
Vol.:(0123456789)1 3

The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116
https://doi.org/10.1007/s00170-023-11246-y

ORIGINAL ARTICLE

Achieving batch‑size‑of‑one production model in robot flexible
assembly cells

Ziyue Jin1 · Romeo M. Marian1 · Javaan S. Chahl1,2

Received: 7 December 2022 / Accepted: 8 March 2023 / Published online: 18 March 2023
© The Author(s) 2023

Abstract
Manufacturing industry is facing new challenges in that fast-changing demands for products and services from customers
push manufacturers to be more flexible and adaptive. The concept of batch-size-of-one production is presented in this paper,
which defines a fully automated, highly customised, and short lead time production model. The desired batch-size-of-one
production model is a promising solution for the above challenges in manufacturing industry, especially for highly custom-
ised or families of similar products like in the mobile phone industry. Along with the concept, we introduce a novel control
method that enables the desired batch-size-of-one production model in operation of robots in manufacturing and assembly
systems. The strategy was developed for robot control based on a distributed system to enable industrial robots to receive
job commands on the fly and to conduct different jobs without the need for reconfiguration and reprogramming and with-
out overheads. The aim of the research is to create the basis for a fully automated robot flexible assembly cell to perform
batch-size-of-one assembly tasks with minimal human involvement by eliminating interruptions from the reconfiguration
and reprogramming processes. The proposed strategy has been validated in practice in a multi-robot, multi-product flexible
assembly cell.

Keywords Industrial robot control · Flexible robotic assembly · Batch size of one · OPC UA

1 Introduction

1.1 Challenges in manufacturing industry

After decades of enjoying the efficiency of mass manufac-
turing, the concept of flexible manufacturing system (FMS)
was introduced and designed to allow larger variety through
lower batch volumes and to shorten the lead time while keep-
ing the company profitable as customers expect more per-
sonalised products within very tight time frames [1]. Even
so, today, the industry is facing new and increasing chal-
lenges that fast-changing requirements from customers for
products and services have further forced manufacturers to
become more adaptable and to follow the pace of the market

dynamically and promptly [2–4]. Manufacturers try to sat-
isfy such increasing and diversified demands by increasing
their system flexibility to higher levels [4–7]. These chal-
lenges can evolve exponentially, and they require a paradigm
shift in the search and implementation of new approaches
and solutions [8–10]. The transformation of manufacturing
based on Industry 4 philosophy (blurring the lines between
the physical, digital, and biological worlds) has the potential
to lead to such solutions [11].

The industrial robots used in manufacturing have dem-
onstrated their performance and were critical enablers of
efficient mass production of complex products made at large
scale, like cars. Despite their advantages, well-behaved
robots and manipulators that follow exactly the prescribed
programmes implemented to increase efficiency have
reached a hard limit and cannot meet today’s flexible pro-
duction requirements [12]. Even if the current robot control
systems are designed for quick and easy configuration, stop-
pages and production disruptions are still unavoidable while
new tasks are assigned to the robots [13]. Batch volume is
a constraint that limits the production efficiency of robotic

 * Ziyue Jin
 Ziyue.Jin@mymail.unisa.edu.au

1 UNISA STEM, Australian Research Centre for Interactive
and Virtual Environments, University of South Australia,
Mawson Lakes, Australia

2 Joint and Operations Analysis Division, Defence Science
and Technology Organisation, Melbourne, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-11246-y&domain=pdf
http://orcid.org/0000-0001-5284-9629

2098 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

systems, which in turn reduces the systems’ flexibility and
adaptability.

In order to increase the adaptability of the rigid robotic
systems (rigidity in the sense that they strictly follow a set
programme), human operators are therefore still a highly
critical constituent required to achieve the desired perfor-
mance in operational flexibility [14, 15]. However, lately,
even extensive use of human operators in specific opera-
tions is a bottleneck when flexibility is pushed to its limits,
when the output is a suite of small batches of products or
even down to batch-size-of-one (BSO). The limitation of the
human operators to efficient flexibility comes from limita-
tions in fast-learning or potentially too many very similar
sequences of operations for similar products, which leads to
the danger of confusions and possible errors.

In particular, the assembly process is the most human
labour-intensive function in the traditional manufacturing
model. Due to specific constraints (mainly originating from
diversity and complexity of tasks), assembly is the most
difficult to automate and adapt for extensive use of robots.
Thus, a paradigm shift is needed for robotic control meth-
ods to enhance robotic systems’ adaptiveness, robustness,
and resilience [16]. Higher flexibility and lower production
volumes, ideally down to batch size of one (also known as
market-of-one [17]), as well as shorter lead times, are still
beyond the capability of industrial robotic systems in the
state of the art.

1.2 Batch‑size‑of‑one production model in Industry 4

The concept of BSO originally refers to a make-to-order
production model, which defines a manufacturing strategy
with high customisation but suffers from low efficiency.
However, in the era of Industry 4, BSO production model
means that highly customised products are supposed to
be made with full automation and low lead time [9, 18].
This is referred to as BSO production model in this paper.
Achieving the desired BSO in robotic assembly cells is a
promising solution to the aforementioned challenges for
manufacturing industry for highly customised or families
of similar products.

In terms of the industrial application of the desired BSO,
mobile phone industry is one of the typical examples where
the proposed strategy can be deployed. Mobile phone assem-
bly is a typical labour-intensive process as the traditional
production lines can hardly offer the desired automation
and flexibility [19, 20]. Mobile phone giants prefer to set up
their factories in countries that offer cheap labours [21, 22],
which, in turn, challenges the supply chain management.

Figure 1 shows the typical components of a mobile phone,
including PCB, sensors, cameras, antenna, cables, etc. In the
process of assembling a mobile phone, the components will
be put in place in a particular sequence. However, depending

on the specific models of the mobile phone, the size and
number of the components and assembly sequence are spe-
cific to each model. Therefore, the proposed BSO could
help the manufacturer to achieve highly flexible production
regarding the batch volume to satisfy dynamic demands
from the market, instead of employing significant human
operators in production lines to obtain such flexibility.

Currently, most studies are focusing on methods of opti-
mising production schedules for enhancing the productive-
ness and adaptiveness in the mobile phone assembly pro-
cess [24–26] However, less studies are dealing with building
automated processes of mobile phone assembly. And fewer
of them discuss achieving BSO production model in the
process.

Industrial robots and machine vision technology are
major catalysts for enabling the automation in mobile phone
assembly systems. The versatile robotic arms act as the
manipulator for moving parts in associate with the position-
ing function assisted by the machine vision system. Zhang,
He, and Li [20] proposed a system for fulfilling automated
camera lens insertion in mobile phone assembly process.
However, the accuracy and precision of positioning parts via
the machine vision system are a challenge. Another study
by Yuan et al. [19] developed a machine vision system that
employs a 9-point calibration method for improving object
detection performance.

On the other hand, the enhancement of industrial robots
can also contribute to achieve automated assembly opera-
tion for mobile phones. Force-guided robot, for instance,
can mimic human’s hands to perform notch-locked assembly
[27] and solve misalignment problems in the mobile phone
assembly [28].

However, despite extensive literature search, the authors
could not find satisfactory solutions for achieving the desired
BSO production model in either mobile phone assembly

Fig. 1 Typical components for a mobile phone [23]

2099The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

systems or general robotic assembly applications, which is
the initial motivation of this research.

1.3 Research problem

In this paper, we are proposing a strategy to solve the chal-
lenge of fulfilling the desired BSO production model in
robotic assembly cells. This will be done by adding flexibil-
ity to a robot system, in particular the possibility to control
the robots on the fly, without delays and interruptions, at the
level of elementary task to be executed.

We are, then, testing and validating the proposed strategy
on a very constrained problem in a robotic flexible assembly
cell (RFAC) for the BSO production model. The RFAC is a
multi-robot system, with several robots working in a serial/
parallel arrangement to execute the required tasks.

The Research Problem, the focus of this paper, is how to
develop a strategy to enable flexible control of a multi-robot
RFAC to efficiently achieve automated BSO assembly.

An extended goal of this research, which is part of future
work, is to accomplish a robust self-reconfigurable RFAC.
In case a robot needs to be taken off-line (due to failure or
maintenance requirements), tasks can be reallocated to the
other functional robot(s) in the cell.

