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Abstract
This paper aims to develop an effective sensor fusion model for turning processes for the detection of tool wear. Fusion of 
sensors’ data combined with novelty detection algorithm and learning vector quantisation (LVQ) neural networks is used to 
detect tool wear and present diagnostic and prognostic information. To reduce the number of sensors required in the monitor-
ing system and support sensor fusion, the ASPS approach (Automated Sensor and Signal Processing Selection System) is 
used to select the most appropriate sensors and signal processing methods for the design of the condition monitoring system. 
The experimental results show that the proposed approach has demonstrated its efficacy in the implementation of an effective 
solution for the monitoring tool wear in turning. The results prove that the fusion of sensitive sensory characteristic features 
and the use of AI methods have been successful for the detection and prediction of the tool wear in turning processes and 
show the capability of the proposed approach to reduce the complexity of the design of condition monitoring systems and 
the development of a sensor fusion system using a self-learning method.
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1  Introduction

The drive to increase productivity and reduce energy con-
sumption is attracting manufacturers into adopting Industry 
4.0, artificial intelligence, 5G and the Internet of Things 
(IoT) in their facilities to increase flexibility, reduce waste 
and enhance efficiency. Machining operations are consid-
ered one of the most complex operations in manufacturing 
due to its variability. And the reliability of cutting tools in 
machining influences the whole manufacturing efficiency. 
However, tool wear and tool conditions are probabilistic in 

nature making it difficult to correctly estimate the remaining 
life of a tool; and hence, a real-time determination system 
of tool conditions is needed. Condition monitoring systems 
of manufacturing processes could provide a means to offer 
prognosis and diagnosis of tools’ life and status. Tool wear is 
an important limitation in machining productivity. Tool wear 
is difficult to predict due to a large number of influencing 
variables and tool-to-tool performance variation. As a result, 
empirical models or physics-based models require experi-
mentation to calibrate model coefficients, which are infeasi-
ble in an industrial setting due to large number of tool-mate-
rial combinations [1]. Therefore, it is important to develop 
a reliable and inexpensive intelligent monitoring system 
for cutting processes with self-learning from experience. A 
successful monitoring system can effectively maintain the 
health of machine tools, cutting tools and workpieces in cut-
ting processes. Various methods have been studied to detect 
tool wear states, and a large variety of sensors can be used 
for tool wear condition monitoring. Unfortunately, the per-
formance of monitoring systems is still behind the expecta-
tions due to its high cost/performance ratio [2]. Successful 
condition monitoring is becoming extremely dependent on 
the ability to interpret multi-sensor data based on advanced 
signal processing methods [3]. Sensor fusion has already 
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been widely used in various applications in which multiple 
sources of presented information are combined to provide 
improved and robust estimates.

In manufacturing process, the stability of cutting state 
is especially important for machining quality. Monitoring 
cutting forces has been the focus of researchers for many 
years. Research has seen the development of a wide range 
of sensors for the use in machining operations [4]. However, 
the limiting factors have been on the use of artificial intel-
ligence in providing efficient monitoring systems. With the 
rise in using digital technology of computers, the last decade 
has witnessed the development of several artificial intelli-
gence methods to the area of condition monitoring systems 
[5]. Artificial intelligence (AI) is used to apply knowledge, 
reasoning, self-learning and decision-making to enable 
machines to function with the capability and intelligence of 
human beings. Generally, artificial intelligence may be sepa-
rated into two groups: symbolic intelligence contains expert 
systems, knowledge-based systems, case-based reasoning, 
etc.; and the second is computational intelligence which 
contains artificial neural networks (ANN) [6]. Many artifi-
cial intelligence techniques which have been developed for 
manufacturing systems have been found reasonably success-
ful [7]. However, pattern recognition techniques described 
in the literature have their own limitations. Measurements 
have to be made on the healthy system to store the healthy 
response [8] and in most cases, the information contained in 
the data is not comprehensive to cover all possible scenar-
ios [9]. Reference [10] suggested an online scheme for tool 
wear monitoring using artificial neural networks (ANNs) by 
giving the cutting velocity, feed, cutting force and machin-
ing time as inputs to the ANN, and the flank wear is esti-
mated using the ANN. Despite the success of the suggested 
approach, the probabilistic nature of the machining process 
would still provide indeterministic results. Reference [11] 
presented two experimental cases including rolling bearing 
fault and rotor system fault to evaluate the proposed scheme 
of using neural networks; the results demonstrate a better 
comprehensive performance in the number of best features, 
training time and testing accuracy, when compared with 
some previous research work. A mathematical analysis [12] 
is used to select the most significant intrinsic mode functions 
(IMFs); therefore, the selected features are used to train an 
artificial neural network (ANN) to classify bearings defects. 
Experimental results showed that constantly evaluating the 
condition of the monitored bearing could support detecting 
the severity of the defect successfully; the results showed the 
potential application of ANN as effective tool for automatic 
machining performance degradation assessment without 
human intervention.

