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Abstract
Highly ordered  TiO2 nanotubes were obtained by anodization on Ti6Al4V substrates manufactured by electron beam powder 
bed fusion (E-PBF). Effects of anodization parameters such as anodizing time, stirring, fluoride concentration, and water con-
tent were analyzed in an organic electrolyte (ethylene glycol) that contains ammonium fluoride. The ordering of the nanotubes 
was measured by regularity ratio calculations based on fast Fourier transform (FFT) from SEM images. It was found that for 
the processed specimens, the highest ordering of the  TiO2 nanotubes was reached at 30 V for 5000 s with a concentration of 
9 vol%  H2O and 0.4 wt.%  NH4F, exhibiting nanotubes free of delamination, cracks, and coral-like structures with a regularity 
ratio (RR) of 1.91. This work offers a simple method for creating homogeneous and organized  TiO2 nanotubes on Ti6Al4V 
substrates manufactured by E-PBF which potentially improves its functionality in diverse industrial applications such as 
nanosensors, controlled-release substances, solar cells, water splitting, electrochromic devices, and Li-ion battery anodes.

Keywords Additive manufacturing · Anodizing · Electron beam melting · TiO2 nanotubes · Self-organized nanotubes

1 Introduction

Titanium and its alloys have excellent properties such as 
good corrosion behavior, low density, high stiffness to 
weight ratio, strength, and fracture toughness [1], which 

makes them attractive for a wide range of applications in 
fields such as aerospace, biomedical, chemical and automo-
tive, petrochemical, and pharmaceutical [2, 3]. Particularly, 
Ti6Al4V is the most prevalent and extensively used titanium 
alloy, supplying nearly half of the global market of titanium-
based products [4, 5]. It is expected that the titanium global 
market to reach US$ 6.24 billion by 2027 [5, 6] mainly 
driven by the increasing demand for biomedical devices and 
manufacturing of lighter components for transport and the 
launch of technologically advanced products.

Components made of titanium and its alloys have con-
ventionally been manufactured by casting, forging, extru-
sion, and powder metallurgy manufacturing methods. These 
methods include several processing stages due to the high 
reactivity of titanium. Some of those processes allow for 
the formation of alpha case layer affecting the mechanical 
properties of the part [7], which is critical at melting tem-
peratures and during thermal processing [7]. In addition, 
Ti6Al4V alloys, compared to other materials, are difficult 
to machine and weld, which causes processing costs to 
increase, especially when dealing with complex morpholo-
gies [4]. The above implies that the manufacturing of parts 
of titanium alloys requires the adoption of technologies with 
precise control of the processing parameters and variables 
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to avoid contamination of the material by external elements, 
which are difficult to extract by subsequent processes. In this 
sense, and thanks to the accelerated use of titanium, many 
industrial sectors have taken advantage of techniques such 
additive manufacturing (AM) since they allow shortening 
delivery and lead times, reducing costs, solving difficulties, 
and geometrical restrictions, but also making it possible the 
production of lighter objects and with less environmental 
impact since the use of material is optimized during the 
manufacturing [7, 8] what ultimately brings a shortened 
product development cycle [8]. In addition, AM is useful 
for obtaining components used in electrochemistry and for 
photovoltaic cells, electrodes, and photoelectrodes with par-
ticular morphologies [9] that simultaneously increase the 
surface area from the formation, for example, of cellular 
structures, enhancing its potential applications. According 
with the ASTM F2792-12a, there are three main categories 
that have been used for processing titanium and its alloys 
[10]: (i) directed energy deposition (DED), (ii) Ultrasonic 
additive manufacturing (UAM), and (iii) powder bed fusion 
(PBF), the latter standing for more than 80% of the global 
metal AM market. In PBF, powder particles spread in a bed 
are selectively fused or melted, layer by layer, by the action 
of either a laser (L-PBF) or an electron beam (E-PBF), to 
build parts of a desired 3D geometry [8, 11–13]. One of the 
main technologies within E-PBF is electron beam melting, 
also referred as electron beam powder bed fusion (E-PBF). 
In E-PBF, the parts are built in a vacuum environment at 
high temperatures (600–700 °C in the case of Ti alloys), 
allowing for manufacturing of high-quality components 
with complex geometries. E-PBF has therefore been exten-
sively used for manufacturing of Ti6Al4V in biomedical 
applications [11, 14]. In addition, E-PBF components have 
enhanced ductility in contrast with forged specimens [10, 
15]. Additionally, since a powerful electron beam is steered 
by electromagnetic lenses in E-PBF, the parts can be pro-
duced with a faster build rate in contrast with L-PBF and 
other metal AM techniques such as DED, due its faster scan 
rate and superior energy input [16].

