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Abstract
Deep learning in computer vision is becoming increasingly popular and useful for tracking object movement in many 
application areas, due to data collection burgeoning from the rise of the Internet of Things (IoT) and Big Data. So far, computer 
vision has been used in industry predominantly for quality inspection purposes such as surface defect detection; however, 
an emergent research area is the application for process monitoring involving tracking moving machinery in real time. In 
steelmaking, the deployment of computer vision for process monitoring is hindered by harsh environments, poor lighting 
conditions and fume presence. Therefore, application of computer vision remains unplumbed. This paper proposes a novel 
method for tracking hot metal ladles during pouring in poor lighting. The proposed method uses contrast-limited adaptive 
histogram equalisation (CLAHE) for contrast enhancement, Mask R-CNN for segmentation prediction and Kalman filters 
for improving predictions. Pixel-level tracking enables pouring height and rotation angle estimation which are controllable 
parameters. Flame severity is also estimated to indicate process quality. The method has been validated with real data collected 
from ladle pours. Currently, no publications presenting a method for tracking ladle pours exist. The model achieved a mean 
average precision (mAP) of 0.61 by the Microsoft Common Objects in Context (MSCOCO) standard. It measures key process 
parameters and process quality in processes with high variability, which significantly contributes to process enhancement 
through root-cause analysis, process optimisation and predictive maintenance. With real-time tracking, predictions could 
automate ladle controls for closed-loop control to minimise emissions and eliminate variability from human error.
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1  Introduction

In a conventional Basic Oxygen Steel (BOS) plant, hot metal 
(HM) ladles are typically utilised for movement, pouring 
and short-term refractory storage of up to several hundred 
tonnes of liquid iron and steel. Normally, HM ladles consist 
of a metallic shell approximately 6 m in height and 5 m in 
width. This is lined with refractory material, designed to 
protect the metallic shell and prolong the useful life. Ladles 
are transported by heavy duty gantry cranes that lift and 
elevate via lifting hooks [1]. Liquid metal is poured inside 
Basic Oxygen Furnace (BOF) vessels (shown in Fig. 1), 
where liquid iron and metal scrap are turned into steel 
through an exothermic reaction by blowing oxygen into the 
melt at supersonic speeds. The vessels are tilted for easier 
pouring and to reduce the falling distance of the molten 
metal, reducing mechanical and thermal damage to the 
vessel refractory lining [2, 3]. When HM is poured inside the 
BOF vessels, emissions in the form of flames, hot metallic 
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fumes and dusts are released into the atmosphere due to its 
impact with the refractory lining and scrap metal. Excessive 
release of these emissions can result in adverse operational 
and environmental effects, causing thermal damage to 
the surrounding assets (e.g. crane ropes and structural 
components) and accumulation of metallic dusts on the floor. 
Multiple factors can lead to excess release of emissions, 
including but not limited to pouring height, rate of pouring 
and metallic scrap quality and size. Fume extraction systems 
are typically employed to mitigate damages; however, 
they cannot provide 100% efficiency meaning release of 
emissions should be reduced at the source [4]. Pouring is 
typically a manually operated task, where the pouring height 
and rate are controlled by the crane operators. Due to the 
human nature aspect, variability in these factors can exist. 
Automated monitoring and analysis of these factors lead to 
optimisation opportunities, standardisation of the pouring 
process and reduction of emissions. Automated monitoring 
can be achieved using computer vision techniques and 
uncovers the potential for a fully automated control system; 
however, it brings its own set of problems particularly due to 
the visually noisy environment that ladle pouring occurs in.

“Computer vision” is the collection of tasks that enable 
computers to understand visual data and has gained 
popularity in recent years due to its strong position in 
modern technology with applications related to health and 
medicine, self-driving cars, drones, robotics and surveillance 
and monitoring. Currently, computer vision capabilities are 
vast and rapidly growing year-on-year. Internet of Things 
(IoT) data collection has catalysed and popularised the 
development of Big Data and therefore its application with 
deep learning. This has led to a wide variety of constantly 
evolving deep learning techniques existing to accomplish 
tasks requiring a complex understanding of visual data. 

Machine learning describes the use of statistical models 
that can self-learn to recognise patterns in data. Deep 
learning is a sub-field of machine learning in which multi-
layer neural networks are utilised to interpret large and/
or complex data. Convolutional neural networks (CNNs) 
are capable of learning spatial information, making them 
useful for visual recognition tasks including classification, 
localisation, detection, segmentation and tracking. Computer 
vision challenges have normally been addressed using 
CNNs, resulting in them becoming an underpinning of 
most modern-day visual recognition algorithms. Region 
proposal networks (RPNs), which propose areas objects 
may be contained in, are also an effective tool for visual 
tasks and a key component in the well-established R-CNN 
algorithm family.

Ongoing research and development has led to a variety of 
deep learning applications in the manufacturing industry such 
as 3D position measurement, screw hole recognition, surface 
defect detection, bearing fault diagnosis and automated laser 
cladding bead geometry estimation [5–8]. Traditional artificial 
neural networks (ANNs) have even been used to intelligently 
reschedule the steelmaking-continuous-casting production 
process [9]. Furthermore, applications of computer vision 
have been developed across different areas of manufacturing 
such as mechanical machining quality inspection, automotive 
wheel alignment, self-calibration of 3D printing processes, 
fibre defect detection, electronics defect detection, tile 
alignment and anti-counterfeiting technologies [5]. Despite 
this, the application of computer vision for real-time tracking 
and condition-based monitoring of industrial processes is 
inhibited by the quality and quantity of data. For instance, 
poor lighting conditions of the surrounding environment 
and presence of dust and fumes, combined with the lack 
of labelled data, can result in poor prediction capabilities. 
Acquiring sufficiently sized labelled datasets is difficult in 
any industry due to the laborious nature of data-labelling; 
however, some of the harsh manufacturing environments such 
as the type steelmaking occurs in amplify this struggle.

This paper addresses the gap in remote condition 
monitoring of industrial processes using computer vision, 
by proposing a novel methodology that combines contrast 
enhancement, segmentation and Kalman filtering to track 
ladle movement and estimate furnace flame severity 
during ladle pouring. The dataset used to train and test the 
segmentation network is original and produced by labelling 
real-world data from steelworks. Process input parameters 
(pouring height and rotation angle) and a process quality 
indicator (flame severity) are estimated, providing a basis 
for analysing the relationship between process inputs and 
process quality. This work provides a baseline for using 
deep learning to advance remote condition monitoring 
technology specifically for ladle pouring with minimal data 
requirements. This paper contributes in the following ways:

Fig. 1   A diagram representing a ladle pouring HM into a BOF vessel
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•	 A literature review discussing techniques available for contrast 
enhancement, object segmentation and object tracking.

•	 An algorithm capable of tracking ladles in dark 
environments with a segmentation mAP of 0.61.

•	 A tool capable of estimating ladle pouring process 
parameters (pouring height and rotation angle) and 
resulting process quality (flame severity), which is highly 
valuable for root-cause analysis, process optimisation, 
predictive maintenance and closed-loop control.

This paper is organised as follows: Section 2 is a literature 
review that presents and discusses the main techniques used 
as well as potential alternatives. Section 3 describes the 
methodology, Section 4 presents and discusses results and 
Section 5 concludes the key outcomes.

2 � Literature review

The first challenge of this research was to attenuate the 
poor lighting conditions in the video data captured at the 
steelworks by using a contrast enhancement technique. With 
clearer data, a suitable off-the-shelf segmentation network 
needed to be identified for application. Finally, a tracking 
method was required to improve segmentation performance 
across sequential frames.

This literature review will outline existing contrast 
enhancement, object segmentation and object tracking 
methods that could contribute to tracking moving machinery 
in noisy environments. Contrast enhancement is used for 
denoising to improve image clarity, object segmentation 
is used to isolate the object and object tracking promotes 
the success of this across sequential video frames. Instance 
segmentation networks which can differentiate between 
instances of the same class will be targeted rather than 
semantic segmentation networks which cannot, due to their 
advantage when scaling up and diversifying across different 
manufacturing technologies.

