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Abstract
The paper deals with the calculation of interstand tensions in continuous rolling mills.In the rolling mill industry, continuous
measurement and data collection of roll forces, roll torques, temperatures and roll velocities is possible. However, the important
process parameter of interstand tensions is not directly measurable and no direct calculation of the interstand tensions is
possible. The interstand tensions couple the effects of subsequent roll gaps and should therefore by known for a holistic
recalculation of the process. It is straightforward to calculate the effects of the tensions on roll forces, torques and the stock
velocity. The inverse problem of calculating the acting interstand tensions including their effects from the process parameters
is of greater interest but also of a higher complexity, because the interactions between all the stands in the rolling mill must
be regarded. The present paper aims at filling this research gap by presenting a mathematical model to solve the inverse
problem by a linearization of the tensions influences in the rolling mill. The present model does not require measured roll
forces or torques to find the interstand tensions, only the rotational velocities of the rolls and the rolling parameters (material,
temperature, pass schedule or pass design) must be known. Tension-dependent spread is considered by an empirical sub-
model. Results are shown for the tension distributions in strip and rod mills. The results indicate that the present friction
conditions and the entry size of the rolled stock have a high impact on the tension distributions.

Keywords Rolling mill · Interstand tensions · Industrial digitization · Fast process models

1 Introduction

Hot rolled steel products are essential for ourmodern society.
Whenwe look at the typical process routes for the production
of high-quality parts for the automotive, aerospace and other
industries, we shall recognize that more than 95 % of the
crude steel produced is deformed in one or more hot rolling
mills during its production cycle. There is no other process
to provide the necessary high production capacities, where
at the same time the microstructure of the processed material
is refined in a cyclic manner.

Nowadays, the hot rolling processes for flat and long prod-
ucts have reached a state in which an economic production
is only possible by the use of multistand continuous rolling
operations. In these, we are faced with the challenge that the
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material is deformed in multiple roll gaps at the same time.
These continuous rolling processes are bound to the law of
continuity, i.e. a constant volume flux in all stands of the
rolling mill.

Therefore, a careful adjustment of the rotational speeds of
the respective roll sets is necessary. The elementary rolling
theory, first introduced by von Karman [7] provides a math-
ematical basis for designing the necessary roll speeds. By
the identification of a neutral point in the roll gap, it became
possible to relate the velocities of the roll surface and the
rolled stock to one another and explaining the existence of a
forward slip between the stock exit and the circumferential
roll velocities.

The first to understand that the neutral point offers a
method of coupling the stress and velocity distributions was
Orowan [19]. Therefore, interstand tensions acting at the roll
gap entry and exit influence the neutral point position and
therefore the revolutional speeds of the rolls if the volume
flux remains a constant.

Even if the rotational speed adjustments are done with
high precision, process variations can lead to variations in the
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neutral point positions, therefore causing interstand tensions
to arise which affect the rolling process. Too low a tension
can lead to compressive stresses in the rolled stock, causing
a massive mill failure by producing a cobble of the rolled
stock. Too high a tension may lead to a rupture of the rolled
stock in the most fatal case. Therefore, it is the current aim
of the rolling mill personell to keep the interstand tensions
moderately low all the time. However, a targeted use of inter-
stand tensions can provide a means of controlling the rolled
cross sections and therefore be beneficial for the rolling pro-
cess. As the interstand tensions cannot be measured directly,
a mathematical model must be found from which the actual
interstand tensions can be calculated. The core purpose of
the current paper is the presentation of such a model, which
allows the interstand tension stresses to be calculated from
the rolling parameters. This is accomplished by means of
the static-kinematic coupling in the roll gap provided by the
elementary rolling theory. The application of the model is
shown by a wide range of industrial rolling examples on hot
strip, flat bars and wire rod.

For the rolling processes of narrow flat bars and long
products, it will be seen from the examples presented in this
paper, that the lateral spread is of much greater interest than
for rolling of wide flat products. Therefore, the direct influ-
ences of the interstand tensions on the lateral spread are taken
into account for these processes. Mauk already provided a
mathematical model for this tension influence on the actual
deformations [14], which serves as a submodel in the current
research.

Spuzic presented a framework for digitization of rolling
groove geometries using polynomial approximations [24],
aiming at a general digitization of industrial rolling mill
records. To enable a full digital evaluation of such indus-
trial data records, the calculation of the interstand tensions
which acted during the recorded rolling operations is a cru-
cial factor to enable the process to be fully recalculated by a
physically based process model.

A calculation of the effects of the interstand tensions on
the stress distribution for plane strain rolling processes can
be easily carried out using slab method approaches of rolling
[1, 7], but the inverse calculation of the interstand ten-
sions that act in a specific rolling process is much more
complicated. The problem gains extra complexity, when
three-dimensional rolling process with lateral spread is con-
sidered, which is especially the case for rolling of long
products.

The presented calculation method is based on a stepwise
linearization of the tension influences on the rotational roll
speeds, based on the basic equations of the rolling theory.
Assembled for all stands of the rolling mill, a linear system
of equations follows which is solved in order to calculate an
approximation to the actual acting tensions. This methodol-
ogy was chosen to attain a mathematical solution which is

consistentwith the analytical rolling theorywhich has proven
to deliver a realistic assessment of the tension influences. In
this way, the necessary information to ensure close product
tolerances and high operational safety to the physical process
can be supplied.

2 Method for the inverse calculation
of interstand tensions

In the present analysis, von Karman’s theory of rolling is
employed in the form given by Alexander [1] and later
employedbyChen et al. [2]. For theflat rolling case treated by
Alexander, a rectangular sheet or strip section is reduced from
the initial height h0 to the final height h1 by passing through
a gap formed between two cylindrical rollers as shown in
Fig. 1.

