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Abstract
There are several parameters that highly influence material quality and printed shape in laser Directed Energy Deposition
(L-DED) operations. These parameters are usually defined for an optimal combination of energy input (laser power, scanning
speed) and material feed rate, providing ideal bead geometry and layer height to the printing setup. However, during printing,
layer height can vary. Such variation affects the upcoming layers by changing the printing distance, inducing printing to
occur in a defocus zone then cumulatively increasing shape deviation. In order to address such issue, this paper proposes a
novel intelligent hybrid method for in-process estimating the printing distance (Zs) from melt pool images acquired during
L-DED. The proposed hybrid method uses transfer learning to combine pre-trained Convolutional Neural Network (CNN)
and Support Vector Regression (SVR) for an accurate yet computationally fast methodology. A dataset with 2,700 melt pool
images was generated from the deposition of lines, at 60 different values of Zs , and used for training. The best hybrid algorithm
trained performed with a Mean Average Error (MAE) of 0.266 and a Mean Absolute Percentage Error (MAPE) of 6.7%.
The deployment of this algorithm in an application dataset allowed the printing distance to be estimated and the final part
geometry to be inferred from the data.

Keywords Additive manufacturing ·Melt pool · Image processing · Convolutional neural network · Transfer learning

1 Introduction

Most of the processes for 3D printing components are
standardized through the international standard ISO/ASTM
F52900 [1], which classifies all Additive Manufacturing
(AM) processes into seven. One such process is Directed
Energy Deposition (DED), which prints 3D shapes by fusing
the feedstock (wire/powder) when applying a highly focused
thermal source (laser/electrical beam/arc) through a deposi-
tion nozzle [1]. It lays down adjacent lines, building layers,
which are stacked to obtain a 3D shape. Due to its principle,
DED is capable of producing and repairing metal-alloy com-
ponents in complexgeometries,whilst also being competitive
in part customization [2], which makes the processes highly
attractive for the aerospace industry [3], amongst many oth-
ers.
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Conventional slicing software consider a constant layer
height and it uses that value as the Z-axis increment for gen-
erating the CNC program, which contains the scanning path
and the parameters defined for the entire 3D construction.
Laser DED (L-DED) processes are mainly driven by three
parameters: laser power, feed speed and mass flow rate [4].
To obtain consistency in a build, these parameters should
be optimized and remain constant throughout a 3D building
shape [5, 6]. However, some of those parameters may have
to be adjusted back to the set value, as they usually vary on
the fly. Therefore, monitoring and controlling strategies are
needed [7] and have been explored lately on the monitoring
of powder flow [8, 9]; thermal activity [10]; and melt pool
characteristics [11, 12], etc.

The deposition occurs by means of the melt pool and is
related with all those fundamental parameters governing the
L-DED process [13], so it is reasonable to expect that its state
represents a great portion of the quality of the built part.Mon-
itoring performed in real time using machine learning (ML)
algorithms and neural networks (NN) present a model-free
monitoring approach, which is suitable for complex systems
that require a multi-physical modelling involving a great
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number of variables. Such monitoring may provide infor-
mation on both the fault being monitored [14–16] and its
specific intensity.

Recently, there has been some research inclined towards
an establishment of melt pool monitoring through imaging
[17, 18] with the aid of artificial intelligence methods [7, 15].
They can also be linked to the rapid growth and improvement
of image processing techniques, especially those using mod-
ern ML techniques, such as Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN). As the use
of CNN and RNN require a vast amount of data in order to be
effectively trained, the use of transfer learning [19], in which
a pre-trained CNN is used to generalize the data input, has
been increasingly adopted.

One of the most important variables to be monitored and
controlled in the process is the layer height, which is a result
of the heat distribution throughout the 3D geometry [20] and
thematerial fed at themelt pool. Likewise, the scanning strat-
egy is also a parameter that can affect the layer height as it
influences the heat distribution and solidification process dur-
ing printing, also affecting the temperature distribution in the
melt pool and the resulting microstructure of the solidified
metal [21]. As the heat distribution varies during printing
from the first layer on, the z-axis increment between layers
must suffer adjustments from the initial set value for the first
layer.

