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Abstract
Manufacturing industry is facing new challenges in that fast-changing demands for products and services from customers 
push manufacturers to be more flexible and adaptive. The concept of batch-size-of-one production is presented in this paper, 
which defines a fully automated, highly customised, and short lead time production model. The desired batch-size-of-one 
production model is a promising solution for the above challenges in manufacturing industry, especially for highly custom-
ised or families of similar products like in the mobile phone industry. Along with the concept, we introduce a novel control 
method that enables the desired batch-size-of-one production model in operation of robots in manufacturing and assembly 
systems. The strategy was developed for robot control based on a distributed system to enable industrial robots to receive 
job commands on the fly and to conduct different jobs without the need for reconfiguration and reprogramming and with-
out overheads. The aim of the research is to create the basis for a fully automated robot flexible assembly cell to perform 
batch-size-of-one assembly tasks with minimal human involvement by eliminating interruptions from the reconfiguration 
and reprogramming processes. The proposed strategy has been validated in practice in a multi-robot, multi-product flexible 
assembly cell.
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1 Introduction

1.1  Challenges in manufacturing industry

After decades of enjoying the efficiency of mass manufac-
turing, the concept of flexible manufacturing system (FMS) 
was introduced and designed to allow larger variety through 
lower batch volumes and to shorten the lead time while keep-
ing the company profitable as customers expect more per-
sonalised products within very tight time frames [1]. Even 
so, today, the industry is facing new and increasing chal-
lenges that fast-changing requirements from customers for 
products and services have further forced manufacturers to 
become more adaptable and to follow the pace of the market 

dynamically and promptly [2–4]. Manufacturers try to sat-
isfy such increasing and diversified demands by increasing 
their system flexibility to higher levels [4–7]. These chal-
lenges can evolve exponentially, and they require a paradigm 
shift in the search and implementation of new approaches 
and solutions [8–10]. The transformation of manufacturing 
based on Industry 4 philosophy (blurring the lines between 
the physical, digital, and biological worlds) has the potential 
to lead to such solutions [11].

The industrial robots used in manufacturing have dem-
onstrated their performance and were critical enablers of 
efficient mass production of complex products made at large 
scale, like cars. Despite their advantages, well-behaved 
robots and manipulators that follow exactly the prescribed 
programmes implemented to increase efficiency have 
reached a hard limit and cannot meet today’s flexible pro-
duction requirements [12]. Even if the current robot control 
systems are designed for quick and easy configuration, stop-
pages and production disruptions are still unavoidable while 
new tasks are assigned to the robots [13]. Batch volume is 
a constraint that limits the production efficiency of robotic 
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systems, which in turn reduces the systems’ flexibility and 
adaptability.

In order to increase the adaptability of the rigid robotic 
systems (rigidity in the sense that they strictly follow a set 
programme), human operators are therefore still a highly 
critical constituent required to achieve the desired perfor-
mance in operational flexibility [14, 15]. However, lately, 
even extensive use of human operators in specific opera-
tions is a bottleneck when flexibility is pushed to its limits, 
when the output is a suite of small batches of products or 
even down to batch-size-of-one (BSO). The limitation of the 
human operators to efficient flexibility comes from limita-
tions in fast-learning or potentially too many very similar 
sequences of operations for similar products, which leads to 
the danger of confusions and possible errors.

In particular, the assembly process is the most human 
labour-intensive function in the traditional manufacturing 
model. Due to specific constraints (mainly originating from 
diversity and complexity of tasks), assembly is the most 
difficult to automate and adapt for extensive use of robots. 
Thus, a paradigm shift is needed for robotic control meth-
ods to enhance robotic systems’ adaptiveness, robustness, 
and resilience [16]. Higher flexibility and lower production 
volumes, ideally down to batch size of one (also known as 
market-of-one [17]), as well as shorter lead times, are still 
beyond the capability of industrial robotic systems in the 
state of the art.

1.2  Batch‑size‑of‑one production model in Industry 4

The concept of BSO originally refers to a make-to-order 
production model, which defines a manufacturing strategy 
with high customisation but suffers from low efficiency. 
However, in the era of Industry 4, BSO production model 
means that highly customised products are supposed to 
be made with full automation and low lead time [9, 18]. 
This is referred to as BSO production model in this paper. 
Achieving the desired BSO in robotic assembly cells is a 
promising solution to the aforementioned challenges for 
manufacturing industry for highly customised or families 
of similar products.

In terms of the industrial application of the desired BSO, 
mobile phone industry is one of the typical examples where 
the proposed strategy can be deployed. Mobile phone assem-
bly is a typical labour-intensive process as the traditional 
production lines can hardly offer the desired automation 
and flexibility [19, 20]. Mobile phone giants prefer to set up 
their factories in countries that offer cheap labours [21, 22], 
which, in turn, challenges the supply chain management.

Figure 1 shows the typical components of a mobile phone, 
including PCB, sensors, cameras, antenna, cables, etc. In the 
process of assembling a mobile phone, the components will 
be put in place in a particular sequence. However, depending 

on the specific models of the mobile phone, the size and 
number of the components and assembly sequence are spe-
cific to each model. Therefore, the proposed BSO could 
help the manufacturer to achieve highly flexible production 
regarding the batch volume to satisfy dynamic demands 
from the market, instead of employing significant human 
operators in production lines to obtain such flexibility.

Currently, most studies are focusing on methods of opti-
mising production schedules for enhancing the productive-
ness and adaptiveness in the mobile phone assembly pro-
cess [24–26] However, less studies are dealing with building 
automated processes of mobile phone assembly. And fewer 
of them discuss achieving BSO production model in the 
process.

Industrial robots and machine vision technology are 
major catalysts for enabling the automation in mobile phone 
assembly systems. The versatile robotic arms act as the 
manipulator for moving parts in associate with the position-
ing function assisted by the machine vision system. Zhang, 
He, and Li [20] proposed a system for fulfilling automated 
camera lens insertion in mobile phone assembly process. 
However, the accuracy and precision of positioning parts via 
the machine vision system are a challenge. Another study 
by Yuan et al. [19] developed a machine vision system that 
employs a 9-point calibration method for improving object 
detection performance.