2.1 � Denoising methods

Histogram equalisation (HE) is a commonly used method for 
image processing and can be used for contrast enhancement 
[10]. HE works by equalising the histogram of the intensity 
range of an image by spreading out the most frequent 
intensity values [11]. Overall, this increases the contrast 
globally and therefore causes areas of lower local contrast 
to gain a higher contrast [11]. HE can be performed on 
luminance and value channels (pixel properties in hue-
saturation-value and hue-saturation-luminance colour 
space) as well as brightness, without affecting image hue 
or saturation [11].

Basic HE has been used for contrast enhancement 
of images of thick composites to aid the detection and 
characterisation of manufacturing defects [12], as well as for 
depth images of human bodies to obtain more information 
for human motion detection for product line optimisation in 
a computer assembly factory [13].

Adaptive histogram equalisation (AHE) takes local 
spatial information into consideration by dividing the image 
into tiles and equalising the histogram for each tile [11]. 
AHE has been used with deep learning models to improve 
the performance of glass product surface defects during the 
quality control process [14].

Contrast-limited adaptive histogram equalisation 
(CLAHE) clips the contrast of each equalised tile to prevent 
the over amplification of noise [11]. Excess from clipping 
is then redistributed over each histogram bin which prevents 
over-enhancement and edge-shadowing, two flaws that 
sometimes result from using AHE [11].

CLAHE has been used to improve image contrast for 
quality assessment of flat 3D-printed surfaces where it was 
considered successful [15]. It has also contributed to an 
algorithm used for automatic defect recognition in welded 
joints where it was considered very effective for finely sized 
defects [16], as well as being used successfully for enhancing 
microstructure images of friction stir welded joints [17]. In 
a previously mentioned paper related to surface inspection 
of plastic injection moulding, CLAHE was used to improve 
results and whilst it improved precision, it was detrimental 
to recall and AP [18]. However, the paper reports that in 
practice, using CLAHE solved malfunction problems that 
previously existed within the system [18].

Brightness Preserving Bi-Histogram Equalisation 
(BPBHE) preserves brightness better than standard HE by 
using two sub-images that capture pixels with the lower and 
upper halves of the intensity range respectively, equalises and 
then combines them [19]. BPBHE has been used for fault 
detection of a hot metal body where it helped intensify the 
appearance of hot spots making them easier to recognise [20].

2.2 � Segmentation methods

Mask R-CNN is a segmentation network released in 2017 
that belongs to the R-CNN family of deep learning networks. 
Its predecessor Faster R-CNN is an object detection 
network that when trained, can predict bounding boxes that 
encapsulate detected objects. It does this by first proposing 
“regions of interest” which are likely to contain an object 
and then classifying each proposal as containing an object or 
the background [21]. Mask R-CNN mainly builds on this by 
possessing an additional capability of predicting a mask that 
supersedes the bounding box prediction by predicting with 
pixel-level accuracy, as opposed to a simple box prediction 
[22].
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The Microsoft Common Objects in Context (MSCOCO) 
challenge has existed since 2014 and is based on the 
COCO dataset [23]. The performance evaluation metric 
is average precision (AP), which is also named mAP 
depending on the source. These two metrics are often 
interchanged and presented as percentages or decimals, but 
ultimately represent two different metrics. This is clarified 
mathematically in Sect. 3. For the COCO segmentation 
challenge, Mask R-CNN has achieved an AP of 0.37 which 
is superior to the winning 0.29 AP achieved by FCIS (Fully 
Convolutional Instance-aware Semantic Segmentation) 
in 2016 and the winning 0.25 AP by MNC (Multi-Task 
Network Cascade) in 2015 [22].

Mask R-CNN is an exceptional choice for industry 
application, not only for the performance it provides, but 
also for the fact it is well documented and therefore more 
straightforward to develop and optimise compared to its 
peers. Applications of Mask R-CNN in the manufacturing 
industry are vast and include automated machine inspection 
when combined with augmented reality, where accuracies of 
70% and 100% were achieved depending on which machines 
were inspected [24], automated defect detection during 
powder spreading in selective laser melting with 92.7% 
accuracy and 0.22 s per image [25], solder joint recognition 
with over 0.95 mAP [26], identification and tracking of 
objects in manufacturing plants in near-real time leading 
to automatic object misplacement identification where 
a precision (number of correct predictions compared to 
number of overall predictions) of 0.99 and a recall (number 
of correct predictions compared to number of ground truth 
instances) of 0.98 were achieved [27], classification and 
localisation of semiconductor wafer map defect patterns 
with 97.7% accuracy [28], detection and segmentation of 
aircraft cable brackets with an AP of 0.998, recall of 99.5% 
and mean intersection-over-union (mIoU, an average of the 
IoU metric explained in Sect. 3) of 84.5% with a time of 
1.02 s per bracket compared to the traditional method which 
took ten seconds [29], surface defect detection of automotive 
engine parts with an mAP of 0.85 component assembly 
inspection with a classification accuracy of 86.6% [30], 
welding deviation detection in keyhole TIG deep penetration 
welding with a satisfactory outcome of ± 0.133 mm and 
variance of 0.0056mm2 [31], automated pointer meter 
reading with an AP of 0.71, automated defect detection of 
industrial filter cloth with an accuracy of 87.3% [32] and 
finally, wind turbine blade defect detection and classification 
with an AP, using a 0.5 IoU threshold, of 82.6% [33].

Based on competitiveness in research challenges and 
successful application in many areas of manufacturing 
industry, it is sensible to state that Mask R-CNN is a strong 
choice for anyone considering implementation of computer 
vision into manufacturing sites. Whilst it could be argued 
that there is currently no instance segmentation network as 

well documented with the same proven ability in industrial 
applications, there are several other models that have 
exhibited competency.

YOLACT (”you only look at coefficients”) is a one-stage 
instance segmentation network as opposed to the two stages 
of Mask R-CNN (region proposal and classification). Two 
tasks are performed in parallel: generation of “prototype 
masks” over the entire image (similar to region proposals) 
and prediction of coefficients per mask [34]. Instance masks 
are then created by linearly combining prototype masks and 
mask coefficients [34].

On the COCO dataset, several variations of YOLACT 
were evaluated against each other and other models. The 
most competitive variation achieved an AP of 0.298 which 
was slightly higher than the recorded 0.295 AP of FCIS 
and lower than the recorded 0.36 AP of Mask R-CNN [34]. 
However, YOLACT ran at 33.5fps (frames per second) as 
opposed to Mask R-CNN that ran at 8.6fps [34].

YOLACT has been applied within the manufacturing 
industry to some extent, with notable applications being 
surface inspection of plastic injection moulded tampon 
applicators which achieved a precision of 0.49, a recall of 
0.56 and an AP of 0.4 at an IoU threshold of 0.5 [18], metal 
screw defect segmentation with a COCO mAP of 0.41 [35], 
detection of metal screw head defects with an accuracy 
of 92.8% and a detection speed of 0.03 s per image [36], 
automated automotive part assessment where an mAP of 
0.67 was achieved [37] and finally, more generally but still 
applicable to the manufacturing industry, is safety zone 
estimation and violation detection for nonstationary objects 
in workplaces, where YOLACT achieved a segmentation 
accuracy of 97.7% on one dataset and 96.8% on another [38]. 
Furthermore, YOLACT +  + , the successor of YOLACT, 
was modified and used for surface defect segmentation of 
magnetic tiles where it achieved an AP of 0.27 and speed of 
12.4fps, in comparison to the original YOLACT +  + AP of 
0.25 and speed of 11.8fps, the original YOLACT AP of 0.23 
and speed of 11.5fps and the SOLO (“segmenting objects by 
locations”) AP of 0.23 and speed of 10.6fps [39].

