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Abstract
In the practical thickener cone systems, the underflow concentration is hard to measure through physical sensors while there
exist the high cost and significant measurement delay. This paper presents a novel and deeply efficient long short-timememory
(DE-LSTM) method for concentration prediction in the deep cone thickener system. First, the DE-LSTM for thicker systems
is developed for feature learning and long temporal preprocessing. Then, the feedforward and reverse LSTM subnetworks
are employed to learn the robust information without loss. At last, the experimental verification of an industrial deep cone
thicker demonstrates the proposed DE-LSTM’s performance outperforms other state-of-the-art methods.

Keywords Underflow concentration prediction · Bidirectional LSTM · Deep learning · Cone thickener system (CTS)

1 Introduction

The paste filling in the mining industry has got high attention
in the development of power generation. For sustainable envi-
ronment protection and the carbon neutral and zero emission
target, industrial mining ismaking a revolution toward smart,
intelligent, and clean underground mining [1–5]. Deep cone
thickener (DCT) is the critical device to produce underground
pasting for mining security. The main principle of the device
is that the low-concentration slurry crude from the stope was
fed into the DCT, and the gravity of these particles is then
dissolved to a larger lump under the effect of flocculant and
concentrated at the bottom of the thickener. The high-quality
underflow concentration is then produced and the high layer
of clean water is recycled by the overflow pipe.

Stable underflow concentration is a critical metric that
plays a pivotal role in assessing the performance, security,
and stability of industrial production processes. Several qual-
ity factors, including the volume of underflow, feed flow,
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flocculant dosage, and mass of flocculant, significantly influ-
ence the stability of underflow concentration during the
production process. Therefore, ensuring high performance
and robustness in underflow prediction and control is crucial
for efficient CTS production. However, conventional detec-
tion techniques fall short in enabling online prediction, while
their high computational costs and susceptibility to sampling
oscillation are added to this challenge. Through analyzing the
productionmechanism, it is evident that production variables
have a direct correlation with the output underflow concen-
tration, highlighting the need for a cost-effective data-centric
approach for underflow concentration prediction [6].

For subsurface paste filling, a deep cone thickener is
essential. CTS is a key method for achieving a consistent
concentration for underground mining fills. Pipe-blocking
mishapsmight occur during the thickening process if the sub-
terranean concentration is too high. On the other hand, a low
subterranean concentration reduces the quality of the entire
backfilled paste and affects the overall safety of the mining
operation.Hence, the development of a data-drivenmodel for
predicting underflow concentration in the CTS system is of
utmost importance. The whole mining paste filling operates
on a continuous and hierarchical concept [7]. The CTS was
fed with the crude unstable low-concentration slurry flow
(almost 20–30%), which was combined with a flocculant to
speed up the sinking rate. Amud bed can collect the dissolved
particles. The suitable concentration and volume feed flow
are created at the bottom of the CTS. The top clean water
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from the overflow pipe has also been recycled for future use.
The CTS’s primary control is to provide a consistent and
precise underflow concentration [8]. The concentration of
underflow is a key metric for assessing the effectiveness and
efficiency of the industrial underground pasting process. It is
necessary to identify changes in the different variables due to
the inner link for the production quality variable in the deep
cone thickening process. Because the response has a long
time lag, various traditional methods have also been used as
the fundamental unit. This time series architecture may be
used to acquire some prior knowledge and historical infor-
mation, which can subsequently be utilized to anticipate the
underflow concentration.