On the other hand, the enhancement of industrial robots 
can also contribute to achieve automated assembly opera-
tion for mobile phones. Force-guided robot, for instance, 
can mimic human’s hands to perform notch-locked assembly 
[27] and solve misalignment problems in the mobile phone 
assembly [28].

However, despite extensive literature search, the authors 
could not find satisfactory solutions for achieving the desired 
BSO production model in either mobile phone assembly 

Fig. 1  Typical components for a mobile phone [23]
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systems or general robotic assembly applications, which is 
the initial motivation of this research.

1.3  Research problem

In this paper, we are proposing a strategy to solve the chal-
lenge of fulfilling the desired BSO production model in 
robotic assembly cells. This will be done by adding flexibil-
ity to a robot system, in particular the possibility to control 
the robots on the fly, without delays and interruptions, at the 
level of elementary task to be executed.

We are, then, testing and validating the proposed strategy 
on a very constrained problem in a robotic flexible assembly 
cell (RFAC) for the BSO production model. The RFAC is a 
multi-robot system, with several robots working in a serial/
parallel arrangement to execute the required tasks.

The Research Problem, the focus of this paper, is how to 
develop a strategy to enable flexible control of a multi-robot 
RFAC to efficiently achieve automated BSO assembly.

An extended goal of this research, which is part of future 
work, is to accomplish a robust self-reconfigurable RFAC. 
In case a robot needs to be taken off-line (due to failure or 
maintenance requirements), tasks can be reallocated to the 
other functional robot(s) in the cell.

At the moment, as analysed in the next section that exam-
ines the state of the art, flexible control of robots is still an 
elusive goal that has not been attained.

The results of the research presented in this paper will 
contribute to enhance the flexibility and adaptiveness of 
robot systems. In particular, for the case of RFAC, the batch 
size will no longer be a constraint limiting the system’s effi-
ciency. Therefore, the assembly tasks can be further opti-
mised in satisfying the dynamic demands of the market, 
which, in turn, builds strong flexibility, adaptiveness, and 
resilience of the RFAC.

The paper is organised as follows. Section 2 discusses the 
related works in enhancing the flexibility and adaptiveness 
of robotic assembly cells. Section 3 introduces the proposed 
robotic control and programming strategy. Section 4 presents 
the RFAC context based on the proposed method. Then, in 
Sect. 5, a case study is presented for the verification of the 
proposed method. Following that, the research results are 
discussed in Sect. 6. A conclusion section, 7, including rec-
ommendations for future work, closes the paper.

2  State of the art in flexible control 
of industrial robots

This literature review is focussed on the current robotic con-
trol strategies for building the flexibility of robotic assem-
bly cells. There are limited references in the literature on 
applications of RFAC. Thus, in this section, the discussion 

is developed based on reviewing the related works that are 
or can be used in a robotic assembly context.

Reducing batch volume size is the core philosophy 
of FMS. In current FMS, the batch size has successfully 
reduced from mass production volume down to small vol-
umes. However, it is difficult to further reduce the batch size 
down to one while maintaining the automation and efficien-
cies required for assembly systems.

2.1  Distributed robotic control systems

Employing a distributed system in robotic assembly cells is 
a common strategy used in the recent years to enhance the 
flexibility of the system [29–32]. Benefiting from the boom 
of information technology in manufacturing, the industrial 
robots are capable to communicate with other networked 
mechanisms via industrial communication protocols. Thus, 
a motion control mechanism can then be developed and 
placed within the local network or on a cloud server to con-
trol robots in the workcell remotely [15].

Distributed industrial robotic system, also known as 
service-oriented architecture (SOA) robotic system [33], 
includes three main sections: manipulators, control mecha-
nism, and communication middleware.

In an early study by Blankenburg et al. [34], a distributed 
framework was proposed for flexibly controlling robots. 
Robot Operating System (ROS) was used to build the middle 
layer for the communication between the nodes in the net-
work. The robotic motion commands were sent to the robots 
via the user interface—MoveIt, which is ROS-based robot 
motion control software. The feasibility was briefly verified 
by programming robots to conduct Pick-and-Place tasks. 
However, the proposed robot control architecture is unable to 
achieve automated new task allocation as the robotic control 
commands are sent manually via the control panel.

Vick et al. [33] introduced a service-oriented architecture 
(SOA) to achieve flexible robotic motion control strategy via 
a cloud-based control system. The intention was fulfilled by 
modularising the robot controller. Part of the function of the 
physical robot controller, such as trajectory planning, was 
transferred into a virtual controller, which was installed on 
a cloud-based computer. The industrial robot users could 
send robot motion commands to the planning service module 
via a human–machine interface (HMI) to control the robots. 
Although the study provided a feasible framework of such 
a system, the authors did not elaborate the detailed methods 
on how to establish an automated industrial robot system.

Another study by Tsarouchi et al. [35] developed a SOA 
structure to control robots, enabling a machine-to-cloud 
(M2C) communication mechanism. The method employed 
XML files to define the task sequence for the assembly tasks. 
Also, the ROS was used as the middleware to establish the 
communication channels between the devices. The proposed 
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solution established a distributed system in a robotic assem-
bly cell and optimised the total flexibility of the system. 
However, the flexibility achieved in this case still relays on 
human operators’ involvement.

Similarly, Vick and Kruger [15] proposed an architec-
ture for establishing distributed industrial robot cell by using 
OPC Unified Architecture (OPC UA) [36] standard as the 
communication layer for the whole system. (Robotic ser-
vices are stored in the cloud data centre.) Comparing with 
ROS, OPC UA brings higher flexibility and scalability for 
the system. However, the proposed strategy is still focussing 
on human–robot collaborative assembly processes.