SOLO, another one-stage instance segmentation network, 
was evaluated on the COCO dataset and achieved an mAP 
of 0.38 which was reported as the same as Mask R-CNN, 
whilst superior to every other model evaluated which 
includes but is not limited to YOLACT, FCIS and MNC 
[40]. Its successor SOLOv2 has been used for automatically 
identifying geometrical parameters of self-piercing riveting 
joints with 0.98 mean IoU over various samples [41].

PANet (Path Aggregation Network) is a successor of 
Mask R-CNN won the MSCOCO challenge in 2017 and 
has shown improved performance over Mask R-CNN on the 
COCO dataset (0.42 segmentation mAP compared to 0.37 
for Mask R-CNN), as well as outperformed various other 
models on other datasets [42]. PANet is less prevalent than 
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Mask R-CNN with regard to implementation and industrial 
application; however, it has been used for multi-sided 
surface defect detection of polyethylene (PE), polypropylene 
(PP) and acrylonitrile butadiene styrene (ABS) and achieved 
0.98 mAP and 0.98 recall [43].

BlendMask is an instance segmentation network 
that combines instance-level information with semantic 
information and has surpassed Mask R-CNN on the COCO 
dataset with an mAP of 0.38 whilst Mask R-CNN was again 
reported at 0.37, and whilst doing so, BlendMask performed 
approximately 20% faster with an inference time of 0.074 s 
whilst Mask R-CNN was reported at over 0.097 s [44]. 
A variation of BlendMask has been used successfully for 
fastener counting in automated production where it achieved 
5.02% error in estimating the quantity of fasteners present 
in a dense dataset and 5.69% error in a sparse dataset [45].

Ariadne + is an instance segmentation network that 
combines deep learning with graph theory and was used 
to segment instances of wires with a mean IoU of 0.79, 
an AP of 0.66 and a speed of 0.36 s [46]. The same task 
was achieved by another model called FASTDLO (Fast 
Deformable Linear Objects) which claims to surpass 
Ariadne + in both speed and IoU (no mention of AP), 
however it achieved a lower IoU of 0.78 and a significantly 
better speed of 0.046 s [47].

2.3 � Tracking methods

Long short-term memory networks (LSTMs) are neural 
networks that can retain information over one or more 
timesteps and are therefore very useful when dealing with 
sequential data such as videos (since they are essentially a 
sequence of frames) [48]. The memory they possess makes 
them useful for tracking-based tasks and in the case of video 
data, they are often combined with CNNs to capture spatial 
and temporal information simultaneously.

A bidirectional LSTM network has been used for trajectory 
tracking and prediction of thrown objects as part of a smart 
manufacturing system that uses throwing and catching robots 
to accelerate the transportation of manufacturing parts with 
speeds of up to 10 ms−1 over distances of up to 3 m, with a 
maximum error achieved of no more than 2 mm [49].

LSTMs have also been used to track additive 
manufacturing processes to prevent cyber-physical attacks 
that compromise mechanical properties and functionalities 
with a precision of 0.95, recall of 0.98 and computation 
time of 0.85 ms [50]. Furthermore, they have been used 
for tracking and prediction of the remaining useful life of 
manufacturing machines with a root mean square error of 
15.42 cycles which was the lowest of six models [51], and 
also tracking the trajectory of piezoelectric actuators which 
reduced the maximum tracking error of the closed-loop 
system from 1.59 to 0.15 µm (90.4% reduction) [52].

Like LSTMS, CNN-LSTMs have been used for 
equipment health condition recognition and prediction and 
have achieved 98.6% test accuracy [53]. They have also been 
used for monitoring weld penetration from dynamic weld 
pool serial images with 0.3 mm accuracy [54] and power 
data pattern detection and tracking for manufacturing sites 
with a test loss of 0.1197, where loss is a measure of how 
different predictions are to the real values [55].

A Kalman filter is an algorithm that uses measured values 
over a series of timesteps in conjunction with an initial 
“guess”, to predict the future state of a system. Whilst the first 
guess is less informed and likely to be incorrect, the algorithm 
follows a two-step process of firstly making a prediction 
and then secondly retrieving the measurement update and 
correcting itself based on the error between the two. This 
process is repeated as a system is active and results in accurate 
tracking of a given variable (which could be position).

Kalman filters have been used in a range of manufacturing 
applications, both with and without the involvement of 
machine learning. Kalman filters were combined with a 
fuzzy expert system and incorporated into a fastening tool 
tip tracking system, which allowed identification of fastened 
bolts [56]. Here, Kalman filters were specifically used for 
tool orientation estimation and tool center of mass location 
estimation [56]. The model was successful and reduced tool 
position error significantly when eight bolts were fastened 
during an experiment [56]. The operator-only approach and 
the developed algorithm resulted in final position errors 
of 93 mm and 6 mm respectively [56]. Robust detection 
of weld position and seam tracking on weld pool images 
was also achieved with Kalman filtering, where the weld 
position covariance error was reduced from 0.0084 to 
0.0010 mm, whilst the seam tracking error was reduced 
from 0.33 to 0.11 mm [57]. Kalman filtering was also used 
for tool flank wear estimation when cutting gamma-prime 
strengthened alloys, where it reduced root mean square 
error by 41% on one experiment, increased error by 8% 
in a repeat experiment and then reduced error by 25% in a 
third repetition [58]. An angle and position tracking system 
for semi-automated manufacturing processes was achieved 
using a Kalman filter–based approach and resulted in an 
overall tracking accuracy of 3.18 cm [59].

To mention a few variants of the traditional Kalman filter, 
an extended Kalman filter was used for tool flank wear area 
estimation in wet-turning of Inconel 718 and increased 
the accuracy of estimation by a maximum of 60% [60]; a 
multi-rate Kalman filter was used for damage detection in 
composite beams by tracking the neutral axis under different 
loading conditions where it was successful across a range 
of static loads, dynamic loads and temperatures [61]. The 
required threshold to avoid false negative predictions 
was surpassed with the direct estimate method’s standard 
deviation; however, with the Kalman filter method, the 
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standard deviation was much smaller and within the 
threshold [61]. Additionally, an adaptive Kalman filter 
was used to sense contact force and torque for robotic 
manipulators for manufacturing tasks, where the root mean 
square error for force estimation ranged from approximately 
0.78 to 1.35N and for torque estimation it ranged from 
approximately 0.12 to 0.18Nm [62].

Kalman filters have also been used jointly with machine 
learning for a range of manufacturing applications. 
A network based on AlexNet (a well-known image 
classification network) was used in parallel with Kalman 
filtering to detect chatter in milling and achieved a 98.9% 
accuracy [63]; a CNN was combined with Kalman filtering 
to track steel sheet coils during transport to the uncoiler at 
eight frames per second with a deviation below 15 pixels 
[64] and tool wear condition monitoring during turning was 
achieved using an artificial neural network together with an 
extended Kalman filter which resulted in a classification 
accuracy of 89.2% [65]. Furthermore, a deformation force 
monitoring method for aero-engine casing machining was 
developed using a combination of a deep autoregressive 
network and Kalman filtering, which improved the success 
rate of monitoring by approximately 30% compared to the 
traditional approach and the deformation calculation based 
on the predicted deformation force was less than 0.008 mm 
[66].

3 � Methodology

The task was to, with minimal resources, segment a hot 
metal ladle frame-by-frame with a mAP of at least 0.5 
and therefore track activity during pouring, whilst also 
estimating pour quality. The methodology followed is 
summarised in Fig.  2. The flow chart shows six steps. 
Firstly, data preparation consisted of frame labelling and 
frame denoising.

Initial training and testing of Mask R-CNN (pre-trained 
on the COCO dataset) followed which used a NVIDIA 
GeForce RTX 2070 Super graphics processing unit (GPU).

