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Abstract
Augmented Reality (AR) is a pillar of the transition to Industry 4.0 and smart manufacturing. It can facilitate training,
maintenance, assembly, quality control, remote collaboration and other tasks. AR has the potential to revolutionize the way
information is accessed, used and exchanged, extending user’s perception and improving their performance. This work
proposes a Pervasive AR tool, created with partners from the industry sector, to support the training of logistics operators on
industrial shop floors. A Human-Centered Design (HCD) methodology was used to identify operators difficulties, challenges,
and define requirements. After initial meetings with stakeholders, two distinct methods were considered to configure and
visualize AR content on the shop floor: Head-Mounted Display (HMD) and Handheld Device (HHD). A first (preliminary)
user study with 26 participants was conducted to collect qualitative data regarding the use of AR in logistics, from individuals
with different levels of expertise. The feedback obtained was used to improve the proposed AR application. A second user
study was realized, in which 10 participants used different conditions to fulfill distinct logistics tasks: C1 — paper; C2 —
HMD; C3—HHD. Results emphasize the potential of Pervasive AR in the operators’ workspace, in particular for training of
operators not familiar with the tasks. Condition C2 was preferred by all participants and considered more useful and efficient
in supporting the operators activities on the shop floor.

Keywords Industry 4.0 · Shop floor · Logistics · Human-centered design · Augmented Reality · User study

1 Introduction

Industry 4.0 has been proposed as a new phase in the
industrial revolution, integrating digital and physical worlds
through technology into the industrial procedures [53, 67].
Despite the promising benefits of using smart sensors,
embedded systems, cyber-physical systems and Internet-of-
Things (IoT) in manufacturing [2, 20, 27, 48, 63, 70], human
operators remain an essential part of any industrial processes
[27, 46]. Smart factories are essential in the stock market
[69] and almost doubled their market size in the last 5 years1.
Regardless, in logistics procedures, human intervention still
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remains the most important asset to accomplish the intended
goals [30]. One example is “kit assembly.” Usually, this task
uses a mixed-model assembly, i.e., on the same line, several
distinct kits, composed from different components must be
assembled. During the kit preparation, the operators have to
identify the necessary components and their corresponding
location, so that they can be picked up correctly [23].

This information is mostly conveyed through traditional
printed paper manuals, requiring that operators read the list
of components composing the kit and then search for their
location in the line [23].

However, paper manuals can be mentally and physically
demanding to someoperators after long hours of labor, result-
ing in mistakes and decreasing efficiency. Furthermore, the
learning and training phases for novice operators are not
straightforward, requiring a long period to prepare them for
the shop floor activities. One possible solution to improve
the kit assembly operations is the use of Augmented Real-
ity (AR), considered one of the nine pillars of Industry 4.0
to support operators with real-time information for faster
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decision-making, while improving work processes [15, 24,
50, 54, 56, 62]. This technology can integrate virtual infor-
mation in the operators workspace [35, 42], helping them in
assembly tasks [18, 43, 49], provide context-aware assistance
[5], data visualization and interaction (acting as a Human-
Machine Interface (HMI)) [16, 40], indoor localization [60],
maintenance applications [8, 18, 61], quality control [4, 65],
material management [16, 51] or remote collaboration [7, 39,
66], by presenting additional layers of digital information on
top of real-world environments [3, 28, 33, 37, 38, 57]. Prior
studies identify certain benefits of applying AR for techno-
logical industrialization, like increased work safety, effective
learning and training, as well as more task effectiveness [10,
12, 31], as well as improved Human-Robot Interaction (HRI)
[1, 13, 19, 34].

However, most AR solutions are limited to a given space,
which means operators must have all necessary materials
within a limited range, otherwise, the tracking capabilities of
existing tools will fail, affecting operators experience, and in
turn, task performance.

To overcome this limitation, the concept of Pervasive AR
offers experiences that can be visualized continuously as
users move through the environment. Such experiences are
also characterized by being aware of and responsive to the
user’s context and pose [21, 36, 47].

In fact, this concept has the potential to evolve AR solu-
tions to multi-purpose experiences, providing easier access
and better perception of information, changing how users
interact with virtual content and their surroundings.

Pervasive AR and Mixed Reality (MR), depending on the
definition, can differ; however, they are both part of the “Vir-
tuality Continuum” [41].MR has no single definition and can
be considered different things as its understanding is based
on one’s context [59, 68]. One possible definition is the com-
bination of AR and Virtual Reality (VR) parts that interact
with each other but are not necessarily tightly integrated [52,
68]. Quint et al. [55] define it as the combination of real and
virtual world information. On the other hand, Holz et al. [25]
and Nebeling et al. [45] refer MR to the real environment
that allows for shared interaction with virtual experiences.
Hereupon, Pervasive AR extends the original AR concept in
time and space based on the surrounding context [21], which
can be inserted in the scope of MR.

Based on the constraints of traditional paper manuals and
the research opportunities to enhance kit assembly tasks, in
this work, a Pervasive AR tool for production assistance was
developed.

This tool was designed with partners from the industry
sector using aHuman-CenteredDesign (HCD)methodology.

The proposed solution can be used in Head-Mounted Dis-
plays (HMDs) and Handheld Devices (HHDs), enabling to
configure new training experiences on the shop floor, or edit
existing ones to incorporate new steps. The goal is to provide

training experiences that are continuous in space and time,
without the need of visual markers (e.g., QR Code, Aruco).
By doing so, it is possible to support training sessions, not
only of novel operators, but also of more experienced oper-
ators, when new kits are introduced. Besides, this work also
has the objective of evaluating the developed tool and com-
paring it with the traditional paper manual method. Two
user studies were conducted on the shop floor at different
moments in the development process. Individuals having dis-
tinct expertise were considered to improve the range of the
data collected and create a solution that is generic enough to
be used by operators from different areas of a factory, if such
a need ever exists.