In pattern recognition techniques [13], the response of 
some parameters is recorded and monitored to detect abnor-
malities. Intelligent fault diagnosis of rotating machinery is 

essentially a pattern recognition problem. Reference [14] 
proposed a knowledge-based system and feature selection to 
enhance the design of condition monitoring systems. How-
ever, the knowledge-based system requires feature under-
standing to enable the development of the knowledge.

Tool state monitoring is a key technology in intelligent 
manufacturing. But it is still in a research stage in many cases 
and lacks general adaptability for different machining condi-
tions. To overcome this limitation, reference [15] has investi-
gated an intelligent, real-time, and visible tool state monitor-
ing through adopting integrated theories and technologies, 
i.e. using distinctively designed experimental technique with 
comprehensive consideration of cutting parameters and tool 
wear values as variables. Bisensor fusion for simultaneous 
measurements of low and high frequency signals, for per-
forming dual feature extraction and feature dimension reduc-
tion to achieve more accurate state identification using neural 
network, has been invsitgated. The results show a recogni-
tion rate of neural network model after training to be 92.59%, 
which could provide uncertainty during factory operations.

Significant research has been done in literature to develop 
smart tools and model machining processes. In previous 
research, smart tools, including force-based, temperature-
based, fast tool servo and smart collets/fixtures for ultra-
precision machining purposes, have been presented in [16]. 
Adaptive control has been used to maintain a constant cut-
ting force with varied depths of cut particularly for compo-
nents made from hybrid materials or structures [16]. The 
findings show the positive impact of the suggested meth-
odology. In reference [17], a novel cutting force modelling 
approach in diamond turning is suggested by employing a 
specific cutting force level and the corresponding quanti-
tative analysis of the dynamic cutting process in order to 
accurately model the dynamic cutting behaviour. Moreover, 
a detailed discussion of tool wear monitoring in turning 
processes is presented in [18]. Flank wear, crater wear and 
corner/nose wear are found to be the most common types of 
wear in turning processes [18].

The above discussion shows that there is still a gap in 
the area of self-learning intelligent condition monitoring 
systems, and more research is still needed to develop a 
systematic approach in condition monitoring of machining 
operations such as turning processes and the application of 
artificial intelligence towards the establishment of Industry 
4.0 applications.

2 � The proposed method

Considering the above discussion, it is evident that more 
work is still needed to address the self-learning process to 
monitor machining operations. Hence, this paper provides 
a new perspective for fault information extraction and fault 
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classification of machining operations. In this paper, two 
unsupervised approaches have been selected, namely, nov-
elty detection (ND) and learning vector quantisation (LVQ). 
This should allow the automated process of diagnostic or 
prognostic without the need to develop a knowledge-based 
system or full understanding of the actual fault mechanisms.

Novelty detection [19] requires no comparison between 
healthy and unhealthy signals. Only normal conditions are 
needed to characterise the normal process. Any deviation 
from normal conditions will be identified as novel. Novelty 
detection [19] is a classification technique that recognises a 
presented data as novel or non-novel. The training data for 
the novelty detection algorithm consists of only the nor-
mal class which is often much easier to obtain than data 
for multiple classes. Since a degree of overlap is normally 
expected between different classes, classification problems 
have a probabilistic nature. Novelty detection involves esti-
mating the probability density function (PDF) of a normal 
class from the training information and then estimating the 
probability that a new set of data belongs to the same class. 
The accuracy of novelty detection classification is depend-
ent on the accuracy of the modelled density functions. 
Three main methods are normally used to model the PDF: 
parametric methods, non-parametric methods and semi-
parametric methods [19]. The parametric methods assume 
sufficient statistical information about the training data set 
which is not normally available. In non-parametric methods, 
no assumptions are made regarding the underlying density 
functions, and they depend on the training data to find the 
probability density function for a new input. Reference [20] 
classifies such methods as being kernel-based techniques 
and K-nearest neighbour techniques. The K-nearest neigh-
bour method depends on the probability that K number of 
data points of a vector fall within a specific volume. The 
kernel-based technique calculates the volume by defining 
width parameters for a number of known probability distri-
bution functions (kernels) to provide a general model for the 
training set. However, non-parametric methods require long 
computations for every input vector. Semi-parametric den-
sity estimation is used in this research for novelty detection 
because it combines the advantage of both parametric and 
non-parametric techniques and does not require extensive 
computational effort. Semi parametric methods use fewer 
numbers of kernels. In this research, a Gaussian mixture 
model (GMM) is used to estimate the PDF. Unlike non-
parametric methods, the training data are used only during 
the process of construction of the density model and are not 
needed for calculation of the PDF for new vectors.

