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Abstract
In CNC milling, the feed rate scheduling is a frequently used method to increase machining quality and efficiency. Among the 
benefits of feed rate scheduling, this paper focuses on controlling the tool load and optimizing the machining time. Although 
the advantages of feed rate scheduling are undeniable, some areas remain still to be addressed. In order to control the tool 
load, geometric methods are often used, which are based on keeping a specific parameter, such as chip thickness or material 
removal rate (MRR) constant. However, a high level of tool load control can only be provided if cutting force models or 
experimental-based techniques are used. Besides traditional methods, this paper presents an artificial neural network (ANN)-
based feed rate scheduling method to keep the tool load constant, using data gained by preliminary cutting experiments. A 
case study demonstrates that a significantly higher level of tool load control can be achieved with this method as compared 
to the geometric models. Besides controlling the tool load, the present feed rate scheduling method also addresses the con-
sideration of acceleration limits which is of great importance for practical uses. The application of feed rate scheduling in 
trochoidal milling is also discussed in detail in this paper. This area has not received enough attention, as due to the limited 
fluctuation of cutter engagement, the tool load was considered as well-controlled. However, experiments have shown that 
in the case of trochoidal milling, the introduction of feed rate scheduling can still further increase the machining efficiency. 
Using the developed ANN-based feed rate scheduling method, significant progress could be made as compared to conven-
tional technologies in controlling the cutting force and optimizing the machining time. In the present case study, a reduction 
of 50% in machining time was achievable by adjusting the feed rate without increasing the peak value of cutting force.

Keywords Trochoidal milling · Feed rate scheduling · ANN · Cutter engagement · Cutting force · Acceleration constraints

1 Introduction

Metal cutting is still an important process in part manu-
facturing. In CNC milling, it is crucial to optimize the cut-
ting parameters in order to provide maximum machining 

efficiency. Surface quality and accuracy are usually not criti-
cal for rough cutting operations. In these cases, the optimi-
zation criterion is typically the minimization of machining 
time, while the limitations are the provision of adequate tool 
life, the control of tool load, and the feasibility on the given 
machine tool [1]. The method presented in the paper also 
follows this approach. In many cases, using constant cutting 
parameters could not provide optimum performance. If the 
cutting conditions are changing along the tool path, adaptive 
feed rate must be used to increase the machining accuracy 
and productivity. By adjusting the feed rate, a nearly con-
stant tool load can be provided which is essential for achiev-
ing short machining time, long tool life, and high machining 
accuracy.

Feed rate scheduling is a multi-purpose process. One of 
the most important goals is to increase machining accuracy. 
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By properly controlling the feed rate, the contour error can 
be significantly reduced [2, 3]. For smoothing the transition 
along corners, S-shape feed rate scheduling can be used [4]. 
To handle the accelerations and decelerations together, the 
bidirectional scanning technique is an effective method [5, 
6]. Besides increasing the accuracy, another principal goal 
of feed rate scheduling is to reduce the machining time [7, 
8]. This can be particularly effective if the curvature discon-
tinuities are eliminated by local modification of the tool path 
along corners [9].

Increasing machining stability and safety is also a fun-
damental goal of feed rate scheduling. The variable cutting 
conditions caused by changing cutter engagement can be 
compensated with a properly adjusted feed rate [10]. There 
are two methods of tool load regulation in practice: online 
and offline monitoring and control. Online monitoring and 
control employ various sensors, while offline monitoring and 
control are simulation-based systems [11].

In case of online monitoring, it is possible to directly 
control the feed rate based on the measured cutting force [12, 
13]. If tool load is monitored at check points only rather than 
continuously, and feed rate is adjusted accordingly, it offers 
economical solution as machining can be completed before 
tool life target [14]. However, usually the force measurement 
is only possible by using expensive and vulnerable sensors. 
In industrial applications, it is much easier to monitor the 
spindle current consumption [15].

The offline methods are usually more flexible and eco-
nomical than the online monitoring and control systems 
[11]. Offline control of tool load requires the use of cut-
ting force models [16, 17]. The cutting force is usually pre-
dicted using empirical formulas based on chip thickness and 
specific cutting force [18]. In recent years, in addition to 
geometric and mathematical models, neural network-based 
methods have also appeared [19, 20]. Maximum force con-
straints were used for rough machining, while maximum 
chip load constraints were used for semi-finishing and finish-
ing in feed rate scheduling, and this attained 30% reduction 
in machining time [21]. The feed rate optimization based on 
cutting force prediction was introduced for finishing process 
of pocket milling. The cutting force prediction was based on 
model that included variation in feed direction, actual feed 
rate of metal cutting cross-section, and entry and exit angle 
of tool [22]. Machining time can be reduced by maximiz-
ing the cutting force to the acceptable level by a feed rate 
optimization strategy. Constraint-based optimization scheme 
combined with intelligent algorithm reduced the machining 
time by 26% experimentally than conventional NC part pro-
gram [23]. A force-based model including new uncut chip 
thickness parameter showed the decrease in production time 
by 45–65% in feed rate optimization for ball end milling 
operation by keeping the cutting force under a preset thresh-
old value [24]. An offline feed rate optimization for roughing 

process in CNC milling achieved 20% improvement in 
machining efficiency for casting/forging parts in experimen-
tal analysis [25]. Feed rate scheduling was achieved by the 
integration of mechanistic and geometric milling model for 
maintaining the cutting forces below maximum allowable 
limit in five axis-free form surface machining. This yielded a 
decrease in production time of blade machining by 35% [26].

However, the force models are not always available for 
feed rate scheduling, while determining them is costly and 
time-consuming. Therefore, various geometric methods 
have also been developed. Constant cutting forces were 
maintained through curvature-dependent feed rate with 
Pythagorean-hodograph curve fitting using CNC interpo-
lators to achieve accuracy and longer tool life for varying 
MRR at a fixed depth of cut [27]. Although this method can 
be highly effective on low curvature tool path segments, the 
curvature-based feed control along sharp curves and cor-
ners is insufficient as the tool load begins to grow before the 
curvature starts to increase. This problem can be avoided by 
controlling the MRR. Feed rates were adaptively adjusted 
to maintain constant MRR using four different types of end 
mill cutters in 2.5D NC machining [28]. An octree-based NC 
simulation system was developed to work as offline adaptive 
control to optimize the feed rate in end milling operation 
[29]. Feed rate scheduling can also be based on keeping the 
chip thickness constant [30]. Although the geometric meth-
ods can be applied universally, it is not granted that keeping 
a cutting parameter such as MRR or chip thickness constant 
will result in a constant tool load.

