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Abstract
Surface defects are a common issue that affects product quality in the industrial manufacturing process. Many companies 
put a lot of effort into developing automated inspection systems to handle this issue. In this work, we propose a novel deep 
learning–based surface defect inspection system called the forceful steel defect detector (FDD), especially for steel surface 
defect detection. Our model adopts the state-of-the-art cascade R-CNN as the baseline architecture and improves it with 
the deformable convolution and the deformable RoI pooling to adapt to the geometric shape of defects. Besides, our model 
adopts the guided anchoring region proposal to generate bounding boxes with higher accuracies. Moreover, to enrich the 
point of view of input images, we propose the random scaling and the ultimate scaling techniques in the training and infer-
ence process, respectively. The experimental studies on the Severstal steel dataset, NEU steel dataset, and DAGM dataset 
demonstrate that our proposed model effectively improved the detection accuracy in terms of the average recall (AR) and the 
mean average precision (mAP) compared to state-of-the-art defect detection methods. We expect our innovation to accelerate 
the automation of industrial manufacturing process by increasing the productivity and by sustaining high product qualities.

Keywords Steel defect detection · Deformable convolution · Deformable RoI pooling · Feature pyramid network · Guided 
anchoring · Region proposal network

1 Introduction

Industrial surface defect detection is a critical step to ensure 
product quality. In order to relieve inspectors of laborious 
work and improve the consistency of inspection, much effort 
has been dedicated to automating the inspection process 
using computer vision approaches over the past decades 
[1–3]. However, conventional computer vision approaches 
have been limited in their effectiveness due to varying illu-
mination conditions and similarities between the surface 
textures and defects. Recently, Industry 4.0 has become a 
popular notion to achieve the goal of intelligent manufactur-
ing [4], wherein manufacturing technologies will shift from 
automatic to “smart manufacturing.” The main goal is to 
achieve the best performance and highest efficiency in the 
production process.

Nowadays, with the rising popularity of deep learning 
techniques for visual recognition, deep learning–based 
defect detection has been extensively applied to surface 
defect inspection systems [5–12].

There are three categories of deep learning–based defect 
inspection systems, which are based on classification, object 
detection, and object segmentation. Classification-based defect 
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inspection systems [13–21] categorize an input image as defect 
or non-defect and calculate the class probability using stacks of 
convolutional neural networks. This approach is simple, but it 
cannot localize defects. To localize various defects in an input 
image, object detection–based defect inspection systems called 
defect detectors were developed [5, 7, 11, 22, 23]. Based on 
this approach, defect locations can be predicted as bounding 
boxes, along with defect class labels and confidence scores. 
There are two types of object detection–based defect detec-
tors [24]. The first is a one-stage method [12, 25–31], which 
simultaneously detects and localizes defects. This method 
achieves a fast inference speed at the cost of lower precision. 
The second is a two-stage method [7, 12, 32–34]. It first gen-
erates region proposals for possible defect locations; then, 
the region proposals are passed along a pipeline for defect 
classification and bounding-box regression. Such a method 
is slower, but it reaches higher detection accuracy. Besides, 
segmentation-based defect inspection systems [6, 12, 35] were 
also developed, which identify the shape of defects by using a 
pixel-wise mask. This technique provides a far more granular 
understanding of the defects in an image. However, the infer-
ence speed is much slower than that of object detection–based 
methods because it requires pixel-level defect and non-defect 
predictions. According to the above discussion, object detec-
tion–based defect detection offers a better trade-off between 
accuracy and complexity; hence, it is more suitable for indus-
trial applications.