Despite the demonstrated benefits of the manufacturing of 
Ti6Al4V alloys by E-PBF and the great interest from several 
industrial fields [16], there are still aspects regarding the sur-
face of the materials obtained, as well as its improvement or 
functionalization, that continue to be poorly studied. This is 
especially relevant in applications such as biomedical, where 
the role of the surface is critical in the function and perfor-
mance of components. Anodizing is one of the most interest-
ing surface modification processes due to its good reproduc-
ibility, simplicity, low-cost, and the fact that no complex 
equipment is needed [17, 18]. Furthermore, a special interest 
in anodization has been given to the formation of 1D-nano-
structures such a  TiO2 nanotubes (TNT) [19–23], which has 
been proposed as a promising application in many industrial 

fields ranging from water treatment with photovoltaic sys-
tems to biomedical applications, including nanosensors [24], 
controlled-release substances [25], solar cells [26], water 
splitting [27], electrochromic devices [28], Li-ion battery 
anodes [24], osteointegration promoters, and antibacterial 
agents reservoirs for prosthetic implants [17, 22, 29, 30]. 
In addition to the advantages mentioned above, the anodiz-
ing technique offers the possibility of producing coatings 
on parts with rather complex geometries. This makes it a 
suitable technique to apply surface modifications in parts 
manufactured by AM processes like E-PBF, where often per-
sonalized parts with complex shapes are manufactured. It 
would be then virtually possible to obtain 1D-nanostructures 
basically on any type of Ti6Al4V pieces printed by E-PBF. 
One of the aspects that deserves further research in relation 
to the TNT formation is the control of its morphology and 
distribution on the surface. The organization of the nano-
tubes allows better control of the properties making them 
a promising functional material for various applications. It 
is important to mention that most of the published reports 
about TNT formation, especially for organic electrolytes, 
are in regard to commercially pure titanium substrates and 
not much information is available on TNT formed on ter-
nary Ti alloys [29]; however, many applications require the 
use of substrates with better mechanical performance such 
as Ti6Al4V titanium alloys. According with the reported 
by Macak and collaborators [31] experienced difficulties in 
their attempts to form highly organized TNT on Ti6Al4V 
substrates, specially due to the dissolution and different reac-
tion rates of the phases in the alloys, which in the case of the 
E-PBF process is a matter that has not been addressed given 
the particularity of the process and the distribution charac-
teristics of the alpha and beta phases in the coating [1, 4, 29]. 
To the best of our knowledge, reports about the formation of 
anodic layers on Ti6Al4V manufactured by E-PBF is scarce, 
especially regarding the formation of highly organized  TiO2 
nanotubes on this type of substrates.

The aim of this study is therefore to obtain highly organ-
ized  TiO2 nanotubes on Ti6Al4V substrates manufactured 
by AM using a single-step anodization process. In doing so, 
disc shaped samples fabricated by E-PBF were anodized 
using a two-electrode configuration in ethylene glycol 
solution containing water (2–10 vol.%), aiming to gener-
ate 1D-nanostructures under potentiostatic conditions at a 
potential of 30 and 60 V as well as to determine the influ-
ence of the potential and composition on the morphology 
and organization of the nanotubes. The novelty of this work 
is related to the demonstration of an experimental method-
ology that allows obtaining highly ordered  TiO2 nanotubes 
on Ti6Al4V substrates manufactured by E-PBF analyzed 
by regularity measurement ratio calculations based on FFT 
images. This type of analysis does not show before for this 
kind of 3D-manufactured substrate. To date, this type of 
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analysis has not been reported in this way for Ti6Al4V sub-
strates fabricated by additive manufacturing.