2.2  Cyber‑physical systems‑based robot control 
systems

In the current Industry 4 paradigm shift, cyber-physical sys-
tems (CPS) are being developed and deployed to optimise 
traditional manufacturing system configurations. Compar-
ing with traditional physical manufacturing systems, dig-
itised systems offer much better accessibility against geo-
graphical constraints [33], which has a great potential for 
increasing the desired flexibility and adaptiveness of robot 
assembly cells.

In a recent study by Kaarlela et al. [37], the authors pro-
posed a solution for remotely controlling the robots via a 
digital twin system. The digital twin consisted of a simula-
tion environment for testing virtual replication and a robot 
programming software where the motion commands for the 
robots were coded up. Codes were then sent to the robots 
via the communication layer based on OPC UA protocol. 
The main contribution of this paper was that it demonstrates 
an application of using OPC UA as middleware to enable 
remote and flexible control of industrial robots.

Similarly, Muller, Deuerlein, and Koch [38] developed 
a CPS to make use of a mixed-reality (MR) environment 
for enhancing the teach-in method of industrial robot pro-
gramming. The proposed approach could be run in an offline 
digital twin virtual context without the need of physical 
robots, which in turn shortens the robots’ downtime for pro-
gramming. However, human operators’ involvement is still 
essential for transferring the pre-made programming for new 
task setup.

2.3  Synopsis of state‑of‑the‑art solutions

Key characteristics of the reviewed cases are summarised 
into Table 1. It is clear that a distributed framework provides 
a promising architecture in building the desired flexible con-
trol for robotic workcells as the control mechanism can be 
geographically decoupled from the physical manipulators. 
CPS-based control system is a new concept in the era of 

Industry 4, which can enhance the systematic flexibility by 
building the digitised context.

There are a few solutions for the communication mid-
dleware, such as OPC UA, ROS, for robotic systems. Solu-
tions can be chosen depending on the specific applica-
tion, devices, and techniques. Comparing with others, it is 
believed that OPC UA is a much more promising solution in 
building communication middle layer in current manufactur-
ing context as it offers high connectivity, interoperability, 
and scalability.

In terms of the control mechanism, using pre-scripted 
robotic motion commands is a major strategy for robots to 
conduct assembly tasks in the reviewed cases, which still 
limits the systematic automation and flexibility in the pro-
cess. However, the encapsulated robotic motion commands 
that were developed by Tsarouchi et al. [35] have drawn the 
authors’ attention, as the encapsulated task execution file 
can be developed, prepared, and sent apart from the running 
robots. With a well-developed control algorithm, it could 
achieve the on-the-fly robotic control.

Despite of the enhanced efficiency in those robot control 
processes, none of them has achieved the expected automa-
tion in new task assignment process. Human operators are 
still necessary for changing tasks for the systems. As defined 
in the BSO production model, new task assignment or any 
task change shall be conducted automatically for maintain-
ing the desired automation level, which in turn achieves the 
expected high efficiency and short lead time.

3  Proposed robot control strategy

As analysed in the state of the art, the proposed strategy 
is also developed based on a distributed robotic system. A 
control algorithm is developed for sending encapsulated 
motion commands to the robots in a real-time and on-the-
fly manner. The algorithm stays in a loop of receiving task 
execution file, sending commands to the robots, and waiting 
for the response of the robots. The task execution file is pre-
pared for each individual assembly task. OPC UA standard 
is employed to build the communication middle layer as it 
is usable for industrial machinery and devices in the manu-
facturing context. Figure 2 illustrates a high level of data 
process flowchart for the strategy.

The flexibility in manufacturing systems is twofold and 
is defined as the capacity of the system to not only conduct 
a variety of similar tasks but also be adaptive to the unpre-
dicted disruptions and dynamic production demands [39]. 
Two major strategies are employed to obtain the desired flex-
ibility in robotic assembly cells. One strategy is to enhance 
the reconfigurability of the system, including system lay-
out reconfiguration [40] and rapid robotic reprogramming 
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capacity [41]. The second strategy is to deploy distributed 
robotic assembly systems, enabling robots to receiving 
motion commands on the fly. The proposed method in this 
paper falls into the second of the two categories.

3.1  System architecture

The proposed robot control strategy is developed based on 
a distributed architecture, which gives higher flexibility 
and scalability in comparison with traditional monolithic 
robot control architecture. The key elements and data flow 
diagrams are shown in Fig. 3. The robots in the work-
cell are networked and connected with a private cloud 
server. A robot motion control unit is integrated within the 

network as well, which enables on-the-fly robotic control 
strategy. The motion control unit is configured to com-
municate with robots in the workcell via industrial com-
munication protocol, which in turn enables the real-time 
data exchange between the control unit and the robots. 
OPC UA is used for building the communication layer in 
the proposed strategy.

3.2  Robot configuration

In the traditional industrial applications, robots need flow 
chart before changing to a different job, and this results in 
interruptions. In the proposed strategy, there is no need for 
reprogramming while a new job is assigned to the robot/s. 

Table 1  Key characteristics of reviewed flexible robotic control systems vs. proposed strategy

Reference System framework Communication 
middle layer

Robotic control mechanism Automated task 
change

Human operator  
involvement

Blankenburg et al. [34] Distributed robotic system ROS/ZeroMQ Pre-scripted motion commands 
sent via MoviIt

No Yes

Vick et al. [33] CAN-protocol Robotic motion commands sent via 
HMI by human operator

No Yes

Tsarouchi et al. [35] ROS Robotic motion commands are 
modelled in XML file and sent 
via HMI

No Yes

Vick and Kruger [15] OPC UA/field-bus Pre-scripted motion commands in 
Workerbot3 control system

No Yes

Kaarlela et al. [37] CPS-based robotic system OPC UA Pre-scripted motion commands 
sent via Digital Twin

No Yes

Muller, Deuerlein, and 
Koch [38]

TCP/IP Mixed reality interface No Yes

Proposed strategy Distributed 
robotic 
system

OPC UA Motion script 
developed for the 
robots to listen up 
on-coming motion 
commands from 
the developed 
control unit

Yes No human 
operator 
needed 
for task 
change

Fig. 2  Conceptual data process flowchart for the proposed robotic control strategy
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This is because the unit of programme sent to be executed by 
the robot is not a programme consisting of a succession of 
tasks but just one task. The robots are set and configured to 
receive motion commands from the motion control software 
in real time. Data that is received by the robot consists of the 
details of the following task to be executed: desired type of 
motion (how does the robot need to move), and tool centre 
point (TCP) coordinates and orientation for the target points 
(where does the robot need to move).