Commercial software like VERICUT are the alternative 
to optimize the feed rate based on the cutting condition and 
ultimately improve surface finish and extend tool life [31]. 
Kurt et al. [32] systematically reviewed feed rate optimiza-
tion techniques of CNC milling on sculptured surface using 
online and offline methods. This work was focused on capa-
bilities of the present software packages, cutting force cal-
culation methods, and MRR calculation approaches. Their 
study proved that commercial feed rate scheduling methods 
have some limitations because the MRR or the cutting force 
models are dependent on the given milling conditions.

Artificial intelligence methods can also be used to control 
the feed rate. A neural control adaptive strategy was used to 
maintain cutting force at a predetermined value to optimize 
feed rate in CNC milling process. This method showed good 
stability and high material removal rate [33]. For maintain-
ing small variation in cutting force and maintaining constant 
roughness during CNC milling, a combination of neural net-
works, fuzzy logic, and particle swarm optimization (PSO) 
evolutionary strategy was used along with online adaptive 
controller. This solution was suitable for all geometry types, 
and adaptive controller was used for error compensation of 
optimization [34]. Feed rate optimization was demonstrated 
by ANN-based spindle power model by considering two 
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other constraints, viz., loading stability of spindle power 
and machining efficiency for three-axis rough milling [35].

The study of trochoidal machining has come to the fore-
front of research in the last two decades [36, 37] because this 
technology can ensure high productivity even when machin-
ing difficult-to-cut materials. Controlling the cutter engage-
ment ensures stable machining conditions, which enables 
the use of high axial depth of cut, cutting speed, and feed 
rate without reducing tool life and the risk of tool breakage 
[38]. However, the application of feed rate scheduling in 
trochoidal milling has not received enough attention yet, as 
due to the limited fluctuation of cutter engagement, the tool 
load was be considered as well-controlled, and trochoidal 
milling typically requires a very high feed rate. However, 
for example, in the case of difficult-to-cut materials (such 
as superalloys), the feed rate usually remains far below the 
machine tool’s capabilities [39], so significant reserves are 
available. Experiments have also shown that even in the case 
of trochoidal milling, the introduction of feed rate schedul-
ing can still further increase the machining efficiency. An 
essential condition for feed rate scheduling is the control of 
tool load; otherwise, impermissible side effects could occur 
at extremely high cutting speeds and feed rates. García-
Hernández et al. examined the traditional cycloidal tool 
path and achieved a 20% reduction in machining time by 
controlling the feed rate based on geometric methods [40]. 
There are advanced trochoidal tool path shapes where the 
fluctuation of cutter engagement are even smaller than in 
the case of conventional circular and cycloidal trajectories 
[41, 42]. Moreover, with the technique of constant engage-
ment offsetting [43, 44], the cutting condition can be made 
completely uniform in the middle segment of the tool path 
[45]. However, feed rate scheduling is worth using even at 
these strategies, as the cutting conditions inevitably change 
during the rolling-in and out sections.

In this paper, the conventional geometric and regression-
based methods and an ANN-based feed rate scheduling 
algorithm were experimentally and theoretically compared 
under straight and trochoidal milling conditions. The ANN-
based feed rate scheduling method is proposed based on data 
retrieved from preliminary experiments. In contrast to the 
complex cutting force model, the proposed solution focuses 
only on the peak force of each tool rotation, as this is enough 
to control the tool load. This method provides better insight 
over tool load control in comparison to geometric models 
and also simplifies cutting force modelling. The presented 
feed rate scheduling method also takes into consideration the 
acceleration limits, which are necessary both for the precise 
machining time estimation and for ensuring an appropri-
ate dynamic behaviour of the machine tool [46, 47]. The 
main innovation of the presented method is revealed in that 
the cutting force control and the consideration of accelera-
tion limits are handled together in the ANN-based feed rate 

scheduling. Moreover, the presented experiments proved the 
suitability of the method in the case of trochoidal tool paths 
and also demonstrated its advantages compared to conven-
tional approaches.

The framework of developed feed rate scheduling method 
is detailed in Section 2. The presented technique was experi-
mentally verified for trochoidal milling, and it was found 
that saving in machining time up to 50 % is achievable by 
optimizing the feed rate. The experiments performed are 
discussed in Section 3. Finally, the results achieved and the 
opportunities for further development are summarized in 
Section 4.

2  The framework of developed feed rate 
scheduling method

In trochoidal milling, two aspects of feed rate scheduling 
have to be addressed: first is to control the cutting forces, and 
second is to consider the acceleration limits. In this section, 
the fulfilment of these criteria is described in detail.

2.1  Cutting force constraint

The offline feed rate scheduling solutions can be divided into 
two groups. The first type includes the geometrical methods, 
of which the chip thickness and the MRR based models have 
been examined. The other type includes the experimental 
methods based on preliminary measurements, of which the 
response surface methodology (RSM) and the ANN-based 
approaches have been investigated. Although this paper 
focuses on the ANN-based feed rate scheduling technique, 
the traditional geometrical approaches are also discussed 
because they were used as references when validating the 
developed feed rate scheduling method.

2.1.1  Geometrical methods

The most basic type of geometry-based feed rate schedul-
ing methods is controlling the chip thickness. However, this 
can be accomplished in several ways since there are more 
approaches to interpreting the chip thickness. Because the 
shape of chip cross-section changes during the material 
removal process, deformed and undeformed (or uncut) chip 
thickness can be distinguished. Since the deformation pro-
cess is extremely complex, the models used for feed rate 
adjustment are always based on undeformed chip thickness 
which has two types, namely, the maximum and average chip 
thickness. Both are possible bases for feed rate scheduling.

A simplistic 2D chip removal model of milling is shown 
in Fig. 1. To quantify the tool’s radial immersion, the cut-
ter engagement ( � ) was used, which, in contrast to stepover 
( s ) and radial depth of cut ( ae ), accurately describes the 
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interaction between the tool and the workpiece, even in the 
case of curved tool paths.