Besides, when producing large blocks and bulk regions,
the center of the geometry tends to cool down slower than its
borders and edges, resulting in locally higher layer. On the
corners and borders, a balling or rounding effect on the edges
and corners can result in local shorter layers [21]. Therefore,
as the 3D part grows, that match is fundamental to assure a
good 3D part quality [9]. To evolve the L-DED processes,
it is imperative to monitor and detect unexpected changes
in Zs and use this data in a feedback loop to adjust Z-axis
increment [4, 20].

Some studies have reported the estimation/measurement
of the layer height in-situ, and for this purpose, usually
multi-cameras, and other electromagnetic sensors have been
applied [22–24]. However, when it comes to measuring
printing distance in-process to infer on the layer height for
real-time applications, only one study has been reported [24].
By using vision-based inspection on a combination of three
digital cameras, the authorswere able tomeasure the distance
between the bottomof the nozzle and the plan of themelt pool
with great accuracy [24]. However, the setup for such mea-
surement requires fine alignment and high-cost instruments.
Such solution may not always be as feasible to reproduce in
industrial and academic environments as the one proposed in
the present work, which suggests the use of coaxial IR cam-
eras previously installed in the machine. Progress has also
been made in multi-physical modelling to correlate the devi-

ation in printing distance [25, 26], with success in repairing
uneven surfaces. Yet, such control is not done online, but by
post-processing the data when repairing surfaces.

Despite various intentions in regard of real time moni-
toring of the melt pool using CNNs, efforts to minimize its
processing time, whilst maintaining geometry accuracy, are
lacking [27]. Therefore, this study proposes a novel hybrid
artificial intelligent method to quickly identify with accu-
racy and low computational cost the printing distance. This
method was designed to combine the best out of pre-trained
CNNandSVR, using solely processedmelt pool images from
the process as training data. The proposed methodology pro-
vides an efficient and accurateway ofmonitoring the printing
distance, being the stepping stone for online feedback control
of the Z-axis increment during printing operation for better
quality produced parts.

2 Theoretical correlation between printing
distance deviation and layer height

Fundamentally, in L-DED processes a laser beam is focused
at the printing surface, generating a melt pool. To maxi-
mize the process efficiency, both powder flow and laser beam
focuses must be exactly at the printing surface. The higher
the energy delivered, the deeper the melt pool tends to be
and the longer the time of exposure, the wider the melt pool
area. In addition, when both focus, powder and laser,matches
exactly at the printing plan, the resulting deposition tends to
be at its best.

However, it often happens that such match is not main-
tained, throughout the process, because the height of the
layers (h) changes during stacking. The Z-axis increment
must equal the overall height of the previous deposited layer
in order to keep the deposition in focus. If just a constant
Z-axis increment is used in the G-code for the entire 3D
building, the printing distance and laser beam focus tend to
diverge. This difference may be acceptable in prints with
few layers, but as the number of stacked layers increases,
the divergence grows and the efficiency of the process drops
to unacceptable levels. Powder catchment, delivered power,
melt pool depth and area decrease, and layer height may
shrink. All those outcomes induce defects and affect the
material mechanical properties and its 3D geometry as a
whole [25]. Therefore, to improve the process results, the
Z-axis increment must be adjusted, according to each layer
height, in order to avoid printing out of focus. Figure 1 sum-
marizes the focus conditions during printing.

Figure 1a shows the focal point(Zs,0) from both powder
jet and laser beam. When the printing distance (Zs) coin-
cides with the laser focal point (Zs = Zs,0), the deposition
is considered ’in focus’ (see Fig. 1c). That is the situation
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Fig. 1 Schematics for a deposition nozzle and focus conditions during printing as in b positive defocus, c in focus, and d negative defocus

at the first layer, or when the actual layer height (h) is equal
to the Z-axis increment (dz). Thus, there are two cases in
which the deposition can be defocused: when the printing
distance is greater than the focal distance, in positive defo-
cus (Zs > Zs,0, see Fig. 1b) and when it is lesser than the
focal distance, in negative defocus (Zs < Zs,0, see Fig. 1d).

With the increase in loss of focus, both the layer height
and the following layer geometries and material quality are
affected, leading to a printed part with overall cumulative
deviations. The process must prevent this effect from hap-
pening. At the present research, several depositions were
conducted at the 3 defined focal zones, so the predicted print-
ing distance (Ẑs) could be estimated. Based on that predicted
value, a correction factor (�z) can be seen in Fig. 2 and is
defined in Eq. 1.