A script is created to define the series of tasks to be 
executed by the robot. Then, the robot is programmed to 
run the script in a loop until termination signal is received. 
In the script, the robot will be initialised at the beginning, 
which is followed by defining variables for OPC UA data 
exchange. Then, a loop is defined for running a check-exe-
cution-feedback cycle. In the first place, the script will check 
if the variables have been updated with new motion com-
mand via OPC UA channel. Once new commands have been 
received, the robot will act to fulfil the desired motion. Then, 
a feedback variable will be updated to indicate the received 
command has been executed. Figure 4 shows the logic of the 
task execution script.

3.3  Motion control algorithm

Robot motion control software is developed and placed in 
the motion control unit, sending the tasks to be executed to 

the robots and receiving the execution feedback information 
from the robots. For each assembly task, the assembly plan 
and motion control commands are defined in a task execu-
tion file. The data in the task execution file can be extracted 
by the motion control algorithm and subsequently sent to 
the robot/s.

Figure 5 shows a detailed logical flowchart of the robotic 
motion control algorithm. Specifically, the OPC UA mod-
ules need to be initialised to create the desired communica-
tion channel at the beginning. Before entering the main loop, 
a series of variables will be defined. Then, the algorithm will 
check whether a new task execution file is received. Once the 
file is received, the algorithm will extract the data and pick 
up the first line of commands.

After checking the availability of the target robot, the 
data of the motion type code, target point’s coordinates 
and approaching orientation will be sent to the robot. In 
the case of the target robot being unavailable (breakdown 
or planned maintenance), the algorithm will seek a backup 
robot within the RFAC and send the command to it. If 
there is no backup robot available, the algorithm will send 
a warning message, pause the programme, and wait for 
further advice. Once the robot finishes the required action, 
a confirmation of execution will be sent back to the motion 
control algorithm. The algorithm will then jump back 
to select the next line of the motion command from the 
extracted data. After all commands in the task execution 

Fig. 3  Proposed framework and key elements for RFAC
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file are conducted, the algorithm will jump further back 
to the beginning of the main loop to check if another new 
task execution file is received.

3.4  Task execution file

The assembly task plan is defined in a task execution file, 
including task sequence, assembly constraints, robot identi-
fier, robot motion type, coordinates and orientation for the 
tool centre point (TCP), and so on. Specifically, the robot 
identifier encodes the robot to which the command is being 
sent. The robot motion type is a code that links to a unique 
robot functional movement, such as moveL, moveJ, open/
close griper, etc., which has been well defined in the robot 
controller. When the robot receives the data, the requested 
robot movement can be easily selected. Moreover, if the 
command is for manipulating the robot to a certain position, 
the coordinates and approach orientation of the target point 
should be provided. This also permits avoidance of collision 
for multi-robot cells.

The task execution file can be created by various methods. 
For instance, it can be prepared in a virtual robot context, 
which is separated from the physical workcell. Alternatively, 
it can be developed by using the method of programming by 
demonstration. The developed file can then be stored in the 
local hard drive of the workstation, or in the cloud drive as 
long as it is accessible for the motion control module.

The information of the file name can be encoded into a 
QR code or RFID. When using a QR code scanner or RFID 

Fig. 4  Logical flowchart of robotic task execution script

Fig. 5  Process flow of the 
motion control algorithm
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reader, the process of loading new task execution file can be 
conducted automatically. As long as robots are available and 
functional in the RFAC to execute tasks, the algorithms will 
run in the loop to repeat data extraction and data transmis-
sion until an implicit or explicit requirement will stop the 
programme.

Therefore, a new task can be set without direct human 
operator involvement, and the desired flexibility, automation, 
and collaborative operation can be achieved in the robot cell 
with maximum efficiency.

The concepts of flexible robot automation and program-
ming were implemented and tested on a RFAC testbed 
in University of South Australia (UniSA), being able 
to run batch-size-of-one assembly tasks in a fully auto-
mated manner, without or with minimal need of human 
involvement.

4  The robot flexible assembly cell

In this section, we present the RFAC and its modelling with 
the proposed framework, which is used as a test bed for 
validating the proposed strategy.

As a major subset of FAS, robot assembly cells (RAC) 
have attracted great attention from both academia and 
industries as they have significant potential in achieving a 
much higher level of flexibility [42]. In most cases, in the 
state of the art, the robots are pre-programmed to carry 
out specific task(s) in various manufacturing contexts 
[43], which, in turn, results in the unavoidable stoppage 
for scheduling and loading the new tasks. Therefore, the 
flexibility and adaptiveness of the RAC have reached a 
limitation as high frequency in changing assembly tasks 
impacts efficiency.

In order to further enhance the assembly system’s flex-
ibility, the concept of robot flexible assembly cells (RFAC) 
has been proposed and discussed [44]. The RFAC pushes the 
limits even further, being responsive to changes in product 
mix, set maintenance of parts of the cell or breakdowns.

The RFAC programming and scheduling is, likely, one 
of the most constrained robot problems. It involves multiple 
robots sharing a common space, the assembled products are 
continuously changing, making the task flexible and requir-
ing continuous reconfiguration and adaptation [45].

The key difference between traditional RAC and 
RFAC is that the latter aims at eliminating human opera-
tors’ involvement in the assembly processes where possi-
ble, while maintaining high level of flexibility, adaptive-
ness, and automation. Thus, RFAC has great potential 
in manufacturing and assembly systems to increase reli-
ability, resilience, and robustness to reduce costs and 
avoid accidents, while being capable of responding to 
the fast-changing requirements and challenges from the 

market. Figure 6 illustrates a typical 2 robots RFAC. In 
the assembly process, the set of component parts will 
be transferred into the workcell by conveyor or AGV. 
Depending on the assembly plan, robots can work sepa-
rately or collaboratively on the assembling task. The 
finished assembly can then be transferred away via the 
conveyor or AGV.