Besides this section, the paper is structured as follows:
Section 2 describes related work on AR in industrial scenar-
ios. Section 3 details the logistics scenario considered. From
here, requirements are presented, leading to the proposal of
the AR prototype. Finally, an initial user study on the shop
floor to gather first impressions is described and its results
discussed. Section 4 reports a second user study on the shop
floor to compare different methods. The results obtained are
reported and discussed in Section 5. Section 6, draws con-
cluding remarks and presents ideas for future work.

2 Augmented Reality for logistics in
industrial scenarios

Logistics is a primordial part of industrial systems, although
it is one of the least explored AR research areas, as illus-
trated by Fig. 1. While several logistic procedures, such as
storage and stock removal are fully automated, there are still
some processes where automation is not implemented, being
highly dependent on human intervention [30, 71].

Order picking is one of the logistic procedures where
most of the work is performed by humans, requiring flex-
ibility and motor skills. Even processes, such as assembly
tasks, require order picking to fetch the components consti-
tuting the product to be assembled. There is a wide range of
research in order picking, as it is a complex operation with
high economical relevance, having great potential for process
optimization [71]. Hereupon, besides the traditional printed
paper manual method, other forms of supporting the task
can be applied, such as pick-by-voice systems [6] consisting
in communicating with the warehouse management system
via a voice recognition system; pick-by-light strategies [6],
guiding operators by lights or digital displays; Head-Up Dis-
plays (HUD) [22] where the picker can use a small display
to see the next component to pick; or by using AR tools [23,
29], overlaying digital picking information aligned with the
real-world environment.

Due to itswide range of applications,AR is considered one
of the key technologies for assisting human operators in such
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Fig. 1 Distribution of the different fields of industrial application. In
red, the logistics field, corresponding to 12%. Adapted from [15]

scenarios [29]. The literature contains some works propos-
ingAR systems to assist order picking tasks. Blattgerste et al.
and Büttner et al. [9, 11] presented AR systems for assem-
bly tasks, implemented for HMDs and projection hardware,
correspondingly. Part of their system assists the component
picking with AR; however, the corresponding picking task
does not require the user to move. [17] uses in-situ projection
for assisting industrial assembly tasks. Their study showed
the learning success for untrained workers and the decreas-
ing performance for expert operators. Reif andGünthner [58]
compared an AR marked-based order picking system with
the traditional paper manual system. The AR system proved
its potential, being 4% faster than the traditional paper man-
ual method and producing seven times less errors. Murauer
et al. [44] conducted a laboratory study for comparing an AR
method displayed in HoloLens with traditional paper manual
methods (in both participants native language and unknown
foreign language). Participants were faster using the AR sys-
tem, followed by using the textual instructions in the native
language and the textual instructions in the foreign language.
The AR system led to the same amount of errors over the
paper manual. It was also found that their AR system leads
to significantly less cognitive effort.

All things considered, it seems that AR research has not
focused in the usage of continuous experiences, i.e., mark-
erless AR solutions to support complex order picking tasks
in real industry environments, which imply human motion
through the environment. , instead of the traditional tasks,
implying having operators seated and facing all the neces-
sary materials to accomplish the picking/assembly tasks.

In fact, solutions that explore continuous experiences
exist, being most of the research effort devoted to serious
games or museums exhibitions [26, 33, 64].

Furthermore, there is also no record of a comparison
between different methods for creating Pervasive AR expe-
riences in industrial scenarios. Nevertheless, in order for the
field to mature and contribute to a higher level of knowl-
edge of the research community, the authors argue that
it is paramount to consider more complex use-cases as is
the case of logistics contexts. In particular, the authors are
referring to training operators in industrial scenarios, where
the authors strongly believe this technology can have an
important impact by displaying instructions on what to do
throughout the shop floor.

All things considered, it seems that complex logistics
tasks have been strongly addressed by Industry 4.0. There
are several works applying AR for such tasks, but other
technological systems were considered [6, 22]. These works
consist of marker-based or space limited solutions [17, 58]
or markerless solutions related to tasks that do not require
human motion through the environment [9, 11, 17]. Also,
most researchers address the real industrial task in realistic
laboratory procedures [9, 11, 23, 44]. Certainly solutions that
explore continuous experiences in real-life scenarios exist,
being most of the research effort devoted to serious games
or museum exhibitions [26, 33, 64]. Table 1 summarizes the
related work of the AR usage in industrial logistics and the
applicability of Pervasive AR for other use-cases.

Hereupon, the novelty of the authors’ research is the usage
of continuous AR experiences, i.e., markerless solutions to
support complex order picking tasks in real industry environ-
ments, which imply humanmotion through the environment.

Furthermore, there is also no record of a comparison
between different methods for creating Pervasive AR expe-
riences in industrial scenarios.

Nevertheless, in order for thefield tomature and contribute
to a higher level of knowledge of the research community, the
authors argue that it is paramount to consider more complex
use-cases as is the case of logistics contexts. In particu-
lar, industrial operators’ training, where the authors strongly
believe this technology can have an important impact by dis-
playing instructions on what to do throughout the shop floor.

3 Methods andmaterials

This section describes a human-centered approach to identify
the needs and challenges of human operators during logistics
tasks in shop floor scenarios (see Fig. 2).