The width of the rolled product is w0 at the roll gap entry
and w1 at the roll gap exit. Hence it follows that the cross
sections of the rolled stock are A0 = h0w0 at the entry and
A1 = h1w1 at the exit. The length of the deformation zone
(in rolling direction) is given as:

ld =
√
R�h − �h2

4
(1)

with �h = h0 − h1. The arc of contact is formed by the roll
radius R between the entry and exit planes EE ′ and AA′.
The contact angle or bite angle α0 is given as:

cosα0 = 1 − �h

2R
(2)

Each cross-sectional plane in the roll gap volume can be
addressed by a specific angle α with 0 ≤ α ≤ α0. α = α0

corresponds to the entry plane, where α = 0 corresponds to
the exit plane. We may also define a related angle:

α′ = α

α0
(3)

The rolled stock enters the roll gap at the initial velocity v0
and exits the roll gap at the final velocity v1. The rolls rotate
at the angular velocity ω, resulting in the circumferential
velocity vc = ωR. v0 and v1 are connected to the cross
sections by the law of a constant volume flux:

V̇ = Av = A0v0 = A1v1 (4)

There is a specific angle αN called the neutral angle, where
the horizontal velocity of the stock material is equal to the
horizontal component of the circumferential roll velocity,
v(αN ) = vc cosαN . In the roll gap, at the neutral angle the
cross-section AN = A(αN ) is present.
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Fig. 1 Schematic representation
of the roll gap in flat rolling,
after [10]

We may rewrite Eq.4 for the neutral angle:

V̇ = Av = A1v1 = A(αN )v(αN ) = ANvc cosαN (5)

From Eq.5, it may be deduced that the roll gap exit velocity
differs from the circumferential roll velocity. We define a
forward slip κ:

κ = v1 − vc

vc
= AN

A1
cosαN − 1 (6)

The forward slip is typically in the order of magnitude of
3 to 9 % for hot rolling. It is basically the forward slip and
the neutral angle which lets us find a connection between the
acting interstand tensions and rotational velocity of the rolls,
as will be shown in the next chapters.

2.1 The rollingmodel for a single rolling stand

VonKarman’s approach of a force equilibriumat the strip ele-
ment in the roll gap yields an ordinary differential equation,
which is expressed in the most general form with the hori-
zontal stress σx , the strip height h, the normal stress between
rolls and rolled material σN , the frictional shear stress τF and
the roll surface inclination α [7]:

d(σxh)

dx
= 2 (σN tan α ± τF ) (7)

In the present analysis, we will utilize Alexander’s rolling
theory exemplarily because it is a systematic numerical

scheme for the integration of Eq. 7, noting the model could
be implemented with any other rolling theory which per-
mits the calculation of the local normal stress in the roll gap.
Alexander introduced the vertical force decomposition along
with Tresca’s yield criterion and two possible friction laws.
He provided numerically-solvable ordinary differential equa-
tions for the cases of slipping friction and sticking friction.
For slipping friction, the frictional shear stress depends upon
the normal stress σN and is given as:

τF = μσN (8)

Alexander’s differential equation for σN in the case of
slipping friction is now given in the following way:

dσN

dα
= f1(α)σN (α) + f2(α) (9)

Where the functions f1 and f2 are given as:

f1(α) = ± μ

cosα

(
2R′
h + 1

cosα

)
1 ∓ tan α

(10)

f2(α) =
2R′
h k f sin α + dk f

dα

1 ∓ tan α
(11)

For sticking friction, τF is not expressed in relation to σN ,
but in terms of the flow stress in pure shear k. It is related to
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the flow stress in uniaxial tension k f in the following way:

τF = k = k f√
3

(12)

Also, dσN
dα

does not depend on σN . Alexander provided
the differential equation for sticking friction according to:

dσN

dα
= g1(α)k f (α) + g2(α) (13)

In Eq.13, the functions g1(α) and g2(α) are given as:

g1(α) = 2R′κ(α)

h
sin α ± g3(α) (14)

g2(α) = κ(α)
dk f

dα
(15)

κ(α) = 1 ± 1

2
tan α (16)

g3(α) =
(
R′

h
cosα + 1

2 cos2 α

)
(17)

The work roll flattening is accounted for by Hitchcock’s
model [6]. It assumes an increased radius of the arc of contact
R′ given by:

R′

R
= 1 + CH F

wm(h0 − h1)
(18)

With the roll force F and the elastic constant CH of the roll
material:

CH = 16

π

1 − ν2

E
(19)

To enable the numerical solution of these ordinary differ-
ential equations, the yield stress k f must be known at any
point of the arc of contact. In addition, we require the infor-
mation of the first derivative of the flow stress evaluation
dk f
dα

. In the present analysis, we utilize an analytical flow
curve equation which describes k f as a function of the the
parameters true strain ϕ, strain rate ϕ̇ and temperature ϑ :

k f = k f (ϕ, ϕ̇, ϑ) (20)

The needed derivative
dk f
dα

is calculated from the partial
derivatives of the flow curve equation according to:

dk f

dα
= ∂k f

∂ϕ

dϕ

dα
+ ∂k f

∂ϕ̇

dϕ̇

dα
+ ∂k f

∂ϑ

dϑ

dα
(21)

We may now calculate the distribution of the strain rate in
the roll gap according to:

ϕ̇ = dϕ

dt
= dϕ

dα

dα

dt
= −2v(α) tan α

h(α)
(22)

For the derivative of the flow stress in the roll gap
dk f
dα

, the

expression dϕ̇
dα

is needed. We can differentiate Eq.22 with
respect to α and get:

dϕ̇

dα
= −2

h

dh

dα
v(α) tan α+ 2

h

dv

dα
tan α+ 2

h
v(α)

1

cos2 α
(23)

The particular flow stress function which we use for hot
rolling is due to Mauk and Gottschling [16] as their function
No. 8 and given as:

k f (ϕ, ϕ̇, ϑ) = k0 · em1ϑ · ϕ̇m2+m5ϑ · ϕm3 · em4ϕ (24)

We canwrite out the partial derivatives of Eq. 24 analytically:

∂k f

∂ϕ
= k0ϕ

m3−1ϕ̇m2+m5ϑem4ϕ+m1ϑ(m3 + m4ϕ) (25)

∂k f

∂ϕ̇
= k0ϕ

m3 ϕ̇m2+m5ϑ−1em4ϕ+m1ϑ(m2 + m5ϑ) (26)

∂k f

∂ϑ
= k0ϕ

m3 ϕ̇m2+m5ϑem4ϕ+m1ϑ(m1 + m5 ln ϕ̇) (27)

Now, the needed derivative of the flow stress is given in terms
of:

dk f

dα
= ∂k f

∂ϕ

dϕ

dα
+ ∂k f

∂ϕ̇

dϕ̇

dα
+ ∂k f

∂ϑ

dϑ

dα
(28)

As the contact time between rolls and rolled stock will be
very low, we can usually disregard the last term in Eq.28 and
operate with a mean rolling temperature. This temperature
may be calculated from the following equations, regarding
the heat transport between rolls and rolled stock, the heat
generation due to forming heat and the heat losses due to
radiation between the passes. The radiation loss can be cal-
culated as follows:

�ϑR = εCRtRC

Aρ(ϑ)cp(ϑ)

[(
TS
100

)4

−
(

Ta
100

)4
]

(29)

In Eq.29, ε is the radiation coefficient, CR is the Stefan-
Boltzmann constant, tR is the radiation time in seconds, C is
the circumference of the rolled cross section, A is the area of
the rolled cross section, ρ(ϑ) is the temperature-dependent
mass density and cp(ϑ) is the temperature-dependent spe-
cific heat capacity of the rolled material. The absolute initial
temperature of the rolled stock in K is TS and the absolute
ambient temperature is Ta . Equation29 is applied between
the passes of a continuous rolling mill arrangement. In the
roll gaps, the two effects of heat conduction and forming
heat take place at the same time. The temperature loss due to
conduction is modelled in terms of:

�ϑC = 2ldwmkL(ϑS − ϑRC )

cp(ϑ)ρ(ϑ)V̇
(30)
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In Eq.30, ld is the contact length as defined in Fig. 1, wm

is the mean width of the rolled stock in the roll gap, ϑS is
the stock temperature and ϑRC is the temperature of the roll
core.

