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Abstract
Punching is a process that is sensitive to a multitude of parameters. The estimation of part and punch quality is often based
on expert knowledge and trial-and-error methods, mostly carried out as a separate offline process analysis. In a previous
study, we developed an optical inline monitoring system with subsequent image processing which showed promising results
in terms of capturing every manufactured part, but was limited by slow image processing. Here, we present a more efficient
image processing technique based on neural networks. For our approach, we manually identify the burnish parts in images
based on criteria established via an expert survey in order to generate a training dataset. We then employ a combination of
region-based and boundary-based losses to optimize the neural network towards a segmentation of the burnish surface which
allows for an accurate measurement of the burnish height. The hyperparameter optimization is based on custom evaluation
metrics that reflect the requirements of the burnish surface identification problem as well. After comparing different neural
network architectures, we focus on optimizing the backbone of the UNet++ structure for our task. The promising results
demonstrate that neural networks are indeed capable of an inline segmentation that can be used for measuring the burnish
surface of punching parts.

Keywords Image processing · Semantic segmentation · Convolutional neural networks · Deep learning · Punching

Punching is a wide-spread production process that is
applied when massive amounts of identical cheap parts are
needed [1]. One important quality indicator of parts manu-
factured by punching is the burnish height or burnish surface
area, which is particularly important for electrical connectors
or parts with sealing purposes. A burnish surface area that is
as large and continuous as possible is desirable. Note that, as
shown in Fig. 1, the burnish height is currently defined in the
profile section, not in the surface view. This is the case for
many other quality indicators as well [2].

In contrast to the highly economical production process,
the evaluation of the cutting surface is still cost intensive and
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time consuming. Currently, used evaluation methods include
metallography, confocal microscopy, tactile measuring sys-
tems, or motorized measurement devices [3], which require
parts to be taken out of the production process and analyzed
separately. This also means that a continuous quality control
cannot be guaranteed. To counteract this, we have developed
an inline monitoring systemwhich is capable of acquiring an
image of each punching surface directly after it emerges from
the punching tool [4].We also developed an automated image
processing for the segmentation of the burnish height by an
active contours algorithm. This approach showed promising
results in terms of accuracy and prescriptive recognition of
tool wear. However, the processing of an image (cf. Figure2)
takes 40-60 seconds,which is not acceptablewith a cycle time
of 80–240ms; note that stroke rates of up to 1000 strokes per
minute are possible [1, 3]. Furthermore, this algorithmcannot
recognize multiple burnish surface regions, which can occur
inmany random forms, depending on factors such asmaterial
combination of punch and sheetmetal, fluctuationswithin the
tensile strength of the sheet metal or the location and geom-
etry of punch edge failures. The exact causal relationship
between these factors and the occurrence of disturbances in
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Fig. 1 Definition of the cutting surface parameters [2]

the burnish surface—such as tear sections or holes, as shown
later in Fig. 4—has not yet been investigated. However, since
these disturbances dooccur in real burnish surfaces, theyhave
to be addressed by an image processing algorithm.

Here, we therefore consider a neural-network-based
approach for the image segmentation problem. Most gen-
erally, machine learning techniques for such tasks can be
divided into instance segmentation and semantic segmenta-
tion methods: instance segmentation treats multiple objects
within the same class as separated instances, whereas seman-
tic segmentation converts every pixel in the input image to
a category class within one instance. Since an algorithm for
identifying the burnish surface should classify all pixels as
the burnish part, we focus on semantic representation net-
works in the following.

Neural networks have already shown promising results for
segmentation tasks in terms of accuracy and processing time,

Fig. 2 Image of a produced punching part, captured by an inline mon-
itoring system. The image corresponds to phase 1 as described in the
text

for instance, in biomedical image processing [5–7].Although
medical imaging is often subject to greater noise compared
to other areas involving image processing, it is possible to
recognize and segment tumours even in the most diverse
organs.Currently, segmentation networks are attracting inter-
est for the monitoring of manufacturing processes, although
collecting and preparing data for the training remains a time-
consuming and cost-intensive process [8]. Recent examples
for the use of segmentation networks in manufacturing are
the measurement of the strip position in a rolling mill pro-
duction [9] and the detection of surface defects in a steel
mill production [8, 10]. Lin et al. [11] and Bergs et al. [12]
also developed a method for wear detection of milling tools,
while Scime et al. [13] showcased the monitoring of additive
manufacturing processes.