2  Experimental

2.1  Substrate preparation

Ti6Al4V substrates were manufactured using the electron 
beam powder bed fusion (EB-PBF) technology using an 
Arcam A2 electron beam melting (EBM) system (ARCAM, 
Mölndal, Västra Götaland, Sweden). Substrates were built 
at an acceleration voltage of 60 kV (producing a beam with 
a maximum power of 4 kW), in a vacuum environment 
(~  10−4 mbar), an operating temperature of 600–700 °C and 
a layer thickness of 50 um. The microstructure of the sub-
strates was analyzed by SEM after the metallographic prep-
aration, which was performed by polishing the specimens 
using SiC abrasive paper up to mirror finish and then etched 
in a Kroll’s reagent and ultrasonically cleaned in acetone and 
distilled water. The composition of the obtained substrate 
was determined by optical emission spectroscopy (using a 
Q4 TASMAN equipment) is summarized in Table 1. Then, 
coupons of 19 mm and 3 mm in diameter and thick, respec-
tively, were cut from the printed specimen and ground with 
SiC abrasive paper of different grit sizes until #1200. They 
were then cleaned with ethanol using an ultrasonic probe 
and finally drying in air.

2.2  Anodization process

The anodizing process was carried out under potentiostatic 
conditions using an ethylene glycol-based bath. The samples 
denomination and process conditions are given in Table 2. 
The anodizing solutions were prepared under stirring at 400 
RPM for 1 h. In all cases, the Ti6Al4V substrates obtained 
by electron beam powder bed fusion were used as anode 

and a graphite plate as cathode. After the anodization pro-
cess, the specimens were rinsed with distilled water and then 
immersed in a beaker with ethylene glycol to avoid further 
dissolution of the formed anodic film. Finally, the samples 
were rinsed with distilled water and finally dried in air. For 
each condition, each experiment was repeated three times.

2.3  Anodic layer characterization

The chemical composition and structure of the anodic layers 
was studied by Raman spectroscopy by using a Labram High 
Resolution Jovin Yvon Horiba equipment. Surface analysis 
and morphology characterization were carried out using a 
ThermoFisher Scientific Apreo 2 field emission scanning 
electron (FESEM) microscopy equipped with ThermoF-
hisher energy-dispersive X-ray (EDX) microprobe. Cross-
sections of coatings were prepared by scratching the sample 
with a scalpel and then tilting the SEM holder until getting 
the desired image. To measure the nanotubes organization, 
a quantitative fast Fourier transformation (FFT) analysis 
was made by using SEM images of the specimen’s surfaces. 
The FFT analysis were made using the WSxM 5.0 software 
[32] and other measurements as internal diameter and coat-
ing thickness were made using the xT Microscope Version 
23.2.0 of Thermo Fisher Scientific software and a public 
domain software Image J®.

3  Results and discussion

SEM cross-sectional micrographs of Ti6Al4V substrates 
manufactured by E-PBF in a cut perpendicular to the build 
direction are presented in Fig. 1. The microstructure consists 
of β platelets (of between 0.5 and 2.5 µm in length) and 
retained particles uniformly distributed in a fine-lath alpha 
phase matrix. This configures both a colony- and basket-
weave morphology within prior beta grains (also referred to 

Table 1  Chemical composition 
(wt. %) of the E-PBF processed 
substrates

Element Si Al Mo Nb V Zr Fe Co Cu Cr Ti

% 0.041 6.030 0.013 0.069 4.371  < 0.010 0.128 0.013 0.0024 0.0059 Bal

Table 2  Bath composition and 
process conditions

Sample ID Solution composition Voltage (V) Time (sec) Stirring

M1 9 vol%  H2O, 0.4 wt.%  NH4F 30 5000 No
M2 9 vol%  H2O, 0.4 wt.%  NH4F 30 5000 Yes
M3 9 vol%  H2O, 0.4 wt.%  NH4F 60 5000 No
M4 4.5 vol%  H2O, 0.4 wt.%  NH4F 30 5000 No
M5 9% vol%  H2O, 0.4 wt.%  NH4F 30 1000 No
M6 9% vol%  H2O, 0.4 wt.%  NH4F 30 2500 No
M7 9% vol%  H2O, 0.2 wt.%  NH4F 30 5000 No
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as Widmastätten microstructure). Similar microstructures 
have been reported in the literature [33–35] for these type 
of substrates.