This calculation method of thermal transmission is due
to Pawelski for hot rolling and forging processes [21]. The
model takes into account the heat transport through an oxide
scale layer with the thickness sc. The heat transfer coefficient
kL describes the heat transport between the roll core and the
core of the rolled stock. It is given as

kL =
√
cp(ϑ)λ(ϑ)ρ(ϑ)

2
√
tc

{
en

2

n
[1 − �(n)] − 1

n
+ 2√

π

}

(31)

The dimensionless figure n is given as:

n = 2λc√
cpRλRρR

√
tc
sc

(32)

In these equations, cp, λ and ρ are the temperature-
dependent specific heat, thermal diffusivity and mass density
of the stock material, respectively. cpR , λR and ρR are
the respective material properties of the roll material and
λc is the thermal diffusivity of the oxide scale layer. The
thermophysical properties of the oxide scale are taken
from [8].

Fig. 2 Kinematic-static
coupling in the roll gap; a)
Stress Distributions with neutral
point; b) Velocity distributions
with neutral point; c) Strain rate
distribution
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�(n) is the Gauss error function given as:

�(n) = 2

π

∫ n

0
e−t2dt (33)

In the roll gaps, the deformation energy is nearly com-
pletely dissipated as heat. Therefore, a model for the temper-
ature gain due to forming heat generation is:

�ϑF = wid

cp(ϑ)ρ(ϑ)
(34)

The expression wid represents the ideal forming work per
unit volume. Generally, it can be defined as the integral of
the stress–strain-curve k f (ϕ) for a specific deformation step:

wid =
∫ ϕ1

ϕ0

k f dϕ (35)

We may introduce a mean flow stress k f m for the forming
step in the roll gap:

k f m = 1

α0

∫ α0

0
k f (α)dα0 (36)

Note that ϕ and ϕ̇ vary as a function of α. Generally,
wid = k f m(ϕ1 − ϕ0). Hence:

�ϑF = k f m(ϕ1 − ϕ0)

cp(ϑ)ρ(ϑ)
(37)

Finally, we may calculate the mean roll gap temperature
from the artihmetic mean value of the temperatures and the
begin and end of the gap:

ϑm = ϑ0 − �ϑR − �ϑC − �ϑF

2
(38)

Combining all of the temperature, strain and strain rate
effects on the flow stress and implementing the final material
model into Alexander’s differential equation, we are able
to calculate the flow stress, normal stress and shear stress
distributions in the roll gap. The differential equation is inte-
grated numerically and the neutral angle is determined from
the resulting stress distributions. A typical solution example
of the stress, velocity and strain rate distributions is shown
in Fig. 2 for a hot rolling pass with the data h0 = 10mm,
h1 = 6mm, R = 300mm, v1 = 1m/s, μ = 0.26 and the
initial temperature ϑ0 = 1000◦C .

Here, it is noteworthy that theflowstress increases after the
roll gap entry by strain hardening, until it reaches amaximum
and then decreases until the end of the roll gap. This effect is
due to the strain rate softening, as the flow stress decreases
with decreasing strain rate and the strain rate drops down to
zero at the roll gap exit, as shown in Fig. 2c).

The neutral angle found as peak of the normal stress coin-
cides with the sign change in the shear stress distribution.
This neutral angle has a related value of αN/α0 = 0.37 in
the example presented. It is equal to the neutral point of the
velocity distribution, which is shown in Fig. 2b) and has the
meaning of the point where the relative motion between the
roll and the stock is zero. We will use this static-kinematic
coupling in the roll gap for the purpose of finding the inter-
stand tension, which is described in the following chapter.

2.2 Calculation of interstand tensions in flat rolling

The calculated velocity and stress distributions allow the con-
clusion that for a given mill setup, the angular velocity ω of
the rolls in a single mill stand is influenced by the front and
back tensions. The back tension of a mill stand i will now
be denoted by t0,i , the front tension will be denoted by t1,i ,
respectively.

Figure3 shows three continuous roll gaps exemplarily.
Generally, the front tension of a mill stand i is equivalent
to the back tension of stand i + 1, i.e. t1,i = t0,i+1. For each
mill stand i in a continuous arrangement, we can formulate
a nonlinear equation relating the back and front tension as
well as the volume flux to the angular velocity of the roll:

ωi = f (t0, t1, V̇ ) (39)

For a rolling mill with N mill stands, a system of N non-
linear equations must be solved to find the N − 1 unknown
tensions ti and the volume flux V̇ . It may however be con-
venient to express the nonlinear system as in Eq.39 in a
linearized form to find a preliminary approximate solution.
Assuming linear relationships for the effects of the tensions
t0,i and t1,i on the angular velocity ω of the rolls, we can
write for a mill stand i :

ωi = ω0,i + ai t0,i + bi t1,i (40)

In Eq.40, ω0,i is the designed angular roll velocity for a
reference case with zero or moderate tensions. We call this
case the reference configuration. The coefficients ai and bi
are influence parameters for the back and front tensions. We
can express this relation for the variation of the angular roll
velocity�ωi due to variation of the interstand tensions�t0,i
and �t1,i :

�ωi = ai�t0,i + bi�t1,i (41)

Furthermore, we can write for the change of the roll speed
difference between two successive mill stands i and i + 1:

�ωi+1 − �ωi = (ai+1 − bi )�t1,i − ai�t0,i + bi+1�t1,i+1

(42)
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Fig. 3 Three roll gaps of a
continuous rolling mill

Equation42 describes the coupling between two succes-
sive mill stands due to the acting tensions. Therefore, a
system of linear equations can be set up to calculate approxi-
mations to the unknown tension differences, which cause the
known differences of the roll speeds. It represents the linear
equation system with N −1 equations and unknowns, where
N is the total number of mill stands in the continuous rolling
mill. The back tension of the first stand, was well as the front
tension of the last stand is generally treated as zero.

At = w (43)

Equation43 shows the structure of the linear equation sys-
tem that must be solved for the tensions. The coefficient
matrix A for N stands is given as:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a2 − b1 b2

−a2
. . .