Next, Stage 1 and 2 optimisations followed which each 
comprised of experiments that tested a range of settings for 
most hyperparameters of Mask R-CNN which are listed 
in Fig. 2. Stage 1 initially tuned some hyperparameters 
individually and then tuned two groups of hyperparameters 
using an optimisation method. The method was inspired by 
Taguchi’s orthogonal arrays which are used in Design of 
Experiments (DoE) methodology to plan the study of many 
variables simultaneously whilst conducting the minimal 
number of experiments [67], as well as the grid search 
optimisation method which consists of choosing a set of 
values for each variable and then exhaustively conducting 
experiments that test every possible combination of values 

[68]. The idea behind this method was that the grid search 
has a disadvantage of being extremely inefficient whilst 
orthogonal arrays are very efficient and therefore eliminate 
the weakness of the grid search. For the purpose of this 
paper, this optimisation method will be referred to as 
“efficient grid search” (EGS). Hyperparameter groups were 
tested in sequence whilst carrying the best model along each 
group. The EGS was used for the entirety of Stage 2 and 
the process of grouping hyperparameters and cascading the 
model is novel.

Kalman filter tracking began by firstly sampling points 
along the predicted mask edge and using them as input to 
multiple Kalman filters that tracked the predicted mask 
shape. The state transition matrix, a key element to the 
Kalman filter performance, was initially chosen arbitrarily 
and improved through pure trial-and-error. A convex hull 
was also produced using the gift-wrapping algorithm to 
create a smooth mask. The way Kalman tracking was 
implemented to improve the mask prediction of Mask 
R-CNN is also novel.

Development of the industrial application was the final 
step which comprised of firstly setting a fixed offset from 
the mask to the actual ladle boundary as this was observed 
to be consistent, before setting a 4-point moving average 
to smooth fluctuations across frames. Secondly, the bottom 
edge of the ladle was predicted most consistently so this 
was captured using a sliding window, used to derive a line 
of best fit and then the angle of the new line was used to 
calculate the rotation angle estimate. This was smoothed 
using a 5-point moving average. Finally, the flame severity 
was estimated by counting the number of pixels in the flame 
region with a brightness value above 235.

3.1 � Metrics

3.1.1 � Intersection‑over‑union, precision and recall
During non-maximum suppression (NMS), windows 
overlaying an image were scored on their likelihood of 
containing the ladle. The highest scoring window was 
kept and windows overlapping it by more than a given 
intersection-over-union (IoU) threshold were suppressed. 
Of the remaining windows not kept or suppressed (not 
overlapping the highest scoring window, or overlapping by 
less than the threshold), the highest scoring window was 
also kept and windows overlapping by the threshold value 
or more were suppressed. This process was repeated until all 
windows were kept or suppressed [69]. For each remaining 
prediction, the IoU with ground truth masks was calculated 
as in (1) [70]:

(1)IoU =
Area of Overlap

Area of Union
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This was used to evaluate the number of true positives 
(TP) and false positives (FP) as follows in (2) and (3) 
respectively:

Precision and recall could be calculated using the total 
number of true positive, false positive and false negative 
(FN) results as shown in (4) and (5), where FN is the 
number of ground truths that were not predicted [71]:

(2)TP if IoU > threshold

(3)FP if IoU > threshold

3.1.2 � Average precision

Precision and recall values for all TP predictions on all test 
images were ordered based on increasing recall and used to 

(4)Precision =
TP

TP + FP
=

TP

#predictions

(5)Recall =
TP

TP + FN
=

TP

#ground truths

Fig. 2   A flow chart showing the methodology used
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plot a precision-recall curve like the orange one shown in 
Fig. 3 [69].

Before calculating the AP, the curve was smoothed by 
replacing the precision at every data point with the maximum 
precision value with the same or higher recall value, resulting 
in the green line in Fig. 3 [69].

This is a conventional approach based on the fact that each 
relevant prediction shows increased precision with increased 
recall (up and right). Also, irrelevant predictions show no 
change, or a decrease in precision. Predictions with non-
maximum precision values for the recall value are considered 
irrelevant because they do not change the AP [69].

For the COCO standard evaluation, AP was calculated 
by dividing the curve up at 101 points along the recall axis, 
summing the 101 corresponding precision values and then 
taking the mean average. This process is shown mathematically 
in (6) [73].

Pr represents the precision at each selected recall point and 
pinterp(r) is the precision at each selected recall point after 
smoothing, shown in (7) where r̃  is the selected recall point.

If this was a multi-class problem, the previous step would 
be done for every class and an average of AP values would be 
taken which would then be named “mean average precision” 
(mAP). However, since this problem uses one class (the ladle), 
this value was named “average precision” instead, which was 
to reserve the name “mean average precision” for the COCO-
based mAP discussed below.

3.1.3 � Mean average precision

COCO standard evaluation was used to reduce bias and 
was conducted by using a range of IoU threshold values to 

(6)AP =
1

101

∑
r∈(0.0,…,1.0)

APr =
1

101

∑
r∈(0.0,…,1.0)

pinterp(r)

(7)pinterp(r) = max
r∶r≥r

p
(̃
r
)

calculate a range of corresponding AP values. Threshold 
values range from 0.5 to 0.95 in increments of 0.05. Upon 
calculation of all AP values, the mean average of them was 
taken and named the mean average precision. This is what 
was considered mAP for this paper. The formula is shown 
in (8) [72].

The mAP calculated in (8) was calculated initially for 
each individual frame, so could be renamed as in (9).

The final mAP performance achieved on one video was 
the mean average of the mAP values for all frames, as shown 
in (10), where n was the number of frames.

3.2 � Data preparation

3.2.1 � Frame labelling

Before labelling, frames were extracted from videos using 
a frame extraction code at one frame per second, which was 
a minimalist approach when considering the raw video ran 
at over 30fps and this was done to reduce the computational 
requirements and complexity of the task, whilst still dealing 
with a visually sufficient output for any observers. Labelling 
of frames was achieved using Visual Geometry Group Image 
Annotator (VIA) [74]. This process consisted of drawing 
a polygon (mask) line-by-line that encapsulated the ladle 
sensibly, then copy-and-pasting this polygon across to the 
next frame, modifying it accordingly and then repeating the 
process until every frame was labelled.

There were objects occluding the ladle at certain points of 
the video, so it was necessary to make extra considerations 
for this. To deal with occlusions there were three options:

•	 The ladle could be labelled as if occlusions were non-
existent.

•	 Only the main visible part of the ladle could be labelled.
•	 All visible parts of the ladle could be labelled as either 

complete or partial.

The first option was suitable. The second option was 
attempted but was unsuitable as Mask R-CNN would 
ideally predict as close to a fixed shape mask as possible, 
and occlusions would dramatically change the mask shape 
with this approach. The third option was extremely time 

(8)mAPcoco =
mAP

0.50
+ mAP

0.55
+…mAP

0.95

10

(9)mAPframe =
mAP

0.50
+ mAP

0.55
+…mAP

0.95

10

(10)mAPsequence =

∑
mAPframe

n

Fig. 3   Example of smoothing a precision-recall curve [72]
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consuming and would promote mask predictions varying 
largely in shape across frames.

3.2.2 � Frame denoising

As shown in Fig. 4, during the video, the lighting was quite 
poor and therefore there were frames where the ladle was 
distorted. Since this made Mask R-CNN performance worse, 
attempts were made to reduce the distortion by improving 
the lighting. Contrast enhancement was approached by first 
converting frames from RGB (red-green-blue) to greyscale 
and then using variants of histogram equalisation to improve 
the lighting whilst maintaining the frame quality. The 
variants of histogram equalisation used are described below.

Standard Histogram Equalisation  To perform histogram 
equalisation, it was first necessary to convert frames to 
greyscale and obtain the intensity values for each pixel, 
which ranged from 0 to 255 and represented how black (0) 
or white (255) a pixel is.

Afterwards, a histogram was created based on the pixel 
frequency of each intensity. Figure 5 shows the histogram 
of Fig. 4.

Once a histogram such as the one in Fig. 5 was produced, 
it was possible to enhance the contrast by equalisation which 
is essentially using a wider range of intensity values more 
frequently.