�z = Zs − Zs,0, (1)

Fig. 2 Schematics for defocused printing

Using the correction factor, a Z-axis increment correction
factor in instant ’i’ (Ẑadd,i ) can be predicted according to
Eq.2.

Ẑadd,i = dz − �ẑi (2)

in which dz is the programmed Z-axis increment and �ẑi is
the predicted correction factor in instant ’i’.

All in all, in L-DED via powder feeders’ systems, keeping
the printing on focus is a challenge - as the bead geometry
is highly influenced by the heat transfer mechanisms and the
melt pool shape and solidification. So, as the layer height is
highly dependent on many printing parameters, as well as on
scanning strategies, part geometry, etc. real-time monitoring
and estimation of the printing distance can be used to correct
z-axis displacement for each layer and maintain the expected
printing outcome and quality.

3 Experimental setup

In this study, a 5-axis DED machine model M250 (SN 006)
from BeAM with a CNC SIEMENS SINUMERIK 840D sI
(Version V4.7) was used. Equipped with the BeAM Vx10
nozzle with 0.8 mm spot size, both powder and laser beam
are focused at Zs,0 = 3.5mm from the nozzle. In this system,
a coaxial Basler ACA2000-50GM-NIR camera (pixel size of
30.25μm2) was calibrated tomatch the focal and laser power
focus.

Stainless steel 316L powder from Höganäs (particle size
distribution ranging from 45 to 105 μm) was printed on a
stainless steel 316 plate (160x160mm2). All prints were car-
ried out with 350W laser power, 2000mm/min travel speed,
6.5 g/min mass flow rate, and carrier, central and secondary
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gases at the rate of 3 L/min, 3 L/min and 6L/min, respec-
tively.

• Training and validation: In the first stage of the present
work, the melt pool characteristics during deposition of
single lines 270 mm long were investigated under dif-
ferent printing distances (Zs ranging from 2.50 mm to
5.50mm, with 0.05mm increment between sets), as pre-
sented in Fig. 3. From these tests, the images from the
melt pool and the known printing distance for each set
were the main outputs used to train the algorithm.

• Case study: Following the lines setup, thick walls
(12 mm thickness x 35 mm long with 35 layer height)
were built with five different programmed layer heights
(0.26mm, 0.27mm, 0.28mm, 0.29mm, and 0.30mm) to
induce defocus printing at different levels. The scanning
strategy used in this geometry was zigzag with distance
between adjacent lines in XY equal to 0.55 mm.

For all printings, images from the melt pool were acquired
at 50 f ps (frames per second) by the Basler Pylon V.6.3.0
Camera Software Suite TM forWindows. The training dataset
is composed by 27000 images and each set of labels contains
approximately 670 images. As part of our commitment to
open science, all training data is freely available at our online
repository. To allow each image to be spatially located at
the testing stage, axis position data was acquired at 50 Hz
and synchronized to the image acquisition based on match-
ing timestamps. The acquired images were processed by the
proposed hybridmachine learningmodel, depicted in the fol-
lowing section.

4 Hybrid Machine LearningModel

In order to correlate the images acquired by the camera and
the printing distance, a supervised HybridMachine Learning
Model (HMLM) is proposed. The images from the melt pool
were processed and used as the input data to the HMLM,

and the printing distance in which the images were captured
are the labels (output) for the training and evaluation stage.
Although traditional techniques for image binarization can
be used to obtain the features (inputs) for the model, those
techniques have shown to poorly represent the melt pool
region from the image when the camera loses its focus. In
that regard, the use of CNN to create features and predict
outputs is a well-established alternative [19, 28].

Due to the amount of data required to effectively train a
CNN[29], it is proposed to use the transfer learning technique
[18]. In transfer learning, a CNN is pre-trained in a very large
dataset of images uncorrelated to the images under study.
This pre-trained CNN is then used to generalize the images
under study, creating intermediate features that represent the
images and can be used as inputs to a machine learning
regression model which predicts the distance between the
deposition head and the melt pool plan, considered as the
printing distance.

