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Abstract
The continuous energy input can lead to heat accumulation in the multi-pass lap laser cladding, which results in a progressive 
increase in the dilution rate and deteriorates the quality of laser cladding. Precisely controlling the stability of the dilution 
in the multi-pass laser cladding is still challenging. In this study, we proposed a deep-learning driven method for precisely 
controlling the dilution rate in the multi-pass laser cladding. Initially, the relationship between the dilution rate and power 
energy is retracted via the experiment-based finite element simulation. Subsequently, the convolution neural network deep 
learning is applied to optimize and improve the accuracy of the dilution rates in the cladding layer. The experiment verifies 
that the high stability of dilution rate in each pass, i.e., average errors of less than 10.88%, is achieved via in-situ adjusting 
of the power energy using the prediction obtained from the proposed method. We also attempted to provide insights into 
the dilution mechanism in Invar alloy multi-pass laser cladding as well as the potential applications of this method for other 
materials and other additive manufacturing.

Keywords Laser cladding · Heat accumulation effect · Dilution rate · Deep learning · Multi-pass overlapping

1 Introduction

With increasingly stringent requirements concerning the per-
formance, accuracy, manufacturing cost, and cycle of metal 
parts in various sectors, including aerospace, energy, and 
defense [1–3], the direct forming of metal parts by additive 
manufacturing has recently attracted considerable scholarly 

attention [4–6]. During cladding, using a laser beam, the 
powder is radiated and melted on the forming path. The 
single- and/or multi-pass overlapping multi-layer cladding 
is cladded on the substrate until the metal parts are fully 
formed [7]. Therefore, the laser cladding process has several 
advantages, including low manufacturing cost, high utiliza-
tion of material, high density, perfect metallurgical bond-
ing performance, uniform chemical composition, excellent 
mechanical properties, and high production efficiency [8, 9].

The heat accumulation effect is a long-lasting challenge 
in controlling the multi-pass cladding process [10, 11]. The 
low temperature of the substrate at the initial stage leads 
to less energy absorption and a small dilution ratio [12]. 
The generated heat can continuously be transferred to the 
substrate surrounding and significantly increases the dilu-
tion rate during the following cladding pass, whose impacts 
cannot be ignored [13, 14]. The so-called heat accumulation 
effect is capable of inducing an increase in height and width, 
as well as wrapping deformation upon the cladding process, 
as shown in Fig. 1 [15, 16].

An appropriate dilution rate is crucial for the metallurgi-
cal bonding strength and forming accuracy between sub-
strate and cladding layers [17, 18]. A lower dilution ratio is 
reported to adversely affect the strength of the metallurgical 
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bond between the cladding layers and substrate, which 
expectedly causes the cladding layer to easily peel from 
the substrate. On the other hand, the excessive dilution rate 
leads to uneven temperature distribution as well as localized 
temperature and residual stress gradients. Under the circum-
stances, the warpage and deformation become prominent 
where cracking may also occur [19].

Accordingly, an appropriate dilution ratio throughout the 
cladding process is essential to improve the cladding quality. 
It will ensure that there is not only a strong metallurgical 
bonding strength but also a small deformation and residual 
stress between the substrate and cladding layer [20]. There-
fore, by reducing the thermal effect, the desired macro mor-
phology and microstructure characteristics of the cladding 
layer as well as the appropriate size and uniform dilution 
ratio can be obtained [21, 22]. Hence, a detailed analysis of 
the thermal effect mechanism in the laser cladding process 
is of great scientific and industrial interest to improve the 
cladding quality [23].

Extensive research investigated the effects of heat accu-
mulation during the multi-pass and multi-layer cladding. 
Thawari et al. [24] carried out a exploration on the defor-
mation versus temperature variation of the substrate using 
a real-time monitoring system. In their investigation, com-
paring the second cladding layer with the single cladding 
layer indicated a decreased deflection, which was attributed 
to the relatively uniform temperature field along with the 