The authors focusedon apickinguse-case, benefiting from
an ongoing collaborationwith partners from the industry sec-
tor.

A set of requirements were identified and analyzed.
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These were used in the conceptualization and develop-
ment of a Pervasive AR tool.

Afterwards, the authors discuss the first impressions
derived from an initial user study in the authors’ partner’s
factory.

Finally, the authors describe a set of improvements con-
ducted before a larger study, described in Section 4.

3.1 Shop floor scenario

To help guide the authors’ research, a picking line from
an industrial factory was considered. This picking line is
acknowledged, by the authors’ industrial partners, as one of
the production lines that leads to most the errors and mis-
takes. It is composed of seven large shelves, arranged in an
“L” shape (see Fig. 3), a computer and printers close to the
middle.

Each shelf contains several component boxes identi-
fied with a label. The labelling system has the format
“shelf_number-row_number-column_number” (e.g., E04-
02-03) and is arranged from the bottom-right box to the top-
left box.

The type of component relative to the label position
remains static during large periods (6 months or larger);
however, if the production changes significantly, some com-
ponents can be swapped with others or even removed.

This shop floor scenario is located at an extremely noisy
sector. Nearby, machinery, equipment and vehicles operate
all day long.

Per eight hours shift, three operators, working in parallel,
perform kit assembly tasks.

The kit content varies according to the needs of the final
product which the kit is associated with. These kits are com-
posed of predefined components (documentation, screws,
pipes, buttons, caps, batteries, etc.) to be merged with the
final product before being packed for worldwide distribu-
tion.

Currently, this task is still supported by traditional printed
paper manuals, containing the list of material composing
each kit. Each component has the following information:

– Component: The reference of the desired item;
– Denomination: Component common name;
– Quantity: Number of item to include in the kit;
– Picking location: Position of the component (e.g., E02-
01-06).

The kit assembly requires the location of components, so
these can be collected by hand, and temporally placed into a
cart with 16 sections for later packaging (Fig. 4).

According to operators, the picking process is performed
paying attention to the picking location and the quantity of

components. Although other information exists, most is actu-
ally ignored, being non-relevant to the picking process,which
can actually cause confusion and distractions.

In order to save up time, operators often do not follow the
kit components list in a sequential order. To elaborate, when
they spot that some components are close to each other, they
pick these consecutively. After picking all the kit compo-
nents, the packing process is finalized and the kit is sent to
the subsequent assembly line.

It is apparent that operators perform the taskwalking along
an “L shape” corridor, also designated as “Supermarket,”
using their mental abilities and task expertise to draw the
shorter path for the kit components picking location. Fur-
thermore, they have to memorize which components were
already picked while assembling the kit. This behavior often
leads to mistakes, such as skipping components in the list,
resulting in incomplete kits, which in turn, delays the produc-
tion of other factory lines and can result in client complaints.
In addition, new operators require a long training period,
needing to spend a significant amount of time to reach the
task performance of more experienced operators.

3.2 Requirements elicitation

To better understand the operators’ needs and challenges, a
HCDmethodology was considered. The authors coordinated
various on-site and remote meetings with the authors’ indus-
trial partners, as well as brainstorming sessions and visits
to the shop floor. These meetings involved data engineers,
process development engineers, line operators and line man-
agers. This leads to the elicitation of a set of requirements.

To address the described scenario and tasks, it is necessary
to select the kit that needs to be assembled, read its list of
components and informabout their location. It is also relevant
to consider that operators must move continuously along the
production line to perform the picking at the corresponding
locations.

Another important topic is the need to facilitate the picking
process, bymaking this activity simpler and faster to conduct.
Hence, decrease the mental and physical effort from these
operators, allowing them towalk less,with the same or higher
productivity.

Ideally, solutions for these tasks must be applied through-
out the entire shift, or even work-day.

Besides, the authors considered important to validate the
picking process in order to reduce errors raised from grab-
bing components from the wrong boxes or forgetting to pick
others.

In this context, it is also important to consider different
hardware alternatives at this moment, being able to have a
solution that can run in different platforms, to better compre-
hend which is more adequate to support the requirements for
long-term usage.
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Fig. 2 Methodology adopted: a)
Human-Centered Design
approach to identify the needs
and challenges of human
operators during logistics tasks
on shop floor scenarios; b)
identification of a set of relevant
requirements; c) design and
development of a Pervasive AR
based prototype for HHD and
HMD; d) interactive evaluation
of the prototype developed using
real-life picking tasks

Table 2 describes the requirements outlined above.

3.3 Pervasive AR tool for picking tasks in industrial
scenarios

To fulfill the previous requirements, a Pervasive AR tool was
designed and developed.

Twodistinct hardware alternativeswere considered:HMD
andHHD.Thus, having optionswith different financial costs,
enabling to compare their advantages and disadvantages and

evaluate which is more beneficial for the selected industrial
use-case.

Both methods share a similar architecture, being divided
into two modules: configuration and visualization (Fig. 5).

The configuration module consists in the placement of
virtual content over the real-world, so this information can be
stored for later access. This procedure is mandatory, however
required only once.