The goal of our study is to analyze and optimize networks
for the processing of image data to segment the burnish sur-
face of punchingparts. The segmentation needs to be accurate
even in the presence of multiple disconnected burnish parts
and should be realizable within an inference time below
80ms to be suitable for inline-quality control. To this end, we
adapt a network architecture that was originally developed
for medical image processing.

1 Materials andmethods

1.1 Burnish surface

For our purpose, i.e. online quality control, an accuratemea-
surement of the burnish surface—in particular its height—is
of primary importance. Therefore, the segmentationmust not
only be accurate regarding the covered area, but the shape of
the burnish surface as well. In particular, the boundary, i.e.
the transition between burnish part and fracture, needs to be
identified accurately.

However, it is important to note that determining the
burnish height in the surface view is not only a technical
difficulty, but rather a conceptual one, since there is no stan-
dardized definition of the burnish surface. To demonstrate
this lack of a commonly accepted definition, we carried out
a survey, asking 12 industry experts to mark the transition
between the burnish surface and the fracture surface, accord-
ing to their understanding, in the surface view of a punching
part. The results, which are shown in Fig. 3, suggest that
there is no clear consensus; rather, the individual definitions
of the burnish part are highly dependent on the component
produced and its application. However, by investigating the
overlappingmain characteristics of the different experts’ seg-
mentations, we conclude that in a surface-view image, the
burnish part

• is brightly illuminated,
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Fig. 3 In a survey, 12 experts
were asked to draw the
transition line between the
burnish and the fracture surface.
The scattering of the lines shows
that there is no consensus, but
rather different
application-related approaches

• is fluctuating over its length,
• has a structure with vertical grooves,
• can have holes,
• can have multiple tear sections,
• can increase or decrease in height over the width of the
part.

Ourmanual labelling of the imagedataset, as describedbelow
(cf. Figure4), is therefore based on these criteria and the
definitions given in [2]. We also note that generally, fewer
holes in the burnish part (or none) are favourable for most
produced parts, as are fewer tear sections. In particular, an
increasing number of holes or tear sections and a decreasing
burnish height are a sign of wear on the punching tool.

1.2 Dataset

Images for training, validation, and testing were captured
with a monitoring system [4] within the punching process
with a resolution of 1280 x 1024 pixels in greyscale. They
were taken during a material test where a punch failure
occurred on the left-hand side of the images. Overall, 17000
images were captured during this test. In the images, the bur-
nish surface is brightly illuminated, textured with vertical
grooves and an inhomogeneous transition to other cutting

surface parts. Tear sections of the burnish surface occurred
as well, caused by parameter fluctuation or punch failure.

Disjoint subsets of these images were chosen as the train-
ing and test data. In order to represent the ongoing wear
within a punch lifetime, images were taken from differ-
ent phases within the dataset: phase one contains images
with uniform wear rate and consistent burnish height, apart
from natural fluctuation; phase two contains images with
progressed wear rate and therefore de-/increasing burnish
height. Finally, phase three contains images of parts pro-
duced with a damaged punch and show tear-off within the
burnish height. In total, 415 images were selected for the
dataset. A ground truth mask image was created for each
image of dataset by manually segmenting every section of
the burnish surface according to the criteria specified above.
In particular, the labels provide a per-pixel partition of each
image into the classes burnish surface and background based
on expert knowledge. Since all parts – and thereby all images
– were produced with the same tool and the same parame-
ters, there is of course a high risk of overfitting to features
from this particular process. Since the segmentation should
ideally be applicable to images fromdifferent processeswith-
out re-training (cf. Sect. 4), we try to avoid this effect by
extending the dataset via augmentationmethods: Each image
and corresponding ground truth mask was duplicated and

Fig. 4 During manual labelling,
we distinguished between the
main section (1), tear sections
(2), and the background (3).
Roman numbers denote
different components used for
the metric evaluation

123



The International Journal of Advanced Manufacturing Technology

altered with different operations. These consist of changing
brightness values to represent different material combina-
tions, vertical mirroring to change the location of the tears or
defects, and scaling of the images to represent differentmate-
rial thicknesses; for simulating thinner materials, the images
were compressed along the height axis and inserted into an
image with the same background noise to preserve dimen-
sions, while for thicker materials, the images were scaled by
a ratio of 1.5 and 3 and clipped randomly along the cutting
surface such that they would have the same ratio of pixels
below and above, as would be expected from the images of
the monitoring system. The full data augmentation structure
can be seen in Table 1. Note that since each augmentation
technique simulates a difference in material properties, we
will consider each of these subcategories individually for our
evaluation.