Firstly, the probability mass function (PMF), which is 
the probability of each intensity value occurring within 
the image, was calculated. This was done by dividing the 
frequency of each intensity value from the histogram by 
the total number of pixels within the frame, as described in 
(11). In (11), p(xi) is the probability of any given greyscale 
value X occurring, s is the frequency of occurrence the given 

greyscale value and S is the total number of pixels in the 
frame [75].

From the PMF, the cumulative distribution function 
(CDF) could be calculated, which is the cumulative sum of 
all PMF values and is shown in (12), where F(x) represents 
the CDF [75].

Each CDF value (calculated accumulatively along each 
PMF value) was then multiplied by the corresponding number 
of grey levels minus one to obtain new intensity values [75].

Adaptive histogram equalisation  AHE is a development 
of the standard HE method and works by first dividing 
the image up into evenly sized squares and then applying 
standard HE to each square separately. This creates a block-
like effect with regard to the contrast of the image which is 
countered using bilinear interpolation [76].

Contrast‑limited adaptive histogram equalisation  Since 
AHE is prone to emphasising noise when it stands out from a 
square containing pixels with mostly similar intensity values, 
contrast limiting can be applied prior to calculation of the 
CDF [77]. Contrast limiting is setting a frequency threshold 
and clipping the histogram at that point prior to CDF to 
avoid over-enhancement of noise present in homogenous 
regions. Contrast limiting is appropriate mainly for images 
with a relatively even distribution of intensity values [78].

Brightness preserving bi‑histogram equalisation  HE can 
change the mean brightness of an image which may result 
in poor quality. As the name states, BPBHE was developed 
to preserve the brightness of an equalised image. BPBHE 
performs HE on two sub-images produced by decomposition 

(11)p(xi) = P(
{
s ∈ S|X(s) = xi

}
)

(12)F(x) = P(X ≤ x), for any x ∈ ℝ

Fig. 4   A frame with poor lighting, noticeable mostly around the 
right-side edge of the ladle

Fig. 5   A greyscale histogram of the image in Fig.  4 that shows the 
256 potential greyscale values along the x-axis and pixel frequency of 
each intensity value on the y-axis
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of the original image using the mean intensity value [10]. 
One sub-image includes the pixels with intensity less 
than or equal to the mean value; the other contains pixels 
with intensity greater than the mean. The lower intensity 
sub-image is equalised with the constraint that new pixel 
intensity values are mapped into the range of minimum 
intensity level to mean, and the higher intensity sub-image 
is equalised with the constraint that new pixel intensity 
values are mapped into the range of mean intensity value 
to maximum. Finally, the two sub-images are combined to 
produce the result [10].

3.3 � Mask R‑CNN

Mask R-CNN was customised for ladle tracking in two 
stages. Firstly, hyperparameters were optimised for 
maximum mAP. For those with discrete input, all available 
settings were tested, whereas those with a continuous 
range of potential values were tested using the EGS. The 
order in which hyperparameters were tested was crucial in 
maximising the effectiveness of the optimisation stages. 
In the second stage, a selection of hyperparameters were 
grouped into cascading EGS setups which each optimised 
mAP before the optimal model for each EGS was carried 
forward to the next setup.

3.3.1 � Stage 1 optimisation

The hyperparameters optimised in Stage 1 can be seen in 
Table 1 in order of experimentation. The CNN backbones 
readily available were ResNet-50 and ResNet-101. The 
backbone was pre-trained on the COCO dataset meaning it 

was likely to be inefficient to retrain the whole backbone on 
new data. Therefore, the re-training options were to retrain 
the layers constituting the network heads, Stages 3 and up, 
Stages 4 and up, Stages 5 and up or all layers.

The network heads were used for classification and 
regression of bounding boxes, and mask prediction [22]. 
Stages 3–5 refer to five stages of ResNet-101 and four stages 
of ResNet-50, which are groups of the 101 and 50 respective 
layers of the ResNet backbone [79]. The backbone and 
retrained layers were tested first as they could significantly 
affect performance and training time. Also, the backbone is 
used first in Mask R-CNN.

Following the backbone and retrained layers in order of 
impact was image resizing and then augmentation testing. 
Mini-mask settings were tested next as it was thought 
they could be significantly limiting mask capabilities 
by reducing the overall mask size to smaller than what 
is required to segment the ladle. Weight decay, or L2 
regularisation, was tuned next because it had more potential 
impact on performance than many of the other untested 
parameters. Mini-mask and weight decay settings that lie 
within the range of reasonable values were selected for 
experimentation. The default Mask R-CNN mini-mask size 
is (56, 56). Early testing showed this could have been too 
small, so the default as well as two larger sizes were chosen. 
For weight decay, values are typically between 0 and 0.1 and 
it is common to test this at varying orders of magnitude [80].

The remainder of both optimisation stages consisted of 
experimental setups using the EGS, which uses a grid search 
style approach but with orthogonal arrays that minimise the 
number of experiments required, to optimise a given number 
of parameters with a given number of settings [81]. For 
example, the first setup for steps per epoch and validation 
steps had two parameters and three settings and the orthogonal 
array chosen is called L9(32) and had nine experiments.

3.3.2 � Stage 2 optimisation

For Stage 2 optimisation, 18 hyperparameters were grouped 
holistically and settings were chosen similarly to before. The 
groups include loss weights, RPN-based parameters, RoI-
based parameters and mask and pooling–based parameters. 
Similarly to backbone with Stage 1, all four EGS setups 
in Stage 2 were ordered based on when they are used in 
Mask R-CNN. Despite the mini-mask being tested relatively 
early in Stage 1, the normal mask was tested in the last 
EGS of Stage 2 as mask size did not appear to be limiting 
performance. The best model from each experimental stage 
was taken forward to the next stage. The hyperparameters 
and settings for the Stage 2 optimisation can be seen in 
Table 2. For loss weights it was logical to set weights to low 
integers to, for example, third, halve or double the weight 
of the losses.

Table 1   Hyperparameters and settings for Stage 1 optimisation

Hyperparameter Settings

CNN backbone ResNet-50, ResNet-101
Layers retrained Heads, 3 + , 4 + , 5 + , all
Image resizing None, square1024, 

square2048, pad1024, 
pad2048

Augmentation Off, on
Mini-mask Off, on-56, on-112, on-224
Weight decay 0.01, 0.001, 0.0001
EGS 1
Steps per epoch 250, 500, 1000
Validation steps 10, 25, 50
EGS 2
Epochs 10, 20, 30
Learning rate 0.0001, 0.001, 0.02
Learning momentum 0.5, 0.9, 0.99
Gradient clip norm 2.5, 5, 10

1406 The International Journal of Advanced Manufacturing Technology (2023) 126:1397–1416



1 3

For EGS 4 and EGS 5, most default settings of Mask 
R-CNN for hyperparameters such as RPN anchor scales, 
anchor ratios and RPN train anchors per image were halved 
and doubled to define three settings for each hyperparameter. 
Anchor stride, NMS threshold and RoI positive ratio are 
exceptions to this as stride is commonly tested at values 
of one, two and three, NMS threshold is usually tested at 
values between 0.6 and 1.0 and RoI positive ratio was 0.33 
at default so 0.25 and 0.5 were tested arbitrarily as they were 
not considered unreasonable.

For the final EGS, following the larger mask testing 
previously discussed with regard to the mini-mask, the 
normal mask settings were doubled twice too.

3.4 � Kalman filter tracking

After Mask R-CNN optimisation, there was an attempt 
to further evolve the tracking ability of the model by 
incorporating Kalman filter edge refinement. A Kalman filter 
is a mathematical tool used to predict the future movement 
of an object. It consists of five Eqs.  (13–17) that work 
recursively to predict the unknown nature of a system, which 
is the solution of the least-squares method [82].

The filter works by first guessing/predicting the state 
of the system then updating that guess based on feedback 
control from noisy measured data. The prediction step uses 
(13) and (14) to obtain the current state and error covariance 
estimates to obtain what is called the a priori estimate for 
the next time step. During the update step (15–17), a new 
measurement is incorporated into the a priori estimate to 
get an a posteriori estimate [82]. This is explained in more 
detail below.

