 
printing process and, in particular, the height increase at each 
layer. A shift of this parameter from the nominal conditions 
could be caused by the onset of defects, which can be related 

(4)ADLH =
1

N

N∑

i=1

±di

to dimensional and geometric inaccuracies or other local 
process alterations. For all the analyzed cases, this index 
allowed to observe that the cumulative height was always 
below the nominal value, and this can be related with many 
printing issues, i.e., the flatness of the bed, the accuracy of 
the z-axis movement, the material flow rate, etc.… Moreover, 
a shift of the cumulative height was detected between Layer 7 
and 8 for the samples fabricated with raster angle equal to 0° 
for all the locations involved and it was more marked for the 
sample realized at the BOT location (see Fig. 5c).

Although, by using this index only, it was not possible 
to assess the surface quality and to make hypothesis about 
what caused the height deviation. To make the analysis 
more focused on each layer, the so called Layer Height 
Average Deviation (ADLH) was computed (Section 2.3, 
Eq. 4), and results are reported in Fig. 6. As a general 
consideration, for all the analyzed samples the first layers 
were characterized by the lowest values of the above-
mentioned index (ADLH). As the layer number increased, 
however, the ADLH tended to increase (if one considers the 
absolute value). In accordance with the cumulative layer 
height data (Fig. 5), the registered deviations, represented 
by the ADLH values, were all negative, meaning that the 
deposited layers had a height lower than the nominal one. 
In some cases, the value of the ADLH reached approximately 
the absolute value of 0.18 mm, close to the layer height 
value used to print the specimens (0.2 mm). Such an index 
allowed to analyze more in details the height deviation of 
each layer and to detect a process shift from the desired and 
nominal conditions. According to the ADLH, the samples 
characterized by the most accurate height were the -45°-
MID and the 90°-MID, with values of ADLH comprised 
between 0 and 0.05 mm. All the other combinations of 
location and raster angles generated less accurate results 
with values of the ADLH covering a larger range and 
approaching 0.2 mm in one case (Layer 9, sample 0°-BOT).

Moreover, when analyzing the graphs related to the 
ADLH and the trend of this index as the layer number 
increases, it was possible to assess the stability of 
the process and the occurrence of a process shift by 
considering the slope of the line segment connecting 
the values of ADLH registered at two subsequent layers. 
Results of the slope values are reported in Table 3 for each 
couple of subsequent layers. The higher the value of the 
measured slope, the higher the change of the surface layer 
conditions, in terms of height accuracy, evaluated on two 
subsequent layers. This way, significant process shifts can 
be detected, possibly related to the occurrence of defects. 
More in details, to negative slope values corresponded a 
worsening of the ADLH index, while, when the slope had 
a positive value, a ADLH improvement was registered. 
Finally, when the slope was equal to zero no significant 
ADLH changes were detected, and the process conditions 
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Fig. 5   Results obtained from the cumulative layer height analysis. (a, b, c and d refers respectively to −45°, + 45°, 0° and 90° raster deposition 
angles respectively)
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could be considered quite stable. If samples -45°-MID and 
90°-MID are considered as reference (they have the lowest 
values of ADLH with no significant changes), a range 
comprised between ±0.05 could be considered acceptable 
(see Table 3).

As it is possible to observe from the values reported in 
Table 3, the most significant changes were registered for the 
samples characterized by 0° of raster deposition angle, for 

all the locations considered (0.2–0.25), in line with what 
observed on Fig. 5c. To verify the occurrence of severe 
height deviations, the worst case was analyzed (0°-BOT) 
and the colored maps showing the height deviation evaluated 
for each surface point was also reported in Fig. 7. Two 
exemplary cases were compared: a severe worsening of the 
layer height deviation was observed between Layers 7 and 8, 
where the measured value of the slope reached its maximum 
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Fig. 6   Results of ADLH, where a, b, c and d are related to respectively −45°, + 45°, 0° and 90° raster angles