The flowchart for model training and validation and
deployment is illustrated in Fig. 4. All melt pool images were
acquired online by the melt pool monitoring system. Sam-
ple images of the melt pool from the line experiment were
used to train and validate the algorithm, in which the defined
labels (printing distance) were addressed for each dataset.

The training andvalidationof theHMLMflowsas follows:
features were extracted from each image by the use of a pre-
trained CNN; the features were then reduced with Principal
Component Analysis (PCA) without losing significant infor-
mation from the process; the dataset was separated between
training (80%) and testing (20%) datasets using a train test
split function; the training dataset was used to re-train the
model and then, the model used the remaining testing dataset
to predict the output. An error assessment was performed on
the prediction results for eachmodel tested. Subsequently, all
data were evaluated under different machine learning regres-
sors so the best HMLM could be determined.

A comparison using 5-fold cross validation was used to
elect the best combination of regressors between SVR, Ran-
dom Forest and Gradient Boosting Regressor, tested with the

Fig. 3 Schematics on the a
printing distance (Zs ) and
correction factor (�z), and b
experimental setup
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Fig. 4 Pipeline architecture for
this work

features extracted by the pre trainedCNN. The regressorwith
the best metrics with the default parameters was selected for
hyperparameter optimization through grid search. The best
hybrid machine learning model was selected and used to run
melt pool images and predict outcomes for data acquired
during the printing of the case study geometry.

4.1 Convolutional Neural Network (CNN)

CNN are a specialization of Artificial Neural Networks
(ANN) that are particularly suited to perform image pro-
cessing. The advent of Residual Neural Networks (RNNs),
such as ResNet in Fig. 5, was a technological breakthrough
that made possible the use of CNNs due to a data forward-
ing architecture, in which the results of a previous deposited
layer are considered for the next layer [30]. This has empiri-
cally shown to speed up convergence and diminish the errors
in image classification tasks.

Another CNN architecture is a Densely Connected Con-
volutional Neural Network (DenseNet). This CNN strategy
connects the result of a previously layer to all the subsequent
layers and has been shown to outperform all the other CNN
architectures while using fewer trainable parameters [31].

L-DED monitoring research using DenseNets for coaxial
image processing has also been conducted with promising
results by Jolliffe and Cadima (2016) [32]. In the context
of this research, three pre-trained versions of the DenseNet
were used, with those beingDenseNet121, DenseNet169 and
DenseNet201 [32]. Those specific versions were used due
to implementation availability and availability of the trained
weights, aswell as computational feasibility since no training
on a large dataset is required.

Fig. 5 Building block of a ResNet. From [31]
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Pre-trained CNNs are capable of representing general
image data. Different implementations of ResNet and
DenseNet, with various numbers of layers, were used to
generate intermediate features of the higher-level HMLM.
These features were then used to train different machine
learning regression models to predict the printing distance
of a particular image. All the explored CNN models with
the respective layer quantities were: ResNet50, ResNet101,
ResNet152, DenseNet121, DenseNet169 and DenseNet201.

4.2 Machine Learning Regressors

The use of pre-trained CNN reduces the amount of input
data from 640x800 (512000) pixels to at most 2048 features.
Principal Component Analysis (PCA) is a well-established
model reduction tool that was performed to further speed
up the model training [32]. The number of principal compo-
nents chosen varies with the CNN used, and are selected to
guarantee that at least 97.5% of the data variability is rep-
resented in those components. The features processed after
PCA are then used as input in the ML regressors to predict
the final output. The regressors used were eXtreme Gradi-
ent Boosting (XGBoost), Random Forest (RF) and Support
Vector Regressor (SVR).

Both XGBoost and RF are ensemble algorithms based on
decision trees, that show great performance for prediction
[33]. A decision tree subdivides the data based in similarity
scores, in which every new iteration tests every possible split
and decides for the split that provides the most information,
i.e. the split in which the similarity score is the minimum.

TheRFalgorithmutilizesmultiple different decision trees,
in a bagging strategy, each based on a random split of the
initial dataset [34]. The XGBoost is a scalable ensemble
algorithm based on a boosting strategy, that combines ran-
dom decision trees, generated in a similar way as in the RF
algorithm, in a sequential order.