Recently, deep learning has become a hot topic in the
modeling, optimization, control and prediction of industrial
systems. For instance, Lei et al. proposed a semi-supervised
method to tackle the superheat degree identification in the
aluminum electrolysis reduction cell, which has a corre-
sponding relation with our industrial case [1]. Yuan et al.
investigated a long short-time memory with attention mech-
anism with the time sequence soft sensor tasks [12]. Some
other methods, such as self-supervised learning [2] have also
achieved large attention in the industrial process domain [10–
18]. While recurrent neural networks can retain historical
information usingmemory and nonlinear functions, they suf-
fer from low accuracy, gradient varnishing, and exploration
issues due to their long dependency on historical features.
Long short-term memory (LSTM) is an enhanced version
of RNN that overcomes these limitations by introducing a
new memory unit to store historical information. This makes
LSTM ideal for practical applications, as it covers the input
gate, cell gate, forget gate, and output gate, retaining only
relevant information. In practical applications, the attention
network is used for the hierarchical industrial process. Other
LSTM-based applications with attention to the mechanism
are given in [21–25]; however, the spatial information is
largely ignored. Other recent variants of long short-time
memory have been presented in [26–30].

In particular, several time sequence models can capture
valuable historical information that should be effectively
utilized. The prediction of underflow concentration is a cru-
cial challenge in the field of industrial cone thickeners.
Recently, some works based on the underflow concentration
are reported. For example, Yuan et al. proposed a dual-
attention recurrent neural network method for the deep cone
thickener, their model can capture the spatial information
with the high dimensional series [8]. To our best knowledge,
some underflow concentration detection methods have been
proposed [29–34]; however, they only consider the static fea-
ture prediction, and the adaptive and dynamicmechanism for
online learning are largely ignored, so the time series long

prediction for the CTS system still needs to be further inves-
tigated.

Although some conventional time series prediction mod-
els are widely used in the industrial analysis, such as the
principal component analysis (PCA), autoregressive inte-
grated moving average (ARMA), recurrent neural network,
and gated recurrent networks [35–40]. All these architec-
tures have been widely used in industrial fields. In the deep
cone thickening system, some basic hypotheses are proposed
to be considered as follows. (1) The coupled multi-variables
are linked with the output underflow concentration variables,
which means we can build a data-driven model to learn
the complex nonlinear mapping between those variables. (2)
The large delay in the industrial case gives the insight that
we should propose a time sequence to learn the time series
information. (3) The industrial database collected from all
the sensors has outliers and noise, which greatly reduces
the prediction performance in the applicable CTS. To tackle
these problems, a new LSTM method is proposed in this
paper. First, the original data from the industrial database
is preprocessed by an average moving filter. Second, the
encoder transmission channel was leveraged to gain the fea-
ture representation of the underflow concentration prediction
information. Finally, the attention mechanism with a full-
connected layer is used for the final underflow prediction in
the CTS system. The main contributions of this paper can be
highlighted as follows:

1. A novel DE-LSTM model is proposed to deal with the
long-time prediction with robustness and high accuracy
for the large time delay CTS pasting system.

2. Compared to the traditional prediction methods such as
SVM, LSTM, GRU, and XGBOOST, the performance of
the proposed DE-LSTM provides a more accurate and
robust result.

3. Stacked long short-time memory with attention mecha-
nism is employed for the long prediction without infor-
mation loss during the learning process.

4. The industrial application case is proposed to evaluate
the high performance of the proposed DE-LSTMmethod.
The experiments verify the predictionMSE has decreased
by a large margin with the presented framework.

The remainder of this paper is organized as follows. Section 2
describes the specific problems and gives some fundamental
theory background. Section 3 introduces the model formula-
tion process for the underflow prediction in CTS. Section 4
gives the experimental results and the conclusive remarks are
given in the final section.
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2 Related works

2.1 Problem statement

In the underground paste filling process, the underflow
concentration is the top index which can sustain the sta-
ble production of the paste, avoid the security hazard and
improve the quality of the paste filling. The detailed structure
of the deep cone thickener is presented in Fig. 1, and all the
processes in the pasting-filling process are included. How-
ever, the traditional method for prediction accuracy is limited
by the expensive physical device, the large time delay, and
the difficulty of online detection. In the long term, the floccu-
lant should react with the feed flow particle for a long time,
so the change of the underflow concentration is a long time
interval. To the best of our knowledge, the existing produc-
tion of intelligent DCT systems is scarce, and the tendency
of the deep cone thickener is the smart mining industry and
paste filling.