Overall, the image augmentation expanded the dataset
to 10086 images, divided into training (6052 images), val-
idation (2017 images) and test (2017 images). Finally, to
decrease training time, all images were rescaled to 256×256
pixels. Although a higher resolution might be more suitable
for precise measurement tasks, the segmentation functional-
ity can still be analyzed with this reduced image size.

The ratio between background (BG) and foreground (FG)
in the image dataset, which is important for the choice of
a network and loss function, shows a mild imbalance with
a ratio of 9:1, which could increase to 20:1 in applications
depending on the specifications of the monitoring system.

1.3 Evaluationmetrics and loss functions

1.3.1 Evaluation metric

In order to assess the quality of our neural network based
image processing approach, it is crucial to select an appro-
priate evaluation metric to measure the accuracy of the area
identified as the burnish surface by the neural network regard-
ing the ground truth labels (i.e. the actual burnish surface in
the image according to expert knowledge).

To this end, a combined metric (CM) has been created
to evaluate the predictions according to our definition. As

indicated above, the total size and, in particular, the height of
the burnish part is an important quality indicator. For quan-
tification of the burnish height, however, it is important to
obtain a precise segmentation of the boundary. Furthermore,
the metric should allow for weighting based on the size and
the number of tear sections found, which also play an impor-
tant role for assessing the part quality.

For a region-based metric, we selected theDice similarity
coefficient

DSC(G, S) = 2|G ∩ S|
|G| + |S| ; (1)

here and in the following, S and G represent the burnish sur-
face according to the segmentation algorithm and the ground
truth, respectively, with |X | denoting the number of pixels
in a subset X of the image. Note that, 0 ≤ DSC(G, S) ≤ 1
and that the maximum value 1 is attained if and only if the
predicted area S and the ground truth region G are identical.

For the boundary-based part, the normalized surface dis-
tance

NSD(G, S, τ ) = |∂G ∩ ∂S(τ )| + |∂S ∩ ∂G(τ )|
|∂G| + |∂S| (2)

was used, where ∂G, ∂S denote the boundaries of the seg-
mentation surface and the ground truth, and ∂S(τ ), ∂G(τ )

represent the border regions at tolerance τ , i.e. the set of pix-
els whose distance from the boundary is less or equal τ . Note
that for τ = 0, this metric only accounts for the predicted
boundary pixels which match the ground truth boundary
exactly, whereas higher tolerance values do not distinguish
between an approximate and an exact boundary match.

Finally, the combined metric

CM(G, S, τ ) = α DSC(G, S) + β NSD(G, S, τ1)

+ γ NSD(G, S, τ2) (3)

considers both the region-based DSC and the boundary-
based NSD. By selecting the weight factors α, β, γ and the
tolerances τ1, τ2, this metric prioritizes either the overlap

Table 1 Data augmentation structure of training and evaluation data; the listed colours are used in Fig. 7

scale 1.0 scale 0.5 scale 1.5 scale 2.0 scale 3.0
Scale (blue) (orange) (red) (green) (purple)

Augmentation brighter brighter brighter brighter brighter

darker darker darker darker darker

plain plain plain plain plain

brighter mirrored brighter mirrored brighter mirrored brighter mirrored brighter mirrored

darker mirrored darker mirrored darker mirrored darker mirrored darker mirror

plain mirrored plain mirrored plain mirrored plain mirrored plain mirrored
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between the identified area and the ground truth burnish
surface (for higher values of α) or the accuracy of the pre-
dicted outlines of the area.