thickness. Moreover, the temperature variation of the molten 
pool presented that the continuous heat input prolonged the 
service life of the molten pool and resulted in the warpage 
and deformation of the cladding layer and substrate. Den-
linger et al. [25] used a combination of laser displacement 
sensors and noncontact pyrometers; the cladding layer dis-
tortion and thermal history were monitored. The molten pool 
temperature was found to be relatively uniform to decrease 
deflection of cladding layers by adjusting the laser power. 
Zhao et al. [26] investigated the stress and temperature fields 
for the multi-pass cladding process using a neural network 
algorithm and genetic algorithm through the finite element 
method (FEM). The results indicated that the previous clad-
ding layer was preheated upon the formation of the next 
cladding layer. The longitudinal tensile stress increases 
after several times compared to the transverse tensile stress, 
where the tensile stress reached the maximum at the metal-
lurgical junction of the substrate and cladding layer. Using a 
3D FEM, Wang et al. [27] simulated the continuously mov-
ing temperature field during a multi-pass cladding process 
to investigate the effects of overlapping on the melting of 
preset cladding layer for plasma spraying, based on the exist-
ing single-pass temperature field model. The results showed 
that the heat accumulation effect leads to the gradual rise of 
temperature and the expansion of the molten pool of clad-
ding layers and substrate. The Molten pool of the same size 
and a more even cladding layer can be gained by increasing 

Fig. 1  Defects caused by the 
heat accumulation effect namely 
swelling in a molten depth, b 
height and c width, and d wrap-
ping deformation
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scanning speed or decreasing laser power in different passes 
sequentially. Ma et al. [28] discussed the main effective fac-
tor of temperature field and built the numerical model of 
temperature field in multi-pass laser cladding. The tem-
perature fields of the three passes cladding process on the 
plate were calculated, and the temperature variations were 
determined at the center of each pass. Moreover, under the 
multi-pass condition, the lowest temperatures of the three 
points before their temperature increase parabolically during 
the cladding process. Li et al. [29] measured the multi-layer 
temperature field by multiple thermal couples. It was found 
that the temperature varies almost periodically. Such that 
in the first two layers, the temperature changed sharply in 
the multi-layer laser cladding. As cladding progressed, the 
temperature of the substrate increased and varied slightly. 
In addition, for the same processing parameters, the size 
of the molten pool increased and the temperature gradient 
decreased.

As mentioned above, many studies have been carried 
out to analyze the dilution ratio, heat accumulation effect, 
residual stress, and other aspects. However, the process 
parameters were considered as constants with a focus on the 
cladding results; the consideration of the real-time changes 
of the energy absorbed has been neglected [30]. Especially 
in multi-pass lap cladding, the continuous input energy of 
laser beam leads to the raise of the starting temperature of 
the substrate and the increase of dilution rate, which results 

in the more obvious the deformation of the substrate and 
cladding layer [31, 32].

As a consequence, this study analyzes the multi-pass 
cladding by characterizing the variations in the temperature 
distribution within the substrate and cladding layer. Moreo-
ver, we attempted to optimize the process parameters using 
depth learning algorithms, such that the substrate and the 
cladding layer can suffer the homogeneous energy even at 
different times. Therefore, this can ensure the uniform dis-
tribution of the temperature field, obtain a uniform depth of 
the molten pool, and produce a small temperature gradient 
and residual stress, eventually improve metallurgical bond-
ing strength, forming accuracy, and reduce defects. Figure 2 
elucidates the optimization process of the dilution rate.

2  Experimental procedure

2.1  Material

The substrate of Invar alloy was prepared with the dimension 
of 200 mm × 100 mm × 50 mm. The elemental compositions 
of substrate and powder are listed in Table 1, respectively. 
The mechanical properties of the Invar alloy are demon-
strated in Table 2. Figure 3a illustrates the element spec-
trum of Fe and Ni. Figure 3b exhibits the scanning elec-
tron microscopy (SEM) image of spherical morphology of 

Fig. 2  Optimization process of 
dilution rate

Table 1  Elemental composition 
of the Invar alloy

Element P C Si Ni Cr Mn Co Fe S

Wt% 0.0087 0.025 0.07 35.92 0.20 0.27 0.47 63.0 0.001
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the particles where the diameter of the particles is ranged 
between 60 and 140 μm.

The laser cladding equipment consists of a 6 kW laser device, 
a protective gas device, a powder feeding device, and a move-
ment device; a schematic representation is presented in Fig. 4.

2.2  Cladding experiment

On the basis of the collected point cloud from the cladding layer 
and substrate molten pool contour, the data are fitted with a para-
bolic function, and the area of the cladding layer and substrate 

Table 2  Mechanical properties 
of the Invar alloy

Density
g −  cm−3

Elongation
δ/%

Hardness
HV

Modulus of elasticity
MPa

Tensile strength
�
b
/MPa

Coefficient of heat conductivity
W ∙ (m − K) −1

8.11 30 141 134 500 0.108 ~ 0.135

Fig. 3  a Element spectrum and b SEM micrographs of the spherical morphology of the Fe and Ni particles

Fig. 4  Schematic view of the 
laser cladding process. Hereon, 
heat affected zone is referred to 
as HAZ
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molten pool is calculated accordingly. Following that, the area 
of cladding layer was calculated as 1.75mm2 and the area of 
substrate molten pool was 0.32mm2, as shown in Fig. 5.