In this paper, we propose a novel object detection–based 
defect detection system, called the “forceful defect detector” 
(FDD). Moreover, the proposed FDD begins with enriching 
the point-of-view of input images. We propose a data pre-
processing pipeline which involves a random scaling scheme 
[36] in the training stage and the ultimate scaling technique in 
the inference stage. Next, we adopted Cascade RCNN [32] as 
the object detection network and enhanced it with deformable 
operation and guided anchoring region proposal network (GA-
RPN) [37]. Finally, our experimental studies show that the 
proposed method achieves higher defect detection accuracy on 
famous defect datasets [7, 12, 38] compared to existing models 
and maintains a processing speed which meets the standard 
for steel surface inspection systems [39, 40]. The remaining 
of this paper is organized as follows. Section 2 presents the 
related works on defect detection. In Section 3, we elaborate 
on the proposed FDD in detail. In Section 4, the effectiveness 
of the proposed method is demonstrated through experimental 
studies. Section 5 concludes the paper.

2  Related works

Object detection–based defect inspection systems locate the 
defective area in an image by generating bounding boxes. 
State-of-the-art one-stage object detectors are you only look 

once (YOLO) family and transformer networks. For exam-
ple, YOLOv4 [26] improves on the classical YOLOv3 [41] 
by selecting suitable components to enhance the detection 
performance, such as Mosaic data augmentation, CSPDark-
net53 [42] with the spatial pyramid pooling (SPP) block 
[43] as the backbone, PANet [44] path-aggregation neck, 
followed by the YOLOv3 anchor-based prediction head. 
Recently, YOLOv5 [27] improved the inference speed of 
YOLOv4, and YOLOX [28] incorporated the free anchor 
concept to improve YOLOv3’s prediction head accuracy.

Other one-stage object detection methods also improved 
YOLOv3 by incorporating new elements. For example, CP-
YOLOv3-dense [31] combined YOLOv3 with Dense Convo-
lutional Network (DenseNet) [45] to detect surface defects of 
steel strips. The model can receive multi-layer convolutional 
features output by the densely connected blocks before mak-
ing predictions, thereby enhancing feature reuse and feature 
fusion. A Lightweight End-to-End Network for Surface 
Defect Detection (LSSDN) [46] was proposed to identify 
the defects on a textured surface. This lightweight network 
comprises three major parts: The stem part quickly reduces 
the size of the feature maps, the trunk part is composed of 
three stages for multi-level feature extraction, and finally, 
YOLOv3 serves as the detection part.

Besides, RetinaNet [47] proposed the focal loss to solve 
the class imbalance problem. RetinaNet with difference 
channel attention and adaptively spatial feature fusion 
(DEA_RetinaNet) [30] improved the performance of Reti-
naNet for steel defect detection. CenterNet with dilated 
feature enhancement model, center-weight, and CIoU loss 
(DCC-CenterNet) [29] is a variant of CenterNet [48], which 
proposed a dilated feature enhancement model (DFEM) to 
enlarge the receptive field of features; thus, the network can 
effectively detect the defects of different scales.

In recent years, the transformer [49] has emerged as an 
effective architecture to explore global correlations among 
a sequence of inputs. It was successfully applied to image 
classification [50], semantic segmentation [51, 52], and 
object detection [25, 53]. The pyramid vision transformer 
(PVT) [54] combined transformer layers with the feature 
pyramid network (FPN) [55] to extract features and adopted 
the RetinaNet [47] as the detection head. The updated ver-
sion PVTv2 [25] improved PVT by adding three designs: 
overlapping patch embedding, convolutional feed-forward 
networks, and linear complexity attention layers.

In contrast to one-stage object detectors, two-stage 
object detectors can achieve a higher detection accuracy. 
Among famous two-stage object detectors, Faster R-CNN 
[56] uses the FPN as a neck between the backbone net-
work and prediction head to enable multi-scale feature 
extraction. Cascade R-CNN [32] improved upon Faster 
R-CNN by proposing iterative prediction heads with dif-
ferent IoU thresholds from small to large. This iterative 
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process uses cascade regression as a sampling procedure 
to provide good samples from one stage to another. On the 
other hand, DetectoRS [33] improved the FPN structure 
by proposing the recursive feature pyramid and switchable 
atrous convolution. This sequentially repeats the FPN pro-
cess and uses the feedback signal to improve the accuracy 
of each stage.