Neural networks are selected in this paper as another 
AI technique. Learning vector quantisation neural network 
(LVQ) is suggested in this paper. It implements competitive 
neural network as an unsupervised neural network which 
uses associative learning rules which allow the network to 

learn the association between the inputs and the outputs in 
response to the data presented to them. Effective assessment 
of the rate of tool wear increases the efficiency of the process 
and makes it possible to replace the tool before catastrophic 
wear occurs.

Neural networks has been widely used for the prediction 
of tool wear; see, for example [21].

Recent papers have included significant work in image-
based tool condition monitoring [22, 23]. Deep learning 
for tool condition monitoring has been well articulated in 
[24]. And knowledge graph has been successfully suggested 
by [25] with final results showing evidence for monitoring 
machine tool structure; but it was not tested for cutting tools. 
Tool life prediction of milling tools using deep transfer rein-
forcement learning based on long short-term memory net-
works have been presented in [26], the prediction results 
demonstrate that the proposed method has relatively high 
accuracy. Topological feature vectors for chatter detection 
in turning have been presented by [27] which shows an accu-
racy of up to 97%.

But for turning processes, an automated and self-learning 
system is still needed. Hence, in addition to the above, to 
enhance the quality of the input data to novelty detection 
and the LVQ neural networks, a novel method, called ASPS 
(Automated Sensor and Signal Processing Selection System) 
has been presented in [28]. It has been found to enhance 
the quality of data fed into the AI techniques. The (ASPS) 
approach is implemented and tested to determine the sensi-
tivity of the sensory signals to the fault or machining char-
acteristics [29] in milling operations.

This paper modifies and develops the approach for turn-
ing and defines a new Automated Sensor and Signal Process-
ing Selection System for Turning (ASPS-T) approach which 
deals with turning processes. Therefore, the domain of this 
paper is in implementing the ASPS approach in selecting 
the sensors and signal processing techniques essential for 
monitoring turning processes and conditions. The use of the 
decision-making stage is to confirm and assess this method 
for selecting sensors and signal processing methods.

To design a condition monitoring system for turning pro-
cesses using an automated simple procedure to detect the 
sensory characteristic features (SCF) which are most sensi-
tive to the process states, the ASPS-T approach is based 
on conducting studies to prove that there is a dependency 
between a measured sensory value (SCF) and the monitored 
state or physical phenomenon or fault [28, 29].

2.1 � The ASPS‑T approach

The implemented approach is named ASPS-T (Automated 
Sensor and Signal Processing Selection System for Turn-
ing). Figure 1 presents the basic principle of the ASPS-
T generic approach. It systematically relates the sensory 
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signal and the signal processing methods used to the state 
or the physical phenomenon (fault) which needs to be 
detected or evaluated. The ASPS-T approach starts by 
defining the operation to be monitored and its states (e.g. 
healthy or faulty condition) as illustrated in Fig. 1. Then, 
a wide range of sensors are installed for process monitor-
ing to produce sensory signals that contain information 
about the process. The following stage of the proposed 
approach is for extracting sensory characteristic features 
(SCFs) obtained from the sensory signals using a wide 
range of signal processing methods and then discovering 
the sensitivity of such features on the investigated process 
state. If a specific feature from a specific sensor shows 
high sensitivity to the fault, this means this sensory char-
acteristic feature is useful in detecting or evaluating that 
fault. A particular number of sensitive sensors and signal 
processing methods are then selected as the best and most 
sensitive monitoring system. Figure 1-a presents the turn-
ing process and the sensory signals extracted.

Figure 1-b presented the extraction of sensory character-
istic features (SCFs) from all the sensors and signal process-
ing methods to construct a 3D matrix of the features, given 
that the 3rd dimension is time (or number of tests). Based on 
the SCFs, a correlation or sensitivity measure will be used 
to quantify the sensitivity of each SCFs (Fig. 1-d); and that 
sensitivity values will be allocated in an Association Matrix 
(ASM) (Fig. 1-e). Based on the ASM’s sensitivity values, 
the SCFs in the 3D matrix (Fig. 1-c) will be arranged, and 
the SCFs with maximum sensitivities will be selected as data 
to be fed into the artificial intelligence stage for classification 
of the turning process or tool health.