Subsequently, the dilution rate was calculated using 
Eq. (1):

3  Modeling of the multi‑pass cladding 
process

3.1  Establishment of geometric model

According to the results of the single pass cladding, the 
geometric model of three-pass cladding was established by 
selecting a 45% overlap rate, as shown in Fig. 6.

3.2  Establishment of finite element model

3.2.1  Element division

In the analysis of the multi-pass cladding temperature 
field, the changes in pool size and depth under differ-
ent process parameters were mainly investigated. The 
division of unit size of the substrate, cladding layer, and 
the molten pool is 0.73  mm × 0.71  mm × 0.33  mm in 
Fig. 7a and 0.238 mm × 0.12 mm × 0.12 mm in Fig. 7b; 
that of the substrate molten pool and the unit nearby is 
0.238 mm × 0.12 mm × 0.125 mm in Fig. 7c, which not only 

(1)D(%) =
S2

S1 + S2

ensures the calculation accuracy but also reduces the calcu-
lation time. The mesh generation is shown in Fig. 7.

3.2.2  Initial and boundary conditions

The ambient temperature of powder and substrate of 
Invar alloy was considered as 20 °C. As soon as the pow-
der is sent out from the nozzle and interacted with the 
laser beam, it melts on the substrate and forms cladding 
layers with a certain shape. The ambient temperature of 
cladding layers is shown in Eq. (2):

The ambient temperature of substrates is shown in 
Eq. (3):

where Tc and Ts are ambient temperature and elevated tem-
perature, respectively.

The boundary conditions are including heat flux, convec-
tion, radiation, and heat conduction. The boundary condi-
tions of the first kind is shown in Eq. (4):

The boundary conditions of the second kind is the heat 
flux, qh , on the surface, which is defined in Eq. (5):

The boundary conditions of the third kind are the heat 
exchange which is shown in Eq. (7):

(2)T
(

xc, yc, zc, 0
)

= Tc

(3)T
(

xs
,, ys

,, zs
,, 0

)

= Ts

(4)TW = f (x, y, z, t)

(5)qw = q(x, y, z, t)

Fig. 5  Cross-sectional features

Fig. 6  Geometric model of 
multi-pass cladding: a isometric 
view and b front view
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where TW is the surface temperature of the cladding layer, 
α is the heat conductivity, and qw is the heat flux surface of 
cladding layer.

3.2.3  Thermophysical parameters of materials

The variations of Young’s modulus, yield strength, coef-
ficient of heat conductivity and specific heat, and thermal 
expansion coefficient versus temperature are shown in Fig. 8 
for the Invar alloy.

3.2.4  Heat source model

The double ellipsoid model provides several advantages for 
adjusting the shape and size of the molten pool in the simu-
lation in the case of having a continuously moving tempera-
ture field. To ensure high precision, the characteristics of the 
molten pool, and temperature field during the laser cladding, 
a double ellipsoidal model is determined.

The double ellipsoid model of heat flow in the first half 
is presented as Eq. (8):

(6)qw = α
(

TW − Tf
)

The function of heat flow in the second half of double 
ellipsoid is defined as Eq. (9):

where Q is the available power; af  , ar , b , and c are the model 
parameters; and ff  and fr are the functions of heat-flux dis-
tribution before and after the heat source model, respectively 
such that ff + fr = 2.

3.3  Heat transfer model of cladding

The temperature field distribution at different time steps and ele-
ments can be extracted in FEM for cladding layer and substrate. 
The three-dimensional governing equations of temperature field 
of cladding layer and substrate are as defined as Eq. (10):

(7)qf (xf , yf , zf , t) =
6
√

3ff Q

af bc�
√

�

e−3xf
2∕a

f2 e−3yf
2∕b2e−3zf

2∕c2

(8)qs(xs, ys, zs, t) =
6
√

3frQ

arbc�
√

�

e−3xs
2∕a

r2 e−3ys
2∕b2e−3zs

2∕c2

(9)�C
p

�T

��

−

[

�

�x

(

�
x

�T

�x

)

+
�

�y

(

�
y

�T

�y

)

+
�

�z

(

�
z

�T

�z

)]

− Q = 0(T ≥ 0)

Fig. 7  Mesh generation for multi-pass lap cladding: a substrate elements, b cladding layers elements, c transitional elements
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where �Cp
�T

��

 is the energy required to raise the temperature 
by one unit; �

�x

(

�x
�T

�x

)

 , �
�y

(

�y
�T

�y

)

 , and �
�z

(

�z
�T

�z

)

 are the input 
discrete element energies in X, Y, and Z directions, respec-
tively; �x , �y , and �z are the coefficients of heat conductivity 
of Invar alloy in X, Y and Z directions, respectively; 
Q(x, y, z) is the energy provided by the laser beam; T is the 
temperature; Cp is the specific heat; and ρ is the density.