For defect detection, the two-stage method defect detec-
tion network (DDN) [7] proposed a multi-level feature 
fusion network (MFN) to integrate lower-level and higher-
level features to include more location details of defects. 
Defect inspection network (DIN) [34] utilized deformable 
convolution [57], balanced feature pyramid [58], and Fast 
R-CNN head [59] to accommodate steel defects with arbi-
trary shapes. Another two-stage model [60] was developed 
to handle the complicated defect detection task on steel 
surface datasets, which contain critical problems such as 
vagueness and tiny defects. Moreover, the inspection model 
proposed in [22] combined the two-stage method with an 
attention network to detect defects for solar cell electrolu-
minescence (EL) images, which is a challenging task on 
the manufacturing side due to the similarity between back-
ground and foreground features.

3  The proposed forceful defect detector

Our proposed defect inspection system, named the force-
ful defect detector (FDD), consists of a data preprocessing 
pipeline which involves a random scaling scheme for model 
training, the baseline detector, the deformable operation, 
the guided anchoring, and the ultimate scaling scheme for 
the inference stage. In general, we developed this system 
based on several reasons. First, to enrich the point-of-view 
of input images, we propose a data preprocessing pipeline 
which involves a random scaling scheme [36] in the training 
stage, randomly resizing the input image while maintaining 
its original aspect ratio. In the inference stage, we propose 
the ultimate scaling technique to scale the input image to an 
optimal size. Second, to ensure high-quality feature extrac-
tion, our proposed network begins with a 5-stage feature pyr-
amid network (FPN) [55], each stage involving the state-of-
the-art aggregated residual transformation block (ResNext) 
[61]. Third, instead of the standard convolution [62], the 
proposed system utilizes the deformable convolution [57] at 
stages 3 to 5 and deformable region of interest (RoI) pool-
ing, which are more suitable for extracting features from 
the geometric shape of the defect. Fourth, we replace the 
general region proposal network (RPN) head with the guided 
anchoring region proposal network (GA-RPN) [37] to gener-
ate more precise bounding boxes. Furthermore, this section 
will discuss the parts of the system in more detail.

3.1  Data preprocessing pipeline

As shown in Fig. 1, steel defects usually have different fea-
tures, such as various scales, directions, and shapes. To train 
a detection model robust to these features, we propose a 
data preprocessing pipeline as shown in Fig. 2. The first two 
blocks are the standard image loading and annotation. We 
followed the Pascal VOC format [63] to generate bounding 
box annotations for the datasets.

The third block in Fig. 2 is our proposed random scaling 
scheme. Our proposed random scaling method helps to train 
a more generalized model to detect defects of various scales.

As shown in Fig. 3, image resizing is widely used as one 
important technique in deep learning–based object detection. 
There are three existing image resizing methods: uniform 
scaling [64], progressive resizing [65], and sampling scaling 
[36]. The uniform scaling method shown in Fig. 3a resizes 
all the original training images into images of a single size. 
For object detection, this has often resulted in losing key 
defect features, because the network only learns the defect 
feature from one fixed size. It may result in identifying 
only small defects or large defects and ignores the others. 
Progressive resizing, on the other hand, scales up the input 
image into three different sizes. The network is trained with 
the first size and then fine-tuned with the other two different 
sizes. It has become a powerful solution to boost the object 
detection performance [36] and was recently adopted to help 
screen Covid-19 cases [66]. In contrast, the sampling scal-
ing method as shown in Fig. 3b randomly resizes the input 
images and the bounding boxes to different sizes in differ-
ent epochs during the training process. This helps in detect-
ing defects of different sizes. Meanwhile, it avoids the high 
computational complexity of progressive resizing, caused by 
using multiple scales for the same input image.