Based on the above analysis, the problem can be specified
as: Givenmulti-dimension time input variables (x1, x2, ...xt )
and temporal underflow concentration (y1, y2, ..., yt ), we
need to learn a distribution under the condition of all the
observer of themulti-dimensionmassive input variables. The
specific expression is p(yt+L , yt+L−1, ..., yt+1/y1, y2, ...,
yt , x1, x2, ...xt ), T is the sliding moving window size for the
underflow future prediction. The aim is to achieve a model
with the nonlinear sequential mapping function expressed as
follows:

max p (yt+L , yt+L−1, ..., yt+1/y1, y2, ..., yt , x1, x2, ...xt .) = f (·)
(1)

where the · represents the multi-dimension variables. The
main objective needs to obtain high performance in the long
interval prediction accuracy and robustness.

Feed flow

Underflow 
concentration

Overflow clean water

Floccuant

Rake spinner
pump

Underflow 
concentration

Overflow clean water

Floccuant

Rake spinner
pump

Fig. 1 A schematic of industrial DCT system for the paste filling

2.2 LSTM unit

The next stage for the model consideration should be the
option of the time series model. In the underflow concen-
tration prediction task, the primary goal is the time factor.
Long short-time memory has the function of preserving his-
torical information. LSTM is proposed by Helrtcher with a
four-gate unit which has been proven for superior perfor-
mance in natural language processing, computation vision,
and other domains. The adaptive sequence chunkers are uti-
lized in the model with the capability to bridge arbitrary time
lags. Denote x (t) for the input historical vector, h (t − 1)
represents the precious hidden state, and the external inputs
are inherited from the previous cell state c (t − 1) (Fig. 2).
Then, the forget gate is triggered as:

f (t) = σ
(
W f · [ht−1, xt

]+ b f
)

(2)

where W f and b f are the weights of the forget gate and the
corresponding bias, respectively. A new formation from the
input gate and new candidate vectors are calculated as:

it = σ(Wi · [ht−1, xt
]+ bi ) (3)

C̃t = tanh(W(C) · [ht−1, xt
]+ bC ) (4)

Wi is the input gate weight and bias is denoted by bi . The
new cell state in LSTM is updated by the following equation:

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

The output gate vector can be given by:

ot = σ
(
Wo

[
ht−1, xt

]+ bo
)

(6)

ht = ot ∗ tanh (Ct ) (7)

+

tanh

tanh

1c t

1h t

( )x t

( )c t

( )h t

forget gate cell state

output gateinput gate

Fig. 2 The schematic diagram of LSTM unit
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where Wo is the output weight and bo is the bias. σ is the
sigmoid nonlinear activation function. ∗ is the vector product
term.

2.3 Attentionmechanism

The weight between the time sequence and the tempo-
ral sequence is often in the high-layer future representa-
tion in multi-dimensional prediction problems. Attention
mechanism-based neural networks have recently shown
effectiveness in a variety of activities. In a BiLSTM network
with an attentionmechanism, the attention technique uses the
BiLSTM’s last cell state, or the implicit state of the LSTM,
to align with the cell state of the input at the current step. The
output state’s correlation with these prospective intermedi-
ate stages is then calculated. To improve prediction accuracy
and efficiency, related information can be emphasized while
irrelevant information is hidden throughout the learning pro-
cess. In the attentive BiLSTM network, the attention layer’s
output A is created using the following Eqs. (8)–(10):

M = tanh(Y ) (8)

α =
(
wT
a M

)
i∑

i

(
wT
a M

)
i

(9)

A = YαT (10)

where Y is a matrix that reflects the LSTMmodel’s captured
features, such as thematrix stated above.Y = [y1, y2, ..., yt ].
α is a vector that represents feature attention weights. The
attention layer’s weight coefficient matrix is Y. A transposi-
tion operation is denoted by the symbol T .