3.4  Verification of heat source model

The temperature distribution of the laser cladding process is 
compared with that of the single cladding experiment, as the 
benchmark, to ensure high precision. Moreover, the parameters 
of the heat source model are modified and adjusted according 
to the experimental results, as shown in Fig. 9. The technologi-
cal parameters include the laser power of 1500W, the scanning 
speed of 3 mm/s, and the powder feeding rate of 5 g/s. It can be 
seen that the height, width, and depth of the cladding layer of 
experimental results were in good agreement with the simulation 

results, which indicates that the simulation model is accurate to 
simulate the temperature field distribution of Invar alloy.

3.5  Investigation of thermal effect on the molten 
depth

3.5.1  Analysis of molten depth variation at different time 
during the first pass

Figure 10 shows the molten pool depth at different steps 
during the first pass. As shown in Fig. 10a, the substrate tem-
perature was 20 °C where any evidence of energy absorp-
tion cannot be captured, and the substrate was not melted. 
By absorbing energy, the energy dissipates to the surround-
ing, and consequently, the substrate cannot be molten. That 
is to say, the particles ejected out of the nozzles were not 
synchronized with the laser beam along the scanning direc-
tion and have a certain hysteresis. Then the powder particles 
absorb less energy from the laser beam and fail to be melted, 
which leads to the smaller width and height.

Fig. 8  Material parameters varying with temperature: a specific heat capacity and thermal conductivity, b yield strength, c coefficient of thermal 
expansion, and d Young’s modulus
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Figure  10b illustrates the molten pool depth at step 
1–2 indicates a depth of 0.01688 mm. The substrate had 
absorbed and accumulated energy and had begun to melt. 
Gradually, the powder was synchronized with the laser beam 
with increasing the energy absorption which leads to swell-
ing the width and height of the cladding layer. Figure 10c 
captures the molten pool depth at step 1–4 shows a depth of 
0.5327 mm. In this case, the substrate absorbed and accu-
mulated even more energy as a result the molten pool depth 
reached an ideal value. The particles were synchronized with 
the laser beam and fully absorbed energy through the laser 
beam. The height and width of the cladding layer reached 
the expected size.

In step 1–16, the molten pool depth reached 0.9116 mm 
(Fig. 10d). Due to the constant process parameters through-
out the cladding process, the substrate progressively absorbs 
and accumulates energy and continuously transfers energy 
to the surrounding. As a result, the continuous increase of 
the initial temperature of substrate, the substrate molten pool 
depth, and finally the maximum is 0.9116 mm.

Figure 10e illustrates the molten pool depth in step 1–47 
shows a depth of 0.8641 mm. Because there are convection, 
radiation, and conduction factors, the initial temperature of 
the substrate was not increased progressively, instead reach 
an equilibrium eventually. Following that, the energy was 
gradually decreased resulting in the depth of the substrate 
molten pool to be decreased gradually.

In step 1–81, the molten pool depth gradually increased to 
0.9966 mm (Fig. 10f). As the laser beam was getting closer 
to the end of the substrate, the absorbed energy of the sub-
strate could not be transferred to the front and gradually 
accumulated near the end of the substrate, which resulted in 
the starting temperature of the substrate and the depth of the 
molten pool to be increased progressively.

3.5.2  Analysis of molten depth variation at different time 
during the second pass

Figure  11 illustrates that the corresponding molten 
depths of steps 1, 2, 3, 16, 76, and 81 during the second 

Fig. 9  Verification of the FEM analysis using experimental results of the cladding process

Fig. 10  Molten pool depth at different steps during the first pass
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pass are 0 mm, 0.3001 mm, 0.5002 mm, 0.9666 mm, 
0.9104 mm, and 1.0217 mm, respectively. After the first 
pass cladding, it took two seconds for the laser beam to 
move from the end of the first cladding (layer?) to begin 
the second cladding (layer?). During this period, the 
substrate and cladding layer dissipate the accumulated 
energy during the first pass via convection, conduction, 
and radiation.