(a) (b) (c)

(d) (e) (f)

Fig. 1  As a result of defect randomness, a and d show varying scales 
and b and e show varying directions, while c and f show arbitrary 
shapes
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Inspired by the idea of sampling scaling, in the third 
block of Fig. 2, we propose a random scaling scheme, ran-
domly resizing the input image while maintaining its origi-
nal aspect ratio. For example, Fig. 4a shows that if we have 
an input image with an aspect ratio � = w ∶ h , where w and 
h are the original width and height of the image, then the 
new height h′ is randomly chosen from a set of integers as 
(1), and the new width is determined by (2).

Once we have resized the input image, the height and 
width of the bounding box in the original input image is also 
resized by the following:

where hB and wB are the original height and width of the 
bounding box, and h′

B
 and w′

B
 are the resized height and 

width of the bounding box.
The fourth block in Fig. 2 performs horizontal flipping, 

followed by padding operation in the fifth block. The sixth 
block is shift-scale-rotate, followed by the last block that 
normalizes the input image.

3.2  The baseline detector

Figure 5 shows our proposed forceful steel defect detec-
tor (FDD). We adopt the two-stage detector Cascade 
R-CNN [32] as our baseline architecture. First, the FPN 
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B
= round
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B
= round
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�
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backbone extracts and combines features of small and 
large scales, which belong to small and large defects, 
respectively.

Next, the RPN will generate proposals based on the multi-
scale feature maps generated by the FPN. An output feature 
map will show whether a defect is present in the input image 
at a particular location and its estimated size. This is done 
by placing a set of “Anchors” on the output feature map 
of the backbone network. These anchors indicate defects of 
different sizes and aspect ratios that could be present at this 
location in the form of bounding boxes.

Prior R-CNN baselines or Faster R-CNN [56] define ROIs 
as defect proposals with at least 0.5 IoU with the foreground 
bounding box. On the contrary, cascade R-CNN refines the 
proposals sequentially based on three IoU thresholds: 0.5, 
0.6, and 0.7, respectively, and generates bounding boxes and 
defect classes based on these refinements.

In Cascade R-CNN, the three successive R-CNN mod-
ules, as shown in Fig. 5, refine the proposals sequentially 
with three different IoU thresholds: 0.5, 0.6, and 0.7, respec-
tively, and generate the final predicted bounding boxes and 
defect classes.

Furthermore, we improved the baseline Cascade R-CNN 
by the following components: First, we process the original 
input image by module “M,” which represents the preprocess-
ing blocks in Fig. 1 during the training stage and represents 
the ultimate scaling scheme during the inference stage. The 
ultimate scaling scheme will be introduced in Section 3.6. 
Second, we propose a deformable feature pyramid network 
(DEF FPN) with deformable convolutions, and a deformable 
RoI pooling in three cascaded R-CNN modules instead of the 
regular RoI pooling. Third, we adopt the guided anchoring 
RPN (GA RPN) instead of the regular RPN.

Fig. 2  The proposed data preprocessing pipeline
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3.3  Deformable operations

Inspired by the deformable convolutional network (DCN) 
[57], our proposed FDD as shown in Fig.  5  adopts the 
deformable convolution in the FPN module and deform-
able RoI pooling in the cascaded R-CNN modules to aug-
ment the spatial sampling locations in the convolution and 
RoI pooling modules with additional offsets, and to learn 
the offsets without additional supervision. The original 
regular convolution operation is written in Eq. (4), where 
X denotes the input feature map, Y  denotes the output fea-
ture map, W  denotes the weights, L0 is a certain location 
inY  , and K denotes a regular sampling grid. For instance, 
K = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} defines a 3 × 3 kernel 
with a dilation rate of 1, and Ln enumerates the locations 

inK . In contrast, in deformable convolution, formulated as 
Eq. (5), the regular sampling grid K′ is augmented by offsets 
ΔLn which are generated by a sibling branch of the regular 
convolution. As shown in Fig. 6b, through deformable con-
volution, certain 2D offsets are added to the regular grid 
sampling locations in the standard convolution, which makes 
the convolution highly adaptive to the geometrical variation 
of the defect.