Since the real-world context occasionally changes, these
changes have to be updated in the application too. Hereupon,
the configuration module supports minor changes to the vir-

Fig. 3 Overview of the real-life
logistics scenario. Examples of
shelves of the industrial shop
floor composed of distinct boxes
with various distinct
components
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Fig. 4 Example of the industry
cart used during the picking
procedures by the participants.
The goal was to allow them to
pick and place the components
during the selected tasks

Table 2 Requirements
identified during the meetings to
support the described picking
task

Requirement Description

Kit selection Select the kit to be assembled at a given
moment from a list containing all kits or
using a 2D code scanner

Acknowledge kit Identify the components constituting the
selected kit and the corresponding
real-world locations

Support the picking task Assist the logistics operator task
presenting visual AR cues on top of the
real-world boxes where the components
need to be picked from. Other types of
AR features can be considered to
increase the user performance and
decrease the work load

Validate picking Enable the application to verify if every
component constituting the kit was
picked up

Study different technology alternatives Choose the most suitable hardware and
software alternatives for the picking task
and corresponding scenario (regarding
technology behavior, as well as, the
resulting work load, efficiency and
effectiveness from users employing it).

Fig. 5 Architecture overview.
The Pervasive AR tool supports
two display technologies: HMD
and HHD. The configuration of
the virtual information over the
real-word is performed once and
stored. Later, it is possible to
visualize the information in an
AR setting, thus supporting
operators’ tasks
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tual content, not requiring to repeat the configuration process
for the components that remained static.

This module maps the points of interest of the real-world
as a whole and allows to add virtual content, in the form
of cubes over the real-word boxes, arranged on the shelves.
These cubes can be translated, rotated, scaled and copied,
providing the required geometric transformations to perform
the entire AR configuration efficiently and adaptable to var-
ious layouts and box sizes.

The box placement does not require high accuracy,
depending on the real-world box size, the virtual box can be
displaced from 10 to 30 cm; however, the tool offers higher
accuracy when necessary.

Then, from a list containing the existing components on
the shop floor, each cube is associated to the corresponding
component (Fig. 6; watch sample videos for the HMD2 and
HHD3 version).

After having the virtual content correctly placed and
labelled, it is stored, in relation to the real-world mapping,
so it can be used by the visualization module.

The visualization module uses the stored information to
automatically display the AR content in the correct pose over
the real environment.

Thismodule compares the stored real-worldmappingwith
the current camera viewpoint.When amatch occurs, the asso-
ciated AR content is set to its configured pose.

Selecting the kit to be assembled, the virtual content asso-
ciated to its components is acknowledged as such. Then,
the AR information appears above the locations to perform
the picking. The AR content is presented in a floating bal-
loon formwith the relevant information about the component
(Fig. 7).

Two methods for presenting AR content were created:

– Sequential: The AR balloons are presented one by one in
the sequential order of the kit list. When a component is
picked, the next one automatically appears (watch sample
videos for the HMD4 and HHD5 versions);

– Non-sequential: Every AR balloon, i.e., component from
the kit list is presented. The picking is performed accord-
ing to the operators’ preference (watch sample videos for
the HMD6 and HHD7 versions).

2 https://www.youtube.com/watch?v=9M7SEWPmno0 (Accessed:
September 2022)
3 https://youtu.be/cLSlQ86ekmo (Accessed: September 2022)
4 https://www.youtube.com/watch?v=gInR-8IJ8p0 (Accessed:
September 2022)
5 https://youtu.be/TvYGmNoi4eo (Accessed: September 2022)
6 https://www.youtube.com/watch?v=XJQFl8o28hc (Accessed:
September 2022)
7 https://youtu.be/mINhAxZrJ9M (Accessed: September 2022)

Fig. 6 Configurationmodule. Virtual cubes can be placed in the desired
poses. The components are associated with the cubes. At the end, the
AR environment is stored

To validate the picking, when a component is collected,
the corresponding balloon changes its background color from
white to blue, indicating the last picked location.When a new
component is picked, the last blue balloon is hidden.

This mechanism ensures that distracted operators can
recall from which box the picking was being done or allow
them to keep knowing the respective box, even if they put
their hands over the box by fault.

At any time, the operator can access howmany and which
components compose the kit, as well as, which were already
picked and which were not.

As for the development, and although the twomethods are
very similar, different technologies were considered in com-
bination with the Unity game engine based on C# scripts.
For the HMD, the Mixed Reality Toolkit8 (MRTK) was con-
sidered with its local world anchors feature, allowing local
persistence. Regarding the HHD, it uses ARCore9, taking
advantage from its cloud anchors feature, which requires

8 docs.microsoft.com/en-us/windows/mixed-reality/mrtk-
unity/mrtk2/?view=mrtkunity-2022-05 (Accessed: September 2022)
9 developers.google.com/ar (Accessed: September 2022)
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Fig. 7 Visualization module. The blue information balloon represents
the last picked component. The white information balloon represents
the next component to be picked

internet connection to store the real-world information in an
external API.

While configuring the AR environment using HMD, the
cubes are translated, rotated and scaled applyingmid-air hand
gestures, that can be used for close (by intersecting the oper-
ators hand with the 3D box) and far (by using the rays casted
by the hands as pointers) interaction. The following ges-
tures were considered10: air-tap, i.e., detects operators index
finger to interact with existing buttons; one-handed mid-air
pinch, i.e., grab and rotate 3D objects; and two-handed mid-
air pinch, i.e., spreading both hands to change the scale of
the object. As for the HHD, this can be performed apply-
ing the drag, turn to rotate and pinch/spread gestures in the
device screen [14]. Furthermore, the HMDmenu is accessed
through the left hand facing upwards, while in the HHD is
shown/hidden in the screen side panels (Fig. 6). Thosemenus
also include a scene selector, allowing the configuration of
multiple environments. This can be useful when consider-
ing multiple assembly lines, each one with its own set of
components to be picked.