Figure 11a shows that the molten pool depth is 0 mm. 
Figure 11b presents that the molten pool depth in step 
2–2 is 0.3001 mm, which is nearly 80% larger than that 
in step 1–2 of 0.1688 mm. It is evident that although 
the heat dissipation takes place between the first and 
second passes, the substrate still has a higher initial 

temperature which leads to a higher depth of molten. 
Figure 11c illustrates that the molten pool depth in step 
2–3 is 0.5002 mm, which is nearly 30% larger than that 
in step 1–3 of 0.3864 mm. Figure 11d exhibits that the 
molten pool depth in step 2–16 is 0.9666 mm, which is 
about 6% larger than that in step 1–16 of 0.9116 mm. 
Figure 11e shows that the molten pool depth of the sub-
strate in step 2–76 is 0.9104 mm, which is about 4% 
larger than that in step 1–76 of 0.8754 mm. Figure 11f 
presents that the molten pool depth of the substrate in 
step 2–81 is 1.0217 mm, which is about 3% larger than 
that in step 1–81 of 0.9966 mm.

To sum up, with the second cladding, the effect of the 
first cladding on the initial temperature of the second 

Fig. 11  Molten pool depth at different steps during the second pass

Fig. 12  Molten pool depth at different steps during the third pass
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cladding decreased gradually. When the molten depth 
reached a certain depth, the initial temperature of the 
substrate reached an approximate equilibrium state, and 
the molten depth increased less than that of the first pass.

3.5.3  Analysis of molten depth variation at different steps 
during the third pass

Figure 12 shows the variation of molten depths during 
the third pass taken from the steps 1, 2, 3, 16, 73, and 81 
which were 0 mm, 0.3301 mm, 0.5352 mm, 1.0267 mm, 
0.9754 mm, and 1.0629 mm, respectively.

Comparing the molten pool depth in step 2 of the 
first and third passes, a considerable increase of 96% 
was noticed in the depth which can be attributed to the 
heat accumulation after the first and second cladding. 
Under the same process parameters and higher initial 
temperature, the molten depth of step 3–2 is nearly twice 
as deep as that of step 1–2. From Fig. 12c, the molten 

pool depth in step 3–3 is 0.5352 mm, about 39% larger 
than 0.3864 mm in step 1–3.

According to Fig. 12d, the depth of the molten pool in step 
3–16 is 1.0267 mm, about 13% larger than 0.9116 mm in step 
1–16. According to Fig. 12e, the depth of the molten pool in 
steps 3–73 is 0.9754 mm, about 12% larger than 0.8728 mm in 
steps 1–73. According to Fig. 12f, the depth of the molten pool 
in step 3–81 is 1.0629 mm, about 7% larger than 0.9966 mm in 
step 1–81. With the third cladding pass, the heat of the substrate 
gradually reached the equilibrium, and the effect of heat gener-
ated in the first and second passes on the depth of the third pass 
of the substrate pool decreased gradually.

3.5.4  Influence and analysis of thermal action at different 
steps and stages

Figure 13a–c illustrates that the molten pool depth of the 
first, second, and third passes is small in the initial stage, 
then increases rapidly. Moreover, in the middle stage, 

Fig. 13  Variation and trend of molten depth of three passes: a first pass, b second pass, c third pass, and d comparison of molten depth
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it was noticed that the molten pool depth size almost 
remained unchanged. The trend of the average molten 
pool depth size taken from the three passes is plotted in 
Fig. 13d, where a gradual increase is apparent.

That is to say, the average molten depth of the first, 
second, and third passes was 0.8422 mm, 0.9018 mm, 
and 0.9572 mm, respectively. During the first cladding 
process, the substrate produces a higher temperature, 
according to a certain temperature gradient to the around 
the substrate. Consequently, the average depth of the sec-
ond molten depth was 7% greater than that of the first 
molten depth, as a result of the increase in the initial 
temperature of the second and third cladding path.

In the second cladding process, the higher temperature 
generated by the first pass of cladding is transferred to 
the third cladding path, and the initial temperature of the 

third cladding is increased by the interaction with the 
first cladding. Therefore, the average molten depth of 
the third pass is 14% greater than that of the first pass.