At the moment, as analysed in the next section that exam-
ines the state of the art, flexible control of robots is still an
elusive goal that has not been attained.

The results of the research presented in this paper will
contribute to enhance the flexibility and adaptiveness of
robot systems. In particular, for the case of RFAC, the batch
size will no longer be a constraint limiting the system’s effi-
ciency. Therefore, the assembly tasks can be further opti-
mised in satisfying the dynamic demands of the market,
which, in turn, builds strong flexibility, adaptiveness, and
resilience of the RFAC.

The paper is organised as follows. Section 2 discusses the
related works in enhancing the flexibility and adaptiveness
of robotic assembly cells. Section 3 introduces the proposed
robotic control and programming strategy. Section 4 presents
the RFAC context based on the proposed method. Then, in
Sect. 5, a case study is presented for the verification of the
proposed method. Following that, the research results are
discussed in Sect. 6. A conclusion section, 7, including rec-
ommendations for future work, closes the paper.

2 State of the art in flexible control
of industrial robots

This literature review is focussed on the current robotic con-
trol strategies for building the flexibility of robotic assem-
bly cells. There are limited references in the literature on
applications of RFAC. Thus, in this section, the discussion

is developed based on reviewing the related works that are
or can be used in a robotic assembly context.

Reducing batch volume size is the core philosophy
of FMS. In current FMS, the batch size has successfully
reduced from mass production volume down to small vol-
umes. However, it is difficult to further reduce the batch size
down to one while maintaining the automation and efficien-
cies required for assembly systems.

2.1 Distributed robotic control systems

Employing a distributed system in robotic assembly cells is
a common strategy used in the recent years to enhance the
flexibility of the system [29–32]. Benefiting from the boom
of information technology in manufacturing, the industrial
robots are capable to communicate with other networked
mechanisms via industrial communication protocols. Thus,
a motion control mechanism can then be developed and
placed within the local network or on a cloud server to con-
trol robots in the workcell remotely [15].

Distributed industrial robotic system, also known as
service-oriented architecture (SOA) robotic system [33],
includes three main sections: manipulators, control mecha-
nism, and communication middleware.

In an early study by Blankenburg et al. [34], a distributed
framework was proposed for flexibly controlling robots.
Robot Operating System (ROS) was used to build the middle
layer for the communication between the nodes in the net-
work. The robotic motion commands were sent to the robots
via the user interface—MoveIt, which is ROS-based robot
motion control software. The feasibility was briefly verified
by programming robots to conduct Pick-and-Place tasks.
However, the proposed robot control architecture is unable to
achieve automated new task allocation as the robotic control
commands are sent manually via the control panel.

Vick et al. [33] introduced a service-oriented architecture
(SOA) to achieve flexible robotic motion control strategy via
a cloud-based control system. The intention was fulfilled by
modularising the robot controller. Part of the function of the
physical robot controller, such as trajectory planning, was
transferred into a virtual controller, which was installed on
a cloud-based computer. The industrial robot users could
send robot motion commands to the planning service module
via a human–machine interface (HMI) to control the robots.
Although the study provided a feasible framework of such
a system, the authors did not elaborate the detailed methods
on how to establish an automated industrial robot system.

Another study by Tsarouchi et al. [35] developed a SOA
structure to control robots, enabling a machine-to-cloud
(M2C) communication mechanism. The method employed
XML files to define the task sequence for the assembly tasks.
Also, the ROS was used as the middleware to establish the
communication channels between the devices. The proposed

2100 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

solution established a distributed system in a robotic assem-
bly cell and optimised the total flexibility of the system.
However, the flexibility achieved in this case still relays on
human operators’ involvement.

Similarly, Vick and Kruger [15] proposed an architec-
ture for establishing distributed industrial robot cell by using
OPC Unified Architecture (OPC UA) [36] standard as the
communication layer for the whole system. (Robotic ser-
vices are stored in the cloud data centre.) Comparing with
ROS, OPC UA brings higher flexibility and scalability for
the system. However, the proposed strategy is still focussing
on human–robot collaborative assembly processes.

2.2 Cyber‑physical systems‑based robot control
systems

In the current Industry 4 paradigm shift, cyber-physical sys-
tems (CPS) are being developed and deployed to optimise
traditional manufacturing system configurations. Compar-
ing with traditional physical manufacturing systems, dig-
itised systems offer much better accessibility against geo-
graphical constraints [33], which has a great potential for
increasing the desired flexibility and adaptiveness of robot
assembly cells.

In a recent study by Kaarlela et al. [37], the authors pro-
posed a solution for remotely controlling the robots via a
digital twin system. The digital twin consisted of a simula-
tion environment for testing virtual replication and a robot
programming software where the motion commands for the
robots were coded up. Codes were then sent to the robots
via the communication layer based on OPC UA protocol.
The main contribution of this paper was that it demonstrates
an application of using OPC UA as middleware to enable
remote and flexible control of industrial robots.

Similarly, Muller, Deuerlein, and Koch [38] developed
a CPS to make use of a mixed-reality (MR) environment
for enhancing the teach-in method of industrial robot pro-
gramming. The proposed approach could be run in an offline
digital twin virtual context without the need of physical
robots, which in turn shortens the robots’ downtime for pro-
gramming. However, human operators’ involvement is still
essential for transferring the pre-made programming for new
task setup.

2.3 Synopsis of state‑of‑the‑art solutions

Key characteristics of the reviewed cases are summarised
into Table 1. It is clear that a distributed framework provides
a promising architecture in building the desired flexible con-
trol for robotic workcells as the control mechanism can be
geographically decoupled from the physical manipulators.
CPS-based control system is a new concept in the era of

Industry 4, which can enhance the systematic flexibility by
building the digitised context.

There are a few solutions for the communication mid-
dleware, such as OPC UA, ROS, for robotic systems. Solu-
tions can be chosen depending on the specific applica-
tion, devices, and techniques. Comparing with others, it is
believed that OPC UA is a much more promising solution in
building communication middle layer in current manufactur-
ing context as it offers high connectivity, interoperability,
and scalability.

In terms of the control mechanism, using pre-scripted
robotic motion commands is a major strategy for robots to
conduct assembly tasks in the reviewed cases, which still
limits the systematic automation and flexibility in the pro-
cess. However, the encapsulated robotic motion commands
that were developed by Tsarouchi et al. [35] have drawn the
authors’ attention, as the encapsulated task execution file
can be developed, prepared, and sent apart from the running
robots. With a well-developed control algorithm, it could
achieve the on-the-fly robotic control.

Despite of the enhanced efficiency in those robot control
processes, none of them has achieved the expected automa-
tion in new task assignment process. Human operators are
still necessary for changing tasks for the systems. As defined
in the BSO production model, new task assignment or any
task change shall be conducted automatically for maintain-
ing the desired automation level, which in turn achieves the
expected high efficiency and short lead time.

3 Proposed robot control strategy

As analysed in the state of the art, the proposed strategy
is also developed based on a distributed robotic system. A
control algorithm is developed for sending encapsulated
motion commands to the robots in a real-time and on-the-
fly manner. The algorithm stays in a loop of receiving task
execution file, sending commands to the robots, and waiting
for the response of the robots. The task execution file is pre-
pared for each individual assembly task. OPC UA standard
is employed to build the communication middle layer as it
is usable for industrial machinery and devices in the manu-
facturing context. Figure 2 illustrates a high level of data
process flowchart for the strategy.

The flexibility in manufacturing systems is twofold and
is defined as the capacity of the system to not only conduct
a variety of similar tasks but also be adaptive to the unpre-
dicted disruptions and dynamic production demands [39].
Two major strategies are employed to obtain the desired flex-
ibility in robotic assembly cells. One strategy is to enhance
the reconfigurability of the system, including system lay-
out reconfiguration [40] and rapid robotic reprogramming

2101The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

capacity [41]. The second strategy is to deploy distributed
robotic assembly systems, enabling robots to receiving
motion commands on the fly. The proposed method in this
paper falls into the second of the two categories.