10 docs.microsoft.com/en-us/dynamics365/mixed-
reality/guides/authoring-gestures-hl2 (Accessed: September 2022)

Regarding visualization, different validation mechanisms
were implemented for the picking tasks. For the HMD, the
validation is acknowledged when a human hand enters the
virtual balloon area, i.e., when grabbing components from
boxes. Differently, the HHD validation is not automated and
requires operators to press the virtual balloon on the device
screen, before or after picking the component.

3.4 First impressions on the shop floor

To understand the viability of using the initial version of
the Pervasive AR tool, two visits to the shop floor were
conducted. In total, more than 12 hours were spent in the
industrial scenario.

These visits consisted in a preliminary user study. The
goal was to evaluate the acceptance towards the use of the
proposed technology in real-world context, as well as, gather
first impressions regarding usability, interaction and tracking,
allowing to establish the next steps of the authors’ research.

Participants were asked to conduct the picking process
of a selected kit using the HMD and the HHD versions of
the Pervasive AR tool (Fig. 8). To avoid learning effects, the
order in which the tests were conducted was balanced.

Concerning the hardware used, the authors considered the
Microsoft HoloLens 2 for theHMDmethod. In turn, theAsus
Zenfone AR or the Samsung Galaxy A52 were attached to
a smartphone hand grip for the HHD method, testing two
devices with different sensors.

Participants were introduced to the goals of the study, as
well as the experimental setup and design. After giving their
informed consent, they were able to perform the tasks. Next,
the picking task was completed, while being observed by
a researcher who assisted them if necessary, and registered
their actions and difficulties.

In addition, the route taken by three participants (1 expe-
rienced, 2 inexperienced) while performing the task was
registered by hand over the architectural plan of the assem-
bly line (see Fig. 4 — right). For these three participants,
it was also requested to perform the picking task using the
traditional paper manual.

In the end, subjective data was collected during informal
interviews with the participants.

Participants’ opinion towards the different versions was
registered by the researchers that accompanied the study.
Plus, demographic data, and previous experience with AR
was also considered.

The data collection process was conducted under the
guidelines of the 1964 Helsinki Declaration.

Twenty-six (26) individuals (10 female, 16 male) from
distinct departments of the factory participated in the study
(e.g., operators, line managers, logistics, ergonomics, main-
tenance, process engineering, engineering manager, produc-
tion manager).
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Fig. 8 Participant performing the picking task using the Pervasive AR
tool to visualize the kit components location. Left: Using aHMD.Right:
Using a HHD

From these, 40% of participants had previous experience
with AR, and 25% were familiar with the picking task.

Overall, participants considered the Pervasive AR tool
robust and accurate to be applied in a real industrial setup. It
was also deemed easy to use, as well as having great poten-
tial to support operator’s tasks, specially for inexperienced
operators.

Another advantagementioned, is the fact that operators do
not need to be familiar with the line layout, the components
localization or even the labelling system, which can facili-
tate situations in which the layout is changed for efficiency
purposes or to expand its production.

Additionally, operators do not need to memorize which
components were already picked, thus decreasing the cogni-
tive effort they endure daily.

As for the methods considered, an adaptation period was
considered necessary for both variants, although, the interac-
tion quickly becomes familiar to the users, stating that with
time, task performance would easily improve.

Regarding the HMD method, using the Microsoft Holo-
Lens 2, it was arguably the preferred option, with participants
reporting that it was more stable when presenting the AR
content in relation to the desired locations of the production
line.

Furthermore, the hands-free approach was appraised as
extremely useful to visualize additional information while
conducting the picking tasks. In particular, when compared
to theHHD alternative, which requires operators to hold such
devices at all times, unless some sort of support is used,which
was mentioned by various participants.

The need to test this method for a longer period of time
was also mentioned, in order to verify if it is comfort-
able/ergonomic for long-term use, while also understanding
how to handle the battery limitations. The possibility of using
power-banks was also brought up.

Another relevant insight uncovered during the task execu-
tion of an operator, is associatedwith the fact that the operator
decided to use a pair of gloves, in particular, black and shiny
ones, which caused the HMD hand detection algorithm to
struggle with recognizing the operators hands. This was very
important, given that until that moment, such characteristics
were not considered.

Concerning the HHD method, the Samsung Galaxy A52
showed a considerable decrease in its motion tracking tech-
nology at the industrial environment. In turn, the Asus
Zenfone AR smartphone did not suffer from such a high
performance impact when used in this scenario.

Yet, this method appears to reduce operator’s under-
standing of their surroundings when compared to the HMD
alternative. It was also considered relevant having an auto-
matic process that validates that the correct component was
picked, instead of requiring human input at all times, which
may become overwhelming after a certain period of time.

It was also stated that sequential picking would only be
interesting for training new users and that non-sequential
order is deemed the better option, given that it can provide a
more detailed overview of the environment, while also giving
more freedom to the operators.

As expected, participants suggested various improve-
ments, deemed relevant to refine the AR tool and enhance
operators performance in the future.

Most of these were considered and included in a revised
version of the proposed tool. To elaborate, the following was
considered: (1) visualize additional information of the com-
ponent that needs to be picked besides its location (e.g.,
reference, denomination, quantity); (2) integrate different
colors for the AR content, given that the colors initially
selectedwould sometimes be confusedwith the environment;
(3) display the percentage of components gathered during
task resolution to improve awareness and motivation;

4) keep the augmented content in the display for a larger
period of time after a given component is picked to avoid
confusions and providing a clear overview of the task status;

5) include ergonomicwarnings andnotifications, e.g., sug-
gest adjusting the HMD headset prior to its use to improve
operators well being later on; 5) incorporate guidance on the
next component when a sequential order is used, and when it
is not in sight of the device field of view, thus avoid wasting
time looking around. This was integrated through the use of
directional arrows (Fig. 9). While in the HMD it appears on
the field of view sides and just points top, down, left and
right, in the HHD, it is fixed in front of the device camera
viewpoint and rotates with 3-degrees of freedom.