. . .

. . .
. . .

. . .

−ai ai+1 − bi bi+1
. . .

. . . bN−1

−aN−1 aN − bN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(44)

The right-hand side vectorw comprises the changes in the
roll speed differences between two subsequent mill stands,
relative to the initial reference state:

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

�ω2 − �ω1
...

�ωi+1 − �ωi
...

�ωN − �ωN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

(45)

In Eq.45,�ωi is the change of the angular roll velocityωi

of mill stand i relative to the original angular velocity of the

reference configuration. The remaining problem is the defini-
tion of the influence parameters ai and bi for each mill stand
i . These are the partial derivatives of the angular velocity
with respect to the back and front tension stresses.

With reference to Eq.40, we write:

ai = ∂ωi

∂t0,i
(46)

bi = ∂ωi

∂t1,i
(47)

These differentials can be written as a composite func-
tion comprising a kinematic and a static part. We can apply
the chain rule to Eqs. 46 and 47 to arrive at the following
definitions:

ai = ∂ωi

∂t0,i
= ∂ωi

∂αN ,i

∂αN ,i

∂t0,i
(48)

bi = ∂ωi

∂t1,i
= ∂ωi

∂αN ,i

∂αN ,i

∂t1,i
(49)

The kinematic derivative ∂ωi
∂αN ,i

can be worked out by help
of the volume flux. For the angular velocity as a function of
the neutral angle αN , we can write with the volume flux V̇ ,
the roll radius R and the exit height and width h1 and b1:

ω(αN ) = V̇

b1R [h1 + 2R (1 − cosαN )] cosαN
(50)

Deriving this equation with respect to αN , we arrive at the
final kinematic equation:

∂ω

∂αN
= V̇ sin αN (2R + h1 − 4R cosαN )

b1R cos2 αN (2R + h1 − 2R cosαN )2
(51)

The static part comprises two equations describing the
influences of the front and back tensions on the neutral angle
which can be found from the rolling model. There are rolling
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models available which allow a direct calculation of the neu-
tral angle as functions of the front and back tensions, however
these models are limited to simplified friction conditions
(i.e. pure sticking friction condition along the arc of con-
tact). With Alexander’s model, we use a more sophisticated
rolling model which requires a numerical solution to find
the neutral angle. In this context, a more general treatment
of this problem is necessary. We may generally understand
the neutral angle as a function of the entry and exit tensions,
αN = αN (t0, t1). The partial derivatives needed by Eqs. 46
and 47 for the calculation of ai and bi can then be approxi-
mated by the following central difference quotients:

∂αN

∂t0
≈ αN (t0 + �t , t1) − αN (t0 − �t , t1)

2�t
(52)

∂αN

∂t1
≈ αN (t0, t1 + �t ) − αN (t0, t1 − �t )

2�t
(53)

Here, �t represents an environment around the working
point with the tensions t0 and t1 at which the derivatives are to
be evaluated. �t must be chosen sufficiently small in order
to construct a secant whose slope is evaluated by Eqs. 52
and 53.

With these equations developed, it is now posssible to cal-
culate the interstand tension changes that arise from certain

changes to the mill setup and rolling parameters by a numer-
ical algorithm, which is described in the next section.

2.3 Numerical algorithm of themodel

Since the interstand tensions and the volume flux of the
rolling process are interdependent, an iterative calculation
schememust be applied. First, we can apply the rollingmodel
to the given pass schedule in order to calculate the angular
roll velocities that match a given sequence of interstand ten-
sions, which we call the reference configuration or the design
state. Later we will calculate the differences in tension that
result from changes to the reference configuration.

This reference configuration is then used to compute the
tension influence coefficients ai and bi for each mill stand
i . Afterwards, the coefficient matrix acc. to Eq.44 is built
using these influence coefficients. To calculate the tension
variations arising due to variations of the roll speeds, we can
setup the right hand side of Eq.43 using the known velocity
differences. The solution of the linear system then yields a
first approximation to the interstand tension deviations in
relation to the reference configuration.

As the considered system is non-linear, i.e. the influence
coefficients depend upon the tensions, these first approxima-

Fig. 4 Numerical algorithm for
the analytical model
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tions of interstand tensions will still lead to angular velocities
deviating from the actual ones. For numerical stability, we
update the tensions of the reference configuration with the
calculated tension deviations with a successive underrelax-
ation factor fR :

ti = ti,old + fR�ti (54)

In Eq.54, fR is in the order of magnitude of fR ≈ 0.5.
The approximated tensions are used as a new reference

configuration and the influence coefficients are recalculated
for the next iteration. As Fig. 4 shows, the linear system is
solved again for the new reference configuration and the
residuals are recalculated.

These steps are repeated iteratively. Before a new iteration
is entered, the volume flux is corrected to meet the calculated
exit strip velocity of the last stand according to:

v = v − beheRn(ω0,n − ωn)(1 + κn) fR (55)

The relaxation factor fR in Eq.55 is the same as in Eq.54.
The values he, be and Rn are the strip thickness, strip width
and the roll radius of the final pass, κn is the forward slip of
the final pass. ωn is the calculated angular roll velocity of
the final pass, ω0,n is the intended angular roll velocity. The
iterative process is repeated until the deviation of the cal-
culated angular velocities from the originally intended ones
is smaller than a predefined tolerance value. Additionally,
a relative convergence criterion is observed to ensure the
calculated tensions in the last 5 iterations do not deviate sig-
nificantly. After the iterative calculation is finished, the final
interstand tensions and the final volume flux have been found
and all other rolling parameters can be calculated from the
rolling model using these values.

2.4 Tension calculation with spread

If lateral spread of a non-neglegible magnitude is present
in the rolling process, the calculation of the roll speeds and
interstand tensions gains a higher amount of nonlinearity. For
rolling tension-free rolling, a number of spread equations are
available, which have already been discussed by Mauk and
Kopp [17]. Their outcome was that Marini’s spread equation
[13] provides a precise basis for the calculation of spread
under hot rolling of flat products. It considers geometrical
features of the rolling process as well as the friction coef-
ficient μ. The calculation of the exit width w1 is given as:

w1 = w0 +
2�hw0

(
R − h0

2

)
B

h1w0 + M1 + 2h1RB
(56)

With the definitions:

A =
√

�h

2μ
√
R

(57)

B =
√

�h

R
(58)

M1 = w0(h0 + h1)

2
· 1 + A

1 − A
· 0.91(w0 + 3h0)

4h0
(59)

From the volume flux in rolling, we can write for the
angular roll velocity when we express the rectangular cross
sections by the product A = hw:

ω = h1w1v1

R cosαNhNwN
(60)