For the stage in Fig. 1-d, the sensitivity of the features 
in this paper will be identified using a novel method, 
namely Sudden Change In Value (SCIV), which is uti-
lised to measure sensitivity for a group of SCFs, and a 
comparison between a group of SCFs with high aver-
age sensitivity with a group of SCFs with low average 
sensitivity.

2.2 � Sudden Change In Value (SCIV)

The Sudden Change In Value (SCIV) statistical method is 
used in this research to find the average difference between 
the first group of points and the last points in the moni-
tored sensory data. The first variable is the average value 
of the first (5%) of the data values. While the second vari-
able is the maximum value of the last (95%) of the data 
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values as shown in Fig. 2. Mathematically, the last variable 
can be described as:

where Lv is the Last variable and it is defined as the maxi-
mum value within the last 95% of the vector values; lp is the 
length of the vector, and xi is the value of the vector at loca-
tion i, where ‖0.95lp‖ is the nearest integer value of 0.95lp. 
The first variable can be described mathematically as:

where Fv is the first variable which is the average of the 
first 5% group of points and ‖0.05lp‖ is the nearest inte-
ger value of 0.05lp. Hence, as shown in Fig. 2, the Sudden 
Change In Value (SCIV) can be expressed as:

(1)Lv = max{xi}
lp

i = ‖0.95lp‖

(2)Fv = mean{xi}
‖0.05lp‖
i = 1

In the current investigation, Sudden Change In Value 
(SCIV) is used to define the pattern regression of the fea-
tures (i.e. the sensitivity of features to fault generation). Fur-
thermore, novelty detection and learning vector quantisa-
tion neural networks (LVQ) are used to confirm the results. 
Consequently, the above suggested approach should provide 
a sensor fusion and a selection process of the most sensitive 
sensors and signal processing methods to detect tool wear 
or deterioration in a turning process.

3 � Experimental work

3.1 � Hardware setup

The experimental work is performed on a lathe machine tool, 
as shown in Fig. 3. It includes a turning process of stainless 

(3)SCIV = Lv − Fv

Fig. 3   Schematic diagram of the 
complete monitoring system (a) 
and a photo of the setup (b)
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steel workpiece using cemented carbide inserts (Sandvik Coro-
mant P25). The chosen process parameters monitored are the 
cutting forces (three axes), strain, vibration, acoustic emission 
(RMS and AE signal) and sound. The force signals are moni-
tored using a 3-component dynamometer (Kistler 9257A).The 
force dynamometer is coupled to a 3-channel charge ampli-
fier (Kistler 5001). The machining parameters are selected to 
resemble industrial practice. The signals are monitored using 
a National Instrument NI PCI-6070E and a specially designed 
software using NI LabWindows/CVI. The sampling rate is 1 K 
sample/s, and turning process is performed at 1000 RPM spin-
dle speed and 0.05 mm/revolution feed rate. The steel work-
piece had a diameter of 30 mm. The experimental cutting con-
ditions are chosen to cover the manufacturer’s recommended 
interval for insert type. Figure 3 presents the complete diagram 
of the experimental setup of this paper.

3.2 � Signal processing methods

The signal processing and feature extraction methods are 
selected based on the previous research in condition moni-
toring of machining operations. However, any other methods 
of signal processing and features extraction can be applied 

provided that they produce real numbers. The key objective 
of these processes is to simplify the resulted complex signals 
from turning processes for analysis. The feature extraction 
methods used in the time domain are standard deviations, 
average, maximum, minimum, range, kurtosis, skewness 
and power. In frequency domain, fast Fourier transformation 
(FFT) and wavelet analysis are used, as presented in Table 1.

Fourier transformation  Fourier transformation can be used 
to transform a signal x(t) with length (N) from the time 
domain into a signal in frequency domain x(f) which is 
defined in mathematical form as follows:

for h = 0, 1, 2, …, N − 1, where j =
√
−1

Breaking down the signal into its frequency spectrum 
allows to assess the presence of certain frequencies. Fast 
Fourier transformation (FFT) is used to transfer digital 
signals from time domain into the frequency domain. In 
this paper, the FFT of each signal is divided into 12 dif-
ferent ranges of frequencies, and then the average value 
is used for the ASPS-T approach; see Table 1.