In (13), the first element of the predict step, the a priori 
estimate for the state of the next step x̂−

k+1
 is calculated by 

adding the product of the state transition matrix Ak and the 
a priori estimate for the current step x̂k , to the product of the 
control input matrix and the control vector Buk [82].

In (14), the a priori estimate of the error covariance of the 
next step P̂−

k+1
 is calculated by the adding the product of the 

transition matrix and the a posteriori estimate of the error 
covariance of the current step Pk , to the transition matrix and 
process noise Qk [82].

In (15), which is the first element of the update step, 
the optimal Kalman gain Kk is calculated using the a priori 
estimate of the error covariance of the current step, P−

k
 , the 

Jacobian matrix Hk and the measurement error covariance 
Rk [82].

In (16), the a posteriori state estimate x̂k is calculated 
using the a priori state estimate x̂−

k
 , the Kalman gain K and 

the actual measurement zk [82].

In (17), the a posteriori estimate of error covariance Pk 
is calculated using an identity matrix I , the Kalman gain, 
the Jacobian matrix and the a priori error covariance for the 
current step [82].

The idea of this was to use one Kalman filter for each 
point within a collection of points sampled from the edges of 
the originally predicted mask. It was thought that each filter 
would use the corresponding edge point pixel co-ordinates 
from each successive frame as measured input. Then, 
following the update step the Kalman prediction would be 
an improvement on the original Mask R-CNN prediction 
when all new point predictions are used collectively, which 
would improve overall mAP.

(13)x̂−
k+1

= Akx̂k + Buk

(14)P̂−

k+1
= AkPk + AT

k
+ Qk

(15)Kk = P−

k
HT

k

(
HkP

−

k
HT

k
+ Rk

)−1

(16)x̂k = x̂−
k
+ K(zk − Hkx̂

−

k
)

(17)Pk =
(
I − KkHk

)
P−

k

Table 2   Hyperparameters and settings for Stage 2 optimisation

Hyperparameter Settings

EGS 3
RPN class loss 1, 2, 3
RPN bbox loss 1, 2, 3
Mask R-CNN class loss 1, 2, 3
Mask R-CNN bbox loss 1, 2, 3
Mask R-CNN mask loss 1, 2, 3
EGS 4
RPN anchor scales (16, 32, 64, 128, 256)

(32, 64, 128, 256, 512)
(64, 128, 256, 512, 1024)

RPN anchor ratios (0.25, 0.5, 1)
(0.5, 1, 2)
(1, 2, 4)

RPN anchor stride 1, 2, 3
RPN NMS threshold 0.7, 0.8, 0.9
RPN train anchors per image 128, 256, 512
EGS 5
Pre-NMS limit 3000, 6000, 12,000
Post-NMS training RoIs 1000, 2000, 4000
Post-NMS RoIs inference 500, 1000, 2000
Train RoIs per image 100, 200, 400
RoI positive ratio 0.25, 0.33, 0.5
EGS 6
Pool size 7, 14, 28
Mask pool size 14, 28, 56
Mask shape 28, 56, 112
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Edge pixels of the original Mask R-CNN mask were 
detected using image processing and their co-ordinates were 
saved in a list. Varying numbers of points were sampled and 
used as initial input for the Kalman filters. Each Kalman 
filter tracked a single point which resulted in an arrangement 
of Kalman point predictions that could change based on the 
Kalman filter setup.

Using the gift-wrapping algorithm, a convex hull was 
created using the outer points. The convex hull ensured a 
smoother mask edge was captured around the outside of 
the point predictions, rather than a jagged one that would 
capture less of the ladle. The convex hull (Fig. 6) was the 
tightest, or most efficient boundary that encapsulated all 
points whilst having all interior angles below 180° [84].

Following the convex hull, the state transition matrix of 
the Kalman filters were improved through experimentation. 
The state transition matrix relates the system state at the 
current time step to the state in the next time step, essentially 
indicating how to move from one to the other [82].

The state transition matrix in this scenario is 4 × 4 in 
size and describes the motion of the points from frame to 
frame. Since this problem was 2D, there was an x-position, 
x-velocity, y-position and y-velocity, each represented by 
one row of the transition matrix. The elements in each row 
corresponded to terms in the 2D kinematic equations, terms 
for which the values can change based on what is known 
[85].

Since no exact transition values were known, 
experimentation began by increasing the default number for 
xk−1 from one to ten in increments of one and then keeping 
the value which resulted in the highest mAP. This process 
was repeated for yk−1 whilst keeping the best value found 
for xk−1 , then this process was repeated for the final two 
variables.

The default state transition matrix is denoted Ak in (13). 
Each element equal to one is a multiplier for the corresponding 
terms in x̂k , which are the x-position, y-position, x-velocity 
and y-velocity in descending order of (18):

Therefore, changes to elements [1, 1, 2, 2, 3, 3] and [4, 4] 
in the transition matrix affected how the Kalman filter made 
predictions.

3.5 � Industrial application

To adapt the model for industry application, three 
variables to describe the ladle movement and the flames 
were estimated: pouring height, rotation angle and flame 
severity. Pouring height and rotation angle were measured 
as they could be used to calculate tilting force and were 
strong factors affecting pour quality. Flame severity is an 
indicator of pour quality because less severe flames result 
in less equipment degradation, reduced danger and reduced 
emissions. By estimating process inputs and pour quality 
simultaneously and automatically, this work provides 
an efficient way to observe and therefore improve pour 
quality, meaning necessary costs for repairing damage or 
purchasing new equipment will be less frequent, as well as 
reduced injuries, reduced emissions and a consistent pouring 
technique with minimal human input.

For pouring height, the top pixel of the predicted mask 
with a vertical correction to compensate for the difference 
between mask edge and ladle edge was used.

For rotation angle, a moving window captured the angle of 
the bottom edge of the ladle. The window moved relatively to 
the angle of the previous frame so that the bottom ladle edge 
was continually captured as it rotated. Five and 4-point moving 
averages were used for pouring height and rotation angle 
estimation respectively, in order to make the measurement 
more robust to fluctuations in mask edge positions.

For flame severity, the denoised frames applied were 
cropped to only contain the area significantly affected by 
the furnace flames. Pixels of the remaining image area with 
a brightness of over 235 were counted and the total amounts 
for each frame were used to give a severity rating.

(18)�xk =

⎡⎢⎢⎢⎣

xk−1
yk−1
ẋk−1
ẏk−1

⎤⎥⎥⎥⎦

Fig. 6   An example of a convex hull [83]
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4 � Results and discussion

4.1 � Denoising data

Initial experiments showed an improvement of mAP 
with denoising, compared to non-denoised experiments. 
In Fig.  7, the left column contains “good contrast” 
images, the middle column contains “moderate contrast” 
images and the right column “poor contrast”. Row A is 
after converting to greyscale but before denoising, and 
the remaining rows each show the results of the various 
denoising techniques described in Section 3.

The aim of denoising was to ensure more distinct ladle 
visibility so the model could learn and predict better. 
Important details to consider when evaluating what the 
results in Fig. 7 show are clarity of ladle edges and the 
brightness of the furnace flame. Results from HE (row 
(b)) show a significant improvement with regard to ladle 
edge visibility compared to the greyscale images. This 
is especially evident in the poor contrast image, where 
the top-right quarter of the ladle changes from almost 
completely invisible to clearly lighter than the background. 

However, with regard to the furnace flame brightness, lens 
flare is significantly increased. Looking at the poor image, 
despite the overall change in image aesthetic, increased 
lens flare does not appear to be distorting any important 
aspects of the image. Contrarily, the good image could be 
considered worse than before HE application, as the ladle 
edges, particularly in the top-right quarter, are less distinct 
than before.

Standard HE smooths out the histogram of the intensity 
values for each pixel effectively reducing extremities, and 
the bright furnace flame is a large extremity compared to 
the surrounding dark pixels.