In Eq.60,wN is the width of the rolled material at the neu-
tral plane, wN = w(αN ). To evaluate this equation, we need
to know the width function w(α) in the roll gap. This func-
tion can be derived from a locally applied empirical spread
model, or better from a plasticity approach of lateral spread.
Domanti’s asymptotic approach to Hill’s General Method
[4, 5] is used in the following analysis. The Domanti solu-
tion is limited towide flat sectionswhat concerns the absolute
width calculation, but the relative spreading function can be
used for all types of rolling processes, when it is scaled to a
fixed exit width calculated by a precise empirical spread for-
mula. Therefore, we use a combination of Marini’s spread
equation [13] and Domanti’s asymptotic model as described
above. An example for a typical spreading distribution in a
roll pass calculated by this method is shown in Fig. 5.
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Fig. 5 Domanti’s spread function for a rectangular flat pass, entry:
40mm square, exit height h1 = 30mm, roll diameter d = 600mm
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Table 1 Coefficients for the empirical model for the influence of inter-
stand tensions on lateral spread

i mi1 mi2 mi3

1 1.05502 0.100816 −0.591029

2 −0.886507 −0.00258613 0.159971

3 −0.347681 −0.457338 0.0525161

The absolute spread also depends on the acting interstand
tensions.Wemay formulate this influence in terms ofMauk’s
empirical model [14] by stating that the total natural strain
ϕA in the pass is given by:

ϕA = ln

(
A1

A0

)
= ϕA,0 + �ϕA,σ (61)

Note that ϕA < 0 as the cross section is reduced in the
roll pass. Now, we may partition the total natural strain ϕA

into a contribution assuming maximum spread (disregarding
tension effects) ϕA,0, and a tension-influenced strain contri-
bution �ϕA,σ . The contribution assuming maximum spread
can be calculated from

ϕA,0 = ln

(
A∗
1

A0

)
(62)

In Eq.62, A∗
1 is the exit section of the pass calculated with

maximum spread.
The strain contribution which is influenced by the ten-

sions, related to the mean flow stress k f m , is modelled by an
empirical equation as a function of the acting tensions and
the geometrical parameters:

�ϕA,σ = k1

(
t0
k f m

)2

+ k2

(
t0
k f m

)
+ k3

(
t1
k f m

)
(63)

The coefficients ki in Eq.63 are functions of the pass
geometry:

ki = mi1
�h

h0
+ mi2

w0

h0
+ mi3

Ad

Am
, i = 1 . . . 3 (64)

The coefficients mi1 to mi3 are found by linear regres-
sion of experimental results. Table 1 shows the coefficients
whichwere found by regression analysis of rolling trials with
tensions carried out by and Nikkila and Treis [18, 25].

With help of these relations, we can apply the numeri-
cal model for the interstand tension prediction as described
in Sect. 2.3 to rolling processes with non-negligible spread
effects.

2.5 Calculation of section passes
in a round-oval-round pass sequence

For rolling processes in wire rod and bar mills, non-
cylindrical rolls are used with certain groove geometries to
produce the desired product shapes. The calulation of spread
and height deformation therefore is more complicated then
for rectangular flat sections. Consequently, a rectangular pass
method is used to transform the section pass in to an equiv-
alent flat pass. In the present analysis, Lendl’s equivalent
rectangular pass method is used [12]. The rectangular pass
method allows the theoretical concepts of the flat rolling the-
ory to be transfered to section rolling, therefore enabling
the interstand tension assessment by the method described
before to be applied to section geometries. To enable a numer-
ical treatment of the non-flat geometries, these are described
numerically by polygonal contours with small step widths.
An example is given for a double-radius oval groove shown
in Fig. 6.

By using this approach, arbitraty geometries can be pro-
cessed. The necessary information is given in the form of
vectors of the x and y coordinates. The geometrical opera-
tions needed to calculate the equivalent flat pass and the exit
section shapes are implemented using the x and y vectors.
Lendl’s rectangular pass method allows the construction of

Fig. 6 Geometry of a
double-radius oval groove by
discrete points as a polygonal
contour
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Fig. 7 Lendl’s method on a pass
round to oval. The shaded areas
represent the equivalent areas
A0L and A1L

an equivalent flat pass by using the equivalence areas A0L

and A1L . These are shown exemplarily for a pass round to
oval in Fig. 7.

The equivalent mean heights for the rectangular flat pass
are then calculated from:

h0L = A0L

bL
(65)

h1L = A1L

bL
(66)

In these equations, bL is the intersection distance of the
initial and groove contours as shown in Fig. 7. We define a
working roll diameter dwrk in the following way using the
nominal barrel diameter of the roll dN :

dwrk = dN − h1L + s (67)

The spread calculation for the oval pass can then be carried
out with the data h0L , h1L , dwrk and using the initial section
width w0 = d0 of the entry round section. In the present
model, we use Marini’s spread equation as given by Eq.56
for this purpose.

We can understand why the lateral spread is of essential
importance for hot rolled long products by looking at Fig. 8.

Fig. 8 Displaced area Adisp and reappearing area Are at the pass oval
to round

It shows the height and width deformations on a pass oval to
round.

It is seen that parts of the original cross section are dis-
placed by the rolls (the displaced surface Adisp). A part of
this displaced surface reappears by lateral spread as the reap-
pearing surface Are. The relation of these two surface parts
is measured by the elongation efficiency fS :

fS = 1 − Are

Adisp
(68)

We should note that Adisp is the result of lateral spread in the
preceding pass. Therefore, we can save deformation energy
by keeping the elongation efficiency at a high level. As seen
by Eq.68, fS is high when the spread is low. Under opti-
mal circumstances, one or more stands of a mill could be
savedwhen smaller roll diameters are used, which effectively
reduce the lateral spread and thereforce increase the elon-
gation efficiency [15]. Also, interstand tensions can help in
improving the elongation efficiency. Therefore, examples for
the assessment of interstand tensions in long product rolling
are shown in the next sections.

2.6 The effect of mill spring and interstand tensions
on the section geometry of round products

In the case of long products, it is essential to consider elastic
rolling stands. We should recall that most rolling mills for
long products, which are in operation nowadays do neither
have an automatic gagemeter control, nor hydraulic screw-
down componentswhichwould allow for roll gap corrections
under load.

To assess the effects of interstand tensions on the section
shape we use the empirical model described in section 2.4.
An example for the results in a round pass is shown in Fig. 9.