In the current Industry 4 era, a number of cutting-edge 
technologies have been successfully deployed in the man-
ufacturing industry in the last decade, including indus-
trial collaborative robots, cyber-physical system (CPS), 
internet-of-things (IoT), digital twin (DT), artificial intel-
ligence (AI), cloud computing, etc. This unprecedented 
paradigm shift brings significant potential for the RFAC 
to achieve its full potential.

4.1  System architecture

The overall system architecture for implementing the pro-
posed robot control strategy has been shown in Fig. 3. A 
robot motion control unit was developed and linked with 
all robots via an ethernet cable in the RFAC. An OPC UA 
protocol is utilized as the middleware to establish the com-
munication layer between devices.

4.2  Motion control unit

In this functional module, a workstation is used as a 
control terminal where robot motion control software is 
developed and deployed. OPC UA server/client modules 
are built within the software, which allows the control 
terminal to establish the real-time data exchange with the 
industrial robots for sending/receiving data. The data sent 

Fig. 6  Typical 2-robot RFAC configuration
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from the terminal to the robots consists of the motion 
commands that the industrial robots need for executing 
the assembly tasks. The data sent from the robots back 
to the terminal involve execution confirmation for the 
expected movements.

4.3  Physical manipulators

Depending on the nature of the RFAC’s configuration, 
there can be a single or multiple industrial robots. The pro-
posed control strategy is suitable for both cases, although 
the definition of the RFAC requires at least the capabil-
ity to control multiple robots. In this study, two industrial 
collaborative robots (cobot) are employed as the physical 
manipulators to conduct assembly tasks in the proposed 
RFAC (Fig. 7). One is URe5 [46] from Universal Robots; 
another one is AUBO-i5 [47] from AUBO Robotics Tech-
nology. Each robot is equipped with a Robotiq 2F85 grip-
per [48] for conducting the pick-and-place tasks. A port-
able work bench is placed between two robots, acting as 
the assembly platform.

Currently, OPC UA is widely supported by major indus-
trial robot vendors supplying the global market. Some of 
those industrial robots have factory-installed OPC UA 
server/client modules in the system, and some others accept 
a Plug-and-Play OPC UA software module that is created 
by third-party CAE companies, such as Universal Robotics. 
Besides these two cases, some other industrial robots are 
developed based on open-source systems (such as Ubuntu), 
which allows the end-users to develop their own OPC UA 
server/client modules, such as for the AUBO-i5 robot. The 
industrial robots, in either of the cases presented here, are 
supported by this functional module.

5  Implementation of the proposed robot 
control strategy–The case study of a real 
RFAC

The proposed robot motion control approach and the devel-
oped framework for RFAC were implemented, integrated, 
and experimentally verified in a real case study, which has 
been conducted in the Smart Cobots Assembly Cell (SCAC) 
at the University of South Australia (UniSA). The SCAC 
is an Industry 4-oriented RFAC. Its development has been 
introduced in our previous publications.

5.1  Objectives of the experiment

The objective of the experiment is to validate, in practice, 
the proposed robot control strategy for industrial robots 
developed and presented in this paper. Also, it is designed 
to unravel all complexities and detect all potential integra-
tion issues. These issues are documented here, along with 
the approach to solve them.

It is expected that the proposed approach is capable of execut-
ing assembly tasks in the BSO production model. In other words, 
assembly tasks for different products can be continuously con-
ducted without interruption/stoppage for reprogramming.

5.2  Extent of the experiment

The extent of the experiment is set so that, on top of the 
programming methodology and core algorithms, only the 
essential supporting elements will be developed and tested 
in the experiment presented in this paper. This is because the 
intention of the case study is to verify the feasibility of the 
proposed robot control strategy and the algorithms, which 
are installed in the motion control unit.

On top of that, no other parts or subsystems will be con-
sidered in this experiment. However, alternative solutions 
were applied to ensure the desired processes and experi-
ments could be conducted. For example, material handling 
systems, such as feed-in devices, conveyors, sensors, PLC, 
etc., were not developed/integrated for the test at this stage. 
Instead, the test product is inserted and removed by hand. 
The signals that are supposed to be sent by the sensors or 
PLC of material handling system were manually entered into 
the testing system. The fixtures and jigs were not considered 
nor implemented in the experiment at this stage.

The robots are able to assemble a test product in this case 
study. This test product is versatile enough to demonstrate feasi-
bility of the concept and the programming and control strategy. 
The test product is a Tetris-like puzzle developed to test the 
smart assembly algorithms, which only require the Pick-and-
Place capability of the industrial robots. Figure 8 shows a few 
different configurations of the developed test product.Fig. 7  Industrial cobots for the proposed RFAC
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Although the test product and assembly tasks are a sim-
plified version compared to those of a real product, they pose 
the same level of challenges to test the RFAC’s capacity to 
achieve the seamless programme change on the fly and I4’s 
requirement of BSO.

5.3  Robot programming and configuration

As discussed in Sect. 3.2, the programme script that runs in the 
robots is not designed for executing any specific task. Instead, 
the programme will enable robots to stay online and wait for 
the motion commands from the motion control module. The 
general process flow is the same for both robots. However, the 
codes of the programme for each robot are slightly different 
as the two robots use different scripting languages with differ-
ent syntax. URe5 uses URscript [49], which is quite similar to 
Python, and the Aubo-i5 uses Lua language.

Another key work for configuring the robots is to set up 
the OPC UA server/client modules. For URe5, the work 
is relatively easy as there is a programme called URCap 
available from Rocketfarm. After the URCap is installed, 
the variables can be defined within the functional module. 
The robot’s programme can receive and send the data via the 
established OPC communication layer.