3.1 System architecture

The proposed robot control strategy is developed based on
a distributed architecture, which gives higher flexibility
and scalability in comparison with traditional monolithic
robot control architecture. The key elements and data flow
diagrams are shown in Fig. 3. The robots in the work-
cell are networked and connected with a private cloud
server. A robot motion control unit is integrated within the

network as well, which enables on-the-fly robotic control
strategy. The motion control unit is configured to com-
municate with robots in the workcell via industrial com-
munication protocol, which in turn enables the real-time
data exchange between the control unit and the robots.
OPC UA is used for building the communication layer in
the proposed strategy.

3.2 Robot configuration

In the traditional industrial applications, robots need flow
chart before changing to a different job, and this results in
interruptions. In the proposed strategy, there is no need for
reprogramming while a new job is assigned to the robot/s.

Table 1 Key characteristics of reviewed flexible robotic control systems vs. proposed strategy

Reference System framework Communication
middle layer

Robotic control mechanism Automated task
change

Human operator
involvement

Blankenburg et al. [34] Distributed robotic system ROS/ZeroMQ Pre-scripted motion commands
sent via MoviIt

No Yes

Vick et al. [33] CAN-protocol Robotic motion commands sent via
HMI by human operator

No Yes

Tsarouchi et al. [35] ROS Robotic motion commands are
modelled in XML file and sent
via HMI

No Yes

Vick and Kruger [15] OPC UA/field-bus Pre-scripted motion commands in
Workerbot3 control system

No Yes

Kaarlela et al. [37] CPS-based robotic system OPC UA Pre-scripted motion commands
sent via Digital Twin

No Yes

Muller, Deuerlein, and
Koch [38]

TCP/IP Mixed reality interface No Yes

Proposed strategy Distributed
robotic
system

OPC UA Motion script
developed for the
robots to listen up
on-coming motion
commands from
the developed
control unit

Yes No human
operator
needed
for task
change

Fig. 2 Conceptual data process flowchart for the proposed robotic control strategy

2102 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

This is because the unit of programme sent to be executed by
the robot is not a programme consisting of a succession of
tasks but just one task. The robots are set and configured to
receive motion commands from the motion control software
in real time. Data that is received by the robot consists of the
details of the following task to be executed: desired type of
motion (how does the robot need to move), and tool centre
point (TCP) coordinates and orientation for the target points
(where does the robot need to move).

A script is created to define the series of tasks to be
executed by the robot. Then, the robot is programmed to
run the script in a loop until termination signal is received.
In the script, the robot will be initialised at the beginning,
which is followed by defining variables for OPC UA data
exchange. Then, a loop is defined for running a check-exe-
cution-feedback cycle. In the first place, the script will check
if the variables have been updated with new motion com-
mand via OPC UA channel. Once new commands have been
received, the robot will act to fulfil the desired motion. Then,
a feedback variable will be updated to indicate the received
command has been executed. Figure 4 shows the logic of the
task execution script.

3.3 Motion control algorithm

Robot motion control software is developed and placed in
the motion control unit, sending the tasks to be executed to

the robots and receiving the execution feedback information
from the robots. For each assembly task, the assembly plan
and motion control commands are defined in a task execu-
tion file. The data in the task execution file can be extracted
by the motion control algorithm and subsequently sent to
the robot/s.

Figure 5 shows a detailed logical flowchart of the robotic
motion control algorithm. Specifically, the OPC UA mod-
ules need to be initialised to create the desired communica-
tion channel at the beginning. Before entering the main loop,
a series of variables will be defined. Then, the algorithm will
check whether a new task execution file is received. Once the
file is received, the algorithm will extract the data and pick
up the first line of commands.

After checking the availability of the target robot, the
data of the motion type code, target point’s coordinates
and approaching orientation will be sent to the robot. In
the case of the target robot being unavailable (breakdown
or planned maintenance), the algorithm will seek a backup
robot within the RFAC and send the command to it. If
there is no backup robot available, the algorithm will send
a warning message, pause the programme, and wait for
further advice. Once the robot finishes the required action,
a confirmation of execution will be sent back to the motion
control algorithm. The algorithm will then jump back
to select the next line of the motion command from the
extracted data. After all commands in the task execution

Fig. 3 Proposed framework and key elements for RFAC

2103The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

file are conducted, the algorithm will jump further back
to the beginning of the main loop to check if another new
task execution file is received.

3.4 Task execution file

The assembly task plan is defined in a task execution file,
including task sequence, assembly constraints, robot identi-
fier, robot motion type, coordinates and orientation for the
tool centre point (TCP), and so on. Specifically, the robot
identifier encodes the robot to which the command is being
sent. The robot motion type is a code that links to a unique
robot functional movement, such as moveL, moveJ, open/
close griper, etc., which has been well defined in the robot
controller. When the robot receives the data, the requested
robot movement can be easily selected. Moreover, if the
command is for manipulating the robot to a certain position,
the coordinates and approach orientation of the target point
should be provided. This also permits avoidance of collision
for multi-robot cells.

The task execution file can be created by various methods.
For instance, it can be prepared in a virtual robot context,
which is separated from the physical workcell. Alternatively,
it can be developed by using the method of programming by
demonstration. The developed file can then be stored in the
local hard drive of the workstation, or in the cloud drive as
long as it is accessible for the motion control module.

The information of the file name can be encoded into a
QR code or RFID. When using a QR code scanner or RFID

Fig. 4 Logical flowchart of robotic task execution script

Fig. 5 Process flow of the
motion control algorithm

2104 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

reader, the process of loading new task execution file can be
conducted automatically. As long as robots are available and
functional in the RFAC to execute tasks, the algorithms will
run in the loop to repeat data extraction and data transmis-
sion until an implicit or explicit requirement will stop the
programme.

Therefore, a new task can be set without direct human
operator involvement, and the desired flexibility, automation,
and collaborative operation can be achieved in the robot cell
with maximum efficiency.

The concepts of flexible robot automation and program-
ming were implemented and tested on a RFAC testbed
in University of South Australia (UniSA), being able
to run batch-size-of-one assembly tasks in a fully auto-
mated manner, without or with minimal need of human
involvement.

4 The robot flexible assembly cell

In this section, we present the RFAC and its modelling with
the proposed framework, which is used as a test bed for
validating the proposed strategy.

As a major subset of FAS, robot assembly cells (RAC)
have attracted great attention from both academia and
industries as they have significant potential in achieving a
much higher level of flexibility [42]. In most cases, in the
state of the art, the robots are pre-programmed to carry
out specific task(s) in various manufacturing contexts
[43], which, in turn, results in the unavoidable stoppage
for scheduling and loading the new tasks. Therefore, the
flexibility and adaptiveness of the RAC have reached a
limitation as high frequency in changing assembly tasks
impacts efficiency.

In order to further enhance the assembly system’s flex-
ibility, the concept of robot flexible assembly cells (RFAC)
has been proposed and discussed [44]. The RFAC pushes the
limits even further, being responsive to changes in product
mix, set maintenance of parts of the cell or breakdowns.

The RFAC programming and scheduling is, likely, one
of the most constrained robot problems. It involves multiple
robots sharing a common space, the assembled products are
continuously changing, making the task flexible and requir-
ing continuous reconfiguration and adaptation [45].

The key difference between traditional RAC and
RFAC is that the latter aims at eliminating human opera-
tors’ involvement in the assembly processes where possi-
ble, while maintaining high level of flexibility, adaptive-
ness, and automation. Thus, RFAC has great potential
in manufacturing and assembly systems to increase reli-
ability, resilience, and robustness to reduce costs and
avoid accidents, while being capable of responding to
the fast-changing requirements and challenges from the

market. Figure 6 illustrates a typical 2 robots RFAC. In
the assembly process, the set of component parts will
be transferred into the workcell by conveyor or AGV.
Depending on the assembly plan, robots can work sepa-
rately or collaboratively on the assembling task. The
finished assembly can then be transferred away via the
conveyor or AGV.

In the current Industry 4 era, a number of cutting-edge
technologies have been successfully deployed in the man-
ufacturing industry in the last decade, including indus-
trial collaborative robots, cyber-physical system (CPS),
internet-of-things (IoT), digital twin (DT), artificial intel-
ligence (AI), cloud computing, etc. This unprecedented
paradigm shift brings significant potential for the RFAC
to achieve its full potential.

4.1 System architecture

The overall system architecture for implementing the pro-
posed robot control strategy has been shown in Fig. 3. A
robot motion control unit was developed and linked with
all robots via an ethernet cable in the RFAC. An OPC UA
protocol is utilized as the middleware to establish the com-
munication layer between devices.