Several studies have been performed to describe chip 
thickness analytically. However, this paper only deals with 
the approach that considers the tool edge moves along a 
circular path instead of the real cycloidal trajectory. If the 
tool is not moving at an extremely high feed, the inaccu-
racy caused by this approximation is usually negligible in 
chip thickness [48]. Furthermore, the lead angle (�) was 
considered 90°, as this is typical for tools used in trochoi-
dal milling. Thus, the sin� multiplier was not included in 
the formulas because it equals one.

Using the previous simplifications, the following 
approximation formula can be used to calculate the maxi-
mum chip thickness:

where f
z
[mm] is feed per tooth and � [◦] is cutter engage-

ment angle.
The average chip thickness can be calculated by divid-

ing the chip cross-section’s area 
(

Achip

)

 by the chip’s arc 
length 

(

larc
)

 [49]. In this interpretation, the chip cross-
section’s area is equal to the product of radial depth of 
cut 

(

a
e
[mm]

)

 and feed per tooth 
(

f
z
[mm]

)

 , and the chip’s 
arc length is approximately equal to the product of tool 
radius (r [mm]) and central angle, i.e. the cutter engage-
ment (� [rad]) , in radian [50]. To simplify the formula, the 

(1)h
ex
(𝜃) =

{

f
z
sin 𝜃 if 𝜃 ≤ 90

◦

f
z

if 𝜃 > 90
◦
[mm]

relationship between radial depth of cut and cutter engage-
ment can be used:

Based on these considerations, the average chip thickness 
can be derived as follows:

It should be mentioned that the radial depth of cut (or ste-
pover) is often used instead of the cutter engagement when 
defining the cutting parameters. Therefore, in industrial 
applications, another approximation formula is also com-
mon for calculating the average chip thickness [51]:

where d [mm] is the tool diameter. If Eq. (2) is applied to this 
formula, the expression can be simplified as follows:

Based on the previous formulas, it can be concluded that 
both the maximum and the average chip thickness can be 
expressed as a function of feed per tooth and cutter engage-
ment. Figure 2 shows how the ratio of chip thickness to feed 
per tooth evolves as the cutter engagement changes. It can 

(2)a
e
(�) = r(1 − cos �) [mm]

(3)hm(�) =
Achip

larc
=

ae fz

r�
=

(1 − cos �) fz

�
[mm]

(4)h∗
m
(�) = fz

√

ae

d
[mm]

(5)h
∗
m
(�) = f

z

√

1 − cos �

2
[mm]

Fig. 1  The simplistic 2D chip 
removal model of milling 
( Achip , chip cross-section; ae , 
radial depth of cut; f z , feed 
per tooth; hex , maximum chip 
thickness; hm , h∗

m
 , average chip 

thickness; larc , chip’s arc length; 
n , rotational speed; r , tool 
radius; vf  , feed rate; � , cutter 
engagement)
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be noticed that the effect of cutter engagement differs sig-
nificantly in the aspects of both maximum and average chip 
thickness. This fact predicts that the equivalent feed rates 
calculated by different geometric models will differ in the 
same way because (assuming a constant cutting speed) the 
feed rate 

(

vf
)

 is directly proportional to feed per tooth:

where z [−] is the number of teeth and n
[

rpm
]

 is the spindle 
speed.

Thus, it is possible to determine how to adjust the feed 
rate as a function of cutter engagement to keep one of the 
chip thickness types uniform. Based on Eq. (1), the feed 
rate must be adjusted to keep the maximum chip thickness 
constant as follows (if both � and �ref  are less than or equal 
to 90◦):

where v
f ,ref

[

mm∕min
]

 is the appropriate feed rate for nomi-
nal cutter engagement �

ref
[◦] . It means that for a given cutter 

engagement � , a feed rate of vf ,hex (�) must be used to keep 
the maximum chip thickness at its original value, which is 
formed with the reference parameters vf ,ref  and �ref .

Based on Eq. (3) and Eq. (5), the equivalent feed rate to 
keep the average chip thickness constant can be calculated 
as follows:

(6)v
f
= f

z
zn

[

mm∕min
]

(7)v
f ,h

ex

(�) = v
f ,ref

sin �
ref

sin �

[

mm∕min
]

(8)v
f ,h

m

(�) = v
f ,ref

(

1 − cos �
ref

)

�

(1 − cos �) �
ref

[

mm∕min
]

Besides controlling the chip thickness, keeping the 
MRR is also a frequently used method in feed rate sched-
uling. This approach has become widespread primarily 
among the advanced cycles of CAM systems. MRR can 
be defined as the volume of material removed per unit 
time. There are two ways to interpret the value of MRR. 
Firstly, MRR can be calculated to the whole machining 
process, in which case it gives the productivity of machin-
ing. Secondly, the instantaneous value of MRR can also be 
interpreted, which expresses the magnitude of tool load. 
For feed rate scheduling, only the instantaneous MRR can 
be used, which can be describe with the following formula:

where a
p
[mm] is axial depth of cut. Based on this formula, 

the equivalent feed rate to keep the MRR constant can be 
calculated as follows:

Compared to Eq. (8), the only difference between the 
two formulas providing constant average chip thickness or 
MRR is the �∕�ref  multiplier. As this multiplication factor 
also increases with increase in the cutter engagement, the 
two feed rate scheduling methods will behave similarly rel-
ative to each other. Thus, compared to the constant MRR, 
a constant average chip thickness allows a higher feed rate 
at a cutter engagement greater than the nominal value and, 
conversely, a lower feed rate at a cutter engagement lower 
than the nominal value.

As shown in Fig. 3, the abovementioned methods lead 
to significantly different outcomes if the cutter engage-
ment changes. The relationship between different geomet-
ric methods also depends on the nominal cutter engage-
ment. If the cutter engagement is smaller than the nominal 
value, keeping the maximum chip thickness constant is 
the strictest condition, followed by controlling the average 
chip thickness, whichever approximation formula is used, 
and the highest equivalent feed rate is obtained by keeping 
the MRR constant. If the cutter engagement is larger than 
the nominal value, the opposite trends can be observed.