On the other hand, the desired OPC UA modules for 
AUBO-i5 must be developed for the experiment as no such 
application is available in the market. The challenge here is 
that the control system of AUBO-i5 does not directly support 
OPC UA protocol. The workaround was an SQLite database 
was deployed between the developed OPC UA server and 
the robot’s programme so that the data can be transferred 
via the database.

The programme of OPC UA server for AUBO-i5 is writ-
ten in Python, which is placed into the local hard drive of 
the AUBO-i5’s controller (an Ubuntu system). It needs to 
be executed in the terminal before running the scripting 
interface programme via the teach pendant. The logic for 
the OPC UA module is quite straightforward. It starts with 

defining local variables and activating OPC UA server by 
using a free OPC UA library in Python. The function of the 
main body of the programme is to fetch data from the motion 
control software and then update the relevant variables in the 
database. The robot’s programme can then obtain the data 
for the expected robot movement.

5.4  Robot motion control software

In the motion control unit, the motion control software has 
been developed in Python. A standalone workstation is 
employed for deploying the software, because a unique IP 
address is required for the software to build the communica-
tion layer over the OPC UA protocol.

At the beginning of the Python script, the algorithm of the 
robot motion control software will initialise the programme 
by defining the local variables. Also, OPC UA server/client 
modules are started up and the variables/tags are created 
to establish the communication connection with the robots.

As discussed in Sect. 3.2, the assembly plan for each task 
will be packed into a task execution file. In the case study, 
the file is saved in.csv format, which is easy to read and edit.

It is worthwhile to mention that, in the task execution file, the 
robot’s TCP’s orientation values (Rx, Ry, Rz) will be defined 
based on roll-pitch-yaw (RPY) model. However, the TCP ori-
entation system of UR5e is developed based on rotation vector 
(RV) model, instead of using the RPY model that AUBO-i5 
employs. Thus, a function is defined within the Python script 
for converting the TCP’s orientation from RPY model to RV 
model, and as a result, the angle values can be converted into 
RV model before being sent to the UR5e (Fig. 9).

5.5  Execution of the experiment

As described above, a dual-robot RFAC has been established 
and configured. Before running the test, both robots need to 
be calibrated based on a common coordinate system, where 

Fig. 8  Three different configurations of the Tetris-like product
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the origin for the robots is selected at the central point of the 
work bench. This needs to be done for the experimental set-
ting so that the coordinates of any target point work for both 
robots are established relative to a set invariant reference. In 
an industrial setting, the calibration needs are less onerous 
once the robots are bolted in their set place.

In the experiment, three task execution files were devel-
oped for the Tetris-like test products that have different con-
figurations. Figure 10 shows the developed feed-in tray and 
the configuration of the test product A that is expected to be 
assembled. The parts in the raw material feed-in tray have 
been numbered from 1 to 16.

A task execution file (Fig. 11) is developed for conducting 
the assembly task of the test product A, which can be fed into 
the developed robotic control algorithm. In the algorithm, 
a function is developed to read the task execution file line 

by line to extract the data. Then, the data will be stored into 
a pre-defined array before being sent to the robot. Table 2 
shows a pseudocode for the task execution file extraction 
function in the robotic control algorithm.

To be specific, in the column A in the file, the number 
indicates what robot the current command is sending to. 
In this case, there are 2 robots in the RFAC. Thus, number 
1 indicates UR5e robot, and number 2 indicates Aubo-i5 
robot. For example, the number is 1 in the cell 3A in Fig. 11, 
meaning the row 3 is the command for robot 1—UR5e robot.

The column B is a description that shows the information 
of the motion command. In column C of the file, Motion 
Type, the number indicates the desired robotic motion. Each 
robot will know what motion it is about to conduct once 
the number of the motion type is received. For instance, 
motion type number is 1 in the cell 3C. It means that robot 

Fig. 9  Robot orientation conversion

Fig. 10  Feed-in tray and the 
configuration-A test product
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needs to move from the original position to the stand-by 
point; and the number is 40 in the cell 5C, meaning the robot 
moves from the stand-by point to the desired pick-up posi-
tion to grip a part, followed by dropping it off to the target 
point. The numbers in the column C are just identifiers for 
indicating the specific motion definitions, which have been 
well defined in the script of the robotic programme (refers 
to Sect. 3.2). That is why the robot will know the exactly 
desired motion while the number is received. Despite many 
of the motion codes that have been defined and are available, 
only the code numbers 1 and 40 are used for the validation 
tests.

Subsequently, in the columns D to O, target point coor-
dinate and approaching orientation are provided for sup-
porting the robot motion. Specifically, the values in Pick-
up point columns (columns D to I) are the coordinates and 
end-effector’s approaching orientation of those 16 parts 
in the feed-in tray. Similarly, the values in the columns of 
Drop-off points (columns J to O) are the coordinates and 
end-effector’s approaching orientation for the parts in the 
finished assembly.

In the row 5, for instance, the numbers in cells of 5D 
to 5F define the coordinate (− 0.680, − 0.125, 0.150) of the 
point where the end-effector of UR5e needs to move to grip 
the part 1, with an approaching orientation of (180, 0, − 180) 
that is indicated by the numbers in the cells of 5G to 5E. 

Following that, the robot needs to drop off the part 1 to a 
desired location that the coordinate and approaching orien-
tation are defined by the numbers in the cells of 5 J to 5O.

It is worth to mention that the configuration of both 
robots at stand-by point has been set in the robot motion 
script. Thus, coordinates and orientation are not required for 
the “go to stand-by” in the task execution file.

Figure 12 shows stand-by points selected for both robots, 
which are an operational strategy for collision avoidance 
between robots. The point S1 is for the URe5, and S2 is for 
the AUBO-i5. At the beginning of the test, the robots move 
to their stand-by position separately by executing the first 
two lines of the commands in the task execution file.

After that, the following 16 lines of the commands are 
sent to the target robot respectively, line by line, to complete 
the assembly of the Tetris-like product that consists of 16 
parts (refer to Fig. 11).