4.2 Motion control unit

In this functional module, a workstation is used as a
control terminal where robot motion control software is
developed and deployed. OPC UA server/client modules
are built within the software, which allows the control
terminal to establish the real-time data exchange with the
industrial robots for sending/receiving data. The data sent

Fig. 6 Typical 2-robot RFAC configuration

2105The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

from the terminal to the robots consists of the motion
commands that the industrial robots need for executing
the assembly tasks. The data sent from the robots back
to the terminal involve execution confirmation for the
expected movements.

4.3 Physical manipulators

Depending on the nature of the RFAC’s configuration,
there can be a single or multiple industrial robots. The pro-
posed control strategy is suitable for both cases, although
the definition of the RFAC requires at least the capabil-
ity to control multiple robots. In this study, two industrial
collaborative robots (cobot) are employed as the physical
manipulators to conduct assembly tasks in the proposed
RFAC (Fig. 7). One is URe5 [46] from Universal Robots;
another one is AUBO-i5 [47] from AUBO Robotics Tech-
nology. Each robot is equipped with a Robotiq 2F85 grip-
per [48] for conducting the pick-and-place tasks. A port-
able work bench is placed between two robots, acting as
the assembly platform.

Currently, OPC UA is widely supported by major indus-
trial robot vendors supplying the global market. Some of
those industrial robots have factory-installed OPC UA
server/client modules in the system, and some others accept
a Plug-and-Play OPC UA software module that is created
by third-party CAE companies, such as Universal Robotics.
Besides these two cases, some other industrial robots are
developed based on open-source systems (such as Ubuntu),
which allows the end-users to develop their own OPC UA
server/client modules, such as for the AUBO-i5 robot. The
industrial robots, in either of the cases presented here, are
supported by this functional module.

5 Implementation of the proposed robot
control strategy–The case study of a real
RFAC

The proposed robot motion control approach and the devel-
oped framework for RFAC were implemented, integrated,
and experimentally verified in a real case study, which has
been conducted in the Smart Cobots Assembly Cell (SCAC)
at the University of South Australia (UniSA). The SCAC
is an Industry 4-oriented RFAC. Its development has been
introduced in our previous publications.

5.1 Objectives of the experiment

The objective of the experiment is to validate, in practice,
the proposed robot control strategy for industrial robots
developed and presented in this paper. Also, it is designed
to unravel all complexities and detect all potential integra-
tion issues. These issues are documented here, along with
the approach to solve them.

It is expected that the proposed approach is capable of execut-
ing assembly tasks in the BSO production model. In other words,
assembly tasks for different products can be continuously con-
ducted without interruption/stoppage for reprogramming.

5.2 Extent of the experiment

The extent of the experiment is set so that, on top of the
programming methodology and core algorithms, only the
essential supporting elements will be developed and tested
in the experiment presented in this paper. This is because the
intention of the case study is to verify the feasibility of the
proposed robot control strategy and the algorithms, which
are installed in the motion control unit.

On top of that, no other parts or subsystems will be con-
sidered in this experiment. However, alternative solutions
were applied to ensure the desired processes and experi-
ments could be conducted. For example, material handling
systems, such as feed-in devices, conveyors, sensors, PLC,
etc., were not developed/integrated for the test at this stage.
Instead, the test product is inserted and removed by hand.
The signals that are supposed to be sent by the sensors or
PLC of material handling system were manually entered into
the testing system. The fixtures and jigs were not considered
nor implemented in the experiment at this stage.

The robots are able to assemble a test product in this case
study. This test product is versatile enough to demonstrate feasi-
bility of the concept and the programming and control strategy.
The test product is a Tetris-like puzzle developed to test the
smart assembly algorithms, which only require the Pick-and-
Place capability of the industrial robots. Figure 8 shows a few
different configurations of the developed test product.Fig. 7 Industrial cobots for the proposed RFAC

2106 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

Although the test product and assembly tasks are a sim-
plified version compared to those of a real product, they pose
the same level of challenges to test the RFAC’s capacity to
achieve the seamless programme change on the fly and I4’s
requirement of BSO.

5.3 Robot programming and configuration

As discussed in Sect. 3.2, the programme script that runs in the
robots is not designed for executing any specific task. Instead,
the programme will enable robots to stay online and wait for
the motion commands from the motion control module. The
general process flow is the same for both robots. However, the
codes of the programme for each robot are slightly different
as the two robots use different scripting languages with differ-
ent syntax. URe5 uses URscript [49], which is quite similar to
Python, and the Aubo-i5 uses Lua language.

Another key work for configuring the robots is to set up
the OPC UA server/client modules. For URe5, the work
is relatively easy as there is a programme called URCap
available from Rocketfarm. After the URCap is installed,
the variables can be defined within the functional module.
The robot’s programme can receive and send the data via the
established OPC communication layer.

On the other hand, the desired OPC UA modules for
AUBO-i5 must be developed for the experiment as no such
application is available in the market. The challenge here is
that the control system of AUBO-i5 does not directly support
OPC UA protocol. The workaround was an SQLite database
was deployed between the developed OPC UA server and
the robot’s programme so that the data can be transferred
via the database.

The programme of OPC UA server for AUBO-i5 is writ-
ten in Python, which is placed into the local hard drive of
the AUBO-i5’s controller (an Ubuntu system). It needs to
be executed in the terminal before running the scripting
interface programme via the teach pendant. The logic for
the OPC UA module is quite straightforward. It starts with

defining local variables and activating OPC UA server by
using a free OPC UA library in Python. The function of the
main body of the programme is to fetch data from the motion
control software and then update the relevant variables in the
database. The robot’s programme can then obtain the data
for the expected robot movement.

5.4 Robot motion control software

In the motion control unit, the motion control software has
been developed in Python. A standalone workstation is
employed for deploying the software, because a unique IP
address is required for the software to build the communica-
tion layer over the OPC UA protocol.

At the beginning of the Python script, the algorithm of the
robot motion control software will initialise the programme
by defining the local variables. Also, OPC UA server/client
modules are started up and the variables/tags are created
to establish the communication connection with the robots.

As discussed in Sect. 3.2, the assembly plan for each task
will be packed into a task execution file. In the case study,
the file is saved in.csv format, which is easy to read and edit.

It is worthwhile to mention that, in the task execution file, the
robot’s TCP’s orientation values (Rx, Ry, Rz) will be defined
based on roll-pitch-yaw (RPY) model. However, the TCP ori-
entation system of UR5e is developed based on rotation vector
(RV) model, instead of using the RPY model that AUBO-i5
employs. Thus, a function is defined within the Python script
for converting the TCP’s orientation from RPY model to RV
model, and as a result, the angle values can be converted into
RV model before being sent to the UR5e (Fig. 9).

5.5 Execution of the experiment

As described above, a dual-robot RFAC has been established
and configured. Before running the test, both robots need to
be calibrated based on a common coordinate system, where

Fig. 8 Three different configurations of the Tetris-like product

2107The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

the origin for the robots is selected at the central point of the
work bench. This needs to be done for the experimental set-
ting so that the coordinates of any target point work for both
robots are established relative to a set invariant reference. In
an industrial setting, the calibration needs are less onerous
once the robots are bolted in their set place.

In the experiment, three task execution files were devel-
oped for the Tetris-like test products that have different con-
figurations. Figure 10 shows the developed feed-in tray and
the configuration of the test product A that is expected to be
assembled. The parts in the raw material feed-in tray have
been numbered from 1 to 16.

A task execution file (Fig. 11) is developed for conducting
the assembly task of the test product A, which can be fed into
the developed robotic control algorithm. In the algorithm,
a function is developed to read the task execution file line

by line to extract the data. Then, the data will be stored into
a pre-defined array before being sent to the robot. Table 2
shows a pseudocode for the task execution file extraction
function in the robotic control algorithm.

To be specific, in the column A in the file, the number
indicates what robot the current command is sending to.
In this case, there are 2 robots in the RFAC. Thus, number
1 indicates UR5e robot, and number 2 indicates Aubo-i5
robot. For example, the number is 1 in the cell 3A in Fig. 11,
meaning the row 3 is the command for robot 1—UR5e robot.