Therefore, since HE equalises over the whole image at 
once, the brightness of the furnace flame is distributed over 
the rest of the image. This is effective for the poor image 
because it is extremely dark everywhere except the flame 
location, so this is a good “source of light”. However, in 
the poor image, there is already some clarity present in the 
image before HE. Dispersing the extreme brightness from 
the flame to the already relatively bright pixels causes some 
extreme brightness to occur farther away from the flame, 
which includes pixels constituting the ladle edges.

Fig. 7   Results of the various 
denoising techniques, with 
examples for good (left), moder-
ate (center) and poor (right) 
quality contrast frames. a Origi-
nal greyscale, b HE, c CLAHE 
and d BPBHE

(a)

(b)

(c)

(d)
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CLAHE (row (c)) equalises multiple histograms 
representing divided “tiles” of the image to prevent over-
enhancement of noise in homogeneous regions, which is the 
issue with the HE results.

Therefore, a significantly improved and more balanced 
performance across varying contrast qualities is observable 
in the CLAHE results. Figure 8 shows clearly the difference 
in edge visibility before and after CLAHE.

BPBHE (row (d)) is designed to preserve the mean 
brightness of an image, and in this case, application 
has resulted in bright white images for all three contrast 
qualities. This indicates that the mean intensity value is high 
(higher intensity pixels are whiter), so the higher intensity 
sub-image would contain extremely bright pixels and upon 
equalisation, produce a white image. The lower intensity 
sub-image would contain some moderately dark pixels and 
some very bright pixels, resulting in a bright image. When 
the sub-images are combined, intensity values are very high, 
which explains the extreme brightness that can be seen.

The best technique appeared to be contrast-limited 
adaptive histogram equalisation (CLAHE) and so the 
performance of Mask R-CNN when trained and tested on 
data denoised using this method was compared to model 
performance when using the original data. The results of 
this comparison are shown in Table 3.

4.2 � Mask R‑CNN Optimisation

Table 4 presents optimal settings for Stage 1 hyperparameters. 
ResNet-101 was superior to ResNet-50 due to extra layers 
capturing more features during feature extraction, so that Mask 
R-CNN has a better understanding of the data. ResNet-101 runs 
at 7.6 × 109 floating operations per second (FLOPs), whereas 
ResNet-50 only runs at 3.8 × 109 FLOPs [86].

Re-training stages 3 and up of ResNet-101 (layer 12 
to layer 101) was likely optimal because it allowed the 
backbone to retain some understanding of commonly 
recognisable features learned from being pre-trained on the 
COCO dataset, whilst leaving the majority of the relatively 
large network for learning information specific to the ladle 
data.

Using the pad64 image resizing option with a size of 
(1024, 1024) was better than the square setting because the 
ladle shape is irregular, asymmetric and a distinguishable 
for feature extraction; therefore, shape makes it less 
recognisable. Whilst producing a square image, pad64 
preserves original shapes by completing the square shape 
with empty padding. Augmentation also relies on the model 
learning from distorted data.

Mini-mask application was not optimal. The mini-mask 
efficiently captures the mask within the bounding box only, 
whereas the normal mask captures the mask within the 
whole image [87]. Whilst this sped training up by roughly 
12%, it reduced the mAP. The fact that the ladle takes up a 
relatively large proportion of the image, compared to say, 
a person in an image of a room full of people, means that 
the mini-mask had an insignificant effect on performance. 
Default settings of weight decay, steps per epoch, validation 
steps, learning rate, momentum and gradient clip norm were 
already optimal. Not every hyperparameter needs tweaking 
between different applications and so it seems that change 
of these hyperparameters is unnecessary. The mAP achieved 

Fig. 8   Ladle edge in original video (left), greyscale video (center) 
and denoised video (right)

Table 3   mAP comparison pre-
optimisation for original and 
denoised

Original Denoised

mAP 0.0044 0.1115

Table 4   Hyperparameters with corresponding optimal settings for 
Stage 1 optimisation

Hyperparameter Settings

CNN backbone ResNet-101
Layers retrained 3 + 
Image resizing Pad1024
Augmentation Off
Mini-mask Off
Weight decay 0.0001
EGS 1
Steps per epoch 100
Validation steps 50
EGS 2
Epochs Variable
Learning rate 0.001
Learning momentum 0.9
Gradient clip norm 5
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after Stage 1 was 0.28. This model was trained for 20 epochs 
which took just under 23 min each on average and just under 
7.6 h in total. The inference time for each frame was 0.41 s.

Table 5 contains the results of Stage 2 hyperparameter 
optimisation. The optimal loss weight combination was 
when losses were mostly equal; however, the Mask R-CNN 
classifier head and RPN bounding box losses required 
less weighting compared to other losses. Whilst the RPN 
class loss classifies the foreground and background of 
anchor boxes, the Mask R-CNN class loss classifies the 
actual objects. The only classes present were the ladle and 
the background, so classification was not a particularly 
challenging aspect of the task for the classifier head, whereas 
initially determining the ladle from the background is more 
challenging. This explains why RPN class loss remains 
equal to Mask R-CNN bounding box and mask losses whilst 
Mask R-CNN class loss is reduced to one. With regard to the 
RPN bounding box loss, this is for locating objects within an 
image, whereas the Mask R-CNN bounding box loss is for 
locating classified objects within an image. Therefore, since 
there is only one object, the RPN has essentially done the 
job, making Mask R-CNN bounding box loss less important. 
This means the RPN bounding box loss should be at three 
and the Mask R-CNN bounding box loss should be the same 
or reduced. The combinations (3, 3, 1, 3, 3), (3, 3, 1, 2, 3) 

or (3, 3, 1, 1, 3) would be optimal based on this discussion; 
however, they were not part of the EGS due to the predefined 
orthogonal setup.

The number of train anchors and anchor scales appeared 
optimal at default, RPN anchor ratios were halved and RPN 
anchor strides were increased from one to two. The NMS 
threshold increased from 0.7 to 0.9. Anchors essentially 
locate objects, so the aim was to optimise their size, 
movement and initial quantity to locate and learn objects 
optimially. Since the ladle is quite a large object relative 
to image size, initial expectations would be that ratios and 
stride would likely increase. Stride has increased, but ratios 
have decreased. This could be due to the unique ladle shape 
creating a need to capture the smaller details comprising the 
edges, which could also be why the number of train anchors 
and anchor scales have not increased. The increase to NMS 
threshold is significant and indicates requiring 20% more 
of an overlap of boxes to suppress them, so of the boxes 
present, more were needed for feature extraction which was 
again possibly due to the ladle shape.

The pre-NMS limit and post-NMS training RoIs remained 
at default; however, post-NMS inference RoIs doubled, train 
RoIs per image halved and the RoI positive ratio decreased 
from 0.33 to 0.25. The same number of RoIs was kept prior 
to NMS; however afterwards, the model used twice as many 
when making an inference, which could be explained by ladle 
edges requiring extra RoIs to capture them. The number of 
RoIs per image passed to the classifier and mask heads during 
training was halved and the percentage of positive RoIs used 
for training decreased from 33 to 25%. This indicates that, 
whilst the model needed to learn more detail about each 
frame, the object classification head and mask head required 
less RoIs for training. This could be explained by the increase 
in NMS threshold in the previous EGS, which would output 
a larger pool of RoIs meaning the top 6000 would be more 
likely to have higher objectness (likelihood of containing an 
object), which means less RoIs per image and a lower RoI 
ratio could result in a similar amount overall due to more 
positive RoIs existing per image. Furthermore, better quality 
RoIs could reduce the need for as high of a quantity.

Pool size remained at default and mask pool size 
quadrupled which makes sense as the ladle mask is complex 
so probably requires more RoIs. Mask shape also quadrupled 
for the same reason. The mAP was 0.52 after Stage 2. This 
model was trained for ten epochs which took just under 
4 min each on average and just under 38 min in total. The 
inference time for each frame was 0.46 s.

4.3 � Kalman filter

The default state transition matrix Ak is in (19), where Δt 
indicates the change in timestep.