The first case (left part of Fig. 9) represents the reference
case free from tensions and disregarding any mill spring, as
for a mill stand with an infinite rigidity. Here, a designed
groove height of 12.41 mm is met at a section width of 12.83
mm, yielding a roll force of 83.8 kN. In the more practical
case of an elastic mill stand (see right part of Fig. 9) with a
rigidity constant of 350 kN/mm, back and front tensions of
29.9 MPa and 56.3 MPa are encountered. These tensions
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Fig. 9 Calculated influence of
interstand tensions and elastic
mill spring on the rolled cross
section in a round-oval-round
pass sequence

induce a roll force decrease to 63.5 kN. Since the stand
behaves elastically, the roll force leads to a mill spring that
produces an exit height of 12.59 mm. The tensions decrease
the lateral spread to a final width of 12.09 kN. Note that the
interacting effects of the temperature distribution and subse-
quent section changes are treated accordingly by the overall
model. Therefore, the coupling of the different mill stands
due to mill spring and the tensions are taken into account.

3 Results of themodel for industrial
rolling processes

In this section, numerical results of the model discussed
before are presented for a number of industrial rolling pro-
cesses, starting with a typical pass schedule for a finishing
train of a wide hot strip mill, where the effects of initial
thickness, temperature and friction are shown in detail. In
this rolling process with a high width-to-thickness relation
of w/h > 25, lateral spread can be disregarded, so the prin-
cipal influences without spread are shown. The next example
concerns a flat rolling process with a noticeable amount of
spread, starting from a square section of 50x50 mm. The
last set of examples comprises long product rolling cases
for round wire rod and bars, where the typical influences of
varying entry sections on the interstand tension distribution
is shown.

3.1 Material Coefficients of the Hot Flow Curve

For all computations presented in this section, a mild carbon
steel with 0.55 weight percent of carbon was chosen (AISI

1055 / DIN 1.0535). The hot flow curve equation used is
given by Eq.24. The material-dependent coefficients in the
equationwere found by a linear regression analysis for exper-
imental data given by Cook [3], who used high-temperature
compression tests to gather the data. The regression analy-
sis was carried out using the fitlm subroutine of MATLAB
R2021b. The resultant coefficients along with the ranges of
the experimental data are given in Table 2. The determination
constant achieved with Eq.24 was R2 = 0.994.

3.2 Finishing train of a hot strip mill

First, a seven-stand finishing train of a hot strip mill will be
considered, which is designed to work with moderate ten-
sions of 20 MPa between the stands. A transfer bar with an

Table 2 Coefficients and experimental data range of the howflow curve
used for the material AISI 1055

Figure Value Unit

k0 4558.87 MPa

m1 −0.0032118 -

m2 −0.0399528 -

m3 0.2591754 -

m4 −0.5906081 -

m5 0.0001778 -

R2 0.994 -

ϕ̇ 0.5 . . . 100 s−1

ϑ 900 . . . 1200 ◦C
ϕ 0.05 . . . 0.7 -
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Table 3 Pass Schedule of an industrial hot strip mill finishing train. h1:
Strip Thickness; dR : Roll Diameter; t1: Front Tension; w1: Strip Width

Pass h1 dR t1 w1
in mm in mm in MPa in mm

Initial 40.00 1000.00

1 26.42 600 20 1002.63

2 17.74 600 20 1004.21

3 12.05 600 20 1005.15

4 8.33 600 20 1005.68

5 5.84 600 20 1005.99

6 4.15 600 20 1006.17

7 3.00 600 0 1006.27

initial thickness of h0 = 40mm is reduced to a final strip
thickness of h7 = 3.0 mm at a finished rolling speed of ve =
10m/s out of the last mill stand. The pass schedule is given
in Table 3.

Different authors argue that the lateral spread is insignif-
icant for the high width-to-height relations present in the
finishing train of a wide hot strip mill [9–11, 22]. Yu carried
out an experimental analysis by preparing a slab of 129mm
thickness and 2465mmwidth with multiple rows of pinholes
to measure the lateral displacements [27]. Yu came to the
conclusion that the total width variation was in no case more
than 7mm, but there were remarkable lateral flow effects
between the center and edge segments of the strip. However,
for the present study, the total width variation is of greater
interest than the local transversematerial flow. Therefore, the
exit strip widths of each pass were calculated according to
Marini’s spread model given in Eq.56. The results are pre-
sented in Table 3. It is seen that the width variations are very
low compared to the total strip width, so the strip rolling
process was treated as plane-strain for this specific example.

In this example, we disregard elastic mill spring, since it
is state-of-the-art for wide hot strip mills to work with auto-
matic gage controls (AGC) where roll force variations are
directly compensated by hydraulic screw-down adjustments.
The resulting elastic stiffnesses of such stands would there-
fore be extremely high, resulting in negligible mill spring.

3.2.1 Influence of a transfer bar height variation
on interstand tensions

It is known from rolling mill practice, that the height of the
transfer bar entering the finishing train influences the inter-
stand tension distribution. This effect can be calculated using
the presentmodel. Figure10 shows the calculated tensiondis-
tribution for the finishing train, if the tranfer bar thickness is
varied up to ±10% of the reference height of 40mm.

The reference case returns the originally given tensions
of 20 MPa. If the strip entry thickness is reduced by 10 %,

Fig. 10 Calculated influence of varying transfer bar thickness on the
tension behaviour of the finishing train

the tensions rise to values ranging from 26.5 MPa to a max-
imum value of 28.5 MPa. In the opposite case, if the entry
thickness is increased by 10 percent, the interstand tensions
in the finishing train decrease to values between 14 MPa and
17 MPa.

3.2.2 Friction influence on the interstand
tension distribution

The interstand tension distribution is expected to vary with
the present friction conditions. To examine this effect, the
reference case with constant tensions of 20 MPa and a fric-
tion coefficient of μ = 0.3 is compared to cases of a varied
friction coefficient between μmin = 0.25 and μmax = 0.35.
The numerical results of this study are shown in Fig. 11.

It can be seen that in the considered cases, a decreasing
coefficient of friction leads to increasing interstand tensions.
Generally, it can be stated that the friction coefficient does
have a high impact on the tension distribution in a con-
tinuous rolling mill, as Fig. 11 shows. For the operational
practice of a continuous rollingmill, interstand tensions have
to be expected to vary extensively with the present friction
conditions.

3.2.3 The influence of the rolling temperature
on interstand tensions

Another effect on the tension distribution to be examined is
that of the rolling temperature. Figure12 shows the tension
distributions which result from varied entry temperatures in
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Fig. 11 Calculated influence of friction on the tension behaviour of the
finishing train

the finishing train. It is seen that the calculated interstand
tensions increase with decreasing rolling temperature.

3.3 Flat rolling with lateral spread

Applying the Equations given in Sect. 2.4, we can directly
calculate the angular roll velocities for a given set of

Fig. 12 Calculated influence of entry temperature on the tension
behaviour of the finishing train

interstand tensions, taking into account the lateral spread
affected by the tension influence. It is important to note that
the resulting tension influence on the designed angular roll
velocities originates from two different effects, the first being
the direct influence of the tensions on the shift of the neutral
point, the second originating from a distortion of the vol-
ume flux, when the spreading and therefore the rolled cross
sections are affected by the tensions.