(4)X(f ) =
∑N−1

i=0
x(i)Wih

n
;where WN = e−j2�∕N

Table 1   The implemented 
signal processing methods

Symbol Equation/description

STD
TD1 =

�
∑N

i=1
(x

i
−TD2)

2

N−1

Average TD2 =
1

N

∑N

i=1
x
i

Abs (max) TD53 = ���||xi||
Abs (min) TD4 = ���||xi||
Range TD5 = max(x) − min(x)

Kurtosis
TD7 =

∑N

i=1
(x

i
−x)4

(N−1)TD4

2

Skewness
TD6 =

∑N

i=1
(x

i
−TD1)

3

(N−1)TD3

2

Power
TD7 =

�
∑N

i=1
(x

i
)2

N

FFT (f1,f2) = average value of the FFT between frequencies f1 and f2
FFT1 Average of [FFT (20 Hz, 200 Hz)]
FFT2 Average of [FFT (200 Hz, 400 Hz)]
FFT3 Average of [FFT (400 Hz, 600 Hz)]
FFT4 Average of [FFT (600 Hz, 800 kHz)]
FFT5 Average of [FFT (800 kHz, 1 kHz)]
FFT6 Average of [FFT (1 kHz, 1.2 kHz)]
FFT7 Average of [FFT (1.2 kHz, 1.4 kHz)]
FFT8 Average of [FFT (1.4 kHz, 1.6 kHz)]
FFT9 Average of [FFT (1.6 kHz, 1.8 kHz)]
FFT10 Average of [FFT (1.8 kHz, 2 kHz)]
FFT11 Average of [FFT (2 kHz, 2.2 kHz)]
FFT12 Average of [FFT (2.2 kHz, 2.5 kHz)]
Wav_i = standard deviations of the ith level of the wavelet analysis, where 1 ≤ i ≤ 13
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Wavelet signal processing  Fourier transformation has an 
important disadvantage, where the transformation process 
from the time domain to frequency domain removes the 
time contents. Hence, when looking at a frequency spec-
trum, it is not possible to know when an exact event has 
occurred. Wavelet signal processing provides an alternative 
technique of breaking a signal down into sub-signals or 
levels with different frequencies which carry the time infor-
mation. In wavelet analysis, the length of the signal deter-
mines how many wavelet levels there will be in the decom-
position of the original signal. In general, for a signal of 
length N, where N = 2n, there are n + 1 wavelet levels. The 
shape of the wavelet levels depends on the mother wavelet 
signal which is employed to build these levels. Wavelet 
analysis involves breaking the signal into sub-signals, each 
of which is generated from a combination of shifted and 
scaled wavelet signals. The dilation equation is used to 
define the basic scaling function φ(x) from which the D4 
discrete wavelet original signal is calculated as follows:

where c(j) represents the wavelet coefficient and j the index.
The primary wavelet signal is computed from the scaling 

function which is expressed as follows:

The four coefficients for D4 wavelets are as follows:

 For discrete D4 wavelets transformation, the original 
function can be reconstructed form the equation:

 The standard deviations (STD) of the wavelets are used 
as features (SCFs) for the proposed monitoring system. A 
total of 13 wavelets were produced, and hence, 13 SCFs 
were used for the suggested approach in relation to wavelet 
analysis. For further information, please see [29–32].

4 � Results and the implementation 
of the ASPS‑T approach

The machining process would start with a fresh tool, and the 
machining will continue until a worn status or fully damaged 
tool is created; see Fig. 4. Figure 5a and b show examples of 

(5)�(x) =
∑3

j=0
c(j)�(2x − j);

(6)Ψ(x) =
∑3

i=0
(−1)ic(i + 1)�(2x − i)

(7)
C(0) =

1

4
(1 +

√
3) C(1) =

1

4
(3 +

√
3)

C(2) =
1

4
(3 −

√
3) C(3) = −

1

4
(
√
3 + 1)

(8)x =

∞∑

l=−∞

c
�
�
n
(x − 1) +

∞∑

i=0

∞∑

h=−∞

C
h,lΨ(2

h − 1)

the machining signals obtained from the signals for the fresh 
and worn tool, respectively. It is extremely different from 
such complex signals to develop a sensor fusion model or to 
integrate artificial intelligence into the condition monitor-
ing system.

4.1 � Signal simplifications

The Association Matrix (ASM) for this test has a size of 
8 × 33 (8 signals and 33 signal processing methods) and 
embodies 264 features, or simply SCFs. These features are 
divided into 26 different systems; each system contains 10 
features (i.e. each 10 SCFs form a suggested monitoring 
system). The level of tool wear is visually monitored in this 
experimental work, and it shows that wear increases with 
machining time, compared with the results of the automated 
AI system. All features have been normalised between 0.1 
and 0.9 to allow a relative and accurate comparison; see 
Fig. 6.