3 Method formulation

In this part, the methodology of the proposed DE-LSTM is
given. A schematic of the proposed DE-LSTM is given in
Fig. 3, The original data collected from the massive sensors
are preserved in the industrial database. Themain procedures
include variable selection, preprocessing, average moving
filtering, and DE-LSTM model training. Finally, the trained
model is used for the prediction implementation.

3.1 Initial preprocessing

Before the construction of an excellent DE-LSTM model,
the preprocessing of the collected data is necessary. Due to
the reason that the original data from the massive sensors
has the oscillation points, the outlier, and the missing data,

whichwill greatly influence the accuracyof the proposedDE-
LSTMmodel. Before considering the slidingwindow to train
the data, the standardization and normalization of the training
samples and the temporal output are used for improving the
quality of thedata.The feedflowconcentration, theflocculant
rate, and the feed amount are the initial input variables.

The second target is the encoder representation of the
underflow concentration prediction in the CTS system. The
historical information should be preserved in the long tem-
poral term. The LSTM unit is built to learn the temporal
information contained in the training samples. The specific
representation inherited from the front layer are:

max p (yt+L , yt+L−1, ...,yt+1/y1, y2, ..., yt , x1, x2, ...xt .)= LST M(·)
(11)

3.2 Encoder representation

The features from the average moving filter are sent to the
deep encoder network to obtain an efficient representation
of the underflow concentration. Given the time series of
(x1, x2, ..., xL ), the hidden representation from the multiple
stacked LSTM can be represented as the following equation.

hi = LST M (x1, x2, ..., xL ) (12)

the details of the above equation can be extended as:

ĩt = σ(Wxixt + Whi h̃t−1 + Wci c̃t−1 + bi ) (13)

f̃t = σ(Wx f xt + Wh f h̃t−1 + Wc f c̃t−1 + b f ) (14)

c̃t = f̃t � c̃t−1 + ĩt � tanh(Wxcxt + Whch̃t−1 + bc) (15)

õt = σ(Wxoxt + Whoh̃t−1 + Wcoc̃t + bo) (16)

h̃t = õt � tanh (c̃t ) (17)

The encoder representation extracted complex features and
learn historical temporal information from the underflow
concentration variables. The attention mechanism process
from the encoder layer is expressed as follows:

M =
N∑

i=1

tanh (hi ) (18)

and the transmission of the front layer is written as:

= wT
a M∑

i

(
wT
a M

)
i

(19)
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Fig. 3 The whole framework of the proposed DE-LSTM for the underflow concentration prediction

then, the final output of the DE-LSTM is:

ŷ = σ(

N∑

i=1

i hi ) (20)

The next step is to train the proposed network and gain the
weights of the network. The loss function is defined as the
least square algorithm, which is specified as follows:

Loss =
N∑

i=1

T∑

t=1

(ŷit − yit )
2

(21)

where N is the total number of samples and T is the size of
the sliding moving window. The hidden parameters of the
LSTM and the attention learnable parameters can be fine-
tuned by the Adam optimizer, the backpropagation is used
for the proposed DE-LSTM training.

3.3 Underflow concentration prediction

The flowchart of the proposed DE-LSTM is given in Fig. 3.
The procedure is that the original data collected from the
industrialCTSdatabase is reprocessedby the slidingwindow,
and split with the training datasets. Then the training datasets
with time series T are transmitted to the average moving
filter. The final output of the T steps from the DE-LSTM is
the prediction of underflow concentration. Specifically, the
dynamic recurrent update mechanism is used in the whole
model. The prediction results with the front weights are fine-
tuned by the time interval of 1h.

The specific algorithm is given in Algorithm 1.