It can be noticed that the previous formulas for equiva-
lent feed rate differ considerably from each other. In addi-
tion, keeping a geometric parameter constant does not 
mean that the tool load will remain constant. A further 
disadvantage of chip thickness-based methods is that the 
number of active tool edges can also vary as the cutter 

(9)v
f ,h∗

m

(�) = v
f ,ref

√

(

1 − cos �
ref

)

(1 − cos �)

[

mm∕min
]

(10)MRR(�) = ap ae vf = ap r(1 − cos �) vf
[

mm3∕min
]

(11)v
f ,MRR

(�) = v
f ,ref

1 − cos

(

�
ref

)

1 − cos (�)

[

mm

min

]

Fig. 2  The ratio of chip thickness to feed per tooth depending on cut-
ter engagement
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engagement changes, especially in the case of a high 
number of teeth and a large helix angle. This problem 
also exists if the MRR-based methods are used, albeit to 
a lesser extent. In addition, the effect of tool geometry 
cannot be considered by these methods either. Therefore, 
keeping the tool load constant is only possible based on 
experimental data.

2.1.2  Experimental methods with traditional regression 
models

A high-level solution for controlling the tool load can be 
applied if an accurate cutting force model is available to adjust 
the feed rate. This requires the knowledge of cutting force 
coefficients and the calculation of local chip thickness of vary-
ing magnitude along the tool edge. However, the drawback 
of this method is that the determination of cutting force coef-
ficients is costly and time-consuming. Also, several external 
influencing factors such as tool wear, lubrication conditions, 
vibrations, and tool run-out can affect the model’s accuracy 
[52].

Considering that an accurate cutting force model can be 
determined only experimentally, this paper recommends 
the direct use of data collected under specific conditions for 
controlling the feed rate. This approach also avoids double 
calculations that would be required if a force model were 
first created to recalculate the equivalent feed rate.

Although determining the optimal cutting parameters is a 
complex problem, it simplifies the issue that the axial depth 
of cut and the cutting speed can be considered constant in 
feed rate scheduling. Therefore, the purpose is to create a 
model that can determine the equivalent feed rate for a given 
cutter engagement at which the tool load is as high as with 
the nominal parameters. In other words, an approximation 

function vf ,eq(F, �) must be determined, which can be applied 
with different tool load limits.

There are several ways to describe the function vf ,eq(F, �) 
that provides a constant cutting force of magnitude F at any 
cutter engagement � . In the field of RSM, the linear regres-
sion models are the most common. In this approach, the gen-
eral form of a complete second-degree polynomial regres-
sion model in two variables can be described as follows:

where ci are constant coefficients. However, the case study 
presented in Sect. 3 will show that the second-order model 
cannot provide sufficient complexity. Therefore, the third-
degree model is also examined in this paper, which can be 
described as follows:

The exponential approximation formulas are also fre-
quently used in the field of cutting force modelling. Thus, 
an exponent based model was also tested:

where � and � are power exponents.
For these models, sample data are required to determine the 

constant parameters. If measurements are performed with differ-
ent cutting parameters to generate experimental data, the constant 
parameters can be calculated using the method of least squares.

Although the developed ANN-based feed rate scheduling 
model is also based on preliminary experimental results, it 
will be covered in a separate subsection.

(12)
vf ,reg

2nd
(F, �) = c

0
+ c

1
F + c

2
� + c

3
F2 + c

4
�2 + c

5
F�

[

mm

min

]

(13)
vf ,reg

3rd
(F, �) = c

0
+ c

1
F + c

2
� + c

3
F2 + c

4
�2

+ c
5
F� + c

6
F3 + c

7
�3 + c

8
F2� + c

9
F�2

[

mm

min

]

(14)vf ,regexp(F, �) = c
0
+ c

1
F���

[

mm

min

]

Fig. 3  The equivalent feed rate calculated by geometrical methods in case of different nominal cutter engagements
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2.1.3  Experimental method with ANN

For modelling the equivalent feed rate, a multi-hidden layer 
neural network was implemented in the software Wolfram 
Mathematica 12 (refer to Fig. 4). The input layer had two 
neurons for the parameters F and � , and the output layer had 
only one neuron for the equivalent feed rate 

(

vf ,ANN
)

 . Accord-
ing to the references mentioned in Sect. 1, two hidden layers 
were applied in the neural network. To determine the appro-
priate settings of the neural network, systematic tests were 
performed where the effects of the number of neurons (5–50), 
the type of activation function (rectified linear unit, logistic 
sigmoid, hyperbolic tangent), and the choice of optimization 
algorithm (Adam optimizer, root mean squared propagation, 
stochastic gradient descent) were examined. As a result of this 
analysis, 20 neurons per layer, the logistic sigmoid activation 
function and the Adam optimizer method were selected. Xie 
et al. obtained a similar result when modelling the spindle 
power as a function of cutting parameters [35]; however, they 
used few neurons (nine per layer). The training of neural net-
work was performed by the built-in algorithms of Wolfram 
Mathematica. For training the neural network, the data set was 
randomly divided into training (80%) and validation (20%) 
sets. During the experiments, the problem of overfitting never 
occurred with the settings mentioned above.

As a practical example will demonstrate in Sections 3.3 
and 3.4, the ANN-based modelling of equivalent feed rate 
can give a more accurate result than the conventional regres-
sion models. In addition, there is another advantage of this 
approach, namely, that the problem of choosing the appro-
priate regression formula does not have to be addressed. The 

neural network can adapt universally to any trend between 
the input data and the appropriate feed rate.

2.2  Acceleration constraints

Besides balancing the fluctuation of tool load, it is also 
important to consider the machine tool’s acceleration capa-
bilities. When analysing the accelerations, it is advisable 
to treat normal and tangential components separately. Both 
types of acceleration can be a limiting factor when calculat-
ing the feasible feed rate along the tool path considering 
the capabilities of a given machine tool. In fact, there is 
no detrimental effect on machining if a higher feed rate is 
programmed, as the CNC controller would limit the speed. 
However, without analysing the accelerations, the machin-
ing time estimation could be highly inaccurate, which could 
lead to an erroneous decision when optimizing the cutting 
parameters.

2.2.1  Centripetal acceleration

Besides the controlling of tool load, consideration of cen-
tripetal acceleration is the most severe constraint which can 
be expressed as follows:

where � [mm] is the path curvature radius. Centripetal accel-
eration can be critical along corners and arcs with a small 

(15)a
c
=

v
f

2

3600 �

[

mm∕s2
]

Fig. 4  The structure of ANN 
for calculating the equivalent 
feed rate
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curvature radius. In such cases, a reduction in feed rate is 
necessary to keep the centripetal acceleration within the 
machine tool’s capabilities.