4.2 � Sensitivity detection

As discussed above, in order to automate the sensitivity 
detection of the systems and to keep the automated meas-
urements simple for a complex machining process such as 
turning, it has been found that the SCIV method is a sub-
stantial method to be used in this research as a sensitivity 
evaluation method to tool wear. Figure 6 presents examples 
of four SCFs, two high sensitivity (Fig. 6a), and two with 
low sensitivity (Fig. 6b). SCIV is used on the normalised 
features between 0.1 and 0.9 as a relative measure of sensi-
tivity to tool wear. Figure 6b shows the result of using the 
Sudden Change In Value (SCIV) method. It can be noticed 
that the SCFs of (strain, wavelet_8) and (Fx, wavelet_3) are 
not sensitive to tool wear. Meanwhile, it is noticed that when 
utilising the Sudden Change In Value (SCIV) method, it 
indicates that both have low sensitivity as indicated manu-
ally. In addition, looking at Fig. 6a, it can be observed that 

Nose Wear

Fig. 4   An example of tool wear (nose/corner wear) during the experi-
mental work
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the SCFs of (AE_RMS, FTT_2) and (vibration, wavelet_2) 
are sensitive to tool wear with high sensitivity measure.

Therefore, the Sudden Change In Value (SCIV) method 
is an appropriate method to use as an automated detection 
method with the ASPS-T approach. In general, it is con-
cluded that the Sudden Change In Value (SCIV) method 
is a good indicator of the automated sensitivity detection. 
Figure 7 presents the ASM matrix for this particular tool 
wear test where sensitivity values are the Sudden Change 
In Value (SCIV) of the normalised values. You can notice 
that the SCFs presented in Fig. 6 are indicated in colours 
that represents the sensitivity within the Association Matrix 
(ASM) in Fig. 7. Figure 7 presents a suitable way to visual-
ise the best sensors and signal processing methods. Based 
on the ASM, the features are arranged in descending order 
so that the system number 1 is containing the features of 
maximum sensitivity as predicted by the ASPS-T approach 
as in Fig. 1, while system number 26 contains the feature 

of minimum sensitivity. The suggested number of features 
in every system, 10, is based on previous implementa-
tion of the ASPS in end milling [28]. However, any other 
number could be used based on the applications and error 
assessment.

In addition, the SCIV method indicates the same result 
when it is used as an automated sensitivity detection method 
and gives accurate result when it is applied to the massive 
data of the SCFs. Therefore, the Sudden Change In Value 
(SCIV) method is an excellent method to detect sensitiv-
ity and to keep measurement automated and simple, which 
has been well presented in the ASM matrix of Fig. 7. The 
first system which includes the most sensitive 10 features is 
shown in Table 2. The first system is found to have relative 
sensitivity (SCIV average of 0.7797) which is more than 
the average sensitivity of the second (0.7372). In addition, 
system number 26 is found to have the lowest sensitivity for 
the detection of the tool wear (0.2210); Fig. 8 presents the 

Fig. 5   Machining signals

Fig. 6   Example of two features with high sensitivity using SCIV (a) and two features with low sensitivity using SCIV (b)
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average sensitivity of the 27 suggested system (each has 10 
SCFs).

4.3 � The performance of the pattern recognition 
systems

The sensitivity of a sensory characteristics feature to detect 
tool wear in turning processes for all the tools is investi-
gated automatically using the automated Sudden Change In 
Value (SCIV) sensitivity detection method for the 8 sensors 
and 33 signal processing methods which represent the 264 
SCFs. A total of 5 tools are tested from fresh to totally worn. 
Two tools are selected arbitrarily for the training of pattern 
recognition systems, and then the full 5 tools are tested. 
In order for the ASPS-T approach to be a useful method, 
the sensory characteristics features which are assumed to 
have a higher sensitivity to tool wear should result in better 

Fig. 7   The ASM (Association 
Matrix) example of the result 
for all the SCFs for one tool 
using SCIV as a sensitivity 
measure

Table 2   First system with the SCFs sensitivity

The last line is the avarge value of the lines above

Sensory signal Signal processing 
methods

Sensitivity (SCIV)

Fy Wavelet_3 0.79668
Fy Wavelet_4 0.79635
Strain Wavelet_1 0.78646
Fx Power 0.78141
Vibration Wavelet_5 0.78058
Fy Power 0.77813
Vibration Wavelet_1 0.77648
Fy Minimum 0.77532
Fy Average 0.77365
Vibration Kurtosis 0.75149
The average value of sensitivity (SCIV) 0.7797