The difference between the maximum molten depths 
of the first, second, and third substrates is small, and all 
occur in the last step of cladding. The maximum molten 
depth of the first, second, and third passes is 1.1230 mm, 
1.1330 mm, and 1.1705 mm, respectively. The maximum 
molten depth of the first, second, and third pass increases 
gradually. The difference between the maximum molten 
depths of the three passes is also small. This can be 
attributed to the energy generated by the laser beam 
moving to the last few steps accumulates, resulting in 
the rapid increase of the initial temperature of the last 
step. However, the effect of heat on the molten depth was 
found to be weak.

Fig. 14  Five power functions 
and corresponding molten 
depth: a five power functions, 
b constant power, c quadratic 
decreasing function, d quadratic 
increasing function, e linear 
decreasing function, and f linear 
increasing function
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4  Establishment of optimized model 
for thermal effect

To keep the dilution rate at the desired value during cladding, it 
was adjusted using a deep learning approach. Firstly, to ensure 
validity and precision, five different linear and nonlinear power 
functions are employed to load the FEM, and the correspond-
ing data were extracted. Secondly, the appropriate network 
depth, convolution kernel number, and convolution kernel size 
were determined according to the extracted data. Then, the 
optimized model was constructed, and the power function was 

fitted. Finally, the power function was inputted into the FEM for 
simulation and verified by experiments.

4.1  Loading and analysis of linear and nonlinear 
power functions

To employ a convolution network to adequately learn the corre-
lation between the molten depth and laser power, the deep learn-
ing model was emulated by the constant power, linear function, 
and quadratic function. The results of five different functions and 
corresponding molten depth are shown in Fig. 14.

Fig. 15  Structure diagram of the convolutional neural network

Fig. 16  a Real-time laser power 
data points and b power data 
points fitted using a quadratic 
function
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4.2  Construction of optimization model

4.2.1  Convolutional layer

To avoid the problems with a large amount of calcula-
tion caused by the fully connected method, the weight 
allocation method and multiple-convolution kernel were 
employed by the convolution layer to minimize the calcu-
lated quantities. First, by constructing different convolution 
kernels to traverse the input layer, a new input feature map 
was obtained by calculating the same weight. Owing to 
the various convolution kernels, the characteristic map-
ping of convolution calculation was also different. Then, 

by adjusting the sliding step of the convolution kernel, the 
size of the characteristic map presented richer diversity. 
Based on the above methods, the calculation efficiency 
could not only be improved, but also the training speed 
was increased.

The new feature mapping was developed by the convolu-
tion calculation. Supposing that the value of the feature map-
ping approached the convolution kernel, it was approximated 
as 1. The equation of the convolution layer is presented in 
Eq. (11):

(10)ylc(ic,jc)
c

= K
lc
ic
∗ xlc(r

jc ) =
∑V−1

jc
,=0

k
lc(jc

,)

ic
xlc(jc+jc

,)

Fig. 17  Optimized molten depth during the first pass

Fig. 18  Optimized molten depth during the second pass



5366 The International Journal of Advanced Manufacturing Technology (2023) 127:5353–5371

1 3

where klc(jc
,)

ic
 is the jc, th weight of the ic th convolution kernel 

of the l th layer, xlc(rjc) is the jc th convolved local area of the 
lc th layer, and V is the convolution kernel width.

4.2.2  Activation layer

A nonlinear activation function was adopted to regulate the 
whole nonlinear network through computing the convolu-
tional layer. The nonlinear activation functions were the tanh 
function, Relu function, sigmoid function, etc., which were 
computed in the functions shown as Eqs. (12), (13), and 
(14), respectively. The tanh and sigmoid functions had the 
shortcoming of the disappearance of the gradient. Conse-
quently, the Relu function was employed as the activation 
function of the front convolution layer.

where ala(ia,ja)a  is the active value and yla(ia,ja)a  is the output 
value.

4.2.3  Pool layer

The pool operation was employed for the convolution 
neural network to minimize the number of samples. The 
operation of pooling was comprised of the minimum 

(11)ala(ia,ja)
a

= sigmolid
(

yla(ia,ja)
a

)

=
1

1 + e−la(ia,ja)

(12)ala(ia,ja)
a

= tanh
(

yla(ia,ja)
a

)

=
ey

la (ia ,ja )
a − e−y

la (ia ,ja )
a

ey
la (ia ,ja )
a + e−y

la (ia ,ja )
a

(13)ala(ia,ja)
a

= f
(

yla(ia,ja)
a

)

= max
{

0, yla(ia,ja)
a

}

pool, maximum pool, and average pool. Using 2 × 2 tra-
versal convolution results, the maximum was retrained to 
obtain a new feature mapping. As the maximum pooling 
maintains the maximum in each row and column, it cor-
responded to retain the best combination of (?) results. 
The closer the value was to 1, the more approximate 
the surface feature was. The functions are presented in 
Eqs. (15) and (16).

where alp(ip,t) is the activation value of the output of the t-th 
neuron of the i-th feature graph of the first layer, plp(ip,jp)p  is 
the characteristic value of the output of the t-th neuron of 
the i-th feature graph of the first layer after pooling, and Wp 
is the width of pooling window.