The process of deformable RoI pooling is similar to that 
of the deformable convolution, in which offsets are added to 
the spatial binning positions in the pooling operation. As 
shown in Eq. (6), the regular RoI pooling splits the RoI into 
s × s bins and produces an s × s feature map  (0 ≤ i, j < s) , 
where X is the input, L0 is the top-left corner location of X , 
bin(i, j) is the set of locations in the (i, j)th bin, and ni,j is the 
number of pixels in the bin. Then, the generated offsets {
ΔLi,j

|
|
|
0 ≤ i, j < s} are added to the spatial binning positions 

as in Eq.  (7) to enable the deformable RoI pooling 
operation.

3.4  Guided anchoring RPN

In defect detection problems, we need to consider the 
non-uniform distribution of defect locations and shapes. 
Therefore, we adopt region proposal via guided anchoring 
(GA) [37]. It works as follows: first, the anchor location 
prediction branch yields a probability map to predict the 
locations where the center of objects of interest are likely 
to exist [56]. This step dramatically reduces the number of 
anchors compared to the sliding-window scheme. The next 
step is to determine the shape of the object that may exist at 
each location by the anchor shape prediction branch. Fur-
thermore, an anchor-guided feature adaptation component 
transforms the feature at each individual location based 
on the underlying anchor shape, using a 3 × 3 deformable 
convolution layer. This makes the features and the anchors 
match more closely.

(4)Y
(
L0
)
=

∑

Ln∈K

W
(
Ln
)
.X(L0 + Ln).

(5)Y
(
L0
)
=

∑

Ln∈K

W
(
Ln
)
.X(L0 + Ln + ΔLn).

(6)Y(i, j) =
∑

Ln∈bin(i,j)

X
(
L0 + Ln

)

ni,j
.

(7)Y(i, j) =
∑

Ln∈bin(i,j)

X
(
L0 + Ln + ΔLi,j

)

ni,j
.

Fig. 3  a Uniform scaling; b sampling scaling

1097The International Journal of Advanced Manufacturing Technology (2023) 126:1093–1107



1 3

3.5  Loss functions

Moreover, the proposed architecture is optimized in an end-to-
end training procedure that employs the sum of the GA-RPN 
head loss Lrga and the Cascade R-CNN loss Lrcnn . More spe-
cifically, the GA-RPN loss Lrga as shown in Eq. (8) is a multi-
task loss, in which the conventional classification loss Lcls and 
regression loss Lreg are combined with the anchor localization 

loss Lloc (the loss to measure the center of the foreground) and 
the anchor shape loss Lshp (the loss to predict the best width 
and height of the anchor). The three-stage Cascade R-CNN 
loss Lrcnn as shown in Eq. (9) includes the classification loss 
Lcls1 and the regression loss Lreg1 of H1, the classification loss 
Lcls2 and the regression loss Lreg2 of H2, and the classification 
loss Lcls3 and the regression loss Lreg3 of H3. The total loss L 
as shown in Eq. (10) is the summation of Lrga and Lrcnn.

Fig. 4  The proposed a random 
scaling for training and b ulti-
mate scaling for inference
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3.6  Ultimate scaling

In the object detection task [44, 64, 67–76], multi-scale testing 
is employed in the inference stage to resize a test image into 
several scales. Each re-scaled image will go through the detec-
tion network to obtain a detection result; then, the final result 
is obtained using some voting mechanism. Although this 
method significantly increases the accuracy, it also increases 
the inference time. Instead of using such a multi-scale testing 
scheme, we propose a more efficient technique in the infer-
ence stage as shown in Fig. 4b called the “ultimate scaling.” 
After the model is trained, we apply the model to the training 

(8)Lrga = Lcls + Lreg + Lloc + Lshp.