Fig. 8   A comparison between 
the 26 systems according to 
their sensitivity

Overall Sensi�vity of  Each of The Selected Systems 

ytivitisneS
egarevA
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identification when it is tested by a pattern recognition sys-
tem. On the other hand, the sensory characteristics features 
which are assumed to have a lower sensitivity to tool wear 
should result in poorer identification when they are tested by 
a pattern recognition system. For this purpose, two pattern 
recognitions are used to test the system as discussed above: 
Learning vector quantisation (LVQ) and novelty detection 
algorithm. The parameters used in both pattern recognitions, 
LVQ and Novelty Detection, are selected to give a practical 
response. Nevertheless, it is significant to note that neither 
pattern recognitions are optimised for this application since 
the target here is to evaluate the systems to select the most 
suitable sensor and signal processing method. The imple-
mented LVQ and novelty detection systems used in this 
research are programmed using MATLAB.

4.3.1 � Learning vector quantisation (LVQ)

The advantage of using LVQ is that it learns to clas-
sify input vectors into target classes chosen by the user. 
However, the learning rules are done according to the 
competitive layers depending on the distance between the 
input vectors and the weight and, unlike back propaga-
tion neural networks, not according to the error between 
the output and the target. Hence, there is no mechanism 
in the network to dictate whether or not any two input 
vectors belong to the same category. LVQ has an input 
layer, a competitive layer, and a linear output layer. The 
competitive layer learns to classify the input vectors to 
subclasses, while the output linear layer transforms the 
competitive subclasses into the desired target classes. The 
parameters used are a learning rate 0.05, hidden layer size 
50, training iteration 500 and bias time constant 0.99. 

The parameters are chosen in order to give a reasonable 
response. However, it is important to point out that the 
neural networks are not optimised for this application 
since the objective in this research is to compare systems 
in order to select the most appropriate sensors and signal 
processing methods. Two tools are selected arbitrarily to 
train the LVQ neural networks, and the total 5 tools are 
selected for testing. The SCFs from the 5 tools are fed 
to the neural networks for testing. Figure 9 presents the 
results of using the LVQ for detecting tool wear using 
the 10 features of system 1 which has been identified as 
the most sensitive system. In Fig. 9, the arrows show the 
maximum number of cuts for each tool (i.e. tool life) until 
complete wear or failure. The number 0 means that the 
tool is in normal condition, while the number 1 means 
that the tool is in worn condition. For example, for tool 
2, the LVQ neural networks has identified that cut/sam-
ple 27 is the start of tool failure. However, the actual 
tool failure happened at 40 cuts/samples. For tool 3, the 
maximum number of cuts is 60, and failure is identified 
at sample 59. The number of cuts/samples needed to pro-
duce a worn tool is significantly different for each tool. 
This proves that using statistical methods is not a suit-
able option. Also the system is successful in detecting 
tool wear before the end of life of the tool. The ASPS-
T approach has been found successful in detecting tool 
wear. However, for tool 2, there has been early warning 
regarding the end of its life. When examining the signals, 
it has been found that there is less stability on the nature 
of the signal for tool 2. In addition, when examining the 
insert, this explains the early warning. In some cases, 
unexpected wear or tool breakage does occur. However, 
the subsequent machining cuts could re-sharpen the tool 

Fig. 9   The result of the LVQ to 
detect tool wear (tools 1–5) for 
high sensitivity SCFs (system 1)
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and extend its life for a specific period before total failure. 
Because this approach presented in this work uses the 
‘black box’ concept (i.e. looking at the process signals 
and outputs without studying the intermediate tool condi-
tions), it is difficult to confirm the conditions of the tool 
at every stage of the process.

Looking at Fig. 9, it can be noticed that system 1 with 
high sensitivity levels produce high-level identification 
of tool wear. It also produces prognosis of nd of life just 
before the complete wear or damage (i.e. the two spikes 
of the signal). Therefore, the ASPS-T approach is found 
very useful in predicting the behaviour of condition moni-
toring systems when using system 1 with high sensitiv-
ity SCFa using SCIV as a sensitivity measure. Figure 10 
presents system 26, the system with low sensitivity val-
ues as suggested by the method. You can observe in this 
case the false warning during the normal operation of the 
tool. This indicates that the proposed ASPS-T method is 
capable to identify the most suitable sensors and signal 
processing methods for the design of the condition moni-
toring system.