SVR is a machine learning algorithm that uses an ε insen-
sitive loss function as penalization in an optimization [35],
i.e errors that are smaller than ε are ignored. The intention
is to minimize ε, finding the hyperplane that best represents
the regression task. SVR is known to be used with nonlinear
and high-order relationships between features and the target.
In that case, it is usually used with kernels that are capable
of transforming the high-order and nonlinear relations into
linear ones, that are suitable for the minimization of ε. The
kernel used in this paper is the Radial Basis Function Kernel
(RBF) [35].

Hyperparameters will also be optimized through a grid
search, which consists of an exhaustive execution of all the
possible combinations and selection of the one with the best
results. The parameters and their respective sets of values are
exhibited in Table 1.

Table 1 Hyperparameters for SVR

Hyperparameter Value Set

Kernel Polynomial, RBF

Regularization Parameter 1, 5, 10

Degree (only Polynomial) 3, 4, 5

4.3 Model Validation & Error assessment

In order to evaluate the error in the presented regression task,
threemetricswere explored:R-Squared (R2),MeanAbsolute
Error (MAE) andMean Absolute Percentage Error (MAPE).
R2 is the coefficient of determination, which represents how
well the model represents the dataset (Eq. 3). Although usu-
ally its values are constrained between 0 and 1, very poor
model fitting could cause the index to have negative values.
The closer R2 is to 1, the better is the model fit.

R2 = 1−
∑n

i=1(Zs,i − Ẑs,i )
2

∑n
i=1(Zs,i − Z̄s)2

, (3)

in which n is the number of datapoints on the dataset, Zs,i is
the actual target value, Ẑs,i is the predicted target value, and
Z̄s is the average of the target values.

On the other hand, MAE directly represents the error
between regression predictions and the actual target value
included in the dataset (Eq. 4). The error is then averaged in
the number of datapoints. The smaller the MAE, the better
the model.

MAE =
∑n

i=1 | Ẑs,i − Zs,i |
n

, (4)

in which n is the number of datapoints on the dataset, Zs,i is
the actual target value and Ẑs,i is the predicted target value.

It is important to note, however, that the MAE does
not include the average of the target value in its calcula-
tion. Therefore, the higher the target average, the higher the
expected MAE can be. This problem can be tackled with the
MAPE metric, that normalizes the values with respect to the
average. With a slight modification to Eq.4, it is defined as:

MAPE =
∑n

i=1 | Ẑs,i − Zs,i |
n · Zs

, (5)

in which n is the number of data points on the dataset, Zs,i is
the actual target value and Ẑs,i is the predicted target value.

All the models were trained and tested with a 0.2 train test
split, in which 20% of the dataset is randomly separated to
be used as a validation dataset.

Tovalidate themodel and select the one that better general-
izes the data using the aforementionedmetrics, aK-fold cross
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Table 2 Number of features
required by each CNN to obtain
97.5% of the data represented

CNN Original Features PCA Features Feature reduction (%)

ResNet50 2048 414 79.79

ResNet101 2048 360 82.42

ResNet151 2048 442 78.42

DenseNet121 1024 94 90.82

DenseNet169 1664 107 93.57

DenseNet201 1920 121 93.70

validation technique will be used. For this study, the chosen
value of K is 5. This technique involves dividing the dataset
in K parts, and performing K times the training and evalua-
tion step. Before performing these operations, the dataset is
randomized to avoid having data points that are unknown to
the model being used to assess the performance.

The dataset test window (80% training and 20% testing)
is then fed to the algorithm and the following charts are com-
puted:

• An error chart is drawn. It displays the ideal reference, all
the predicted points and an average prediction for mea-
surement label;

• AMAEbar plot after windowing the dataset to each label
represents the MAE for each different z-offset tested;

• The MAE for the label is also displayed as a reference.

5 Results and discussion

5.1 Training andValidation: line geometry

From the training dataset, the original number of features
was reduced through PCA, as presented in Table 2. The
CNN with better performance in reducing features were the
DenseNet121,Densenet169 andDensenet201,whose feature
reduction amount to 95.4%, 94.8% and 97.5%, respec-
tively. Thus, the network that needs the least number of
components to represent 97.5% of the dataset variance is
the DenseNet121, followed closely by DenseNet169. All
ResNets presented performance in feature reduction below
83%.