2.2.2  Tangential acceleration

The consideration of tangential acceleration is necessary 
if the path tracking speed is not constant. However, when 
controlling the feed rate, this is the case for most section 
of the path. The tangential acceleration can be described 
as follows:

where Δv
f

[

mm∕min
]

 is the change in feed rate over the time 
Δt [s].

Tangential acceleration can act as a limiting factor 
for both accelerating and decelerating. Along the accel-
eration sections, it is easy to calculate how the feed rate 
can be maximized considering the capabilities of a given 
machine tool by following the path from point to point. 
However, if the limits are exceeded along the decelera-
tion segments, iterative backward steps would be required 
to correct the feed rate function. To avoid multiple recal-
culations of feasible feed rate, the use of a bidirectional 
scanning technique is suggested [53]. With this solution, 
a backward scanning process is performed to control the 
decelerations, followed by a forward scanning process to 
control the accelerations. In this technique, the tangential 
acceleration limitation can be performed in two steps but 
without repeated backward steps.

(16)a
t
=

Δv
f

60Δt

[

mm∕s2
]

2.3  Applying multiple constraints in feed rate 
scheduling

Applying multiple constraints in feed rate scheduling 
requires a multi-step process. After determining the tool 
path, the following steps are required to perform:

Step 1 Determining the cutter engagement and curvature 
radius along tool path
Step 2 Calculating the equivalent feed rate based on cutter 
engagement
Step 3 Calculating the centripetal acceleration and 
decreasing feed rate locally, if necessary
Step 4 Calculating the tangential acceleration using 
backward scanning and decreasing the feed rate locally, 
if necessary
Step 5 Calculating the tangential acceleration using for-
ward scanning and decreasing the feed rate locally, if 
necessary
Step 6 Generating the segments of NC program with 
adjusted feed rate

The implementation of these steps will be illustrated by 
a practical example in Section 3.4.

3  Practical examples

For investigating the feed rate scheduling methods detailed 
in Section 2, several cutting experiments were performed. 
First, a preliminary experiment was required to generate 
sample data for the equivalent feed rate models. Then, the 
reliability of developed models was examined trough a 

Fig. 5  The experimental setup for the cutting tests
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straight milling experiment. Finally, the complete feed rate 
scheduling method was tested during a trochoidal milling 
operation.

3.1  Experimental setup

The cutting experiments were performed on an EMCO Con-
cept Mill 250 3-axis machining centre with a Sinumerik 
840D controller (refer to Fig. 5). The acceleration capabili-
ties of sleds were a

max
= 100

mm

s
2
= 0.01 g both in centripetal 

and tangential direction. The tool was a solid carbide end 
mill (tool type: Totem, FBK0500726) with TiAlN coating, 
the tool diameter (d) was ∅8mm , the number of teeth (z) 
was 4, and helix angle (�) was 30°. To minimize the effect 
of tool wear, an easy-to-machine aluminium alloy (Al7075) 
was chosen for workpiece material.

The cutting parameters have been set according to the 
tool catalogue. The cutting speed ( vc) was 100 m⁄min, so 
the spindle speed (n) was 3980 rpm. The feed rate ( vf ) was 
calculated according to the maximum chip thickness, so 
it varied between 200 and 3000 mm⁄min depending on the 
cutter engagement. When choosing the cutter engagement, 
the focus was on the range between 15◦ and 75◦ , which is 
typical in trochoidal milling. In the case of helical tool 
edge design, the axial depth of cut also affects the charac-
teristics of cutting force evolution. Trochoidal milling is 
primarily characterized by high axial depths of cut. How-
ever, it was also worth investigating how the developed 
method performs with small cutting depths. Therefore, 
two different settings have been investigated, namely, 
ap = d∕4 = 2 and ap = d = 8mm.

During the experimentation, the cutting force was meas-
ured with a Kistler 9257BA-type piezoelectric dynamom-
eter. For data acquisition, the Labview software was used. 
The sampling frequency was 25600 Hz (~385 measured 
points per tool revolution). The force components were 
measured separately for each coordinate axis. In the evalu-
ation, the maximum force in a tool revolution was analysed 
in the machining plane (XY) since this component is the 
determining factor in terms of tool load and machining 
energy demand. The resulting force was calculated accord-
ing to Eq. (17):

where Fx and Fy are the force components per axis. In the 
following, the designation Fxy will refer to the maximum 
force within one tool revolution.

3.2  Preliminary experiments for configuring 
the feed rate models

To generate sample data for the force-based equivalent feed 
rate models, preliminary experiments with straight milling 
were performed at different cutter engagements and feed 
rates.

3.2.1  Measured data

During the preliminary cutting experiments, a full factorial 
experiment was performed with two depths of cut, twelve 
cutter engagements, and five feed rates. This means a total of 
120 settings, but the different feed rates could be examined 
within one measurement, so only 24 straight milling sections 
was necessary. The feed rates for each cutter engagement 
were determined separately to have consistent maximum 
chip thicknesses with five uniformly increasing values. The 

(17)Fxy =

√

Fx
2 + Fy

2[N]

Table 1  Cutting parameters for 
the preliminary experiments

Factors Levels

ap Axial depth of cut mm 2, 8 (2 levels)
� Cutter engagement ◦ 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 

70 (12 levels)
hex Maximum chip thickness mm 0.012, 0.024, 0.036, 0.048, 0.06 (5 levels)

Fig. 6  The measured cutting forces at one cutter engagement
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parameter settings used during the experiment are summa-
rized in Table 1.

The cutting force measured at one milling segment is 
illustrated in Fig. 6. Because the cutting force definitely 
increased with the increasing feed rate, measuring the dif-
ferent feed rate settings within one segment did not cause 
any problem since the sections could be easily separated. 
The cutting force for a given parameter combination was 
determined by calculating the arithmetic mean within a sec-
tion, disregarding the outer parts of the range.

The results of preliminary experiments are shown in 
Fig. 7. A nonlinear relationship between the cutting param-
eters and the measured cutting force could be observed for 
both axial depths of cut. This nonlinear trend could not be 
eliminated either by replacing the cutter engagement with 
radial depth of cut or the feed rate with chip thickness. 
Therefore, this phenomenon must be dealt with when mod-
elling the equivalent feed rate.