4.3.2 � Novelty detection

Novelty detection is used in this work as a self-learning 
approach to characterise the ‘fresh’ or normal state of the 
cutter. Novelty detection is a classification technique that 
recognises the presented data as novel (i.e. new) or non-
novel (i.e. normal). The SCFs of all the 5 tools are then 
fed into a novelty detection algorithm to investigate the 
capability of the ASPS-T approach and the complete moni-
toring system. NETLAB software is used for the imple-
mentation of the novelty detection. The response of the 

Gaussian kernels φj is defined by a covariance matrix (a 
spherical matrix in this case) and a centre (i.e. the centroid 
of the input clusters). A single variance parameter for each 
Gaussian component is calculated using 6 centres in the 
mixture which has been found to be a suitable structure 
that gives a relatively quick learning process and consist-
ent results. Figure 11 shows the novelty detection result 
for the 5 tools. The novelty detection has been found suc-
cessful. However, for tool 2, it can be seen that there is an 
early warning before tool wear detected. By comparing 
this with the results from the LVQ and SCFs of tool 2, it 
can be seen that both systems show same detections. This 
proves that the utilisation of the SCIV automated method 
in ASPS-T approach is successful regardless of the AI 
technique used. By selecting a suitable threshold value for 
the novelty detection, the success of the novelty detection 
algorithms is found to be 100%. Moreover, the threshold 
value could be selected for efficient wear prediction before 
the actual tool wear occurs. Figure 12 shows the novelty 
detection for system 26 with low sensitivity features. We 
can notice in this case the high levels of error in predicting 
the conditions of the tools.

4.4 � System evaluation and cost analysis

The ASPS-T approach can also be used to evaluate the aver-
age effectiveness of all the sensors and signal processing 
methods by averaging the rows and columns of the Associa-
tion Matrix (ASM) of Fig. 7. Figure 13 presents the average 
sensitivity of all the sensors used. We can observe that Fz 
has the least sensitivity which is expected as the direction 
of Fz is perpendicular to the motion of the tool. The highest 
two sensors are found to be strain and vibration. Also sound 

Fig. 10   The result of the LVQ 
to detect tool wear (tools 1–5) 
with low sensitivity SCFs 
(system 26)
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signals of the microphone have been found to be reasonably 
sensitive. When considering the relative cost of the sensors, 
it can be argued that the microphone will be at much lower 
cost that force signals or the acoustic emission. Hence, the 
ASPS-T can also provide further information about the cost 
analysis vs sensitivity.

Figure 14 presents the average sensitivity of the signal 
processing methods. The power of the signal and FFT1 has 
been found to be on average the most sensitive signal pro-
cessing methods. However, system 1 might not include the 
expected maximum average sensors or signal processing 
methods. As in Table 2, Fy and vibration are found the most 

Fig. 11   The result of the novelty 
detection (tools 1–5) for high 
sensitivity SCFs (system 1)

Fig. 12   The result of the novelty 
detection for tools (1–5), for low 
sensitivity SCFs (system 26)

Average Sensi�vity of the Sensory Signals

0
0.1
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Fig. 13   As values for the sensory signals
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common sensors, while power and Wavelet_1 are found to 
be the most common signal processing method.

In addition to the above, the ASM of Fig.  7 can be 
employed to evaluate and compare the sensitivity of the 
monitoring system compared with other similar moni-
toring systems, using the sensitivity values as a relative 
comparison.

5 � Conclusion

This paper has indicated the full capability of the proposed 
ASPS-T approach which is implemented to design an effec-
tive system to monitor tool wear in turning processes. The 
presented work has included using a lathe machine to detect 
wear in cutting tools when machining stainless steel work-
piece. A wide range of sensor (i.e. vibration, dynamometer, 
sound, strain and AE) and signal processing method applica-
tions has been presented to evaluate the proposed approach 
for turning processes. Based on the novel Sudden Change 
In Value (SCIV) analysis, the Associate Matrix (ASM) is 
constructed of the sensory characteristic features (SCFs) to 
choose the most sensitive sensory characteristic features to 
detect tool wear. Neural networks (LVQ) and novelty detec-
tion algorithm have been used as artificial intelligence (AI) 
and decision-making techniques. The results of the LVQ neu-
ral networks and novelty detection algorithm have proven 
that high sensitivity means better information and low sensi-
tivity means worse information for the AI system. In general, 
the behaviour of LVQ neural networks and novelty detection 
has shown similar results for the tested cutting tools for wear 
for both high and low sensitivity. The results prove that the 
combination of sensitive sensory characteristic features and 
both of AI methods have been successful for the detection 
and prediction of the tool wear in turning process and show 
the capability of the proposed approach to reduce the com-
plexity of the design of condition monitoring systems and the 
development of a sensor fusion system using a self-learning 
method.
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