Figure13 shows a comparison of the designed roll veloc-
ities for the same pass schedule under lateral spread, starting
with a 50x50 mm square section, rolled down continuously
to a final height of he = 20mm. In the Figure, the black
curves with the plus and cross markers show the case where
the tension-dependency of the lateral spread is disregarded
and the tension effects are controlled by the neutral point shift
only. These examples are marked with s in the legend. The
red curves with the box and circle markers show the calcula-
tions with the tension-influenced spread taken into account,
marked with c in the legend. We can observe that the dif-
ferences between the curves of the first set are very small
compared to the second set. Therefore, we can conclude that
the effect of the neutral point shift on the angular roll veloc-
ities is small compared to the combined neutral point shift
and volume flux effects, which are controlled by the reduced
lateral spread due to the interstand tensions.

Figure14 shows the resulting section widths for the
parameter combinations considered in Fig. 13. The interstand
tension leads to a significant decrease of the section widths,
which shows effects on the calculated angular roll velocities.

Fig. 13 Influence of the interstand tensions on calculated angular
roll velocities. s: tension-influence on spread disregarded; c: tension-
influence on spread accounted for
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Fig. 14 Influence of the interstand tensions on calculated sectionwidths

The inverse calculation of the acting tensions as described
in the preceding sections can be carried out in a similar way.
Figure15 shows calculated examples. The black curves rep-
resent the interstand tensions in the four-stand mill with the
tension influence on lateral spread disregarded. The influence
of the entry thickness on the resulting tensions is very high.
For the cases with the tension-effects taken in to account

Fig. 15 Comparison of calculated interstand tension distributions with
and without tension-influenced spreading effects

represented by the red curves, the overall tension influence
is much lower.

3.4 Calculated examples for an industrial
single-strand wire rodmill

For the inverse tension calculation in a wire rod mill, the
present model can be used in a way similar to the method
presented for flat product rolling. Here, the second interme-
diate mill of a single-strand wire rod mill will be treated. The
roll pass design of this six-stand mill arrangement is shown
in Fig. 16. An initial round section with a nominal diameter
of 32mm is reduced to a final section of 15.5 mm in diame-
ter, which serves as the entry section to the wire rod finishing
block.

First, the angular velocities of the rolls were designed for
a reference configuration with moderate interstand tensions
of 10 % of the flow stress. This specific value was chosen
to incorporate a safety against buckling of the rolled stock,
when the tensions would be reduced by process variations.

With the same angular roll velocities, a parameter study
was carried out to examine the influence of a varying entry
section on the resulting interstand tensions.

Figure17 shows the calculated tensions distributions for
a 32mm entry (nominal) and two varied entry cross sections
of 31.5 mm and 32.5 mm.

From the calculated results we can see that for the bigger
entry section, the interstand tension drops and is reduced
to a near to zero tension between the last two passes. On
the other hand, when the entry section is decresed to 31.5
mm, interstand tension rise to higher values. In Fig. 18 we
can see how the deformation process reacts to these changed
interstand tensions.

For the reference condition, a close to round exit section is
obtained with 15.5mm in height and 15.6mm inwidth direc-
tion. When the entry section decreases to 31.5 mm, higher
tensions are generated. For the final pass, the back tension
increases from 21mm to 37mm, see Fig. 17. The increase
of the interstand tensions between all passes results in a sig-
nificant decrease of the lateral spread in all passes. For this
case, a final section with a width of only 15mm is gener-
ated to serve as the starting section for the finishing block. In
the opposite case, when the entry section is enlarged to 32.5
mm, the tensions are significantly decreased and the lateral
spread will increase (relative to the reference configuration),
resulting in an already overfilled round section with a width
of 16.4 mm (see Fig. 18). Note that the angular roll velocities
remain constant for all three cases considered, so the calcu-
lation results indicate what deviations of the final sections
have to be expected when the initial section undergoes the
discussed variations under operation.

To enable a non-faulty rolling process for the 32.5 mm
initial section, the roll velocitiesmust be adjusted by forward-
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Fig. 16 Pass design of the
second intermediate mill of a
single-strand wire rod mill for
the smallest final section

evaluation of the model. Table 4 shows the original and
optimized angular roll velocities and interstand tensions.

The variations of the nominal 15.5 mm entry to the finish-
ing block will also affect the rolling process in the finishing
block in a similar way as discussed for the intermediate mill.
In the finishing block of a wire rod mill, the final rolling
speed for the smallest section can be up to 120m/s. These
high rolling speeds are necessary to utilize the production
capacity of the rolling mill as far as possible and therefore
enable an economic production. The vast majority of today’s
wire rod mills utilize 10-stand finishing blocks with a fixed

Fig. 17 Calculated interstand tension distribution in the Intermediate
Mill 2 for varied entry sections

gear system and a common drive for all stands. In this sit-
uation, the rotational speeds of all rolls remain in a fixed
relation and it is not possible to control the interstand ten-
sions during operation by changing the rotational speed of
one stand relative to the other ones. Because of this fact, the
wire rod finishing block is an interesting industrial example
to be studied using the new tension calculation model.

Figure19 shows the pass design of the ten-stand finishing
block for the nominal output section of 5.0 mm with details
of the groove geometries given in Table 5.

In a parametric study, the initial round section of the finish-
ing block was varied between 15.0 mm and 15.7 mm, where
the nominal design condition is a 15.5 mm round section.

Figure20 shows the interstand tension distributions that
are encountered for the different conditions.

The typical shape of these distributions follows from the
mill spring which is strongly connected to the reduction dis-
tribution of the finishing block, featuring higher reductions
in the oval passes than in the round passes, and as a conclu-
sion higher roll forces and mill spring. For the smallest entry
section considered (15.0 mm), very high tensions of up to 81
MPa are encountered, where for the biggest entry section of
15.7 mm, the tensions are decreased very much with a small
compression stress between the first two passes.

Figure21 shows the final sections whichmust be expected
for the different entry section conditions, where the back
tensions for the final pass are given in Table 6.

Generally, we can observe that the height of the final sec-
tion is not severely affected by the entry section, as the tension
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Fig. 18 Calculated exit section
running out of the second
intermediate mill for a ± 0.5
mm variation in the entry section

variation generates force and therefore mill spring variations
of the final pass when the screw-down remains fixed. In con-
trast, the sectionwidth, being controlled by the acting tension
directly, varies between 4.62 mm for the 15mm entry section
up to 5.18 mm for the 15.7 mm entry section.