The column B is a description that shows the information
of the motion command. In column C of the file, Motion
Type, the number indicates the desired robotic motion. Each
robot will know what motion it is about to conduct once
the number of the motion type is received. For instance,
motion type number is 1 in the cell 3C. It means that robot

Fig. 9 Robot orientation conversion

Fig. 10 Feed-in tray and the
configuration-A test product

2108 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

needs to move from the original position to the stand-by
point; and the number is 40 in the cell 5C, meaning the robot
moves from the stand-by point to the desired pick-up posi-
tion to grip a part, followed by dropping it off to the target
point. The numbers in the column C are just identifiers for
indicating the specific motion definitions, which have been
well defined in the script of the robotic programme (refers
to Sect. 3.2). That is why the robot will know the exactly
desired motion while the number is received. Despite many
of the motion codes that have been defined and are available,
only the code numbers 1 and 40 are used for the validation
tests.

Subsequently, in the columns D to O, target point coor-
dinate and approaching orientation are provided for sup-
porting the robot motion. Specifically, the values in Pick-
up point columns (columns D to I) are the coordinates and
end-effector’s approaching orientation of those 16 parts
in the feed-in tray. Similarly, the values in the columns of
Drop-off points (columns J to O) are the coordinates and
end-effector’s approaching orientation for the parts in the
finished assembly.

In the row 5, for instance, the numbers in cells of 5D
to 5F define the coordinate (− 0.680, − 0.125, 0.150) of the
point where the end-effector of UR5e needs to move to grip
the part 1, with an approaching orientation of (180, 0, − 180)
that is indicated by the numbers in the cells of 5G to 5E.

Following that, the robot needs to drop off the part 1 to a
desired location that the coordinate and approaching orien-
tation are defined by the numbers in the cells of 5 J to 5O.

It is worth to mention that the configuration of both
robots at stand-by point has been set in the robot motion
script. Thus, coordinates and orientation are not required for
the “go to stand-by” in the task execution file.

Figure 12 shows stand-by points selected for both robots,
which are an operational strategy for collision avoidance
between robots. The point S1 is for the URe5, and S2 is for
the AUBO-i5. At the beginning of the test, the robots move
to their stand-by position separately by executing the first
two lines of the commands in the task execution file.

After that, the following 16 lines of the commands are
sent to the target robot respectively, line by line, to complete
the assembly of the Tetris-like product that consists of 16
parts (refer to Fig. 11).

After the total of 16 parts is moved to the expected posi-
tions, the set assembly task is finished. As indicated in the
flowchart (Fig. 5), the algorithm will jump back to the begin-
ning of the loop to wait for a new task execution file. In the
meantime, the finished product will be moved away from the
work bench by the material handling system. A new feed-in
tray with parts will be set in position while the task execu-
tion file is received by the motion control software.

In the test, the other two task execution files are continu-
ously run for assembling another two configurations of the
product, which simulates the processes of the automated
batch-size-of-one production mode. Figures 13, 14, 15, and
16 detail the task execution files and the configuration for
the products B and C.

A RFID or a QR code can be attached to the feed-in tray,
which contains the name of expected task execution file. By
scanning the RFID tag or the QR code, the motion control
algorithm is triggered to access and activate the desired task
execution file and conduct the new assembly task. However,
in the test, the name of the new task execution file will be
manually entered into the system, at this stage of the experi-
ment, after the new feed-in tray is in position. Therefore,

Fig. 11 Task execution file for
configuration-A test product

Table 2 Pseudocode for the task execution file extraction function

1: array1 # Defining one array for storing data

2: array2 # Defining another array for storing data
3: open task execution file:
4: data = task execution file # Open and read the task execution file
5: for a row in data: # iterating all rows in the spreadsheet
6: for i in range (0, 16): # iterating all columns in each row
7: array.append(row[i]) # store the data into the array for each row
8: array2.append(array1) # store all rows into another array
9: return(array2)

2109The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

automation can be achieved in the process of job change. As
long as the new task execution file is developed and acces-
sible for the robots, there will be no interruption occurring
between the assembly of different products.

5.6 System repeatability and accuracy

Repeatability and accuracy are key measurable character-
istics for industrial robots, which significantly impact the
robot system on the effectiveness of task execution [50]. The
performance of repeatability and accuracy of an industrial
robot commonly depends on its design, construction, opera-
tion, and maintenance history, and they can be different for
each robot brand and for each particular robot in a series.

In terms of the proposed robot control strategy, the
repeatability and accuracy of the system will be exactly the
same as the performance capability for each of the robots.
In other words, the proposed method does not affect the per-
formance of the robots’ repeatability and accuracy. This is
because the original robot controller, the control, and motion
algorithm of both robots, as well as the structure and factory
settings, are not changed nor affected at all. The role of the
developed flexible robot control strategy is strictly interest-
ing the capacity and facility to sending the task execution file
to the robot controllers on the fly, which in turn achieves the
desired BSO production model. Thus, there was no require-
ment nor justification to design and conduct any extra test
for validating the repeatability and accuracy of the system.

Fig. 12 The demonstration of
the processes of the physical
execution module

Fig. 13 Task execution file for
configuration-B test product

2110 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

5.7 System error rate

Tests are conducted to validate the reliability and error rate
of the proposed robotic control method in three scenarios: (i)
run UR5e robot only; (ii) run Aubo-i5 robot only; (iii) run
both robots collaboratively. Each test was repeated 25 times.
In the test (i), the error rate is 0. All of 25 repeated runs met
the expectation. However, in the test (ii), 3 of 25 runs failed.
One of the 3 failure runs was due to communication failures
between OPC UA servers and clients. The other 2 failed runs
were due to mechanical issues at a joint of the Aubo-i5 robot.
In test (iii), 1 of 25 runs failed. The issue was also from the
Aubo-i5 robot. The results are summarised in Fig. 17.

It is believed that the developed flexible robotic control
strategy has demonstrated its desired reliability as no error

occurred in the test (i). The failures happened in tests (ii)
and (iii) are believed coming from the system errors of
the developed OPC UA server and the control system for
AUBO-i5 robot. This is being investigated and debugged.

5.8 System efficiency

The test for product A was conducted again to validate the
efficiency of the developed flexible robotic control strategy.
In comparison with the original robotic control method for
both robots, latency time was identified in the developed
control method. Although the robot moving speed in each
joint is not degraded, latency time occurred between motion
commands. Before sending the next motion command, the
OPC UA server in the developed control mechanism takes

Fig. 14 Feed-in tray and the
configuration-B test product

Fig. 15 Task execution file for
configuration-C test product

2111The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

time to fetch data from the OPC UA server in the robots
for confirming the current motion command has been suc-
cessfully conducted. Tests were conducted for both robots
individually, repeated 5 times. Referring to Fig. 11, there
are 16 parts in the task execution file for testing product A.
Thus, 16 groups of averaged latency time are measured and
presented in Fig. 18.

5.9 Software debugging

Software debugging can effectively reduce failure rate of the
software components in manufacturing systems at the early
stage of the development [51]. Given the testing results in
Sects. 5.7 and 5.8, it is believed that software debugging and
optimisation can improve the system reliability and reduce the

Fig. 16 Feed-in tray and the
configuration-C test product

Fig. 17 System reliability test

2112 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

latency time. Three debugging and optimisation exercises have
been done after the tests in subsections 5.7 and 5.8; (i) debug
and optimisation for the motion control algorithm; (ii) debug
and optimisation for the OPC UA server in Aubo-i5 robot; (iii)
debug and optimisation for the motion script for both robots.

Tests are conducted again after the implementation of
the debugging actions. It is clear that the system reliability
has been improved from the perspective of the performance
of Aubot-i5 robot (Fig. 19), and the system latency time
has been reduced by 15% on average (Fig. 20). The works
(i) and (ii) optimised the connectivity between OPC UA
server of Aubo-i5 robot and the motion control mechanism.

The works (i) and (iii) contributed the improvements in
reducing the latency time.

To sum up, the developed RFAC includes two physical
robots and the robotic motion control system. The robotic
motion control algorithm was verified by continuously
conducting the assembly tasks in various configurations
of the Tetris-like product three times. High automation
and flexibility are achieved throughout the processes. No
interruptions occurred due to changing tasks. Therefore,
we can confidently say that the proposed robotic motion
control strategy is able to achieve the desired BSO produc-
tion mode in our implementation of the RFAC.