After the total of 16 parts is moved to the expected posi-
tions, the set assembly task is finished. As indicated in the 
flowchart (Fig. 5), the algorithm will jump back to the begin-
ning of the loop to wait for a new task execution file. In the 
meantime, the finished product will be moved away from the 
work bench by the material handling system. A new feed-in 
tray with parts will be set in position while the task execu-
tion file is received by the motion control software.

In the test, the other two task execution files are continu-
ously run for assembling another two configurations of the 
product, which simulates the processes of the automated 
batch-size-of-one production mode. Figures 13, 14, 15, and 
16 detail the task execution files and the configuration for 
the products B and C.

A RFID or a QR code can be attached to the feed-in tray, 
which contains the name of expected task execution file. By 
scanning the RFID tag or the QR code, the motion control 
algorithm is triggered to access and activate the desired task 
execution file and conduct the new assembly task. However, 
in the test, the name of the new task execution file will be 
manually entered into the system, at this stage of the experi-
ment, after the new feed-in tray is in position. Therefore, 

Fig. 11  Task execution file for 
configuration-A test product

Table 2  Pseudocode for the task execution file extraction function

1: array1 # Defining one array for storing data

2: array2 # Defining another array for storing data
3: open task execution file:
4: data = task execution file # Open and read the task execution file
5: for a row in data: # iterating all rows in the spreadsheet
6: for i in range (0, 16): # iterating all columns in each row
7: array.append(row[i]) # store the data into the array for each row
8: array2.append(array1) # store all rows into another array
9: return(array2)
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automation can be achieved in the process of job change. As 
long as the new task execution file is developed and acces-
sible for the robots, there will be no interruption occurring 
between the assembly of different products.

5.6  System repeatability and accuracy

Repeatability and accuracy are key measurable character-
istics for industrial robots, which significantly impact the 
robot system on the effectiveness of task execution [50]. The 
performance of repeatability and accuracy of an industrial 
robot commonly depends on its design, construction, opera-
tion, and maintenance history, and they can be different for 
each robot brand and for each particular robot in a series.

In terms of the proposed robot control strategy, the 
repeatability and accuracy of the system will be exactly the 
same as the performance capability for each of the robots. 
In other words, the proposed method does not affect the per-
formance of the robots’ repeatability and accuracy. This is 
because the original robot controller, the control, and motion 
algorithm of both robots, as well as the structure and factory 
settings, are not changed nor affected at all. The role of the 
developed flexible robot control strategy is strictly interest-
ing the capacity and facility to sending the task execution file 
to the robot controllers on the fly, which in turn achieves the 
desired BSO production model. Thus, there was no require-
ment nor justification to design and conduct any extra test 
for validating the repeatability and accuracy of the system.

Fig. 12  The demonstration of 
the processes of the physical 
execution module

Fig. 13  Task execution file for 
configuration-B test product
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5.7  System error rate

Tests are conducted to validate the reliability and error rate 
of the proposed robotic control method in three scenarios: (i) 
run UR5e robot only; (ii) run Aubo-i5 robot only; (iii) run 
both robots collaboratively. Each test was repeated 25 times. 
In the test (i), the error rate is 0. All of 25 repeated runs met 
the expectation. However, in the test (ii), 3 of 25 runs failed. 
One of the 3 failure runs was due to communication failures 
between OPC UA servers and clients. The other 2 failed runs 
were due to mechanical issues at a joint of the Aubo-i5 robot. 
In test (iii), 1 of 25 runs failed. The issue was also from the 
Aubo-i5 robot. The results are summarised in Fig. 17.

It is believed that the developed flexible robotic control 
strategy has demonstrated its desired reliability as no error 

occurred in the test (i). The failures happened in tests (ii) 
and (iii) are believed coming from the system errors of 
the developed OPC UA server and the control system for 
AUBO-i5 robot. This is being investigated and debugged.

5.8  System efficiency

The test for product A was conducted again to validate the 
efficiency of the developed flexible robotic control strategy. 
In comparison with the original robotic control method for 
both robots, latency time was identified in the developed 
control method. Although the robot moving speed in each 
joint is not degraded, latency time occurred between motion 
commands. Before sending the next motion command, the 
OPC UA server in the developed control mechanism takes 

Fig. 14  Feed-in tray and the 
configuration-B test product

Fig. 15  Task execution file for 
configuration-C test product
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time to fetch data from the OPC UA server in the robots 
for confirming the current motion command has been suc-
cessfully conducted. Tests were conducted for both robots 
individually, repeated 5 times. Referring to Fig. 11, there 
are 16 parts in the task execution file for testing product A. 
Thus, 16 groups of averaged latency time are measured and 
presented in Fig. 18.

5.9  Software debugging

Software debugging can effectively reduce failure rate of the 
software components in manufacturing systems at the early 
stage of the development [51]. Given the testing results in 
Sects. 5.7 and 5.8, it is believed that software debugging and 
optimisation can improve the system reliability and reduce the 

Fig. 16  Feed-in tray and the 
configuration-C test product

Fig. 17  System reliability test
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latency time. Three debugging and optimisation exercises have 
been done after the tests in subsections 5.7 and 5.8; (i) debug 
and optimisation for the motion control algorithm; (ii) debug 
and optimisation for the OPC UA server in Aubo-i5 robot; (iii) 
debug and optimisation for the motion script for both robots.

Tests are conducted again after the implementation of 
the debugging actions. It is clear that the system reliability 
has been improved from the perspective of the performance 
of Aubot-i5 robot (Fig. 19), and the system latency time 
has been reduced by 15% on average (Fig. 20). The works 
(i) and (ii) optimised the connectivity between OPC UA 
server of Aubo-i5 robot and the motion control mechanism. 

The works (i) and (iii) contributed the improvements in 
reducing the latency time.