3.4 DE-LSTM’s prediction approximation analysis

We state the universal approximation ability of underflow
concentration prediction in the cone thickener system in this
block. Consider the continuous-time sampling series from
the industrial paste filling process, the input series variables
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Algorithm 1 The proposed DE-LSTM algorithm.
Require: n samples, learning rate α, initialize the network parameters,
L layers, slidingmovingwindows T , Dropout, batch size batch_si ze,
max_epoches.

Ensure: TheDE-LSTMpredictionmodel for long-termunderflowcon-
centration prediction with (15).
The hyperparameters of multiple LSTM: W
Other hidden weights parameters.
while epoch �= 0 do

if epoch is not equal zero then
Training the DE-LSTMwith the (16) loss and Adam optimizer.
Updating the hyper-parameters and weights for each epoch.
Setting N ← N − 1

else if error is less than the threshold then
The model is fully trained.
Output the hyper-parameters and nonlinear projection mapping

prediction model.
end if

end while

are denoted as the compact set X = {Ci ,Qi ,F,Qo}Tt=1. Ci

is the input underflow concentration,Qi is the input flow, and
F is the mud pressure level. Co is the underflow concentra-
tion series. Pred

WLST M ,Watten ,Wso f t

(t) is the long future prediction

steps. The target of our analysis is to guarantee an approxi-
mated global prediction ability.

Inspired by the theoretical work in [2], which proves
that the single feedforward neural network can approximate
arbitrarily well continuous functionals and infinite hidden
neurons.

Lemma 1 Given a bounded piecewise nonlinear activation
function σ (x), where σ (x) ∈ L2 (x) is fully dense in spatial
space x ∈ Rd , which means the activation of hidden units
is from the full-connected units. If the residual error of the
nonlinear mapping projection in the prediction function g :
Rd → Rs satisfies:

∫

R

g (x)dx �= 0 (22)

then, the discrete expression can be rewritten as:

N∑

i=1

g (xi )�x �= 0 (23)

which exists for an integer N > 0, ∃ ε > 0, we can find:

lim
n→N

‖en‖ = lim
n→N

‖g − f ‖ = lim
n→N

‖
L∑

i=1

βiσi (x)‖ ≤ ε (24)

where en is the increment residual error with the number of
n hidden neurons.

Theorem 1 Denote thepairwise time seriesX = {Ci ,Qi ,F,

Qo}Tt=1 with T sliding window, the normalized output target
(ranged from [0,1]) satisfies Co ∈ Rs×N ,X ∈ R2L×N , y ∈
RL×N , the dynamical time series prediction can be per-
formed with a projection map from the X to output C,
Nlstm positive integer for number of LSTM unit, then ∀ε >

0, ∃ {WLST M ,Watten,Wso f t
}T
t=1, with the infinite memory

approximation, such that:

∥∥∥
∥∥∥∥∥∥
∥

(Co)
(t)
j −

N∑

i=1

T∑

t=1

Pred
WLST M ,Watten ,Wso f t

(t)σ (Co/X,h, y)

︸ ︷︷ ︸
DE−LST M

∥∥∥
∥∥∥∥∥∥
∥

< ε, j = 1, 2, . . . , N (25)

Proof According to Lemma 1, denote en ∈ L2 (x) as the
dense compact subset, ψ t

n = ∥∥etn
∥∥2 as the Lyapunov func-

tion, thewhole residual error can be specified as the following
equation:

� = ψ t
n−1 − ψ t

n = ∥∥etn−1 − etn
∥∥2

= ∥∥etn−1

∥∥2 − 2
〈
etn−1, e

t
n

〉+ ∥∥etn
∥∥2

= ∥
∥etn−1

∥
∥2−2

(〈
etn−1, etn

〉−〈etn−1−etn, e
t
n

〉)+ ∥
∥etn

∥
∥2 (26)

then, it can be further represented as:

�=
∥
∥
∥
∥∥
(
Cn−1
o

)(t)
j −

n−1∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y)

∥
∥
∥
∥∥

2

−2
((
Cn−1
o

)(t)
j −

n−1∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y)
(
Cn
o

)(t)
j

−
n∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y)

)

−2
(
(Co)

(t)
j −

n−1∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y.)