(9)Lrcnn = Lcls1 + Lreg1 + Lcls2 + Lreg2 + Lcls3 + Lreg3.

(10)L = Lrga + Lrcnn.

set and determine the optimal size of the training images, by 
trying out all sizes within the scale range of training images, 
with a step size of 100 pixels along the height direction. The 
size that leads to the highest mAP for the training set will be 
selected as the optimal size, and all test images are resized to 
this optimal size before testing. The combination of random 
scaling in the training stage and such ultimate scaling in the 
inference stage effectively improved the detection accuracy.

4  Experimental results

4.1  Parameter configuration and datasets

Our proposed FDD is implemented in PyTorch and trained 
on a single NVIDIA GeForce RTX 2080Ti GPU. The batch 
size is 1. The initial learning rate is set at 0.001 and is 
reduced by a factor of 10 when the number of epochs reaches 
16 and 19. The total number of epochs is 40.

In this experiment, we use three well-known surface 
defect datasets. The first dataset, Severstal, is a steel defect 
dataset [38]. As shown in Fig. 7, it has 4 defect categories. 

Fig. 5  The proposed forceful defect detector network, where M is 
the preprocessing blocks in the training stage and ultimate scaling in 
the inference stage, DEF-FPN is the backbone feature pyramid net-
work with deformable convolution, GA-RPN is the guided anchoring 

region proposal network head, def pool is the deformable RoI pool-
ing, H is the R-CNN head, C is the output class label, and B is the 
output bounding box

Fig. 6  a The defect location. 
b The deformable convolution 
sampling the defect location
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According to a study in [77], class 1 is marked by yellow 
features pitted surface defects, class 2 marked by blue fea-
tures crazing defects, class 3 marked by purple features 
scratch defects, and class 4 marked by red features patch 
defects. We use 5332 images and 667 images for training and 
testing, respectively. The original labels in this dataset are 
pixel-wise annotations. To perform defect detection, we con-
verted the pixel-wise annotations into bounding box labels, 
in accordance with the Pascal VOC format [78].

The second dataset is the Northeastern University 
(NEU) surface defect dataset [7], as shown in Fig. 8. 
It contains 1800 images, belonging to six classes of 
hot-rolled steel plates: crazing, inclusion, patches, pit-
ted surface, rolled-in scales, and scratches. Following 
[7], we use 1260 images as the training set and 540 
images as the test set. To evaluate the performance of 
our proposed FDD in detecting general defects in addi-
tion to steel surface defects, we also use the synthesized 
Deutsche Arbeitsgemeinschaft für Mustererkennung 
e.V., the German chapter of the International Asso-
ciation for Pattern Recognition (DAGM) dataset [12] 
as shown in Fig. 9. A total of 150 defect images are 
included in each of the six classes for developing surface 
defect inspection systems. The miscellaneous anomalies 
in the dataset occur on a variety of statistically textured 
backgrounds, as described in [77]. Anomalies vary in 
shape and size, making it difficult to distinguish them 
from complex textures. This dataset reflects real-world 
defects, which can demonstrate the effectiveness of 
our proposed method on general defects. There are 900 

images in total, and we adopt 720 images for training 
and 180 images for testing.

4.2  Performance evaluation metrics

For each dataset, the defect detection accuracy is evalu-
ated by the average precision (AP) of each defect class, 
the mean average precision (mAP) over all classes, and 
the average recall (AR).

For a specific defect class, the precision and recall are 
first calculated according to Eqs. (11) and (12), where TP, 

Fig. 7  The Severstal defect 
dataset

(a) (b) (c)

(d) (e) (f)

Fig. 8  The NEU defect dataset. a Crazing. b Inclusion. c Patches. d 
Pitted surface. e Rolled-in scale. f Scratches
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FP, and FN represent the number of true positives, false 
positives, and false negatives of this class, respectively. 
The average precision (AP) is then computed over dif-
ferent levels of recall achieved by varying the confidence 
score threshold.