Table 5   Hyperparameters with corresponding optimal settings for 
Stage 2 optimisation

Hyperparameter Settings

EGS 3
RPN class loss 3
RPN bbox loss 2
Mask R-CNN class loss 1
Mask R-CNN bbox loss 3
Mask R-CNN mask loss 3
EGS 4
RPN anchor scales (32, 64, 128, 256, 512)
RPN anchor ratios (0.25, 0.5, 1)
RPN anchor stride 2
RPN NMS threshold 0.9
RPN train anchors per image 256
EGS 5
Pre-NMS limit 6000
Post-NMS training RoIs 2000
Post-NMS RoIs inference 2000
Train RoIs per image 100
RoI positive ratio 0.25
EGS 6
Pool size 7
Mask pool size 56
Mask shape 112
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Elements [1, 1, 2, 2, 3, 3] and [4, 4] were tested in turn, 
whilst maintaining the optimal value for the previous 
element(s). The optimal matrix is shown in (20).

Table 6 shows how optimisation of each element affected 
mAP. Since the original mAP was 0.52, optimising the first 
element gave an improvement of 0.06, optimising the second 
gave an improvement of 0.03 and the final two elements 
did not improve performance so were left at default. The 
addition of the Kalman filtering increased the average 
inference time from 0.46 to 0.59 s.

In Table 6, xk−1([1,1] in (20)) and yk−1 ([2,2] in (20)) are 
position values and ẋk−1 ([3,3] in (20)) and ẏk−1 ([4,4] in (20)) 
are velocity values. Position values improved the overall 
mAP but velocity values did not, which is likely because in 
terms of position, the ladle is mostly on the lower lefthand 
side of the field of view, and since python reads the image 
from top to bottom (y-coordinate increases from image top 
to image bottom), the six and eight in (20) roughly align with 
the x and y positioning respectively, whereas the velocity of 
each point is inconsistent and difficult to estimate.

With reference to Section 2.2, Mask R-CNN was chosen 
due to its reported experimental performance, but also due 
to the abundance of documentation and proven application to 
manufacturing industry. Direct comparison of the final model 
to state-of-the-art models was not possible due to several 
unique aspects of the task (denoising, the irregular ladle 
shape and the rotating of the ladle). However, the final model 
achieved a mAP of 0.61 and a speed of 1.7fps. In comparison, 
Mask R-CNN was predominantly reported as achieving a 
mAP of 0.37 on the COCO dataset and this surpassed the 
2015 and 2016 challenge winners. Furthermore, on the 
COCO test-dev dataset, state-of-the-art models such as 
YOLACT [34], SparseInst [88], SOLOv2 [89], Blendmask 
[44] and SipMask [90] have reportedly achieved mAPs of 
0.30, 0.38, 0.37, 0.41 and 0.33 respectively, of which none 

(19)Ak =

⎡⎢⎢⎢⎣

1 0 Δt 0

0 1 0 Δt

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

(20)Ak =

⎡⎢⎢⎢⎣

6 0 Δt 0

0 8 0 Δt

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎦

surpasses the mAP achieved by the model presented in this 
paper. A caveat is that these models do surpass the model 
presented in this paper in terms of inference speed; however, 
this is cushioned by both the unique challenges in this task 
combined with the massive difference in available training 
data (328,000 images compared to the 234 used here).

4.4 � Industrial application

A sample frame of the final output of the model created can 
be seen in Fig. 9. For this element of the research, the training 
set was increased from 120 to 480 images to maximise 
performance, and the Kalman filtering was disabled as it was 
found to reduce the consistency of the ladle shape across 
frames, which was detrimental to the pouring height and 
rotation angle estimations. In future work, a fixed ladle shape 
could be positioned using the centroid of the predicted mask 
and angled based on the estimated rotation angle.

In Fig. 9, the pouring height measurement is indicated by 
the dark blue horizontal line. The pixel unit can be converted 
to real distance units relative to the environment shown in the 
image using distance estimation methods. The rotation angle 
measurement is observable in the top-left corner of the image 
where the light blue line is what is captured from the bottom 
edge of the ladle by the moving window, and the yellow line 
is the line of best fit. Flame severity was calculated but not 
visualised as it was unnecessary and slowed the model down.

Every value seen in Fig. 9 is recorded for every frame 
and added to a.csv file containing the results for the entire 
footage. Steelmaking industry can benefit from this model in 
two main ways. Firstly, pouring height and rotation angle can 
be used to calculate tilting force, a process input parameter 
that affects the flame severity.

Table 6   State transition matrix 
experiments

Variable experiment Final mAP

xk−1 0.58
yk−1 0.61
ẋk−1 0.61
ẏk−1 0.61

Fig. 9   A frame with measurements displayed
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Using this data, the input tilting force and resulting flame 
severity can be easily compared. The individual trends of 
tilting force and flame severity combined with the relationship 
between them can be used to discover process quality 
improvement methods. Secondly, this model takes the first 
steps into revolutionising the integration of computer vision into 
steelmaking. This model paves the way for subsequent evolution 
of advanced technology by laying a foundation for ladle-related 
process optimisation that can be built upon through addition of 
capabilities such as closed-loop control systems that minimise 
emission severity and damage from accident occurrence, data 
collection capabilities for predictive maintenance and root-cause 
analysis by measuring pouring frequency and accumulative flame 
damage per ladle, and insightful capabilities into process variables 
such as ladle velocity, acceleration, process duration and energy 
expenditure which could all be used for process optimisation.

5 � Conclusions

In this paper, noisy ladle pouring video data was denoised 
and used to train a segmentation model capable of tracking 
the shape of the ladle. Many model hyperparameters were 
optimised through extensive experimentation and Kalman 
tracking was added to further improve performance. The 
model was also adapted for industrial application by using 
the predicted mask and other image information to estimate 
real process parameters.

When denoising data, four different histogram 
equalisation methods were tested and CLAHE performed 
best overall when considering frames of good, moderate and 
poor contrast quality.

From Stage 1 optimisation of Mask R-CNN, re-training 
ResNet-101 from Stages 3 and up, with a weight decay 
of 0.0001 and a learning rate of 0.001, was found to be 
the optimal setup, which achieved a mAP of 0.28 and an 
inference time of 0.41 s.

From Stage 2 optimisation, a weight loss configuration of 3, 
2, 1, 3, and 3 for RPN class, RPN bounding box, Mask R-CNN 
class, Mask R-CNN bounding box and Mask R-CNN mask 
losses respectively, an RPN NMS threshold of 0.9 and a mask 
shape of (112, 112), resulted in the optimal setup which achieved 
a mAP of 0.52 and an inference time of 0.46 s.

Further improvement was achieved through Kalman filter 
application, which was optimal when x and y positions in the 
state transition matrix were 6 and 8 respectively, which when 
applied resulted in a mAP of 0.61 and an inference time of 0.59 s.

This research uniquely contributes to multiple fields as it 
brings together the established tasks of video segmentation from 
computer vision, and process optimisation from manufacturing, 
to provide a starting point for developing remote condition 
monitoring technologies for ladle pouring processes. Automated 

collection of pouring height, rotation angle and flame severity 
values throughout pours will provide insight into how process 
input (tilting force) affects process quality (flame severity). 
In comparison to existing studies in this area, this paper is 
advantageous due to providing a novel solution that has not been 
addressed previously. Also, it discusses the tuning of a vast range 
of hyperparameters which has led to an array of suggestions 
useful for any researchers working with Mask R-CNN in 
industry. In contrast, with a larger dataset model performance 
could be improved significantly. Furthermore, future work would 
incorporate a distance estimation method to bring the model 
closer to production standard. Overall, this work provides an 
automated solution to minimising emissions, equipment damage 
and hazard severity, whilst paving the way to measurement of a 
potentially wide variety of process parameters, as well as pour 
quality factors, to collect data beneficial for tasks such as process 
optimisation, predictive maintenance and closed-loop monitoring.
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