Fig. 18 Latency time between
sending each motion command
in proposed control method

Fig. 19 System reliability
test after software debug and
optimisation

2113The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

6 Discussion

The robotic flexible assembly cell developed in this study
has successfully demonstrated, in practice, that the pro-
posed strategy for task scheduling, programming, and con-
trol of industrial robots is viable and works for one of the
most constrained problems in robotics.

6.1 Advantages of the proposed method

The main advantage and uniqueness in this research are
that the proposed method enables automated task change
process in RFAC. This permits the RFAC to achieve a
higher level of flexibility and adaptiveness. Also, the pro-
posed method is suitable for controlling both a single robot
and multiple robots to carry out assembly tasks. Critically,
it does not need any work on the development or modifica-
tion of robots’ existing control cabinet, which makes the
strategy more generic and much easier to be deployed for
a broad range of robots and robot tasks.

6.2 Limitations of the proposed method

The main limitation of the proposed method is that, at this stage
and without extra systems (like vision or sophisticated sensors),
it requires explicit position of the parts for both components and
finished product. As shown in the task execution file, coordi-
nates are required for both pick-up and drop-off positions for
the parts, which makes the method limited to structured robot
applications, such as PCB or mobile phone assembly. It is pos-
sible to solve this issue, in the future, with a vision system, that
can be integrated into the RFAC. This is not part of the current
implementation and can be considered as part of future work.

Another limitation is the latency that occurred between
each motion control command that the control mechanism
sent to the robots. This is reasonable at this stage of the
research, considering that the main intention of this paper
is to validate the proof of concept for the proposed robot
control strategy. Thus, the latency time is acceptable at the
moment. However, it is clear that the latency time needs
to and can be reduced by optimising the proposed control
algorithm and OPC UA server integration for both robots,
which is a proposed work in the future, before the strategy
can be implemented in an industrial setting.

6.3 Challenges in the research

Significant challenges were identified, and solutions were
developed, as follows:

- Two robots from different vendors were used. These
required specific development steps for a unified commu-
nication interface. Despite OPC UA being chosen to build
the communication layer for the developed RFAC, neither
of these two robots have OPC UA server/client function by
default. Thus, the works for developing OPC UA server/
client module for both robots were conducted (refer to
Section 5.3). It is worthwhile to note that, comparing with
UR5e, the work for Aubo-i5 was much more challenging.
Due to its relatively low market share, there is little tech-
nical information available for integration and translation.
This required extensive consulting with colleagues from
industry and the original manufacturer. A software devel-
opment kit (SDK) was finally developed for enabling OPC
UA communication with an Aubo-i5 robot.
- The product of the assembly process needed to be repre-
sentative for a family of products, as well as being simple

Fig. 20 Latency time between
sending each motion Command
in proposed control method
after software debug and opti-
misation

2114 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

to procure. A family of mobile phones is representative—
similar footprint, similar parts, but the result is a large com-
bination of capabilities, depending on the actual model. The
Tetris-like puzzle introduced in this research emulates the
combinatorial complexity of such products, enabling a huge
number of combinations of end models, while being easy
and fast to make and manipulate.
- The control of the robots needed to be central so that
the granularity of the programming will not be limited to
address the assembly of a product but can evolve down to
the level of a task (e.g., pick-and-place).
- The RFAC is resilient. It is possible to take one robot off-
line (due to malfunction or maintenance) and continue the
assembly with just one robot. This was briefly checked and
confirmed as a major capability. This will be described in
detail in a future article.

The non-technical challenges in implementing this robot
control strategy and the system that demonstrates it in practice
were numerous. Funding is always a limitation, which led to
only implementing the critical elements that make the differ-
ence between classical (albeit fancy and flashy solutions and
demonstrations) and a paradigm shifting strategy. The experi-
ments, besides the critical components, were minimalistic (e.g.,
material and product handling to and from the RFAC). A pan-
demic, with laboratories locked down and access cancelled just
as the critical mass of robots, servers, protocols, and settings
were established and connected, was, in retrospect, a blessing
in disguise. The remote access protocols and infrastructure, pro-
gramming, debugging, and checking capabilities, which needed
to be developed to permit work to continue during lockdowns,
became critical and are expected in the I4 context.

7 Conclusions and recommendations
for future work

In this paper, a novel strategy for controlling industrial
robots was proposed and the details of the implementation
discussed. The strategy was validated in a robot flexible
assembly cell, a multi-robot cell, conceived to assemble
products from a family of similar products. The system is
designed to enable seamless and uninterrupted introduc-
tion of new and removal of old products from the mix,
as the market evolution dictates. When a new product is
being added to the family of items to be assembled in the
workcell, the respective code is loaded into the central
control unit and made available to be used when required.

This robot control strategy enables the desired BSO
production mode, i.e., possibility to switch from one
assembled item to another, continuously and without
interruption, which is one of the core requirements of the

Industry 4 philosophy. The proposed approach is designed
to be used for workcells with multiple robots but works
perfectly with only one robot.

Regarding future developments of the concept, the fol-
lowing aspects are being investigated:

- A bi-directional digital twin (BDT) is being developed
for the RFAC, which will be integrated with the robotic
control mechanism. Real and extensive data from the
BDT from the operation of the cell will permit the
development of novel maintenance strategies.
- Proactive maintenance strategy is being developed and will
be integrated with the current system as well. The devel-
oped strategy will employ machine learning method, which
forms the biological component for the RFAC with respect
to building the SCAC as a genuine Industry 4 facility.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00170- 023- 11246-y.

Acknowledgements This research work was accomplished with the
support of the Australian Government Research Training Program
(RTP).

Author contribution All the authors contributed to the study con-
ception and design. Case study implementation, data collection and
analysis were performed by Ziyue Jin. The first draft of the manuscript
was written by Ziyue Jin, and all the authors reviewed, commented,
and edited the manuscript. All the authors read and approved the final
manuscript.

Funding Open Access funding enabled and organized by CAUL and
its Member Institutions.

Data availability Data sharing is not applicable to this article as no
datasets were generated or analysed during the current study.

Declarations

Ethics approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://doi.org/10.1007/s00170-023-11246-y
http://creativecommons.org/licenses/by/4.0/

2115The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

References

 1. ElMaraghy HA (2005) Flexible and reconfigurable manufacturing
systems paradigms. Int J Flex Manuf Syst. https:// doi. org/ 10. 1007/
s10696- 006- 9028-7

 2. Cohen Y, Faccio M, Galizia FG, Mora C, Pilati F (2017) Assem-
bly system configuration through Industry 4.0 principles: the
expected change in the actual paradigms. IFAC-Papers OnLine.
https:// doi. org/ 10. 1016/j. ifacol. 2017. 08. 2550

 3. Bortolini M, Galizia FG, Mora C (2018) Reconfigurable manu-
facturing systems: literature review and research trend. J Manuf
Syst. https:// doi. org/ 10. 1016/j. jmsy. 2018. 09. 005

 4. Koren Y, Shpitalni M (2010) Design of reconfigurable manufacturing
systems. J Manuf Syst. https:// doi. org/ 10. 1016/j. jmsy. 2011. 01. 001

 5. Rosati G, Faccio M, Carli A, Rossi A (2013) Fully flexible assem-
bly systems (F-FAS): a new concept in flexible automation. Assem
Autom. https:// doi. org/ 10. 1108/ 01445 15131 12946 03

 6. Zhang S, Li S, Wang H, Li X (2022) An intelligent manufacturing
cell based on human-robot collaboration of frequent task learning
for flexible manufacturing. Int J Adv Manuf Technol. https:// doi.
org/ 10. 1007/ s00170- 022- 09005-6

 7. Huang Z, Jowers C, Kent D, Dehghan-Manshadi A, Dargusch
MS (2022) The implementation of Industry 4.0 in manufactur-
ing: from lean manufacturing to product design. Int J Adv Manuf
Technol. https:// doi. org/ 10. 1007/ s00170- 022- 09511-7

 8. Abdulhameed O, Al-Ahmari A, Ameen W, Mian SH (2019) Addi-
tive manufacturing: challenges, trends, and applications. Adv
Mech Eng. https:// doi. org/ 10. 1177/ 16878 14018 822880