Figure 15 shows the structure of the convolution neural net-
work for multi-pass overlapping cladding. Two convolution 
layers, one pool layer, and one flat layer were used to predict 
the power function. The depth of the network layer was 3 lay-
ers, and the number, size, and sliding step of the convolution 
layer were 64 and 2 × 2 and 1, respectively. Moreover, the size 
and number of convolution cores are 2 × 2, 16. The activation 
function was Relu activation function, and the filling method 
was the “same.” Then the pooling layer was flattened and con-
nected with the full connection layer. The loss function was 
“MSE,” the optimization function was “Adam,” the iteration 
times were 200, the learning rates were 1e−3, and the cross-
validation was used to improve the fitting degree.

(14)p
lp(ip,jp)

p =
1

Wp

∑jpWp

t=(jp−1)Wp+1
alp(ip,t)

(15)p
lp(ip,jp)

p = max
(jp−1)W+1≤t≤��

{

alp(ip,t)
}

Fig. 19  Optimized molten depth during the third pass
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5  Results and discussion

5.1  Construction of power function

To obtain the laser power corresponding to the desired 
molten depth, the molten pool depth was used as the input 
and the laser power was employed as the output to train. 
According to the set parameters, the sample data was 
imported for prediction. The real-time laser power data 
points obtained are illustrated in Fig. 16a. To facilitate 
the simulation and verification against the experimental 
data, the power data points were fitted using a quadratic 
function, as shown in Fig. 16b.

The predicted results of different cladding passes were 
fitted by a quadratic function. The optimized three channel 
power functions are listed in Eqs. (17)–(19):

(16)y1 = 0.707t2 − 14.70t + 1201 (0 < t < 6.67)

where y is the laser power and t is the laser cladding time.

5.2  Analysis of the molten pool depth

The optimized laser power function is loaded on the finite 
element model, and the analytical results are as follows:

5.2.1  Results and analysis of molten depth after the first 
pass optimization

Figure 17a–f shows the molten pool after the first cladding 
process, with the depth of 0.02 mm, 0.5002 mm, 0.5827 mm, 
0.5021 mm, 0.4189 mm, and 0.5527 mm, respectively. In 
step 1–2, the substrate absorbed less heat and the molten 

(17)y2 = 0.290t2 − 11.64t + 1221 (8.67 < t < 15.34)

(18)y3 = 0.525t2 − 20.33t + 1300 (17.34 < t < 24)

Fig. 20  Comparison of the molten depth before and after optimization and the expected: a first pass, b second pass, c third pass, and d average 
molten depth
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depth was small since it was the initial stage. With the con-
tinuous input of laser energy, the depth of molten increased. 
In step 1–6, the molten pool depth and the cladding layer 
size just reached the expected value. In step 1–13, the molten 
depth reached the local maximum. Therefore, the power 
function decreased continuously, and the molten depth 
decreased from step 1–14 to step 1–73. When the laser beam 
was closer to the end of the substrate from the steps 1–73 to 
1–81, the energy would gather rapidly, leading to the molten 
pool depth to be increased rapidly.

5.2.2  Results and analysis of molten depth after the second 
pass optimization

Considering the influence of heat generated by the first clad-
ding pass on the second pass, the optimized power function 
was gradually reduced. Compared with the first pass, the 
molten depth corresponding to the second pass also changed 
by adjusting the power function. Figure 18 shows the results 
of the second cladding and their molten depths.

5.2.3  Results and analysis of molten depth after the third 
pass optimization

After the first and second cladding, the heat accumulation 
effect was produced on the third cladding, and the optimized 
power function was further reduced. Figure 19 shows the 
results of the third cladding.

During the first cladding (pass, layer, or process?), 
the starting temperature of the substrate was low, and the 
power required for the cladding was high. During the clad-
ding process, the initial temperature increased gradually, 
and the power required was relatively small. As shown in 
Fig. 20a, the first unoptimized molten depth is far greater 
than the expected molten depth. The optimized molten depth 
reached the expected depth in step 1–6 and then continu-
ously increased by reaching the local maximum in step 1–16.