As both architectures present at least oneCNNwith a good
possibility of very low processing time per image, all were

tested together with the different regressors. The results from
the regressor performance are compiled in Table 3. SVR,
RF and XGBoost were evaluated as regression models, after
feature reduction by PCA, in terms of MAE and R2.

One can see inTable 3 that the best performance for regres-
sor, in combination with both ResNet or DenseNet models
of CNN, is SVR. Therefore, a hyperparameter tuning was
performed through grid search on the regularization param-
eter (C), kernel RBF, with results displayed in Table 4. The
execution time was also provided for some additional con-
siderations regarding the feasibility of the model.

As one can see in Table 4, the best performance was
obtained when pre-training the model DenseNet169 with
SVR as the output regressor, represented by a R2 = 0.849
and MAE = 0.266. Figure6 presents the complete regres-
sion plot from all the CNN/SVR. Detail on the best pair can
be seen in Fig. 7.

It is important to emphasize that the MAE does not arbi-
trarily varywith the change in printing distance labeled.MAE
does present a reduction when the system operates in focus,
indicating that when the printing occurs close to the focus
(Zone 0), the model can be more assertive in predicting the
printing distance from the melt pool images. As a common
point, all the models on average predicted a higher MAE for
distances below the focal point (Zone -), and a lower MAE
for values above the focal point (Zone +). All in all, theMAE
for this dataset is 0.266 and it represents a MAPE of 6.7%.

Another important point to discuss are the processing
times for the developed algorithms. In order to achieve a real
time process control, the processing pipeline must be able to
quickly deliver the response, to then be used by other control
mechanisms which would in turn adjust process parameters,
increasing the part quality and thusmany valuable properties.
Table 5 presents the time for each step of the image process-

Table 3 Compilation of
different regressor strategies
evaluated after PCA, with data
presented as in ’R2 Score/MAE’
format

ResNet DenseNet
Model 50 101 151 121 169 201

SVR 0.83/0.29 0.79/0.32 0.78/0.32 0.80/0.30 0.85/0.27 0.83/0.28

RF 0.50/0.52 0.46/0.54 0.44/0.57 0.62/0.44 0.66/0.41 0.66/0.41

XGBoost 0.56/0.48 0.53/0.50 0.51/0.51 0.64/0.43 0.69/0.39 0.67/0.40
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Table 4 Error evaluation for best tested pairs of CNN and SVR

CNN/regressor SVR, C R2 Score MAE

ResNet50 1 0.829 0.289

ResNet101 5 0.795 0.315

ResNet151 5 0.785 0.320

DenseNet121 5 0.806 0.302

DenseNet169 1 0.849 0.266

DenseNet201 5 0.836 0.275

ing, considering the total time for image processing (T ) as a
sum of the feature extraction, PCA and SVR time to predict
the printing distance, and the overall process frequency by
each CNN tested.

In Table 5, the feature reduction has clearly affected the
processing time for processing each image.DenseNet121 has
the best processing time (0.023s) per image, this model pro-
vides a lower MAE of 0.302 and a R2 of 0.806. On the
other hand, DenseNet169 presents a combination of high
feature reduction, a very low processing time per image
(0.027s), whilst providing the model with the best metrics:
MAE (0.266) and R2 (0.849).

Fig. 7 Regression plot from training dataset by DenseNet169 + SVR
(C = 1) models and discrete error plot for each defined Zs label

Theprocessing frequencieswere achievedusing ageneral-
purpose personal computer. It is important to stress that,
depending on the real time requirements of the applica-
tion, multiple ways of reducing the processing time can be

Fig. 6 Complete regression plot
in: a ResNet50 + SVR (C=1), b
ResNet101, SVR(C=5), c
ResNet151, SVR(C=5), d
DenseNet121, SVR(C=5), e
DenseNet169, SVR(C=1) and d
DenseNet201, SVR(C=5)
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Table 5 Processing time of the
different methods

Time (10−3s/per image)
Feature extraction PCA SVR T f (Hz)

ResNet50 20 0.5 4.417 24.917 40.13

ResNet101 36 0.5 3.988 40.488 24.70

ResNet151 54 0.5 4.873 59.373 16.84

DenseNet121 21 0.138 1.806 22.944 43.58

DenseNet169 25 0.341 2.079 27.420 36.47

DenseNet201 31 0.341 2.100 33.441 29.90

explored. Somewaysof decreasing theprocess timeare to use
a faster environment for the model (low level languages) or a
more powerful computer to perform the operations, to inte-
grate dedicated and optimized hardware (GPU and FPGAs),
etc.