Table 3   Slope values Slope s

0°  + 45° −45° 90°

TOP MID BOT TOP MID BOT TOP MID BOT TOP MID BOT

1_2 −0.1 −0.1 −0.1 −0.15 −0.15 −0.05 −0.1 −0.05 −0.05 −0.15 −0.1 0
2_3 −0.1 −0.05 −0.1 −0.1 0 0 −0.05 −0.05 −0.1 −0.05 0 −0.05
3_4 0 −0.05 −0.05 −0.1 −0.05 −0.1 −0.05 0 0 −0.05 0 0
4_5 −0.05 −0.05 −0.1 −0.05 −0.05 0 0 0 −0.05 −0.05 0 −0.05
5_6 −0.05 0 0 0 0 0.05 0 0 0 −0.1 −0.05 0
6_7 0 −0.05 −0.05 −0.05 −0.05 −0.05 −0.1 −0.05 −0.05 −0.05 0 −0.05
7_8 −0.2 −0.2 −0.25 −0.05 0 0 −0.05 0 −0.1 −0.05 −0.05 −0.05
8_9 0 0.1 −0.1 −0.05 0 −0.05 −0.05 −0.05 −0.05 −0.05 0 0
9_10 0.05 −0.05 0.1 0 0 0 0 0 0 0.05 0.05 0
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value (0.25). While, between Layer 5 and 6 (s comprised 
between 0–0.5), the process was almost stable, as it was 
possible to observe from the corresponding colored maps. 
It is important to point out that this parameter is sensitive to 
deviations observed between two subsequent layers, but if 
only the slope between two subsequent layer is considered, 
it is not possible to detect all the cases characterized by a 
negative trend and severe height deviations. As an example, 
the samples 90°-TOP and + 45°-TOP were characterized 
by severe height deviations, however, values of slopes 
registered for these two samples were on the order of 0.05 
and 0.1, which were not the highest values registered. This 
suggests another consideration about this index, and it is 
related to the slope sign and the sequence of slope values. 
For the above-mentioned samples (90°-TOP and + 45°-
TOP), indeed, even if the slope values were quite low, a 
trend of all negative slope was detected, meaning a continue 
worsening of the height deviation. Moreover, this index was 
not able to display which kind of defect occurred and it can 
be considered only as a first warning for the user.

Besides the layer height deviations assessed through 
the ADLH, another index was considered able to evaluate 
the closeness of the actual layer point cloud with respect 
to an ideal planar geometry. With this aim, the RAD was 
introduced (see Section 2) and results are shown in Fig. 8. 
Based on its definition, the higher the RAD, the worse 
is the layer quality due to the likely presence of defects. 
When observing the graphs reported in Fig. 8, it is possible 
to notice a quite stable trend of the RAD for the sample 

-45°-MID, with values ranging from 0.01 and 0.019 mm. 
All the other samples were characterized by more variable 
values of RAD and the highest values were achieved for 
samples -45°-BOT and + 45°-TOP, starting from Layer 3 
and from Layer 1 to Layer 6. respectively. Considering the 
samples realized with raster deposition angle equal to 0°, a 
worsening shift of the RAD was registered from Layer 7, 
similarly to what observed for the ADLH index.

The way the RAD is defined puts it as a good index 
able to express the surface condition of each layer and it 
is important to point out that it was not influenced by the 
average height deviation (ADLH), since it was computed as 
absolute average distance between each actual layer point 
and the ideal plane fitted on the same points and not with 
respect to the nominal plane (as the ADLH). Thus, it does not 
account for the height dimensional error.

Both the ADLH and the RAD indexes were able to identify 
process anomalies in terms of, respectively, dimensional 
accuracy and surface quality, meant as surface defectiveness. 
In Figs. 9 and 10 the above-mentioned indexes were shown 
on the same graph to depict a complete picture of the 
process at each considered layer for some selected cases. It 
is important to notice that the values of the two indexes had 
different order of magnitude, thus considering the graphs 
reported in Figs. 9 and 10, the left vertical axis is referred to 
the RAD while the right one is referred to the ADLH, which 
was considered with its absolute value ( ||ADLH

||) . Moreover, 
in order to explain the meaning of the two indexes clearer, 
they were also displayed as colored maps (Figs. 9c and 10c). 