In order not to make the substrate molten depth devi-
ate from the expected molten depth considerably, with 
the adjustment of the power function, the molten depth 
decreased from steps 1–17 to 1–73 over the given time. 

Fig. 21  Error between the actual and expected dilution rates: a first pass, b second pass, c third pass, and d average error
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During this period, the molten depth of the substrate had 
been decreasing within a reasonable range. To avoid a sig-
nificant reduction in the molten depth of the substrate, the 
molten depth increased with the adjustment of the laser 
power function. Figure 20b, c demonstrates the influence 
of the first cladding on the initial temperature of the second 
cladding and the influence of the first and second cladding 
on the initial temperature of the third cladding.

The molten depth mostly fluctuated near the desirable 
molten depth with the real-time adjustment of the laser 
power function, which ensures better cladding quality. 
Figure 20d explains that the initial temperature increases 
with the continuous input of energy, which results in the 
average molten depth of the first, second, and third passes 
to increase, which is far greater than the expected molten 
depth. After optimization, the average molten depth of the 
first pass was very close to the expected molten depth. The 
average molten depth of the second pass was also slightly 
lower than the expected molten depth. Moreover, the average 
molten depth of the third pass was slightly higher than the 
expected molten depth. However, the average molten depth 
of the three passes fluctuated around the expected molten 
depth, which ensures the cladding quality.

5.3  Analysis of model error

Figure 21 shows the size and distribution of the errors 
after the optimization of the substrate molten depth. As 
can be seen in Fig.  21a, in the first cladding, the sub-
strate in step 1–1 is not melted, and the molten depth for 
steps 1–2 to 1–4 is 0.02 mm, 0.2076 mm and 0.3314 mm, 
respectively, and the errors of the expected molten depth 
are − 100%, − 96%, − 58.5%, and − 33.75%, respectively. 
This is because, at the initial stage of cladding, the molten 
depth cannot reach the expected value immediately, but it 
increases rather gradually.

In the  84th step, the last step, the molten depth increases 
rapidly to 0.6865 mm due to the energy accumulation, and 
the error increases to 37.25%. Similarly, Fig. 21b, c illus-
trates that the tendency of the second and third passes is the 

same as that of the first pass. According to Fig. 21d, the aver-
age errors of the first second and third passes are 10.88%, 
8.77%, and 6.89%, respectively.

5.4  Experimental verification

The optimized three power functions were the inputs of the 
cladding equipment to carry out multi-pass overlapping 
cladding experiment, and the cladding sample is cut along 
the radial direction by the wire cutting, as shown in Fig. 22. 
Due to the real-time adjustment of the power function, the 
energy absorbed during the first, second, and third passes 
is basically equal. Therefore, the hm1 , hm2 , and hm3 are basi-
cally equal and Ad1 , Ad2 , and Ad3 are also the same; that is 
to say, the dilution rate of the three passes is basically the 
same. This confirms that the optimization of molten pool 
depth is effective.

6  Conclusion

The FEM model was employed using the experimental result 
to study the heat accumulation effect in the three-pass laser 
cladding process. Then, the molten pool depth under differ-
ent working conditions was obtained by loading different 
power functions on the FEM model. Finally, their dilution 
rates were optimized via a deep learning approach. The main 
conclusions are as follows:

1. The three-pass lapping FEM with a 45% overlapping 
rate was established based on the experiments, which 
indicated that the depth, height, and width of the clad-
ding layer obtained from the experimental result were 
in agreement with those of the simulation analysis.

2. The heat accumulation effect has a critical impact on 
the process of multi-pass cladding. From the first to 
the third passes, the average molten depth of the sub-
strate increased gradually. The average molten depth 
of the first, second, and third passes was 0.8422 mm, 
0.9018 mm, and 0.9572 mm, respectively. The maxi-

Fig. 22  Experiment on the dilution rate of multi-pass cladding process
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mum molten depth of the first, second, and third passes 
was 1.1230 mm, 1.1330 mm, and 1.1705 mm, respec-
tively.

3. The dilution rates of three-pass layers were optimized 
using a deep learning approach. The dilution rates of 
each cladding layer fluctuate with a small value around 
the ideal value by dominating the power in actual time. 
The average error of the first, second, and third passes 
was 10.88%, 8.77%, and 6.89%, respectively.

4. The optimized three power functions were inputted as 
the cladding equipment to carry out a multi-pass over-
lapping cladding experiment, which reached a satisfac-
tory agreement result with the experiment.
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