In the following, we choose the tolerances τ1 = 0 and
τ2 = 1, which leads to both a positive evaluation for pre-
dicted outlines close to the actual boundary and an additional
distinction between an approximate and an exact boundary
match. Using the weights α = 0.5, β = 0.45 and γ = 0.05,
we put equal emphasis on the area overlap measured by DSC
and the boundary matching via NSD. Figure5 shows the
behaviour of the combined metric for different degrees of
deviation from the ground truth image.

Note that the number of tear sections is not explicitly
taken into account by the combined metric, which needs to
be calculated for each section individually. Here and in the
following, sections are defined as four-way connected area of
pixels, with one component for each tear section [14]. Over-
lapping tear sections in the prediction and ground truth mask
are combined into one component. The combined metric is
then calculated separately for each of the found components.
The metric scores of each component are then weighted in
relation to the area of the respective components and summed
up; thus larger tear sections have a greater influence on the
overall metric score than smaller ones.

While this metric already allows for a general assess-
ment of the accuracy of the prediction, some topological
information (e.g. tear sections that are eithermissing or newly
added in the prediction) is not taken into account. To address
this problem, we consider the following additional metrics:

• the ratio between the predicted burnish surface to the
ground truth area,

• the percentage of tear sections that could be mapped to
components of the ground truth,

• the ratio between predicted and true tear sections,
• the ratio between predicted and true holes.

Here, the term “hole” is defined as an eight-way-connected
area which is surrounded by pixels that belong to a dif-
ferent class. These four expansions are well-suited for this
work to represent the different properties of the predic-
tions.

Of course, it is possible for an end user evaluating a seg-
mentation method (such as a neural network) for a specific
task to decide based on all the above criteria. In this case,
depending on which score is more significant for the task
at hand, higher importance can be assigned to particular
metrics. For fully automated hyperparameter optimization,

Fig. 5 Different metric scores for images of over-segmentation and infra-segmation
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however, it would be necessary to aggregate the individual
scores into a single metric, e.g., via a weighted sum.

1.3.2 Loss function

During the actual training of the neural network for given
hyperparameters, the parameters of the network are modi-
fied to minimize a loss function over the set of training data.
Choosing a suitable loss function is therefore ofmajor impor-
tance to ensure that the prediction by the neural network
accurately corresponds to the ground truth. In a previous
analysis, [15] compared multiple loss functions on four seg-
mentation tasks. For a dataset containing liver and liver
tumour images, which can be considered similar to our
dataset based on the BG:FG ratio, a combination loss with
a Dice-related compound proved suitable for segmentation
tasks. The Dice loss is a region-based loss function that
penalizes the mismatched regions between ground truth and
prediction, similar to the Dice similarity coefficient. For the
general case of images with N pixels and C distinct classes,
the Dice loss can be defined by [15, 16]

LDice = 1 − 2
∑C

c=1
∑N

i=1 g
c
i s

c
i

∑C
c=1

∑N
i=1 g

c
i + ∑C

c=1
∑N

i=1 s
c
i

, (4)

where gci denotes the ground truth binary indicator of class c
for pixel i and the sci is the corresponding output confidence
of the neural network. Note that if only the burnish surface
class with ground truth indicator g is considered, and if the
output s is binary, then the Dice loss can be simplified to

LDice = 1 − 2
∑N

i=1 gi si
∑N

i=1 gi + ∑N
i=1 si

= 1 − 2|G ∩ S|
|G| + |S| = 1 − DSC(G, S) ,

where DSC denotes the Dice similarity coefficient as defined
in Eq. (1).

While the DiceTopK-loss showed particularly promising
results in the study by [15], the burnish surface identification
problem requires a different approach due to the importance
of the transition between burnish and fractured part. In order
to emphasize the boundary of the burnish surface over its
area distribution, we therefore selected the DiceBD loss [15,
17]

LDiceBD = LDice + LBD , (5)

which combines the Dice loss with the BD loss

LBD =
N∑

i=1

φi si . (6)

Here, φi denotes the level set representation of the boundary
∂G of the ground truth region, defined by

φi =
{

− dist(i, ∂G) if i ∈ G,

dist(i, ∂G) if i /∈ G ,
(7)

where dist(i, ∂G) is the distance between a pixel i and the
boundary ∂G [15, 18].