(
(
Cn
o

)(t)
j −

n∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y.)

)

(
Cn
o

)(t)
j −

n∑

i=1

T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y.)

)

+
∥
∥
∥
∥∥
(
Cn
o

)(t)
j −

n−1∑

i=1

∑ T∑

t=1

Pred
WLST M ,Watten,Wsof t

(t)

σi (Co/X, h, y.)‖2 (27)
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Let ρ = (Cn−1
o ) j

(t) + (Cn
o) j

(t), υ = (Cn−1
o ) j

(t) − (Cn
o) j

(t),
the above equation can transmitted to:

� +

⎛

⎜
⎜
⎝

(
Cn−1
o

)(t)
j −

n−1∑

i=1

T∑

t=1

Predt

WLST M ,Watten,Wsof t
σi (Co/X, h, y)

+(Cn
o

)(t)
j −

n∑

i=1

T∑

t=1

Predt

WLST M ,Watten,Wsof t
σi (Co/X, h, y)

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

(
Cn−1
o

)(t)
j −

n−1∑

i=1

T∑

t=1

Predt

WLST M ,Watten,Wsof t
σi (Co/X, h, y)

+(Cn
o

)(t)
j −

n∑

i=1

T∑

t=1

Predt

WLST M ,Watten,Wsof t
σi (Co/X, h, y)

⎞

⎟
⎟
⎠

= (
ρ − DE−LST M(n−1) − DE−LST M(n)

)

(
v − DE−LST M(n−1) + DE−LST M(n)

)
(28)

with the similar condition of (25), (27) with the constraint
easily satisfies that:

lim
n → N

‖en−1 − en‖2 = lim
n → ∞‖ψ t

n−1 − ψ t
n‖

= lim
n → N

(
‖en−1‖2 − ‖en‖2

)

= lim
n → N

(
‖en−1‖2 − ‖en−1 − βnσi (Co/X,h, y) ‖2

)

= lim
n → N

(
ρ − DE−LST M (n−1) − DE−LST M (n)

)

.
(
υ − DE−LST M (n−1) + DE−LST M (n)

)

)
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Fig. 4 The proposed DE-LSTM model for industrial underflow prediction results with different batch sizes, (a) batch size = 10; (b) batch size =
15; (c) batch size = 20; (d) batch size = 25
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<
lim

n→N

(
2βn〈ρυ, σi (Co/X,h, y)〉−β2

n‖σi (Co/X,h, y) ‖2
)

lim
n → N

‖βnσi (Co/X,h, y) ‖2 (29)

to this end, (22)’s proof is completed. ��

The stated theorem and the explicit expression provided
have a very long impact on the foreseeable applications of
DE-LSTM to model industrial processes. The long predic-
tion approximation can be guaranteed that inherited the front
information. The presented framework has been tested on the
realistic underflow concentration prediction tasks for the first
time.

4 Experimental case

In this section, we will evaluate the proposed DE-LSTM
for the industrial underflow concentration application. We
employ our DE-LSTM in the computer device with the
i7-core processing with 64GB memory, the Pytorch envi-
ronment is installed and a GPU of Nvidia 2080Ti is used
to accelerate the model training process. The time series
was selected with 2.5h for the whole process. Some com-
petitive algorithms such as the recurrent neural network,
gated recurrent network, and other attention-based methods
are compared in the experiments. The experimental bench
originates a 1:10 scaled industrial deep cone thickener with
the same functionality. For the experiment, the flow sen-
sors, the mud level sensors, and the rotating speed sensors
are extra installed. The capability of this thickener is up to
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Fig. 5 The proposed DE-LSTM underflow prediction with competitive algorithms comparison; (a) SvR; (b) BiLSTM; (c) GRU; (d) LSTM
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600 ∼ 1200m3/h with a larger angle cone. Deep cone thick-
ener also called paste thickener is higher than other thickeners
which consist of a deep cone, feeding device, stirring device,
control box, reagents adding device, and automatic control
system. Efficient deep cone thickener is mainly applied in
the thickening of minerals or other fine materials. Slender
body and flocculants are added in the process of concentra-
tion,which accelerates the particle settlement and dewatering
process.