Finally, we calculate the mean of the AP across all defect 
classes, resulting in the mAP value, and calculate the mean 
of the Recall across all defect classes as the AR value.

(11)Precision =
TP

TP + FP
=

TP

all detections
,

(12)Recall =
TP

TP + FN
=

TP

all groundtruths
.

4.3  Objective performance and discussion

Table 1 shows the scaling parameters for each dataset in our 
experimental studies, which are applied to the random scal-
ing in the training stage and ultimate scaling in the inference 
stage. We set w1, h1,wn, andhn based on the image size of 
three different datasets. The original images of the Sever-
stal dataset have a high resolution: (w, h) = (1600, 256) . To 
enrich the training set resolution, we set the initial width 
and height (w1, h1) as (625, 100) , which are smaller than the 
original resolution, and set the maximum width and height 
( wn, hn ) to be the same as the original size. Therefore, the 
size of the training images varies from small to large. The 
second dataset is the NEU surface defect dataset, which has 
small width and height (200, 200). Since small resolution 
images do not have a positive impact on the detection result, 
for this dataset, the initial width and height (w1, h1) are set as 
(500, 500) and the maximum width and height ( wn, hn ) are 
set as (1200, 1200). The third dataset is DAGM for general 
defects, which has a medium resolution: the original width 
and height ( w, h) are (512, 512). For this dataset, the ini-
tial width and height ( w1, h1 ) are set as (400, 400), and the 
maximum width and height ( wn, hn ) are set as (1200, 1200). 
This range allows the network to learn from lower to higher 
resolution images.

A validation study of each component of the proposed 
FDD model was conducted on the Severstal dataset, as 
shown in Table 2. We adopt Cascade R-CNN [32] with a 
ResNet-50 backbone [79] as the baseline, which achieves 
an AR of 85.5% and an mAP of 67.5%. By adding the pro-
posed preprocessing blocks (including random scaling) and 
ultimate scaling, the AR and mAP are improved to 96.7% 
and 72.2%, respectively. This illustrates the benefit of the 
proposed random scaling operation in the training stage, 
which enhances the variation defect features. Additionally, 

(a) (b) (c)

(d) (e) (f)

Fig. 9  The DAGM defect dataset. a Class 1. b Class 2. c Class 3. d 
Class 4. e Class 5. f Class 6

Table 1  The scaling set 
parameters

Datasets w h w1 h1 w
n

h
n

Severstal 1600 256 625 100 1600 256
NEU 200 200 500 500 1200 1200
DAGM 512 512 400 400 1200 1200

Table 2  The ablation study for accuracy improvement of FDD

Models Improvement REC-1 REC-2 REC-3 REC-4 AP-1 AP-2 AP-3 AP-4 AR mAP

Cascade R-CNN Baseline Resnet50 0.802 0.850 0.878 0.891 0.608 0.714 0.684 0.696 0.855 0.675
 + Proposed preproc-

essing blocks and 
ultimate scaling

0.942 0.950 0.976 1.000 0.600 0.788 0.712 0.785 0.967 0.722

 + Deformable oper-
ation and guided 
anchoring RPN

0.953 0.950 0.973 1.000 0.703 0.746 0.833 0.852 0.969 0.783
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the ultimate scaling can be used in the testing stage to select 
the optimal size for the input image. After integrating the 
proposed deformable convolution, deformable RoI pooling, 
and guided anchoring region proposal network (GA-RPN), 
the AR and mAP further increased to 96.9% and 78.3%. 
This improved accuracy was attributable to the deform-
able operation that adapted to the geometric variation of 
the defect shape and precisely localized the bounding box 
with GA-RPN.