3.2.2  Equivalent feed rate models

The process for modelling the equivalent feed rate is shown 
in Fig. 8. At first, the formula vf ,eq(F, �) must be determined 
based on the measured sample data. Later, based on the ref-
erence point corresponding to nominal input parameters, 
it can be specified how to adjust the feed rate as a func-
tion of cutter engagement in order to keep the cutting force 
constant. In other words, if the bivariate regression model 
vf ,eq(F, �) is available, fixing the value of F gives a simple 
univariate relationship for controlling the feed.

The regression models were created separately for the two 
different axial depths of cut. The formulas gained after sub-
stituting the constant parameters determined by the method 
of least squares are summarized in Table 2.

The coefficient of determination 
(

R2
)

 is often used 
to quantify the goodness of regression models. This 
parameter can express how well the regression model 

Fig. 7  The measured cutting forces at different cutter engagements and feed rates

Fig. 8  Calculating the equivalent feed rate based on a regression model 
(

ap = 8mm, �ref = 45
◦
,Fxy,ref = 125N

)
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approximates the real data points. Its value can be calcu-
lated as follows:

where yi are the input feed rates of experiment, ŷi are the 
output feed rates calculated by regression model, and y is 
the mean of input feed rate parameters.

The differences between the input values of measure-
ment and the output values obtained from regression mod-
els are illustrated in Fig. 9. The R2 parameters calculated 
from the sample data used in model fitting are also indi-
cated on the diagrams. The residuals were the smallest in 
the case of ANN-based model; the level of fit of this model 
was almost perfect:

When analysing the traditional regression models, it 
can also be concluded that the third-order model out-
performed the second-order and exponential regression 
formulas. However, it must be remarked that the high 
number of free variables resulted in overfitting; thus, the 
third-order model showed strong fluctuations between the 
measured points. This phenomenon occurs particularly at 
the periphery of the investigated parameter range, where 
linear regression models have proven unreliable (refer to 
Fig. 10). At a low cutting force limit, the equivalent feed 
rate calculated by the formula could even have a negative 
sign, which is nonsense. Since the exponential formula 
approximated the nature of the relationship between input 
and output data better, this formula was chosen for further 
experiments.

Besides the analytical comparison of regression models, 
the results obtained for input variables other than the sam-
ple data are also worth examining. Furthermore, the models 
obtained for equivalent feed rate should also be compared 

(18)R2 = 1 −

∑

i

�

yi − ŷi
�2

∑

i

�

yi − y
�2

with the geometry-based models. These comparisons were 
not feasible directly, so another experiment was required. 
The results of that experiment are described in the follow-
ing subsection.

3.3  Testing the feed rate models in straight milling

Before the trochoidal milling experiments, the feed rate 
models were tested under simpler conditions. In order to 
verify the adequacy of the models, measurements with 
straight milling were performed. As the polynomial models 
showed overfitting, only the exponential regression model 
was examined beside the ANN-based model. The number of 
methods to be tested has also been reduced for the geometric 
methods. Although Eq. (8) and Eq. (9) differ significantly 
from each other, the difference between the average chip 
thickness obtained with the two formulas is small at low 
cutter engagements. Therefore, only the first formula was 
tested in the experiments because the cutter engagement will 
remain low in trochoidal milling, too. Thus, five approaches 
were compared: three geometric methods (constant hex , hm , 
or MRR ), the exponential regression model, and the ANN-
based model.

For the reference point of comparison, the cutter engage-
ment was �ref = 45

◦ , and the feed rate was calculated for a 
maximum chip thickness of hex = 0.05mm which resulted 
in vf ,ref = 796mm∕min . With these reference values, a wide 
range of feed rates could be scrutinized. Experiments were 
performed for both 2 mm and 8 mm axial depths of cut. The 
other cutting parameters were the same as in the preliminary 
experiment.

The results of the experiments are summarized in Fig. 11. 
The experimentation confirmed the assumption that the tool 
load cannot be kept constant by using the geometric methods. 
When controlling the chip thickness, even a multiple increase 

Table 2  The calculated 
regression model parameters

ap[mm] Regression model Formula 
[

mm∕min
]

2 second order 1.259 ∙ 103 + 6.537 ∙ 101F − 1.143 ∙ 102� + 9.684 ∙ 10−2F2+

1.495�2 − 1.033F�vf ,reg
2nd
(F, �)

third order 1.004 ∙ 103 + 7.575 ∙ 101F − 1.198 ∙ 102� + 9.423 ∙ 10−1F2+

4.118�2 − 4.172F� − 4.923 ∙ 10−3F3 − 3.176 ∙ 10−2�3+
4.291 ∙ 10−3F2� + 2.686 ∙ 10−2F�2

vf ,reg
3rd
(F, �)

exponential −5.103 ∙ 102 + 7.413 ∙ 102F1.181�−1.134

vf ,regexp (F, �)

8 second order 3.717 ∙ 103 + 5.516 ∙ 101F − 2.673 ∙ 102� + 6.855 ∙ 10−3F2+

3.136�2 − 7.802 ∙ 10−1F�vf ,reg
2nd
(F, �)

third order 6.215 ∙ 103 + 1.272 ∙ 102F − 6.692 ∙ 102� + 2.664 ∙ 10−1F2+

1.875 ∙ 101�2 − 5.370F� − 4.306 ∙ 10−4F3 − 1.425 ∙ 10−1�3+
4.701 ∙ 10−5F2� + 4.146 ∙ 10−2F�2

vf ,reg
3rd
(F, �)

exponential 7.305 ∙ 101 + 1.130 ∙ 104F2.143�−3.460

vf ,regexp (F, �)
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in cutting force was observed in the examined cutter engage-
ment range. Controlling the MRR provided slightly better 
results, especially in the case of smaller depths of cut. In this 
experiment, by using geometric methods, a lower cutting force 
was measured if the cutter engagements were smaller than the 
nominal, while a higher cutting force was measured if the cut-
ter engagements were larger than the nominal. This deviation 
will lead to the following consequences. The decreased cutter 

engagement results in a waste of time, as the tool moves slower 
than permitted. On the contrary, the increased cutter engage-
ment can lead to overloading, adversely affecting both tool 
life and machining quality. Furthermore, there is no guarantee 
that the same trend will occur with other tools or settings, so 
introducing a safety factor cannot solve the problem.