Before the training of the process, the sliding window is
set to 10, and the decay factor and the learning rate lr are set
to 0.01 and 0.001, respectively. The batch size of the experi-
mental setup is with the increase of 5 steps, and the training
epoch is set to 30000. The Adam optimizer is selected to
fine-tune the whole parameter of the whole network. Finally,
the cross-entropy of the prediction value and the actual value
is the loss criteria for the iterative training process.

To evaluate the performance of the proposed method, two
cases are studied. The proposed DE-LSTM is evaluated by
the industrial application of long-time underflow prediction
for the CTS system. Some public methods such as sup-
port vector regression (SVR), Neural Networks (NNs), Deep
belief networks (DBNs), and the temporal recurrent network
such as recurrent neural network (RNN), XGBOOST, long
short-time memory (LSTM) and gated recurrent unit (GRU)
and DARNN are also compared in the experiments through-
out. The evaluation indexes are selected from the literature.
The RMSE can be given as:

RMSE =
√√√
√ 1

N

N∑

i=1

(


y
i

t − yit

)2

(30)

Also, another index for the evaluation is MAE, it is rewritten
as the following equation:

MAE = 1

Nu

Nu∑

i=1

/(


y t − yt )/ (31)

During this period, through training experiments, the influ-
ence of training batch size and sliding window length T on
prediction accuracy was explored. The results are shown in
Figs. 3 and 4. On the way, 3000 epochs were trained, the 3
layers of BiLSTM layer that concat the hidden features to the
encoder representation, and the hidden layer size is 256. The
different batch size is used to testify what’s the approximate
size to obtain the state-of-the-art prediction performance. In
the underflow concentration study, the batch size is set as 10,
15, 20, and 25, respectively, and the corresponding results are
reported in Fig. 4. The experimental results demonstrate that
under the constraint of batch size equals 15, the algorithm
achieves the best prediction performance. While the other
three comparisons cause unsatisfactory accuracy, especially

with a batch size equal to 25. The prediction mean square
error is big and the prediction curve cannot follow the real
underflowconcentration timidly,whichmeans the algorithms
need to be further fine-tuned.

On the other hand, the existing state-of-the-art competitive
algorithms such as the support vector regression, bidirec-
tional long short-time memory, and gate recurrent unit and
long short-time memory are used as the benchmark to verify
the performance of the proposed algorithm. Figure5 gives
the full intuitive description of these results. Figure5(a) is
the underflow concentration prediction with support vector
regression, the prediction value (marked in red) varies from
the real value (marked with blue), while the gate recurrent
unit’s prediction performance (Fig. 5(b)) is better than long
short-time memory (Fig. 5(d)) and bidirectional long short-
time memory Fig. 5(b). The data collected directly by the
actual industrial sensor has disturbances, errors, and occa-
sional sudden outliers, which is the original attribute of the
device production. In the proposed DE-LSTM framework,
this problem can be alleviatedwith appropriate filter process-
ing. Experimental results show that using a moving average
filter of length [20, 40, 20, 10, 20] can greatly improve the
prediction accuracy and reduce the root mean square error
(about -96%).