1.4 Network architecture

For our purpose, it seems reasonable to use a neural network
architecture that was specifically developed for processing
monochrome images. In particular, we consider several net-
work structures that have been previously employed – or even
originally developed – formedical image segmentation tasks.
First, neural networks from three selected types of architec-
ture are trained, analyzed and compared on the given dataset.
Afterwards, the network that provides the best performance
is analyzed and developed further. The chosen architectures
are SegNet [19], UNet++ [6], MedT [20] and nnU-Net [7].

SegNet was originally developed for road scenes, with
focus on low memory consumption and efficient computa-
tional time [19]. Therefore, this architecture contains fewer
trainable parameters than UNet++ or MedT. SegNet’s main
novelty is the decoder upsampling, i.e. the pooling of indices
computed in the max-pooling step of the corresponding
encoder to perform non-linear upsampling.

UNet++ [6] is an extension of U-Net [5], which is
built for including data augmentation to effectively learn
from datasets with very few labelled images. The classical
UNet++ network consists of five layers. The encoder is called
backbone and, compared to U-Net, contains additional skip-
connections to the decoder in the form of a pyramid structure,
which is supposed to overcome the problem that the outputs
of the simple skip-connections in U-Net are too different
in kind. In addition, deep supervision is introduced into the
learning process (cf. Fig. 6).

MedT consists of a global subnetwork with two lay-
ers and a local subnetwork with five layers. The global
subnetwork processes the complete input, whereas for the
local subnetwork, the input images are divided into 16 parts
which are processed individually and then reassembled. We
selected MedT explicitly as an alternative to classical CNN
approaches, since this architecture does not consist solely of
convolutions, but includes gated axial-attention layers to act
as the main processing units. In addition, the composition
of a global and a local branch ensures that the local subnet-
work is effectively trained with more images, which can be
advantageous for smaller datasets such as the ones consid-
ered here. Furthermore, due to the splitting of the input in
the local subnetwork, the positional variance of the image
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Fig. 6 Structure of UNet++ [6]

content is automatically included in the training process, and
the network is confronted with images with different bright-
ness gradients [20].

Finally, nnU-Net is a self-configuring method for medical
image segmentation which automatically generates an archi-
tecture layout, with training and post-processing based on
interdependent rules and empirical descension. It is publicly
available and scored best in multiple biomedical segmenta-
tion competitions [7].

1.5 Hardware and training

Training and evaluation were implemented in PyTorch [21]
with mixed precision and performed on an NVIDIA Quadro
RTX 5000. Because of the differences in memory consump-
tion between the networks, different batch sizes had to be
used. Every networkwas trained for 100 epochs. The learning
rate started at 3e-4 and was multiplied by 0.2 whenever the
moving average of the training had stagnated for 20 epochs
until a minimum learning rate of 1e-6 had been reached. The
training of nnU-Net was performed in its own framework [7].

2 Network analysis

2.1 Comparison of different architectures

After training an instance of each architecture type, the met-
ric scoreswere calculated for each augmentation subcategory
(cf. Table 1) of the test dataset. The course of the loss func-
tion during training shows a successful training (see Fig. 7a).
Since real-time segmentation is crucial for the process, the
inference time is also taken into consideration. As shown
in Table 2, with respect to the combined metric, UNet++

performed 17.94 percentage points better than SegNet, 5.67
percentage points better than MedT and 3.25 percentage
points better than nnU-Net. For the other scores, UNet++
also performed comparatively well. Furthermore, the anal-
ysis of the metric for each subcategory (see Fig. 7b) shows
that UNet++ responds best to three-times enlarged images in
comparison with nnU-Net, MedT and SegNet; the latter two,
in particular, falsely tend to recognize multiple tear sections
instead of a single main section, as shown in Fig. 8. Based on
these results, UNet++ is chosen as the most suitable network
architecture for identifying the burnish surface.

2.2 UNet++ optimisation

For further investigating the properties and hyperparameters
of UNet++, we first established a reference score by training
the network a total number of five times with default param-
eters. The mean metric values and their standard deviations
are given in Table 3.We then trained the model with different
hyperparameter settings and compared the individual metric
scores to these reference values.