Finally, Fig. 10 presents a set of Spaghetti diagrams with
the paths travelled by the three participants, allowing their
comparisonwhile using the threemethods considered (HMD,
HHDandpapermanual), and to verifywhichof them requires
participants to walk less during the picking procedure [32].
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Fig. 9 Examples of an
improvement conducted.
Directional arrow used to guide
operators to the next component
to be picked. Left: HMD; Right:
HHD

It is observable that the routes walked by the inexperience
participants (Fig. 10b and c) while using the AR applica-
tions are remarkably more efficient than using the traditional
paper manual. On the other hand, the experienced participant
(Fig. 10a) adopts a more efficient route using the paper man-
ual, which is more familiar. However, the routes travelled
using the HMD and the HHD were nearly as efficient. All in
all, these results lead us to infer that Pervasive AR tool can
contribute to less physical effort and higher efficiency when
used by novice operators, which are learning or training the
picking task.

4 Shop floor user study

In Section 3, the potential of employing Pervasive AR on a
shop floor environment was assessed. The feedback obtained
was used to improve the AR tool. This section reports
a second user study, conducted to compare how different
conditions affected operators performance during distinct
picking tasks.

4.1 Experimental setup

Three distinct methods were considered: C3 — HHD using
the smartphone Asus Zenfone AR attached to a hand grip.

The necessary AR content, corresponding to the compo-
nents that needed to be picked for each kit was configured
before the user study. Plus, during the study, a cart was used,
so that participants could pick and place the components
while moving through the environment.

4.2 Experimental design

The null hypothesis (H0) was considered, i.e., all experimen-
tal conditions are equally usable and acceptable to support
the picking tasks.

The independent variables were the visualization method
used during the picking tasks by the participants, with three
levels corresponding to the experimental conditions: C1 —
paper manual; C2 — HMD; C3 — HHD.

Plus, the methods for presenting the AR content: Sequen-
tial and Non-sequential. The dependent variables were

participants’ opinion regarding the conditions used and the
average time per component picking.

As secondary variables, participants’ demographic data,
previous experience with AR and with the industrial task
were considered.

Awithin-subjects experimental designwas used, meaning
that all participants used every condition.

4.3 Task

Regarding the tasks, three real-life industrial kits were con-
sidered, taking advantage of an ongoing research project
with partners from the industry sector: small kit, frequent
kit, uncommon kit.

The goal was to pick a list of components based on the
kits selected.

In addition, a preparation kit was also considered, com-
posed with three components not picked in the previous
mentioned kits. This was used to introduce participants to
the AR tool.

During the task execution, the components were placed in
a cart, which could be carried around the line or not, leaving
this decision up to the participants.

4.4 Measurements

Two types of data were collected. Task performance, which
consists in the average time required to pick a component,
recorded in seconds by a manual stopwatch (condition C1)
or by the device (condition C2 and C3).

Participants’ opinion was gathered through a post-task
questionnaire, including the following: demographic infor-
mation (age, gender, factory department and role), experience
withARandon the assembly line; the post-task questionnaire
collected the following dimensions: D1 — Level of confu-
sion or distraction about the content used; D2 — Level of
physical effort; D3— Level of mental effort; D4— Level of
satisfaction.

Dimensions data was collected using a Likert-type scale:
1 — Low; 7 — High.

Furthermore, Participants’ difficulties, comments and
observations, as well as their opinion on general questions
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were requested: Q1— Condition order of preference; Q2—
Willingness to use AR for this task on a daily basis;

Fig. 10 Spaghetti diagrams representing three participants routes for
the three methods considered: paper (blue), HMD (green) and HHD
(red)

4.5 Procedure

Both methods share a similaParticipants were introduced to
the goals of the study, as well as the experimental setup and
design. After giving their informed consent, they were intro-
duced to the tasks and the conditions considered.

Participants started by filling a demographic question-
naire.

Then, an adaptation time was provided, in which partic-
ipants used the conditions to conduct the picking task with
the preparation kit.

Next, the selected tasks were completed with all condi-
tions, while observed by a researcher who assisted them if
necessary, and registered any relevant event.

To minimize bias, i.e., learning effects, the order in which
every condition was presented across the group of partici-
pants was counterbalanced.

At the end, participants answered a post-task question-
naire associatedwith their preferences towards the conditions
used.

Last, a small interview was conducted.
The data collection process was conducted under the

guidelines of the 1964 Helsinki Declaration.
Moreover, two groups were created, splitting participants

in half. The first half performed the picking tasks using the
sequential method.

The second group picked the required components in a
non-sequential order of their choosing.

4.6 Participants

In total, 10 participants were recruited (1 female, 9 male),
whose ages ranged from 22 to 39 years old (M=26.6,
SD=4.9).

These had distinct professions at the factory, e.g., data
engineer, automation engineer, industrial engineer, main-
tenance engineer, mechanical engineer, line manager, line
worker (did not answer the post-experiment questionnaire)
and manufacturing digitalization engineer. From these, 60%
of participants had previous experience with AR and beyond
the expert line worker and two participants with little experi-
ence, the participants had no experience with this production
line.

5 Results and discussion

Next, the results from the user study are described and dis-
cussed. All participants were able to assemble the designated
kits using the three conditions. On average, each session
lasted for 40 min (about 30 min to complete the task).
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Fig. 11 Average picking time per component using sequential and non-
sequential order using three conditions: C1 — Paper; C2 — HMD; C3
— HHD

Figure 11 and Table 3 present the average picking time per
component in each condition considering the picking order:
sequential and non-sequential. The chart illustrates that the
time efficiency increases using condition C2 (HMD).