The presence of both α and β phases has a relevant effect 
on the growth of the anodic layer since there are different 
electrochemical behavior as consequence of the micro-
structure and the compositional differences of the α and β 
phases which can undergo different anodizing rates [4]. It 
has been demonstrated the presence of bimodal α/β phases 
significantly affects the regularity and homogeneity of the 
formed  TiO2 nanotubes [36]. In addition, it has reported that 
apparently the formation of highly organized TNT over a 
large surface area can be obtained only on single phase tita-
nium alloys like cp-Ti sheets but more difficult on binary 
or ternary alloys such as Ti6Al4V [29, 37]. However, con-
troversially to this and according with the results that will 
be shown below, the formation of self-organized and regu-
lar TNT on the whole of treated area is possible on E-PBF 
substrates. Regarding this, Fig. 2 shows low magnification 
images of the treated surface exhibiting, a well distributed 
and regular formation of TNT on it with the presence of 
apparent cavities whose shape, length, and distribution are 
corresponding with β platelets observed in Fig. 1, is then 
evident, as mentioned above, a lower growth kinetics for 
nanotubes in such phases. From Fig. 2, it worth to highlight 
that the nanotube structures obtained in this experimental 
work are free of delamination, cracks, and coral-like struc-
tures. This type of defects have been reported in a recent 
paper [38] in which they produced  TiO2 nanotubes over a 
Ti6Al4V substrate obtained by SLM.

A curve of current density vs. time during the anodiza-
tion of Ti6Al4V substrates manufactured by E-PBF in eth-
ylene glycol is shown in Fig. 3. The shape of the curve has 
the characteristic form associated with the  TiO2 nanotube 
formation [23, 29, 39]; furthermore, the curve shape in the 
Fig. 3 is similar to the curve form obtained in Ti6Al4V sub-
strates manufactured by forging [38].

Three stages in the nanotube’s formation are seen 
in Fig. 3. The first stage is related to the formation of a 

barrier layer; in this stage, the current density surges sud-
denly before falling quickly [39]. Before reaching a mini-
mum value, stage 2 starts; in this stage, by limiting the flow 
of oxygen molecules through the barrier layer, the oxide 
thickness obtained at this point causes the balance between 
oxidation and dissolution to tip in favor of dissolution and 
increases pore formation [40]. This process persists until the 
maximum pore density is achieved when the current density 
achieves a maximum. Next, the current density diminishes, 
and the nanopores rearrange and contend with one another 
to develop into nanotubes [39]. Stage 3 initiates at the point 
where the slant of the curve change; in this step, the pores 
have been converted into nanotubes, and as time progresses, 
the nanotubes grow in length [41].

To obtain highly ordered and clean (nanotubes free of 
particles or incompletely dissolved oxide layers on their top) 
 TiO2 nanotubes on Ti6Al4V alloys manufactured by E-PBF, 
we studied experimental anodization conditions, such as 
anodizing time, stirring, fluoride concentration, and water 
content. Regarding the electrolyte stirring effect on the  TiO2 
nanotube morphology and organization, we compared the 
nanotube obtained from M1 and M2 samples (see Table 2).

Figure 2 shows low and high magnification SEM images 
of the  TiO2 nanotubes obtained at the different anodizing 
conditions listed in Table 2. From Table 2, the only dif-
ference between the M1 and M2 samples is the electrolyte 
stirring; the M2 sample is stirring. From Fig. 2, nanotubes 
were formed in both samples; however, the nanotube of the 
M2 sample has particles on its top in contrast to the nano-
tubes produced in the M1 sample. These undesirable parti-
cles could be related to the electrolyte stirring; according to 
several authors [42–47], electrolyte stirring directly affects 
the nanotube morphology and could produce damage in the 
nanotube top, which is the cause of the presence of these 
particles [42, 46]. However, these unwanted particles could 
be eliminated using ultrasonic agitation; but this extra step 
might damage the nanotube structure [48]. Figure 4 shows 
the SEM images of the cross-section view of  TiO2 nanotubes 
obtained on Ti6Al4V substrates manufactured by E-PBF. 