 9. Lasi H, Fettke P, Kemper HG, Feld T, Hoffmann M (2014)
Industry 4.0. Bus Inf Syst Eng. https:// doi. org/ 10. 1007/
s12599- 014- 0334-4

 10. Xu LD, Xu EL, Li L (2018) Industry 4.0: state of the art and
future trends. Int J Prod Res. https:// doi. org/ 10. 1080/ 00207 543.
2018. 14448 06

 11. Schwab K (2016) The fourth industrial revolution. World Eco-
nomic Forum, Geneva

 12. Faccio M, Bottin M, Rosati G (2019) Collaborative and traditional
robotic assembly: a comparison model. Int J Adv Manuf Technol.
https:// doi. org/ 10. 1007/ s00170- 018- 03247-z

 13. Shi J, Menassa R (2010) Flexible robotic assembly in dynamic
environments. In: Proceedings of the 10th Performance Metrics for
Intelligent Systems Workshop. Association for Computing Machin-
ery, New York, NY. https:// doi. org/ 10. 1145/ 23775 76. 23776 26

 14. Caldeira R, Honnungar S (2018) Feasibility study for converting
traditional line assembly into work cells for termination of fiber
optics cable. In AIP Conf Proc. https:// doi. org/ 10. 1063/1. 50296 23

 15. Vick A, Krueger J (2018) Using OPC UA for distributed indus-
trial robot control. In: ISR 2018 50th International Symposium
on Robotics. VDE, Munich, Germany, pp 1–6

 16. Cohen Y, Faccio M, Pilati F, Yao X (2019) Design and man-
agement of digital manufacturing and assembly systems in the
Industry 40 era. Int J Adv Manuf Technol. https:// doi. org/ 10. 1007/
s00170- 019- 04595-0

 17. Gong X, Jiao R, Jariwala A, Morkos B (2021) Crowdsourced
manufacturing cyber platform and intelligent cognitive assistants
for delivery of manufacturing as a service: fundamental issues
and outlook. Int J Adv Manuf Technol. https:// doi. org/ 10. 1007/
s00170- 021- 07789-7

 18. Wilkesmann M, Wilkesmann U (2018) Industry 4.0–organizing
routines or innovations? VINE J Inf Knowl Manag Syst. https://
doi. org/ 10. 1108/ VJIKMS- 04- 2017- 0019

 19. Yuan F, Shen X, Wu J, Wang L (2022) Design of mobile phone
automatic assembly system based on machine vision. J Physics
2284(1):012012. https:// doi. org/ 10. 1088/ 1742- 6596/ 2284/1/
012012. (IOP Publishing)

 20. Zhang JZ, He YY, Li J (2012) An application of machine vision
in automatic mobile-phone lens assembly equipment. Appl Mech
Mater 130:3543–3547. https:// doi. org/ 10. 4028/ www. scien tific.
net/ AMM. 130- 134. 3543. (Trans Tech Publications Ltd)

 21. Lee K, Jung M (2015) Overseas factories, domestic employment,
and technological hollowing out: a case study of Samsung’s
mobile phone business. Rev World Econ. https:// doi. org/ 10. 1007/
s10290- 015- 0219-8

 22. Wilhelm M, Hutchins M, Mars C, Benoit-Norris C (2015) An
overview of social impacts and their corresponding improvement
implications: a mobile phone case study. J Clean Prod. https:// doi.
org/ 10. 1016/j. jclep ro. 2015. 04. 025

 23. Pathak T (2018) India Imported $13 Billion Worth of Mobile
Phone Components in 2018. CounterPoint. https:// www. count
erpoi ntres earch. com/ india- impor ted- 13- billi on- worth- mobile-
phone- compo nents- 2018/. Accessed 17 Feb 2023

 24. Abd K, Abhary K, Marian R (2014) Simulation modelling and analysis
of scheduling in robotic flexible assembly cells using Taguchi method.
Int J Prod Res. https:// doi. org/ 10. 1080/ 00207 543. 2013. 867082

 25. Ruan LZ, Tao WD, Peng JL, Chen Y (2011) Assembly line balancing
and simulation optimization of the TM921C mobile phone assembly
line of DFTX company. In: 2011 IEEE 18th International Confer-
ence on Industrial Engineering and Engineering Management. IEEE,
Changchun, China. https:// doi. org/ 10. 1109/ ICIEEM. 2011. 60352 49

 26. Zheng J, Zhang X, Li H, Huang Y (2022) High-efficiency trans-
mission of industrial heterogeneous data in a typical mobile phone
assembly production line. In 2022 4th Asia Pacific Information
Technol Conf. https:// doi. org/ 10. 1145/ 35123 53. 35123 72

 27. Chin KS, Ratnam MM, Mandava R (2003) Force-guided robot in
automated assembly of mobile phone. Assem Autom. https:// doi.
org/ 10. 1108/ 01445 15031 04601 23

 28. Chin KS, Ratnam MM, Mandava R (2004) Force-guided robot
in automated assembly of mobile phone: overcoming component
misalignment. Assem Autom. https:// doi. org/ 10. 1108/ 01445
15041 05171 92

 29. De Almeida AT, Nunes UC, Dias JM, Araujo HJ, Batista J (1990)
A distributed system for robotic multi-sensor integration. Ind Met-
rol. https:// doi. org/ 10. 1016/ S0921- 5956(90) 80009-K

 30. Maoudj A, Bouzouia B, Hentout A, Kouider A, Toumi R (2019)
Distributed multi-agent scheduling and control system for robotic
flexible assembly cells. J Intell Manuf 30(4):1629–1644. https://
doi. org/ 10. 1007/ s10845- 017- 1345-z

 31. Edan Y, Berman S, Boteach E, Mendelson (2013) Distributed
multi-robot assembly/packaging algorithms. Intell Autom Soft
Comput. https:// doi. org/ 10. 1080/ 10798 587. 2004. 10642 888

 32. Rizzi AA, Gowdy J, Hollis RL (2001) Distributed coordination
in modular precision assembly system. Int J Robotics Res. https://
doi. org/ 10. 1177/ 02783 64012 20681 28

 33. Vick A, Vonásek V, Pěnička R, Krüger J (2015) Robot control as
a service—towards cloud-based motion planning and control for
industrial robots. In 2015 10th Int Workshop Robot Motion Control
(RoMoCo). https:// doi. org/ 10. 1109/ RoMoCo. 2015. 72197 10

 34. Blankenburg J, Banisetty SB, Alinodehi SPH, Fraser L, Feil-Seifer
D, Nicolescu M, Nicolescu M (2017) A distributed control architec-
ture for collaborative multi-robot task allocation. In 2017 IEEE-RAS
17th International Conference on Humanoid Robotics (Humanoids).
https:// doi. org/ 10. 1109/ HUMAN OIDS. 2017. 82469 31

 35. Tsarouchi P, Makris S, Michalos G, Matthaiakis AS, Chatzigeor-
giou X, Athanasatos A, Stefos M, Aivaliotis P, Chryssolouris
G (2015) ROS based coordination of human robot cooperative
assembly tasks-an industrial case study. Procedia CIrP. https://
doi. org/ 10. 1016/j. procir. 2015. 08. 045