In contrast, the experimental-based methods were more 
reliable. Their application can ensure a minimum machining 

Fig. 9  Analytical comparison of the different regression models: a) second order regression, b) third order regression, c) exponential regression, 
d) ANN-based regression
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time while keeping the cutting force under control. It can 
also be noticed that the ANN-based solution worked excel-
lently for both axial depths of cut (the maximum relative 

errors were 3.1% and 2.9%), while the exponential regres-
sion model showed slight fluctuations in cutting force (the 
maximum relative errors were 14.1% and 4.4%), which 
already stretches the limit of acceptability.

In straight milling, the accelerations have not played 
any role. This aspect will be scrutinized in the following 
example, where the trochoidal milling was examined.

3.4  Testing the feed rate scheduling method 
in trochoidal milling

To investigate the different feed rate models, trochoidal mill-
ing experiments were performed. During the experiments, 
straight slots with different widths (b = 12, 16, 20mm) were 
machined. In trochoidal milling, the acceleration constraints 
also need to be addressed, so all steps of feed rate scheduling 
can be presented in that example.

In order to get a more comprehensive picture of feed 
models, a different reference point was used than during 
the straight milling experiments since; due to acceleration 

Fig. 10  The problematic operation of linear regression models at the 
investigated parameter range’s periphery

Fig. 11  Experimental comparison of the different regression models
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limitations, it was only possible to investigate lower feed 
rates. Furthermore, the characteristic of trochoidal milling is 
that the nominal cutter engagement limits the instantaneous 
value from above. Therefore, the reference cutter engage-
ment was increased to �ref = 60

◦ , and the reference maximal 
chip thickness was reduced to hex = 0.02mm , which resulted 
in a feed rate of vf ,ref = 318mm∕min . The other parameters, 
namely, the axial depths of cut, the cutting speed, the work-
piece, the tool, and the machine tool, remained the same. 
The equivalent feed rates for that reference point are shown 
in Fig. 12. Since the trochoidal tool path was generated so 
that the cutter engagement reaches the reference value (60◦) 
at the maximum immersion, the range below the reference 
value should be considered. When analysing Fig. 12, it can 
be concluded that keeping the average or maximum chip 
thickness constant gives a lower feed rate than the permis-
sible at both axial depths of cut. In case of a low axial depth 
of cut 

(

ap = 2mm
)

 , keeping the MRR constant gave almost 
the same results as the experimental-based methods. How-
ever, in case of a larger axial depth of cut 

(

ap = 8mm
)

 , the 
feed rate with constant MRR was also lower than the per-
missible. The extent to which this lower feed rate increases 
the machining time compared to experimental-based models 
will be detailed later.

Before analysing the evolution of machining time, Fig. 13 
shows the steps of feed rate scheduling. The horizontal axis 
of the diagrams corresponds to the arc length travelled along 
the tool path. In the methods described in Sect. 2, the tool 
path shape must be given as an input data. The figure shows 
a cycloidal tool path generated for a b = 12mm wide slot 
using a tool diameter of d = ∅8mm with a maximum cutter 
engagement of �ref = 60

◦.
Once the tool path is known, the first step of feed rate 

scheduling is to determine the cutter engagement and curva-
ture radius at discrete points along the tool path. To accom-
plish this, a self-developed simulation algorithm was used 

[54]. Based on the diagram of cutter engagement, it can be 
stated that the nominal immersion lasts only for a moment, 
while the rolling-in and out sections take place over a long 
time. This feature makes the feed rate scheduling necessary 
if the goal is to achieve maximum productivity. Although 
the curvature radius fluctuates only slightly, which is one 
of the main advantages of cycloidal strategy, the centripetal 
acceleration will still significantly limit the feasible feed 
rate, as seen later.

After calculating the trajectory-specific data, the second 
step of feed rate scheduling is to assign the equivalent feed 
rate to tool path points based on the calculated cutter engage-
ments. Since the equivalent feed rate goes to infinity if the 
cutter engagement is close to zero, it is advisable to specify 
a maximum value for the feed rate. During the experiments, 
the limit was selected for vf ,max = 1500mm∕min . However, 
even this feed rate was not available regarding the centripetal 
acceleration. The diagram of accelerations shows that the 
machine tool’s amax = 100

mm

s2
= 0.01g acceleration capabili-

ties were small for both centripetal and tangential accelera-
tion. Therefore, a reduction in feed rate is required.

The third step in feed rate scheduling is to reduce the 
feed where the centripetal acceleration has exceeded the 
machine tool’s capabilities. The diagram shows that this 
required a significant reduction, but the tangential accelera-
tion remained still too high on some segments. After the next 
two steps of feed rate scheduling, by reducing the feed on 
the critical sections through firstly a backward and secondly 
a forward scanning operation, the constraints of tangential 
acceleration can also be met. After the fifth step, the cor-
responding feed rates are available at discrete points along 
the tool path, based on which the NC program can be created 
using short segments with variable feed rates.

Figure 14 shows the evolution of cutting force with differ-
ent feed rate scheduling methods. As a reference, an experi-
ment was also performed with a constant feed rate. Although 

Fig. 12  Equivalent feed rates for the reference parameter used at trochoidal milling
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a few per cent fluctuations can be observed in the peaks of 
cutting force, this is impossible to avoid due to the complex-
ity of cutting process. On the one hand, the input data used 
when creating the equivalent feed rate models were produced 
by straight-line milling, while in trochoidal milling, the tool 
moved along an arc. This difference also affects how the cool-
ant reaches the cutting zone. On the other hand, specifying 
the path in small segments also means that the actual feed rate 

and cutter engagement can slightly differ from the calculated 
value. Despite all this, there was only a few per cent difference 
between the maximum cutting forces, which is acceptable.

The diagrams in Fig. 14 show that the tool entering and 
exiting takes a long time without feed rate scheduling, where 
the tool does not work at maximum efficiency. It can be noted 
that only the experimental-based models were able to maintain 
the cutting force level, primarily the method using ANN. In 

Fig. 13  The feed rate and acceleration functions after each steps of feed rate scheduling
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the experiments with a cutting depth of 8 mm, the maximum 
cutting force was only marginally higher (0.9–2.2%) with 
the regression formula than with the ANN-based approach. 
However, with a cutting depth of 2 mm, the difference was a 
non-negligible 6.1% in favour of the latter method. Geometric 
methods were also more favourable compared the cases where 
constant feed rate were used, but these approaches could only 
partially address the problem of changing cutting conditions. 
The shortcomings of these methods are mainly due to the 
longer machining time compared to the experimental feed 
rate scheduling methods. By increasing the slot width, the 
benefit of experimental methods also increased slightly since 
the length of transitional segments become even longer, and 
the centripetal acceleration was less restrictive because of the 
larger path curvature radius.