Fig. 1  As-built microstructures 
of the Ti6Al4V substrates 
manufactured by E-PBF
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Table 3 lists the internal diameter, length, and circularity 
values of  TiO2 nanotubes obtained on Ti6Al4V substrates 
manufactured by E-PBF. From Fig. 4 and Table 3, the elec-
trolyte stirring does not affect internal diameter.

On the other hand, there is a slight difference in nano-
tube length between the samples M1 and M2. According 
to the scientific literature [44, 47], the nanotubes produced 
in stirred electrolytes have a longer length in contrast to the 
nanotubes produced in non-stirred electrolytes. Our findings 
conflict with the conclusions of these investigations.

Anodization time is an important parameter to obtain 
highly ordered nanotubes; it necessarily chooses an ano-
dizing time that allows higher self-organization. Thus, we 
evaluated three anodization times to obtain the lowest anodi-
zation time that permits achieving highly ordered nanotubes. 
From Table 2, M5, M6, and M1 samples have anodization 
times of 1000, 2500, and 5000 s, respectively. From Fig. 4, 
nanotubes were formed in the M5 sample; however, those 

Fig. 2  SEM images from low (left) to high (right) magnifications of  TiO2 nanotubes obtained on Ti6Al4V substrates manufactured by E-PBF

Fig. 3  Current vs. time responses during the anodization of Ti6Al4V 
substrates manufactured by E-PBF
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have a layer on the top; this layer has been reported in pre-
vious articles [42, 49], and it is called the initiation layer, 
which is formed in the first stage of the anodization process. 
This layer is dissolved as the anodizing process progresses. 
The formation of nanotubes at 1000 s corroborates the infor-
mation in Fig. 3, which states that stage 3 starts at about 
500 s. From Fig. 2, organized nanotubes were formed at an 
anodization time of 2500 s; however, the initiation layer is 
seen in some parts of the nanotube top. On the other hand, 
at an anodization time of 5000 s, organized nanotubes were 
formed free of the initiation layer. Table 3 shows no differ-
ence between the internal diameter values of M6 and M1 
(2500 and 5000 s); however, the nanotube length increases 
with the anodization time. Our findings are consistent with 
earlier experimental research [44, 50, 51] that have revealed 
the link between anodizing time and nanotube length.

Concerning the effect of anodizing voltage on the  TiO2 
nanotube morphology and homogeneity, we evaluated 
two voltage values (30 and 60 V) which correspond to the 

M1 and M3 samples. Figures 2 and 4 and Table 3 show 
that the nanotube’s internal diameter and length increase 
with the rise of the voltage. Our findings agree with ear-
lier experimental reports on the link between nanotubes' 
internal diameter and length with the voltage. From Fig. 2, 
over the nanotubes produced at 60 V, there are rectangular 
and elongated particles linked to the nanotube walls. From 
the scientific literature [52, 53], those particles are called 
nanowires. According to Hsu et al. [52], the nanowires over 
the  TiO2 nanotubes are produced due to the fluoride ions 
attacking the nanotube near the mouth, which is the site 
where the nanotube wall is thinner, forming holes in the 
nanotube wall, those holes are disseminated, and finally, they 
expanded and becoming nanowires. The authors report that 
nanowires’ presence over the nanotubes depends on the ano-
dizing time and the voltage. From our results, the only differ-
ence between the M1 and M3 samples is the voltage value; 
thus, the potential of 60 V is the reason for the nanowires’ 
presence in the M3 sample.