To elaborate, this condition was 70% faster than the tradi-
tional paper condition using the sequential picking order (11s
and 36s, correspondingly) and 54% more efficient applying
the non-sequential (13s and 28s, correspondingly).

Besides, using condition C3 (HHD) was more efficient
compared with the paper manual in both methods (25s and
36s applying the sequential picking order and 17s and 28s
using the non-sequential, respectively). However, not as
much as condition C2 (HMD) (25s and 11s applying the
sequential picking order and 17s and 13s using the non-
sequential, respectively).

Hence, a decrease in time can be observed when using
the non-sequential picking order compared to the sequential
method with condition C3 (HHD) (25s and 17s, correspond-
ingly) and condition C1 (paper) (36s and 28s, correspond-
ingly). This does not apply to condition C2 (HMD) (11s
and 13s, correspondingly) since the directional arrow feature
was not available in this condition during the non-sequential
method.

Looking to condition C3 (HHD) efficiency increase, the
authors believe that conditionC2 (HMD)would be evenmore
time efficient applying the non-sequential method with this
feature included.

Analyzing the dimensions addressed in the question-
naire, rated by the participants based on a Likert-type
scale: 1 — Low; 7 — High (Fig. 12 and Table 4), the
following was reported. Regarding the level of confusing
and distraction about the presented information (D1),
condition C2 (HMD) rated lower (median=2, sum=18),

then condition C3 (HHD) (median=2, sum=26) and con-
dition C1 (paper) (median=4.5, sum=43). As the data is
on an ordinal scale and each user performed the three
conditions (matched sample), the equality of medians was
tested with the Friedman test (ANOVA nonparametric test),
which rejected the null hypothesis (equality of distribu-
tions/medians, p-value=0.006). Furthermore,multiple paired
comparisons, with Bonferroni correction, considered C3
not different from C1 (p-value=0.110) and not different
from C2 (p-value=0.395), but established C2 as signifi-
cant different (preferred) to C1 (p-value = 0.005). With
respect to the level of physical effort (D2), condition C2
(HMD) was rated lower (median=2, sum=16), followed
by condition C1 (paper) (median=3, sum=28) and con-
dition C3 (HHD) (median=3, sum=35) respectively. The
Friedman test rejected the null hypothesis (p-value=0.013),
indicating differences among conditions. Multiple paired
comparisons, with Bonferroni correction, considered C1
not different from C2 (p-value=0.270) and not different
from C3 (p-value=0.270) but established C2 as signifi-
cant different (preferred) to C3 (p-value=0.011). As for
the level of mental effort (D3), condition C2 (HMD)
was rated lower (median=2, sum=21), then condition C3
(HHD) (median=3, sum=30) and condition C1 (paper) being
rated higher (median=4.5, sum=45). The Friedman test
rejected the null hypothesis (p-value=0.019), indicating dif-
ferences among conditions. Multiple paired comparisons,
with Bonferroni correction, considered C3 not different
from C2 (p-value=0.471) and not different from C1 (p-
value=0.140) but established C2 as significant different
(preferred) to C1 (p-value=0.011). Concerning the level of
satisfaction (D4), condition C2 (HMD) was rated higher
(median=6.5, sum=64), followed by condition C3 (HHD)
(median=5, sum=50) and condition C1 (paper) (median=2.5,
sum=28). The Friedman test rejected the null hypothesis
(p-value<0.001), indicating differences among conditions.
Multiple paired comparisons, with Bonferroni correction,
considered C3 not different from C2 (p-value=0.050) and
not different from C1 (p-value=0.219) but established C2 as
significant different (preferred) to C1 (p-value=0.001). Con-
ditionC2 (HMD)was preferred in all dimensions to condition
C1 (paper). On the other hand, there was no statistical differ-
ence between condition C3 (HHD) and condition C1 (paper),
as well as, between condition C3 (HHD) and condition C1
(paper).

When questioned about their preferences (Q1), condi-
tion C2 (HMD) (median=7, sum=66) was selected as the
preferred alternative, followed by condition C3 (HHD)
(median=5, sum=48) and lastly, condition C1 (paper)
(median=2.5, sum=24).

The Friedman test rejected the null hypothesis
(p-value<0.000). Furthermore, multiple paired comparisons,
with Bonferroni correction, considered C1 not different from
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Table 3 Average picking time
per component using sequential
and non-sequential order in
three conditions: C1 — Paper;
C2 — HMD; C3 — HHD

Condition Average time per component (seconds)
Sequential method Non-sequential method

Paper Manual 36 28

Head-Mounted Display 11 13

Handheld Device 25 17

C3 (p-value=0.219) but establishedC2as significant different
(preferred) toC1 (p-value=0.000) and toC3 (p-value=0.024).
In general, participants would be willing to use the AR tool
(Q2) (median = 6, sum=56). However, the usage time ranged
from “while training” and “for a short time, one or two
hours, as it would be uncomfortable for a longer time” to
“the entire shift.” Most participants disliked the smartphone
holder (Q3)while using conditionC3 (HHD)because it occu-
pies one of the hands. Despite requiring additional testing,
other holders were suggested: “smartphone holder fixed to
the cart,” “wristband smartphone holder” or “smartphone
holder attached to a vest.”