Fig. 7   The slope between Layer 5 and 6 is the minimum one and no worsening of layer surface is detected, while the value between subsequent 
layers grows until reaching its maximum value between Layer 7 and 8 where under-extrusion defects are detected and highlighted
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The one related to the RAD index shows the deviation of 
each point with respect to the plane fitted on the actual layer 
points. The one related to the ADLH, on the other hand, 
shows the point deviation from the nominal plane.

In Fig. 9a and b, the samples with 90° of raster angle 
printed on TOP and MID locations, were considered, and 
some significant layers highlighted and displayed as colored 
maps. As a general comment on graph (a), the ADLH tended 
to constantly increase, while the value of the RAD was 
quite stable and comprised between low and medium levels 
(0.016–0.019 mm). Considering the graph (b), a low value 
of ADLH was maintained through each layer, indicating good 
height accuracy, while the RAD value was slightly variable 
indicating the likely presence of defects on the surface. More 
in details, considering the box A corresponding to Layer 1 
on the graph (a), it is possible to notice a low ADLH and a 
RAD on the order of 0.017 mm, which corresponded to the 
presence of some localized defects as excess of material. On 
the same sample, the box B showed a high value of ADLH and 
a slightly higher RAD, which corresponded, respectively, to 
low height accuracy and to a higher spreading of defects. 
The box C was more interesting, since the RAD was 
characterized by a quite low value (0.016 mm), while the 

ADLH was high and close to 0.15 mm. If just the surface 
quality is considered, this was quite acceptable, although the 
height accuracy was very low. The box D on graph (b) shows 
the combination of a low value of RAD and ADLH denoting 
a quite acceptable surface quality and height accuracy. 
Other two representative graphs are reported in Fig. 10. In 
Fig. 10a, the reported trend of both RAD and ADLH showed 
other interesting combinations of these indexes: the box E, 
corresponding to Layer 1, was characterized by a low value 
of ADLH (< 0.05 mm) and a high value of RAD, denoting 
the presence of widespread defects. On the same sample, 
the case F, corresponding to Layer 9, was characterized by 
both severe surface defects and severe height deviations. A 
similar case was highlighted on box G, with different level 
of defects and height deviations.

Through the conducted analysis, it was possible to 
assess that the RAD value was influenced by both local and 
distributed defects such as blob and accumulation or lack of 
material (Fig. 11a, b, c). While the ADLH can be considered 
a good indicator of the height deviation of the entire layer, 
less influenced by local and small defects. In Fig. 11, some 
of the observed defects are reported. In Fig. 11a, a severe 
accumulation of material was shown, and the cause was the 
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waiting time of the nozzle in that specific position. In fact, if the 
nozzle stopped on the surface during the print, an accumulation 
of material can be detected on the same spot. Furthermore, 
the same area showed missing points. Sensors that exploit the 
triangulation principle can detect points only when the laser 
line is seen from the sensor. In some cases, the sensor may 
not be able to detect points on the object, for example due to 
the shadow effect or in the case of vertical walls. Since the 
monitoring was performed on a flat surface, it can be excluded 
the shadow effect, while missing points can be caused by 
vertical walls generated by not expected protrusions on the layer 
surface which were related to bad surface conditions.

3.1 � Validation of the result

The validation of the results obtained is of fundamental 
importance to assure the reliability of the data acquired 
and processed using the proposed monitoring system. This 
validation is intended to evaluate the presence and, if it 
occurs, the quantity of the measurement error with respect 
to a reference.