 36. Hannelius T, Salmenpera M, Kuikka S (2008) Roadmap to adopt-
ing OPC UA. In: 2008 6th IEEE International Conference on
Industrial Informatics. IEEE, Daejeon, South Korea. https:// doi.
org/ 10. 1109/ INDIN. 2008. 46182 03

https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1007/s10696-006-9028-7
https://doi.org/10.1016/j.ifacol.2017.08.2550
https://doi.org/10.1016/j.jmsy.2018.09.005
https://doi.org/10.1016/j.jmsy.2011.01.001
https://doi.org/10.1108/01445151311294603
https://doi.org/10.1007/s00170-022-09005-6
https://doi.org/10.1007/s00170-022-09005-6
https://doi.org/10.1007/s00170-022-09511-7
https://doi.org/10.1177/1687814018822880
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1007/s12599-014-0334-4
https://doi.org/10.1080/00207543.2018.1444806
https://doi.org/10.1080/00207543.2018.1444806
https://doi.org/10.1007/s00170-018-03247-z
https://doi.org/10.1145/2377576.2377626
https://doi.org/10.1063/1.5029623
https://doi.org/10.1007/s00170-019-04595-0
https://doi.org/10.1007/s00170-019-04595-0
https://doi.org/10.1007/s00170-021-07789-7
https://doi.org/10.1007/s00170-021-07789-7
https://doi.org/10.1108/VJIKMS-04-2017-0019
https://doi.org/10.1108/VJIKMS-04-2017-0019
https://doi.org/10.1088/1742-6596/2284/1/012012
https://doi.org/10.1088/1742-6596/2284/1/012012
https://doi.org/10.4028/www.scientific.net/AMM.130-134.3543
https://doi.org/10.4028/www.scientific.net/AMM.130-134.3543
https://doi.org/10.1007/s10290-015-0219-8
https://doi.org/10.1007/s10290-015-0219-8
https://doi.org/10.1016/j.jclepro.2015.04.025
https://doi.org/10.1016/j.jclepro.2015.04.025
https://www.counterpointresearch.com/india-imported-13-billion-worth-mobile-phone-components-2018/
https://www.counterpointresearch.com/india-imported-13-billion-worth-mobile-phone-components-2018/
https://www.counterpointresearch.com/india-imported-13-billion-worth-mobile-phone-components-2018/
https://doi.org/10.1080/00207543.2013.867082
https://doi.org/10.1109/ICIEEM.2011.6035249
https://doi.org/10.1145/3512353.3512372
https://doi.org/10.1108/01445150310460123
https://doi.org/10.1108/01445150310460123
https://doi.org/10.1108/01445150410517192
https://doi.org/10.1108/01445150410517192
https://doi.org/10.1016/S0921-5956(90)80009-K
https://doi.org/10.1007/s10845-017-1345-z
https://doi.org/10.1007/s10845-017-1345-z
https://doi.org/10.1080/10798587.2004.10642888
https://doi.org/10.1177/02783640122068128
https://doi.org/10.1177/02783640122068128
https://doi.org/10.1109/RoMoCo.2015.7219710
https://doi.org/10.1109/HUMANOIDS.2017.8246931
https://doi.org/10.1016/j.procir.2015.08.045
https://doi.org/10.1016/j.procir.2015.08.045
https://doi.org/10.1109/INDIN.2008.4618203
https://doi.org/10.1109/INDIN.2008.4618203

2116 The International Journal of Advanced Manufacturing Technology (2023) 126:2097–2116

1 3

 37. Kaarlela T, Pieskä S, Pitkäaho T, Solvang WD, Shu B, Arnarson
H, Solvang B (2022) Robot cell digital twins as a tool for remote
collaboration between organizations. In 2022 IEEE/SICE Int Symp
Syst Integr (SII). https:// doi. org/ 10. 1109/ SII52 469. 2022. 97089 02

 38. Müller F, Deuerlein C, Koch M (2021) Cyber-physical-system for
representing a robot end effector. Procedia CIRP. https:// doi. org/
10. 1016/j. procir. 2021. 05. 071

 39. Florescu A, Barabas SA (2020) Modeling and simulation of a
flexible manufacturing system—a basic component of industry
4.0. Applied sciences. https:// doi. org/ 10. 3390/ app10 228300

 40. Chen IM (2001) Rapid response manufacturing through a rapidly
reconfigurable robotic workcell. Robotics Comput-Integr Manuf.
https:// doi. org/ 10. 1016/ S0736- 5845(00) 00028-4

 41. Araiza-Illan D, De San BA, Hongchao F, Shin LY (2019) Aug-
mented reality for quick and intuitive robotic packing re-pro-
gramming. In 2019 14th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). https:// doi. org/ 10. 1109/ HRI.
2019. 86733 27

 42. Marvel J, Bostelman R, Falco J (2018) Multi-robot assembly strat-
egies and metrics. ACM Comput Surv. https:// doi. org/ 10. 1145/
31502 25

 43. Michniewicz J, Reinhart G (2014) Cyber-physical robotics–auto-
mated analysis, programming and configuration of robot cells
based on cyber-physical-systems. Procedia Technol. https:// doi.
org/ 10. 1016/j. protcy. 2014. 09. 017

 44. Marian RM, Kargas A, Luong LHS, Abhary K (2003) A frame-
work to planning robotic flexible assembly cells. In: 32nd Inter-
national Conference on Computers and Industrial Engineer-
ing. CSIRO, Limerick, Ireland, pp 607–615

 45. Abd K, Abhary K, Marian R (2012) Efficient scheduling rule for
robotic flexible assembly cells based on fuzzy approach. Procedia
CIRP. https:// doi. org/ 10. 1016/j. procir. 2012. 07. 083

 46. Blankemeyer S, Wiemann R, Posniak L, Pregizer C, Raatz A (2018)
Intuitive robot programming using augmented reality. Procedia
CIRP. https:// doi. org/ 10. 1016/j. procir. 2018. 02. 028

 47. Yuan C, Liu G, Zhang W, Pan X (2020) An efficient RRT cache
method in dynamic environments for path planning. Robot Auton
Syst. https:// doi. org/ 10. 1016/j. robot. 2020. 103595

 48. Falco J, Hemphill D, Kimble K, Messina E, Norton A, Ropelato
R, Yanco H (2020) Benchmarking protocols for evaluating grasp
strength, grasp cycle time, finger strength, and finger repeatability
of robot end-effectors. IEEE Robotics Autom Lett 5(2):644–651

 49. Margaria T, Schieweck A (2019) The digital thread in industry
4.0. Int Conf Integr Formal Methods. https:// doi. org/ 10. 1007/
978-3- 030- 34968-4_1

 50. Conrad KL, Shiakolas PS, Yih TC (2000) Robotic calibration
issues: accuracy, repeatability and calibration. In: Proceedings of
the 8th Mediterranean Conference on Control and Automation, vol
1719. MED2000, Rio, Patras, Greece, pp 1–6

 51. Lazarova-Molnar S, Mohamed N (2019) Reliability assessment
in the context of industry 4.0: data as a game changer. Procedia
Comp Sci. https:// doi. org/ 10. 1016/j. procs. 2019. 04. 092

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/SII52469.2022.9708902
https://doi.org/10.1016/j.procir.2021.05.071
https://doi.org/10.1016/j.procir.2021.05.071
https://doi.org/10.3390/app10228300
https://doi.org/10.1016/S0736-5845(00)00028-4
https://doi.org/10.1109/HRI.2019.8673327
https://doi.org/10.1109/HRI.2019.8673327
https://doi.org/10.1145/3150225
https://doi.org/10.1145/3150225
https://doi.org/10.1016/j.protcy.2014.09.017
https://doi.org/10.1016/j.protcy.2014.09.017
https://doi.org/10.1016/j.procir.2012.07.083
https://doi.org/10.1016/j.procir.2018.02.028
https://doi.org/10.1016/j.robot.2020.103595
https://doi.org/10.1007/978-3-030-34968-4_1
https://doi.org/10.1007/978-3-030-34968-4_1
https://doi.org/10.1016/j.procs.2019.04.092

	Achieving batch-size-of-one production model in robot flexible assembly cells
	Abstract
	1 Introduction
	1.1 Challenges in manufacturing industry
	1.2 Batch-size-of-one production model in Industry 4
	1.3 Research problem

	2 State of the art in flexible control of industrial robots
	2.1 Distributed robotic control systems
	2.2 Cyber-physical systems-based robot control systems
	2.3 Synopsis of state-of-the-art solutions

	3 Proposed robot control strategy
	3.1 System architecture
	3.2 Robot configuration
	3.3 Motion control algorithm
	3.4 Task execution file

	4 The robot flexible assembly cell
	4.1 System architecture
	4.2 Motion control unit
	4.3 Physical manipulators

	5 Implementation of the proposed robot control strategy–The case study of a real RFAC
	5.1 Objectives of the experiment
	5.2 Extent of the experiment
	5.3 Robot programming and configuration
	5.4 Robot motion control software
	5.5 Execution of the experiment
	5.6 System repeatability and accuracy
	5.7 System error rate
	5.8 System efficiency
	5.9 Software debugging

	6 Discussion
	6.1 Advantages of the proposed method
	6.2 Limitations of the proposed method
	6.3 Challenges in the research

	7 Conclusions and recommendations for future work
	Anchor 35
	Acknowledgements
	References