As shown in Table 1, compared to the other competitive
methods, DE-LSTM shows the best performance with the
lowest RMSE and MAE, the values of 0.2234, and 0.1735,
respectively. The SVR with a multi-polynomial activation
function also achieves a second performance, compared with
the basic LSTM and GRU network. However, if we use other
kernels, like linear kernel or Gaussian kernel, the RMSE

Table 1 Evaluation indexes for the different competitive prediction
methods

Methods RMSE MAE

RNN 0.6712 ± 0.0124 0.3488 ± 0.0082

GRU 0.4634 ± 0078 0.2499 ± 0.0345

LSTM 0.7533 ± 0.0030 0.5119 ± 0.0079

SVR 0.8133 ± / 0.6003 ± /

LGB 0.8091 ± 0.0092 0.6083 ± 0.0118

VAEWGAN 0.7985 ± 0.0116 0.5847 ± 0.0164

GSTAE 0.7735 ± 0.0068 0.5296 ± 0.0097

SS-PdeepFM 0.7650 ± 0.0036 0.5206 ± 0.0073

SSFAN 0.7571 ± 0.0033 0.5235 ± 0.0092

LSTM-DeepFM 0.7497 ± 0.0026 0.5091 ± 0.0071

MPA-RNN 0.7515 ± 0.0034 0.2074 ± 0.0072

DA-RNN 0.851 ± 0.0029 0.2322 ± 0.0052

Attention additive 0.9086 ± 0.0021 0.2445 ± 0.0031

DSTP-RNN 0.8496 ± 0.0051 0.2254 ± 0.0042

Proposed DE-LSTM 0.2234 ± 0.0021 0.1731 ± 0.0013
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Train_loss Test_loss Average_error

(b)

Fig. 6 The measured evaluation indexes comparison for the different algorithms with (a) different batches, (b) different windows and RMSE loss
illustration

and MAE are very high (0.9763 in RMSE, 0.7236 in MAE,
respectively). In our industrial case, the performance of the
LSTM is lower than the GRU network. Compared with the
attention mechanism additive, the performance improved a
satisfactory amount which means that the attention mech-
anism learns other complex representations and with the
different attention in the underflow concentration process
variables. The multi-layer attention in those modules also
helped to improve thewhole prediction performance, the cor-
responding error results can be seen in Fig. 6.

On the other side, the addition of the average moving fil-
ter in the industrial shows that the prediction accuracy is
improved by a largemargin ( 90%). The different sliding time
windowwas used in our experiment and the result shows that
the best parameters are [20, 40, 20, 10, 20]. In DE-LSTM,
the front of underflow concentration instant is considered
to train the whole model with the attention mechanism, the
experiment results show that we have leveraged the proposed
prediction model in a state-of-the-art situation. The other
prediction model is competitively compared in our exper-
iments, the LSTM’s performance outperforms the RNN’s
based model, and the specific RMSE and MAE are 0.7533,
and 0.5119, respectively. Our DE-LSTM outperforms the
other prediction methods because the hidden information
from the hidden variables is fully captured by the proposed
average moving filter, encoder, attention, and finally soft-
max transmission without loss. Besides, the front underflow
concentration and reverse input variables are mutually and
jointly to be used to train the whole and achieve superior
performance and robustness. A remarkable performance has
been implemented in this proposed architecture.

5 Conclusion

In this paper, a new data-centric model for the long-time
underflow concentration prediction method in a deep cone
thickener system, DE-LSTM, is proposed. DE-LSTM learns
the historical and spatial information without information
loss during the transmission of underflow concentration fea-
tures for the paste filling process. In our practical case, the use
of an averagemoving filter significantly enhances the predic-
tion performance of the model. The DE-LSTM outperforms
other state-of-the-art methods with the lowest RMSE and
MAE in underflow concentration prediction while maintain-
ing high robustness. Furthermore, the proposed DE-LSTM
can be effortlessly extended to improve its applicability in
other industrial domains and processes. For future consid-
eration, we would consider the proposed DE-LSTM as the
core bench for the intelligent underground mining system
and optimal control platform, which will promote the whole
development of the mining industry.
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