Once completed the samples fabrication, they were 
measured by using the LS structured-light scanner, 
described in Section 2.2 section, already implemented for 
the monitoring system prior calibration. The validation 
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procedure consisted in the comparison of the average 
height of the as-built sample evaluated offline through the 
structured-light scanner system with the corresponding 
information coming from the monitoring procedure, and it 
was executed considering only the last layer of the sample, 
meaning their overall height. The average value of all the 
registered errors was 0.014 mm with a standard deviation 
of 0.007 mm demonstrating the reliability of the monitoring 
method proposed and the effectiveness of the calibration 
procedure. Moreover, it should be also considered that the 

resolution of the two compared systems was different which 
can be a relevant factor when dealing with parts produced 
by MEX, as reported in literature [37]. To corroborate these 
results, the comparison was also conducted considering 
the deviation maps corresponding to the ADLH index. Few 
relevant cases were considered showing the effectiveness of 
the proposed method in different process conditions. All the 
coloured maps are referring to the last layer. Results reported 
in Fig. 12 showed a good correspondence between the two 
compared deviation maps for all the conditions analysed.
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4 � Conclusion

MEX processes are experiencing an increasing appeal 
in many industrial sectors thanks to its ease of design of 
complex geometry and its time-saving feature in producing 
small/medium batch of manufacts. All these positive aspects 
are countered from both low repeatability and reliability that 
needed to be enhanced for an effective improvement of this 
process. The answer to these critical issues is the developing 
of such system that enable real-time defect detection and 
capable of correct process shifts from the optimal condition 
through the correction of related-defect parameters.

In this work, a preliminary study on a new MEX monitoring 
methodology was proposed. It was based on the use of a blue 
laser profilometer, with a resolution along the z-axis of 4 µm, 
mounted on a MEX- consumer machine with the aim to retrieve, 
in-process, the actual layer height and information about the 
possible occurrence of defects. Several quality indexes capable 
of detecting the height accuracy with respect to the nominal 
value, as well as the surface layer quality (defectiveness of 
the layer surface) and the stability of the process itself, were 
then collected and analyzed for each layer by using a novel 
and automated procedure. Different process conditions were 
generated by varying the raster angle and the location of 

Fig. 11   Examples of layer 
surface defects detected from 
the scanning of a single layer: a) 
blobs; b) missing rasters or sim-
ply lack of material; c) material 
accumulation

Fig. 12   Validation results obtained by comparing ADLH of last layer point clouds with ADLH of references
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the sample on the building platform. The resulting samples 
registered different trends and surface defects that the proposed 
system was able to detect using specific quality indexes. The 
cumulative height resulted to be an indicator of the average layer 
height increase at each layer along the building direction of the 
object and it was computed in-process, enabling a first check on 
the overall quality of the as-built part directly during the printing 
process. For a more focused and detailed analysis, the ADLH, the 
RAD indexes were introduced. More in details, the ADLH, based 
on its definition, was able to assess the dimensional accuracy 
of the sample (considering the sample height), while the RAD 
was able to detect the occurrence of defects on the layer surface, 
independently from the dimensional error evaluated through the 
ADLH. This concept was highlighted by comparing both indexes 
for the same samples. In this context, significant cases were 
shown, highlighting the capability of the RAD to detect surface 
defects. High value of ADLH corresponded to high dimensional 
deviation, but not always to surface defects. High value of RAD 
are related to the presence of defects, mostly widespread defects, 
which not always significantly influenced the dimensional 
deviation. High values of both RAD and ADLH corresponded 
to a high surface defectiveness and height average error. The 
stability of the process was also assessed by analyzing the slope 
value of the ADLH data trend. Besides the absolute value, the 
slope sign, and the sequence of the slope values, were also 
indicative of the process shift trend: based on the definition of 
ADLH, a negative value of slope meant a worsening of the layer 
height deviation, while a positive slope meant an improvement 
of the layer height accuracy.

The use of a laser profilometer and the analysis of highly 
detailed point clouds allowed to retrieve different classes 
of information on each layer, showing the powerfulness of 
the proposed systems and enabling further investigations 
involving machine learning algorithms to find mathematical 
relationship between the indexes and the occurrence of defects. 
Furthermore, even if the proposed monitoring system was tested 
on a MEX process it could be suitable also for the in-process 
monitoring of other AM technologies involving metals, such as 
Powder Bed Fusion or Direct Energy Deposition.
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