As shown in Table 4, only scores which differ from the
reference value bymore than a standard deviation are consid-
ered significant changes. Note that for somemetrics (e.g., the
ratio of tear sections), an improvement (�) is indicated by
a lower score, while for others (e.g., the combined metric
CM), higher scores correspond to a more accurate predic-
tion.

2.3 Hyperparameter variations

The hyperparameters analyzed in the following are the
numbers of network layers, feature maps per layer and con-
volutional layers per block (the block depth). Our reference
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Fig. 7 Course of loss function during training and evaluation of each
image augmentation class (cf. Table 1) with the combined metric

UNet++ uses 5 layers and block depth 2with 32 featuremaps
in the first layer; this number is doubled with each layer, so
that the last layer uses 512 feature maps.

Feature maps To analyze the relationship between the num-
ber of feature maps and the prediction, networks with 8, 16
and 64 feature maps in the first layer were compared. The
duplication per layer is retained.

The results, as shown in Table 4, indicate a minor, but sig-
nificant improvement by 0.67 percentage points in terms of
the combinedmetric after increasing the number of first-layer
feature maps to 64. Moreover, all other metrics improve with
this configuration aswell. As expected, less detail is extracted
from the image with fewer feature maps. As a result, these
networks are less sensitive to changes in the image structure
and tend to achieve worse results with a wider distribution.

Table 2 Comparison of architectures with default hyperparameters

SegNet UNet++ MedT nnU-Net

Training time 30h 28h 288h 25h

Inference time 5.84ms 4.29ms 91.24ms 4.52ms

Combined metric 81.14 99.08 93.41 95.83

Assignable area [%] 97.32 99.64 96.68 92.51

Assignable tear sections [%] 95.32 99.21 94.42 89.16

Tear section ratio 2.20 2.19 2.86 2.57

Hole ratio 1.70 1.06 1.45 0.84

This is confirmedwith images that have beenmagnified three
times.

Depth We also considered networks with one and three lay-
ers per block (“Depth 1/3” in Table 4). Due to the resulting
changes to the amount of data processed per layer, the net-
work with depth 1 shows a decreased inference time, but
scores slightly worse overall. A higher number of layers per
block, on the other hand, results in minor improvements:
more tear sections can be assigned, and the combined met-
ric score is slightly higher (0.08 percentage points above
the standard deviation) compared to reference architecture.
These advantages, however, come with an increased infer-
ence time.

Number of layers Table 4 also shows thecomparisonbetween
networks with different numbers of layers. While fewer lay-
ers deliver worse results in terms of the combined metric,
the scores for assigned tear sections and hole ratio is clearly
improved by increasing the number of layers, which suggests
that the deep layers can assist in processing a more complex
feature (such as holes).

Synergy between hyperparameters Considering the results,
we selected a network with 64 feature maps, three layers per
block and 6 layers for further comparison. This model can be
seen as the synthesis between the best-performing hyperpa-
rameters and, as shown in Table 5, provides an improvement
of the default model by 0.66 percentage points in terms of the
combined metric while performing better in every other met-
ric except the hole ratio. We note, however, that the inference
time increased significantly as a result of the more complex
structure.

2.4 Backbonemodification

The previous analysis has shown that competitive predictions
can be achieved with only one layer per block. However,
during the evaluation, we observed that in this case, the seg-
mentation tends to fail for images withmore involved details,
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Fig. 8 Comparison between the
predicted burnish surfaces for
different network architectures

such as a higher number of tear sections. Increasing the num-
ber of layers beyond 5 lead to significant improvements,
albeit at the cost of an increased processing time.

As a compromise, we therefore consider an architecture
with an increasing block depth per layer and a total of number
of 6 layers. More specifically, we modify the UNet++ struc-
ture with an incremental block depth such that the blocks

in the first (top) layer contain one convolutional layer, the
blocks in the second layer contain two layers etc.

The underlying assumption behind this architecture mod-
ification is that the processing of the simple properties (e.g.
basic positioning and brightness) takes place within the
upper layers, whereas the lower layer process more complex
features – for example, whether a pixel lies within a larger
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Table 3 Mean and standard deviation after fivefold training of the
UNet++ architecture

mean standard deviation

Combined metric 98.72 ± 0.38

Assignable area [%] 99.56 ± 0.07

Assignable tear sections [%] 98.75 ± 0.42

Tear section ratio 2.2 ± 0.01

Hole ratio 1.14 ± 0.05

group of bright pixels, how large this group is, how the edge
of this group is shaped or whether the group contains a cor-
responding structure.