Typically, fluoride compounds vary from 0.20 to 1 in wt. 
% in the anodizing solution that is employed to produce  TiO2 
nanotubes. Lower fluoride concentrations encourage the 
growth of the barrier layer rather than the nanotube struc-
tures. On the other hand, the oxide layer dissolves quickly at 
greater fluoride concentrations, which prevents the forma-
tion of nanotube structures. To produce clean and homoge-
neous nanotubes without compromising their properties, it 
is essential to ascertain the lowest concentration that can 
be used. Thus, we evaluated two  NH4F concentrations: 0.2 
and 0.4 wt.%, corresponding to the samples M7 and M1, 
respectively. From Fig. 2, in the M7 sample, a porous nano-
structure is seen; however, from Fig. 4, this porous structure 

Fig. 4  SEM images of the cross-section view of  TiO2 nanotubes obtained on Ti6Al4V substrates manufactured by E-PBF

Table 3  Internal diameter, length, and circularity of  TiO2 nanotubes 
obtained on Ti6Al4V substrates manufactured by E-PBF

Sample ID Internal diameter (nm) Length (µm) Circularity

M1 65.24 ± 6.14 1.27 ± 0.07 0.97
M2 68.06 ± 5.51 1.09 ± 0.03 0.94
M3 128.46 ± 9.85 4.67 ± 0.14 0.95
M4 –––––– 1.51 ± 0.14 ––-
M5 –––––– 0.37 ± 0.05 ––-
M6 67.65 ± 9.96 1.26 ± 0.08 0.95
M7 –––––– 1.22 ± 0.03 ––-
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is thin and over the nanotubes. From the scientific literature 
[42, 54], this layer corresponds to an initiation layer. On the 
other hand, in M1 samples, the nanotubes are organized and 
free of the initiation layer; thus, the electrolyte with an  NH4F 
concentration of 0.4 wt.% is capable of dissolving this initia-
tion layer. Table 3 shows no difference between the nanotube 
length values between the samples M7 and M1. From the 
literature [55, 56], the increase in fluoride concentrations 
produces a rise in the nanotube length. Our results disagree 
with the findings of these investigations.

TiO2 nanotube formation by anodization depends heavily 
on the presence of water molecules in the electrolyte [44, 
57]. The ionization of  H2O provides the oxygen to form  TiO2 
in the first stage of the anodization process; furthermore, it 
generates the  H+ necessary to dissolve the  TiO2 to produce 
nanotubular structures [57]. A lack of water content in the 
electrolyte prevents the nanotube formation due to the lower 
 H+ concentration; on the other hand, an excess of water gen-
erates a higher chemical dissolution of  TiO2, causing the col-
lapse of the  TiO2 nanotubes or, in some cases, a disorganized 
nanotube structure [56–58]. Thus, determining the lowest 
 H2O concentration that can be employed is crucial for pro-
ducing clean and homogeneous nanotubes. Hence, we evalu-
ated two  H2O concentrations: 4.5 and 9 vol%, corresponding 
to the samples M4 and M1, respectively. Figure 2 shows a 
porous nanostructure in the M4 sample; nevertheless, Fig. 4 
shows that this porous structure is thin and covers the nano-
tubes; this thin layer has the morphology of an initiation 
layer. In contrast, the nanotubes in M1 samples are well 
organized and devoid of the initiation layer; thus, according 
to our results, it is necessary to use an  H2O concentration 
of 9 vol% to dissolve the initiation layer. From Table 3, the 
length diminished with the rise of water content. The reports 
found in the literature [56, 57] show that the increased water 
concentration enhances the electrolyte capacity of dissolving 
the  TiO2, producing shorter nanotubes. Our findings concur 
with those from these investigations.

However, qualitative and quantitative measurements 
of the nanotube order were possible; measuring ordering 
qualitatively using FFT pictures from SEM pictures may be 
feasible. Aguirre et al. [19] assessed the FFT pictures’ shape 
acquired from SEM micrographs of  TiO2 nanotubes pro-
duced in aqueous electrolytes with carboxymethyl cellulose 
(CMC). The authors found that in less organized nanotube 
structures, the FFT form can adopt a variety of geometrical 
shapes, including rectangles and ellipses. Sometimes when 
the organization is zero, a fuzzy, ill-defined image is seen 
[59]. However, a more organized nanotube structure had an 
FFT picture with a circular shape. Figure 5 displays FFT 
images from SEM images of  TiO2 nanotubes obtained on 
Ti6Al4V substrates manufactured by E-PBF. From Fig. 5, 
all the FFT images have a circular shape; thus, making quan-
titative measurements of the nanotube ordering is necessary. 