Although all the final processing frequencies are infe-
rior to the acquisition of images rate (50 Hz), trying to
feed the CNC with corrective actions at the same rate rep-
resents a risk for loosing printing quality. In this regard,
the authors believe that the current model can provide real
time information as a feedback to control the DED process
online.

Thus, due to its high performance, the pre-trained model
used to predict the printing distance was DenseNet169 with
SVR (C=1).

5.2 Case study: thick walls geometry

Figure 8 reveals the presence of accumulative error into the
printing distance for the thick walls built with 0.26 and
0.31 mm layer height. When printing this geometry with
dz = 0.31mm, the predicted printing distance shows a larger
proportion of the data at the Zone +, indicating a severe loss
of printing focus (see Fig. 8b). This is likely a result of a
mismatch between actual layer height and programmed layer
height, indicating defocus printing occurrence. The opposite
occurswhenmajority of the signal iswithin the printing focus
Zone 0, as shown in the part printed with dz = 0.26mm (see
Fig. 8a).

Thus, by using the methodology proposed in this paper,
it is also more feasible and faster to evaluate the best layer

Fig. 8 Predicted printing distance, Ẑs(mm), during printing and final geometry of thick walls for buildings with programmed layer height, dz, of
a 0.26 mm and b 0.31 mm
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height to build a part at the initial design of experiments
(DoE), saving time and resources in part handling and initial
shape analysis. The correspondent final part geometry is also
plotted in Fig. 8 as qualitative reference.

Starting at the borders and edges, where the melt pool
tends to cool down faster, the printing defocusing can rise to
a level that affects the overall part geometry. In early stages,
with the quicker solidification of the melt pool, less material
tends to be added, affecting the layer height first at the borders
of the building. Following, when less material is captured at
the melt pool, local layer height tends to decrease, provoking
shape deviation to begin at the edges and start to move along
the edge as the defocus printing areas increase. This behavior
is shown in Fig. 8b, where there is a small area of Zone 0,
in green-yellow, surrounded at the risen edges of Zone +, in
orange-red.

To summarize, from the final part geometry, the higher
the �z throughout the printing, the higher the shape devi-
ation at the final part. The best edges and shape geometry
were obtained at the print with dz = 0.26 mm, as already
indicated with the results from Fig. 8, whilst the lower
quality shape geometry was obtained at the print with
dz = 0.31 mm. These results suggests that the methodol-
ogy proposed in this paper can support online inspection
of printing geometry quality through printing defocusing
quantification.

6 Conclusions

The present study proposes a novel hybrid machine learning
model for estimating printing distance in L-DED operations.
To support the study, three focal zones were defined: Zone 0
for printing in focus, Zone - and Zone + for printing out of
focus when h > dz and h < dz, respectively.

The results from the training and validation stage indi-
cated that the model DenseNet169, with SVR regularization
parameter C = 1, presents a combination of high fea-
ture reduction and low processing time per image (0.027s).
This model provides the best metrics: MAE= 0.266 and
R2 = 0.849, leading to an average target error of 6.7%.
Using this model, images are processed with high accuracy
at the rate of 36.47 Hz, which is inferior to the acquisition of
images rate (50 Hz); however, it is still reasonable to support
feedback-control as the CNCmachine is not actualized in the
same rate.

Plots of predicted printing distance against spatial posi-
tion shows variation at borders/edges, highly affecting the
geometry from the building with dz = 0.31mm. When com-
piling the results for the case study, it is possible to infer that
dz = 0.26 mm is the closest value to the layer height from

the printing,mitigating defocus regions, thus leading to better
final geometry with less shape deviation.

Overall, understanding how the printing distance influ-
ences the quality during printing of stacked layers has shown
to be imperative to high geometric accuracy in L-DED.
Another outcome of the presented methodology is to aid the
build of parts and the definition of parameters at the pre-build
stage, so the layer height can be chosen to provide amostly in
focus deposition. This would prevent excessive shape devia-
tion, reinforcing the importance of having a method that can
estimate the printing distance changes in-situ.
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