However, the results shown inTable 5 suggest that increas-
ing the block depth in lower layers does not lead to better
results regarding the different metric scores, whereas the
inference time is more than doubled as a result of the more
complex structure.

Next, we consider a replacement of the backbone in the
UNet++ structure by DenseNet [22], similar to work by
[23, 24] but extended to the UNet++ structure. Following
the underlying assumption that this modification enriches
the information about complex features in the deeper lay-
ers by connecting each layer with the previous layer via
dense connections (see Fig. 9), this should lead to an overall
improvement of the boundary details due to recurring influ-
ence of features.

Table 5 shows that the dense-backbone architecture indeed
leads to comparable or better results regarding the different
metric scores with a minor increase in inference time. As
a result, the dense backbone is still outperformed by the
hyperparameter-optimized network according to the com-
bined metric.

3 Discussion

The above analysis of the hyperparameters and different
backbones demonstrates that:

• architectures with fewer than 16 feature maps achieve
worse results, but require a shorter inference time;

• architectures with more feature maps achieve better
results and require a longer inference time;

• architectures with a lower block depth achieve compara-
ble results and require a shorter inference time;

• architectures with a higher block depth achieve slightly
better results and require a longer inference time;

• architectures with fewer layers can achieve worse results
and require a shorter inference time;

• architectures with more layers achieve better results and
are slightly slower to process;

• architectures with optimized hyperparameters achieve
better results, but increase the inference time;

• architectures with increasing block depth achieve worse
results and double the inference time;

• architectureswith a dense encoder achieve comparable or
better results results and require a longer inference time;

Based on these findings, we propose the UNet++ with 64
feature maps, as the most suitable configuration. Even if the
6 Layer configuration performs better in some metric scores,
the shorter inference time of the selected architecture should
be prioritized as it is highly beneficial for the intended pur-
pose of inline segmentation.

4 Transfer evaluation

Currently, to the best of the authors’ knowledge, no other
monitoring system comparable to the one considered here
is currently in use – and thus no other extensive dataset of
cutting surface images from punched parts is available for
validation purposes. To evaluate the overall performance and
transferability of the proposed neural network structure for
further applications, we therefore collected a small transfer
dataset of 60 images with corresponding mask images. This
dataset consists of 40 images of burnish parts from a copper
material with varying material thicknesses of 0.5mm and
0.64mm as well as images of a steel material with thick-
ness 0.5mm. All images were collected with the original

Table 4 Comparison of the modified architectures, showing significantly better (�) or worse (�) results compared to the reference architecture

8 Features 16 Features 64 Features Depth 1 Depth 3 3 Layers 4 Layers 6 Layers

Inference time 4.02ms 4.11ms 4.43ms 2.78ms 5.71ms 1.75ms 2.90ms 6.14ms

Combined metric 97.87 (�) 98.69 (=) 99.39 (�) 98.73 (=) 99.19 (�) 97.70 (�) 98.02 (�) 99.26(�)

Assignable area [%] 98.63 (�) 99.84 (�) 99.78 (�) 99.30 (�) 99.98 (�) 99.59 (=) 100.16 (�) 99.92 (�)

Assignable tear sections [%] 96.24 (�) 99.12 (=) 99.33 (�) 98.01 (�) 99.59 (�) 99.01 (=) 99.92 (�) 99.68 (�)

Tear section ratio 2.20 (=) 2.19 (�) 2.20 (=) 2.19 (�) 2.19 (�) 2.20 (=) 2.21 (=) 2.19 (�)

Hole ratio 1.10 (=) 1.03 (=) 1.05 (�) 1.07 (=) 1.06 (=) 1.21 (�) 1.21 (�) 1.06 (�)
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Fig. 9 Architecture of UNet++ with dense backbone

monitoring system. We additionally collected images with
an oil film applied to the burnish part, as would be expected
in a real production process. Furthermore, images were taken
with a Keyence confocal microscope with a different FG:BG
ratio and image characteristics and added to the dataset.