From Fig. 5, the FFT of M1 and M6 samples have concentric 
circles, indicating a long-range order in the  TiO2 nanotubes 
produced in these samples [59].

Based on the work of Stępniowski et al. [60], regularity 
ratio (RR) was calculated, which is based on FFT radial 
average. Its equation is as follows:

where S is the area, W
1∕2 is the radial average’s width at half 

its height, n is the number of nanotubes analyzed, and I is 
the radial average’s intensity. A higher RR value indicates 
a better nanotube organization and homogeneity. The RR 
measurements in Fig. 5 could be related to the anodizing 
process parameters. Comparing the RR values of M1 and 
M2 samples, it is evident that the stirring affects the nano-
tube organization; according to our results, the nanotube 
organization increases in the absence of stirring. Concern-
ing the voltage, the RR value of the M1 sample is higher 
than the M3 sample, indicating that the nanotube organiza-
tion increases at lower voltages. However, the RR values of 
M2 and M3 could be affected by particles or incompletely 
dissolved oxide layers on the nanotube top. Regarding the 

RR =
(I)(

√

n)
�

W
1∕2

�

(S
3

2 )

Fig. 5  FFT images and regularity ratios acquired from SEM images 
of  TiO2 nanotubes obtained on Ti6Al4V substrates manufactured by 
E-PBF
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anodizing time effect on nanotube organization, the RR 
value of the M1 sample is higher than the M6 samples, indi-
cating that although at 2500 s there are organized nanotubes, 
it is necessary longer anodization times to obtain highly 
ordered  TiO2 nanotubes.

The M1 sample has the highest RR value, which cor-
responds to 1.91; comparing this value to previous reports 
of  TiO2 is double of the highest value (0.97) obtained by 
Aguirre et al. [19], which used aqueous electrolytes with 
CMC and more than the double of the maximum value 
(0.75) obtained by Syauqi et al. [61] which used aqueous 
electrolytes with sodium alginate. To the best of our knowl-
edge, there are no previous reports that use the methodol-
ogy of Stępniowski et al. [60] in  TiO2 nanotubes obtained 
in organic electrolytes; however, the highest value of RR 
obtained in this experimental work is similar to the high-
est values obtained nanoporous anodic aluminum oxide in 
previous works [60, 62].

Comparing our results with the previous reports of  TiO2 
nanotubes obtained in both Ti6Al4V substrates manufac-
tured by additive manufacturing and forging, we consider 
that the stirring is a poorly studied critical anodization con-
dition. In our case, combining the absence of stirring with 
the control of anodization time, voltage, and bath composi-
tion, we could obtain highly ordered  TiO2 nanotubes free of 
delamination, cracks, and coral-like structures.

Figure 6 shows the Raman spectra for the  TiO2 nanotubes 
obtained on Ti6Al4V substrates manufactured by E-PBF. 
All samples evaluated display similar spectra. The Raman 
spectra display wide peaks of about 150, 450, and 600 cm; 
other authors have described this spectrum’s shape in earlier 
works [17, 18, 20, 63], which corresponds to amorphous 
 TiO2 nanotubes.

4  Conclusions

Highly ordered  TiO2 nanotubes were successfully produced 
on Ti6Al4V substrates manufactured by E-PBF. With careful 
control of the anodization parameter such as anodizing time, 
stirring, fluoride concentration, and water content is possible 
to obtain clean and highly ordered  TiO2 nanotubes avoiding 
the use of post-treatments such as ultrasonic cleaning. The 
nanotube ordering was affected by the voltage, stirring, and 
anodizing time. The internal diameter was altered only by 
the voltage; however, the nanotube length was affected by 
anodizing time, voltage, and water content.
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