Both AR conditions were seen as identically help-
ful in learning (C2-HMD: median=7, sum=66; C3-HHD:
median=6, sum=62) assessed with the Wilcoxon matched
pairs nonparametric test (p-value=0.178) and in complet-
ing the task (C2-HMD: median=7, sum=63; C3-HHD:
median=6.5, sum=63) assessed with the Wilcoxon matched
pairs nonparametric test (p-value=1.000), result of the anal-
ysis of the users’ answers to question Q4.

Participants preference regarding condition C2, as sug-
gested by their comments, is associated with the fact that,
when using theHMD, it was easier tomaintain a good visual-
motor coordination (P4—“As the smartphone field of view is
smaller, sometimes it was harder to find the virtual informa-
tion.”). Having a hands-free setting facilitates accomplishing
the components picking tasks (P4 — “Holding the smart-

phone with one hand and perform the operations with the
other hand is not practical.”). Also, they stated that the sta-
bility of the virtual content in this conditionwas better, which
is beneficial for situation understanding and awareness (P6
— “With the smartphone I was afraid to lose the tracking
of the virtual world, what did not happen when using the
HMD.”).

Also important, both conditions using AR have been con-
sidered to become more intuitive and easy to use over time,
which in turn may be reflected in lower cognitive effort (P2
— “[The AR tool is] very intuitive, easy to interact and facil-
itates the component picking.”).

A Cluster Analysis of the answers of the four dimensions
in the three conditions revealed: (i) high satisfaction with C2
(HMD) and C3 (HHD) and low satisfaction with C1 (paper);
(ii) low perceived level of confusion, mental and physical
effort concerning C2 (HMD) and high level of confusion
about C1 (paper); (iii) moderate and equivalent level of men-
tal and physical effort regarding C1 (paper) and C3 (HHD).

Additionally, the use of CorrespondenceAnalysis allowed
to note some user profiles, namely: (i) some resistance to
the change (from paper to AR) of older participants, with
more daily experience of using paper in the task and who
considered moderate the mental effort of using AR; (ii) a
straightforward acceptance ofAR, by users ofmanufacturing
digitalization and industrial engineering, who penalize the
use of paper in the dimension of confusion, highlight the

Fig. 12 Overview of the results
concerning the dimensions: D1
— level of confusing and
distraction about the presented
information; D2 — level of
physical effort; D3 — level of
mental effort; D4 — level of
satisfaction. Conditions: C1 —
Paper; C2 — HMD; C3 —
HHD. Data collected using a
Likert-type scale: 1 — Low; 7
— High
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very low physical and mental effort of AR and express, also,
a high level of satisfaction for this new paradigm; (iii) the
automation, mechanical and maintenance engineering users’
attention to ergonomics issues, namely the physical effort
in C3 condition (HHD), although they also express a high
satisfaction for using AR.

6 Conclusions and future work

Nowadays, the value Augmented Reality (AR) can generate
for several industrial applications such as assembly, main-
tenance, quality control, logistics and others is undeniable.
Regardless, research is still needed for AR solutions to be
fully integrated in the daily activities of human operators.

In this paper, the authors proposed a Pervasive AR tool
for supporting logistics operators during order picking tasks
on industrial shop floors. A Human-Centered Design (HCD)
methodology was used with partners from the industry
sector to identify operators’ difficulties, challenges, and
define requirements. Following, two methods were devel-
oped (Head-Mounted Display (HMD) and Handheld Device
(HHD)), allowing to configure and visualize AR content in
the industrial environment. All in all, virtual content can
be visualized, allowing operators to know how to conduct
picking operations, i.e., having step-by-step instructions,
including text, images and 3D models on how to assemble a
given kit.

The proposed methods were evaluated during picking
tasks on the shop floor in two phases: first, to have an under-
standing of first impressions from twenty-six participants,
including individuals with different occupation and exper-
tise. This feedbackwas used to improve the prototypes before
the second study, in which, ten participants that had never
conducted (except one expertise operator and two partici-
pants with little experience) the selected tasks used three
different conditions: C1— paper; C2—HMD; C3—HHD.
The goal was to verify which conditions were more adequate
and could contribute with higher productivity for the task.

Results emphasize the potential of Pervasive AR for oper-
ators picking activities on the shop floor environment, in
particular for training operators not familiar with the tasks
and to help in finishing the tasks. Although both conditions
seem as valid options to support operators, condition C2 was
preferred by all participants, being considered more useful
and efficient on the shop floor scenarios, mostly due to its
hand-free setting, as well as higher time efficiency, less cog-
nitive and physical effort and providing a higher level of
satisfaction. On the other hand, although condition C3 was
faster than C1, it was not considered by the participants as
presenting significant advantages in the other dimensions
compared to C1.

The study also revealed that careful attention is required
when designing the experimental protocol to ensure that the
assembly line is not disrupted during labor. Additionally, it is
important to ensure the safety of participants when using the
developed tool, as their level of awareness may be affected,
especially if they are not familiar with the devices used.
The access to a considerable number of participants on the
shop floor during the conducted evaluations was difficult to
achieve and time consuming. Besides, some workers were
hesitant to cooperate as they seemed concerned that the tech-
nology could replace their jobs in the future, or that could be
used to monitor their performance.

As next steps, the authors intend to study upgraded valida-
tion mechanisms, as well as, to conduct longitudinal studies
on the shop floor environment. Although some insights were
already obtained, longer studies and more complex tasks are
an opportunity to better comprehend how AR solutions may
affect operators health, motivation, and productivity on a
daily basis.

Furthermore, explore co-located collaborative use-cases,
requiring various operators to work together on shared goals,
while taking advantage of the benefits of Pervasive AR in
Industrial scenarios.
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