Wecompared the results forUNet++with 64 featuremaps,
the referenceUNet++, the hyperparameter-optimized variant
and 6 layer variant. The results are shown in Table 6. In
summary, the best performance is achieved by the UNet++
with 64 feature maps. The metric scores are also confirmed
by directly observing the images (examples are shown in
Fig. 10). All networks tend towards an increased number of
predicted tear sections on the transfer dataset, especially for
images with an oil film. Considering that the networks were
applied to imageswith formerly unknown characteristics, the
performance is generally acceptable, even when a different
device acquires the images. It is likely that the results can be
improved considerably if images from multiple devices and
different punching tools or process parameters are integrated
into the training dataset.

5 Conclusion

Fast and accurate segmentation of images is essential for
in-cycle processing of quality parameters during the punch-
ing process. With prior methods for the segmentation of the
burnish surface being too slow for real-time applications,
machine learning provides a promising alternative approach.

Since related tasks are well known to be solvable by neu-
ral networks in a biomedical environment, we compared the
network architectures SegNet, UNet++, MedT and nnU-Net

Table 5 Results for the combination of best-performing hyperparame-
ters (6 Layers, Depth 3, 64 Features ) and for a modified backbone with
incremental block depth

Hyperparameter
combination

Incremental
Block Depth

dense-
Backbone

Inference time 10.97ms 9.24ms 4.95ms

Combined met-
ric

99.14 (�) 98.62 (=) 98.39 (=)

Assignable area
[%]

99.87 (�) 99.16 (�) 100.98 (�)

Assignable tear
sections [%]

99.66 (�) 98.15 (�) 100.34 (�)

Tear section ratio 2.16 (�) 2.20 (=) 2.20 (=)

Hole ratio 1.07 (=) 1.11 (=) 1.08 (=)

for segmentation of the burnish part. The evaluation is carried
out by a newly developed metric, which allows for a simul-
taneous assessment of the segmentation accuracy in terms
of both the boundary and area overlap. The same targets are
considered by the loss function that is used for optimizing
the networks’ parameters. Thereby, it is possible to prioritize
characteristics both during training and evaluation. A mod-
ular selection of additional metric scores allows for an even
more specific assessment of the results; for example, the ratio
of tear sections or holes between prediction and ground truth
might be considered especially important, depending on the
application and the further use of the segmentation.

Moreover,weanalyzed the hyperparameters of theUNet++
structure. In our comparison, a UNet++ architecture with
64 feature maps in the first layer achieved the best results,
with an inference time of 4.43ms. In particular, using this
segmentation method, it is possible to reliably identify the
burnish surface of a produced punching part within the pro-
cess cycle time. We also tested the developed architecture
on a transfer dataset consisting of images with different
characteristics from different devices. Although the predic-
tion scores are (expectedly) worse, the proposed modified

Table 6 Comparison of modified architectures on the transfer dataset

64 Features Layer 6 Hyperparameter
combination

default
UNet++

Inference time 5.23ms 7.21ms 10.28ms 5.67ms

Combined
metric

82.49 81.19 79.24 80.67

Assignable
area [%]

106.14 108.58 98.73 106.43

Assignable tear
sections [%]

102.06 104.27 93.73 100.66

Tear section
ratio

7.75 5.92 5.72 7.28

Hole ratio 4.38 3.28 3.62 5.00
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Fig. 10 Comparison of
segmentation results on the
transfer dataset, with the ground
truth contour in green
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UNet++ architecture still performed best. In addition, the
results indicate that segmentation does indeed work across
different devices and demonstrate that networks for biomedi-
cal image segmentation are suitable for manufacturing tasks.
In terms of quality monitoring, further research will focus
on the performance of the developed architecture and met-
ric with an increased image size; here, we used a resolution
of only 256 × 256 pixels to decrease development time. In
terms of applications towards predictivemaintenance, further
research should focus on classifying the image into categories
after segmentation – for example, an automated identifica-
tion of rejects or the distinction between phases of the wear
diagram such as running-in, steady state and increasing wear
could be considered. Furthermore, the training data should
be expanded with additional image data from punching pro-
cesses with different parameters for thickness and material
to avoid an overfitting to specific features.
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