To sum up, the developed RFAC includes two physical 
robots and the robotic motion control system. The robotic 
motion control algorithm was verified by continuously 
conducting the assembly tasks in various configurations 
of the Tetris-like product three times. High automation 
and flexibility are achieved throughout the processes. No 
interruptions occurred due to changing tasks. Therefore, 
we can confidently say that the proposed robotic motion 
control strategy is able to achieve the desired BSO produc-
tion mode in our implementation of the RFAC.

Fig. 18  Latency time between 
sending each motion command 
in proposed control method

Fig. 19  System reliability 
test after software debug and 
optimisation
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6  Discussion

The robotic flexible assembly cell developed in this study 
has successfully demonstrated, in practice, that the pro-
posed strategy for task scheduling, programming, and con-
trol of industrial robots is viable and works for one of the 
most constrained problems in robotics.

6.1  Advantages of the proposed method

The main advantage and uniqueness in this research are 
that the proposed method enables automated task change 
process in RFAC. This permits the RFAC to achieve a 
higher level of flexibility and adaptiveness. Also, the pro-
posed method is suitable for controlling both a single robot 
and multiple robots to carry out assembly tasks. Critically, 
it does not need any work on the development or modifica-
tion of robots’ existing control cabinet, which makes the 
strategy more generic and much easier to be deployed for 
a broad range of robots and robot tasks.

6.2  Limitations of the proposed method

The main limitation of the proposed method is that, at this stage 
and without extra systems (like vision or sophisticated sensors), 
it requires explicit position of the parts for both components and 
finished product. As shown in the task execution file, coordi-
nates are required for both pick-up and drop-off positions for 
the parts, which makes the method limited to structured robot 
applications, such as PCB or mobile phone assembly. It is pos-
sible to solve this issue, in the future, with a vision system, that 
can be integrated into the RFAC. This is not part of the current 
implementation and can be considered as part of future work.

Another limitation is the latency that occurred between 
each motion control command that the control mechanism 
sent to the robots. This is reasonable at this stage of the 
research, considering that the main intention of this paper 
is to validate the proof of concept for the proposed robot 
control strategy. Thus, the latency time is acceptable at the 
moment. However, it is clear that the latency time needs 
to and can be reduced by optimising the proposed control 
algorithm and OPC UA server integration for both robots, 
which is a proposed work in the future, before the strategy 
can be implemented in an industrial setting.

6.3  Challenges in the research

Significant challenges were identified, and solutions were 
developed, as follows:

- Two robots from different vendors were used. These 
required specific development steps for a unified commu-
nication interface. Despite OPC UA being chosen to build 
the communication layer for the developed RFAC, neither 
of these two robots have OPC UA server/client function by 
default. Thus, the works for developing OPC UA server/
client module for both robots were conducted (refer to 
Section 5.3). It is worthwhile to note that, comparing with 
UR5e, the work for Aubo-i5 was much more challenging. 
Due to its relatively low market share, there is little tech-
nical information available for integration and translation. 
This required extensive consulting with colleagues from 
industry and the original manufacturer. A software devel-
opment kit (SDK) was finally developed for enabling OPC 
UA communication with an Aubo-i5 robot.
- The product of the assembly process needed to be repre-
sentative for a family of products, as well as being simple 

Fig. 20  Latency time between 
sending each motion Command 
in proposed control method 
after software debug and opti-
misation
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to procure. A family of mobile phones is representative—
similar footprint, similar parts, but the result is a large com-
bination of capabilities, depending on the actual model. The 
Tetris-like puzzle introduced in this research emulates the 
combinatorial complexity of such products, enabling a huge 
number of combinations of end models, while being easy 
and fast to make and manipulate.
- The control of the robots needed to be central so that 
the granularity of the programming will not be limited to 
address the assembly of a product but can evolve down to 
the level of a task (e.g., pick-and-place).
- The RFAC is resilient. It is possible to take one robot off-
line (due to malfunction or maintenance) and continue the 
assembly with just one robot. This was briefly checked and 
confirmed as a major capability. This will be described in 
detail in a future article.

The non-technical challenges in implementing this robot 
control strategy and the system that demonstrates it in practice 
were numerous. Funding is always a limitation, which led to 
only implementing the critical elements that make the differ-
ence between classical (albeit fancy and flashy solutions and 
demonstrations) and a paradigm shifting strategy. The experi-
ments, besides the critical components, were minimalistic (e.g., 
material and product handling to and from the RFAC). A pan-
demic, with laboratories locked down and access cancelled just 
as the critical mass of robots, servers, protocols, and settings 
were established and connected, was, in retrospect, a blessing 
in disguise. The remote access protocols and infrastructure, pro-
gramming, debugging, and checking capabilities, which needed 
to be developed to permit work to continue during lockdowns, 
became critical and are expected in the I4 context.

7  Conclusions and recommendations 
for future work

In this paper, a novel strategy for controlling industrial 
robots was proposed and the details of the implementation 
discussed. The strategy was validated in a robot flexible 
assembly cell, a multi-robot cell, conceived to assemble 
products from a family of similar products. The system is 
designed to enable seamless and uninterrupted introduc-
tion of new and removal of old products from the mix, 
as the market evolution dictates. When a new product is 
being added to the family of items to be assembled in the 
workcell, the respective code is loaded into the central 
control unit and made available to be used when required.

This robot control strategy enables the desired BSO 
production mode, i.e., possibility to switch from one 
assembled item to another, continuously and without 
interruption, which is one of the core requirements of the 

Industry 4 philosophy. The proposed approach is designed 
to be used for workcells with multiple robots but works 
perfectly with only one robot.

Regarding future developments of the concept, the fol-
lowing aspects are being investigated:

- A bi-directional digital twin (BDT) is being developed 
for the RFAC, which will be integrated with the robotic 
control mechanism. Real and extensive data from the 
BDT from the operation of the cell will permit the 
development of novel maintenance strategies.
- Proactive maintenance strategy is being developed and will 
be integrated with the current system as well. The devel-
oped strategy will employ machine learning method, which 
forms the biological component for the RFAC with respect 
to building the SCAC as a genuine Industry 4 facility.
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