Table 3 summarizes the machining times obtained using 
different feed rate scheduling methods in the previous cutting 
experiment. The values given refer to one trochoidal period. 
The period times were determined both by simulation and 

by experiment. During the simulation, the tool path can 
be divided into as many short sections as wanted in feed 
rate scheduling. Therefore, a more accurate result can be 
obtained. However, on the machine tool’s controller used 
in the experiments, it was necessary to provide a time of at 
least 15 ms for each motion segment to ensure continuous 
program execution, so only a coarser resolution could be 
used. As a result, the experimentally determined time was a 
few per cent longer. However, the differences were the same 
when comparing the strategies relative to each other.

In the comparison, the machining with constant feed rate 
was the reference 

(

vf ,const
)

 . This choice was justified because 
feed rate scheduling is rarely used in trochoidal machining 
since the cutter engagement fluctuates only slightly. Firstly, 
the extent to which the period time can be reduced if an 
increased feed rate is applied for the linking segments was 
examined 

(

vf ,const∗
)

 . Despite the shortness of linking seg-
ments, the results show that this improvement alone resulted 
in a 27–35% machining time reduction. However, this can 

Fig. 14  The evolution of cutting force with different feed rate scheduling methods at trochoidal milling
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be further enhanced if the equivalent feed rate is used in the 
cutting segments.

The benefits of feed rate scheduling can be seen in two 
respects. Firstly, the travelling time required for the cutting 
segment will be reduced. Secondly, at the same time, the 
travelling time of linking segment will also be decreased 
since that movement can start and end at a higher speed. As a 
result, the period time was further reduced by 10–20% in the 
sample examined. In the comparison, the experimental-based 
models provided the best results, with a 48–58% reduction 
in machining time compared to the strategy with a constant 
feed rate. In this experiment, the exponential approximation 
formula slightly outperformed the ANN-based method by a 
few tenths of a per cent in terms of machining time. However, 
considering that this was accompanied by a greater increase 
in maximum cutting force, the latter method is preferable. 
Furthermore, the ANN-based method performed also better in 
cutting force control during the straight milling experiments, 
which also justifies the preference for the ANN-based method.

The experiment confirmed the expectation that even in 
trochoidal milling, machining productivity can be signifi-
cantly increased by adjusting the feed rate. Even though 
the cutter engagement fluctuates in a narrow range, it is 
worth paying attention to this area because, without it, sig-
nificant reserves may remain untapped. Furthermore, the 

experiments also demonstrated that it is sufficient to focus 
only on the force maxima when scheduling the feed rate, 
which significantly simplifies the determination of model 
parameters.

4  Conclusion

In this paper, the traditional geometric and regression-based 
methods and a newly developed ANN-based feed rate sched-
uling algorithm were experimentally and theoretically com-
pared under straight and trochoidal milling conditions. The 
results showed that the tool load can better be controlled 
through the developed ANN-based method. This is impor-
tant for maintaining machining quality, avoiding premature 
tool wear, and optimizing machining time. The consideration 
of acceleration constraints supports the practical application 
of the proposed method. The case studies demonstrated the 
reliability and efficiency of the developed technique for both 
straight milling and trochoidal milling.

Based on the comparative study, the following conclu-
sions can be drawn:

• Geometric models can only partially handle the chang-
ing cutting conditions in terms of controlling the tool load.

Table 3  Effect of feed 
rate scheduling method on 
machining time at different slot 
widths

Slot width Method Simulation Cutting experiment

Cutting time Linking time Period time Improvement Period time Improvement

b[mm] [−] tc,sim[s] tl,sim[s] tp,sim[s] [%] tp[s] [%]

12 vf ,const 1.270 1.098 2.368 - 2.49 -
vf ,const∗ 1.270 0.467 1.737 26.6 1.86 25.3
vf ,hex 1.035 0.420 1.455 38.6 1.55 37.9
vf ,hm 1.011 0.418 1.430 39.6 1.53 38.5
vf ,MRR 0.895 0.413 1.308 44.8 1.39 44.3
vf ,regexp 0.819 0.412 1.231 48.0 1.30 47.7
vf ,regANN 0.827 0.412 1.239 47.7 1.32 47.1

16 vf ,const 2.516 2.218 4.734 - 5.07 -
vf ,const∗ 2.516 0.696 3.212 32.2 3.42 32.4
vf ,hex 2.038 0.606 2.644 44.1 2.81 44.3
vf ,hm 1.985 0.604 2.589 45.3 2.76 45.5
vf ,MRR 1.710 0.589 2.300 51.4 2.46 51.5
vf ,regexp 1.527 0.588 2.115 55.3 2.26 55.4
vf ,regANN 1.540 0.588 2.128 55 2.26 55.4

20 vf ,const 3.744 3.356 7.100 - 7.16 -
vf ,const∗ 3.744 0.877 4.621 34.9 4.68 34.6
vf ,hex 3.028 0.754 3.782 46.7 3.84 46.4
vf ,hm 2.947 0.750 3.697 47.9 3.74 47.8
vf ,MRR 2.509 0.729 3.237 54.4 3.28 54.2
vf ,regexp 2.214 0.728 2.942 58.6 2.99 58.2
vf ,regANN 2.233 0.728 2.961 58.3 3.00 58.0
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• With the experimental-based equivalent feed rate mod-
els, the effect of axial depth of cut can also be considered, 
in contrast to chip thickness and MRR-based methods.
• ANN-based equivalent feed model can outperform the 
models constructed with traditional regression techniques 
in terms of reliability and accuracy.
• In trochoidal milling experiments, around 50% reduc-
tion in machining time was achieved by applying the 
developed feed rate scheduling method as compared to 
using a constant feed rate.

Despite the convincing results, there is still scope for 
further improvement. When defining the equivalent feed 
model, some fixed parameters can be changed to free vari-
ables, such as cutting speed and axial depth of cut. Further-
more, it would be worthwhile to examine tools with more 
complex geometries, such as bull nose end mill. In that case, 
more additional variables should be considered when creat-
ing the ANN-based feed rate scheduling model because the 
tool orientation could also significantly affect the evolving 
cutting force. However, there are no obstacles to implement-
ing these enhancements, as neural networks can be applied 
as universal regression models.
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