4 Discussion

In the present paper, a computational model for the inverse
calculation of interstand tensions in continuous rolling mills
was introduced. The model uses iterative calculations with
a rolling model and a linearization of tension-roll velocity
relationship. This relationship is formulated internally as a
composite function with the neutral angle of the roll gap as
central coupling parameter between statics and kinematics.

For the simplest case of negligible lateral spread, calcula-
tions for a seven-stand finishing train of a hot strip mill were
carried out. It is seen that the interstand tensions depend
significantly on the entry height of the transfer bar and on
the friction coefficient which is used for the calculation.
A temperature influence of the interstand tensions can also
be observed using the model, but it should be understood
that the effect observed here is mainly controlled by the
temperature-dependency of the material’s flow curve. The
true temperature dependency observed in rolling mill prac-
ticewill be a combined effect of flow stress and a temperature
dependent friction coefficient.

Table 4 Model-based optimizaion of angular roll velocities.ω: original
angular roll velocity; ω∗: optimized angular roll velocity

Pass ω ω∗ ti,1 t∗i,1
in s−1 in in s−1 in MPa in MPa

1 28.20 27.48 10.07 25.9

2 37.31 37.28 8.43 25.7

3 64.90 65.03 4.79 25.9

4 81.12 81.77 7.60 25.8

5 97.15 97.51 −0.28 27.4

6 128.08 128.56 0.0 0.0

In the next step, themodel was applied to a flat rolling pass
schedule with apparent lateral spread. An empirical model
is used to describe the influence of the tensions upon the
lateral spread, an effect which leads to extra nonlinearities
in the developed numerical model. It is therefore necessary
to introduce a relaxation factor into the model as to ensure
a stable convergence. In this study, it was shown that the
way in which the roll speed deviations are influenced by
interstand tensions is different if the direct spreading-effect
of the tensions is taken into account. Therefore, it can be
concluded that the static-kinematic relationship in the roll gap
is influenced by two effects, the first one being the neutral
point shift, the second one being direct distortions of the
volume flux. In this interaction, the volume flux plays amajor
role for practical rolling cases with apparent lateral spread.

The results of the further studies indicate that interstand
tensions are of great importance also in rolling mills for long
products. To show the principal effects, another study was
carried out for a single-strand wire rod mill, where the influ-
ence of varying entry sections into the intermediate mill and
the finishing block are discussed. In the intermediatemill, the
tensions and section formations depend largely on the entry
section. It was shown that not only a too big entry sectionmay
lead to overspreading in the last passes, but also to very small
tensions. Even compressive stresses may be observed, which
can lead to mill cobbles and must be avoided. This effect can
be counteracted by active steering of the angular roll veloc-
ities to ensure higher tensions. For the wire rod finishing
block, the model calculations revealed that a precise sizing
of the entry section is important to avoid excessive variations
in the interstand tensions encountered, as an active control
of the angular roll speeds is impossible due to the fixed gear
system of the finishing block.

It may be concluded that interstand tensions are a princi-
pal influence parameter for rolling processes in continuous
rolling mills and therefore must be observed and controlled
carefully. In rolling of long products, they play a major role
on the achievable product tolerances, since the rolled cross
sections can be effectively controlled by a targeted adjust-
ment of the tensions.

As a significant influence of friction on the interstand
tension was shown, it is important to develop a method
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Fig. 19 Pass design of a ten-stand wire rod finishing block for a 5.0 mm rod out of a nominal 15.5 mm initial section

for a reliable online-measurement of the coefficient of fric-
tion during hot rolling in the near future. These methods
should be based on optical measurements of the forward
slip and section formation, as not to disturb the rolling
process. Also, the various influences of the coefficient of
friction on temperature, rolling velocity and material pairing
(rolls and workpiece) should be worked out using an inline-
measurement method to form a better theoretical basis for
the description of the friction influence on the lateral spread
and side formation.

Another factor influencing the interstand tension distribu-
tion is the roll wear. The results of the present work indicate
that interstand tensions vary with the friction coefficient sub-
stantially. Panjkovic gives a literature review on the change

Table 5 Groove data for the 10-stand finishing block

Pass Type Height Radius Roll Gap
in mm in mm in mm

Initial Section 15.5 7.75

1 Oval 9.5 16.5 1.6

2 Round 12.24 6.3 0.94

3 Oval 7.6 14.0 1.2

4 Round 10.0 5.1 1.3

5 Oval 6.0 11.5 1.3

6 Round 8.0 4.08 1.5

7 Oval 4.40 9.0 1.2

8 Round 6.50 3.31 1.5

9 Oval 3.85 7.5 1.45

10 Round 5.00 2.55 1.4

of the friction coefficient with increasing roll wear [20].
When large pores of an area greater than 0.25 mm2 (called
comet tails) as surface defects develop on the roll surface,
a remarkable increase of the coefficient of friction can be
expected [26]. Therefore, a reaction of the interstand ten-
sions to increasing surface degradation by wear mechanisms
is to be expected.

Secondly, the groove or roll gap shapes change duewear of
the roll surfaces. From the studies about the effect of varying

Fig. 20 Interstand tension distribution in a 10-stand wire rod finishing
block
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Fig. 21 Calculated final
sections of the 5mm wire rod as
a function of the entry diameter
to the finishing block

entry sections on the interstand tension distribution included
in the present paper, we can conclude that variations of the
groove heights in subsequent passes influence the tension
distribution to a great extent. This also applies to roll gap or
groove shape changes induced by increasing roll wear.

When a worn out roll surface is redressed, the nominal
diameter of the roll decreases with effects on the kinematics
of the rolling process. The model proposed in the current
paper can help to redesign the rotational roll speeds and to
predict the interstand tensions to be expected when a roll is
subjected to substantial wear.

It would be necessary to conduct further studies to exam-
ine the effects of roll wear on the tension distributions, based
on the model present in the current paper. A study on online
prediction of roll wear in bar rolling mills using an artifi-
cial neural network can be found in [23]. A combination
of such data-driven wear prediction model with the model
presented in the current work would extend the application
range of the tension assessment to the cases with substan-
tial roll wear and should be addressed as a future research
work.

Finally, we may conclude that the future developments
of data-driven modeling and control techniques for rolling
millswill require a precise and fast tension calculationmodel.
The present work aims at contributing to a path towards this
goal.

Table 6 Metal forming data for the exit sections given in Fig. 21

Entry Diameter Back Tension Height Width
in mm in MPa in mm in mm

15.0 73.2 5.07 4.62

15.2 66.5 5.07 4.74

15.3 61.9 5.08 4.83

15.5 (nom.) 53.2 5.09 5.00

15.6 48.7 5.09 5.09

15.7 44.1 5.09 5.18
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