In Tables 3, 4 and 5, we objectively compare the per-
formance of our proposed FDD method to state-of-the-art 
methods: YOLOv4 [26], YOLOv5 [27], YOLOX [28], 
PVTv2 [25], DetectoRS [33], DDN [7], CP-YOLOv3-dense 
[31], DEA_RetinaNet [30], DIN [34], DCC-CenterNet [29], 
and Deep Reg [12]. Our proposed method outperformed 
these methods by significant margins in terms of the AR 
and mAP values.

Table 3 shows the proposed methods achieved an AR of 
96.9% and an mAP of 78.3% on top of the ResNet-50 backbone, 
thus surpassing the accuracy of YOLOv4 [26], YOLOv5 [27], 
YOLOX [28], PVTv2 [25], and DetectoRS [33].

Table 4 shows the comparison study on the NEU steel sur-
face defect dataset. The optimal test image size is chosen as 
700 × 700 during the ultimate scaling process. The DDN [7], 
DIN [34], and DCC-CenterNet [29] models run on the stand-
ard backbone (ResNet-50) and achieved an mAP of 82.3%, 
80.5%, and 79.4%, respectively. The Cascade R-CNN [32] 
also adopted the ResNet-50 backbone and achieved an AR of 
95.7% and an mAP of 79.3%. DEA_RetinaNet run on top of a 
deeper backbone ResNet-152 and achieved an mAP of 79.1%. 
On the other hand, the CP-YOLOv3-dense model [31] inte-
grated YOLOv3 with the DenseNet backbone to achieve an 
AR of 82.3% and an mAP of 76.7%. In contrast, although our 
proposed FDD is implemented with the standard ResNet-50 

Table 3  Comparison results for the Severstal dataset

Models Backbone network REC-1 REC-2 REC-3 REC-4 AP-1 AP-2 AP-3 AP-4 AR mAP

YOLOv4 [26] CSPDarknet 0.895 0.850 0.949 0.922 0.443 0.615 0.664 0.710 0.904 0.608
YOLOv5 [27] CSPDarknet 0.837 0.900 0.921 0.906 0.423 0.693 0.607 0.682 0.891 0.601
YOLOX [28] CSPDarknet 0.802 0.900 0.921 0.828 0.529 0.628 0.745 0.707 0.863 0.652
PVTv2 [25] PVTv2-B5 0.895 0.850 0.934 0.953 0.579 0.637 0.779 0.856 0.908 0.713
DetectoRS [33] Resnet-50 0.791 0.850 0.870 0.938 0.644 0.812 0.788 0.864 0.862 0.777
Cascade R-CNN [32] Resnet-50 0.802 0.850 0.878 0.891 0.608 0.714 0.684 0.696 0.855 0.675
FDD (Proposed) Resnet-50 0.953 0.950 0.973 1.000 0.703 0.746 0.833 0.852 0.969 0.783

Table 4  Comparison results for the NEU dataset

Models Backbone network AP crazing AP inclusion AP patches AP pitted_surface AP 
rolled-
in_scale

AP scratches AR mAP

DDN [7] Resnet-50 0.620 0.847 0.907 0.897 0.763 0.901 - 0.823
CP-YOLOv3-dense 

[31]
Darknet + DenseNet 0.353 0.824 0.919 0.828 0.777 0.902 0.823 0.767

DEA_RetinaNet 
[30]

Resnet-152 0.609 0.825 0.943 0.958 0.672 0.741 - 0.791

DIN [34] Resnet-50 0.614 0.856 0.930 0.903 0.646 0.833 - 0.805
DCC-CenterNet 

[29]
Resnet-50 0.457 0.851 0.900 0.825 0.707 0.958 - 0.794

Cascade R-CNN 
[32]

Resnet-50 0.492 0.871 0.906 0.885 0.686 0.904 0.957 0.793

FDD (Proposed) Resnet-50 0.622 0.890 0.924 0.880 0.749 0.937 0.997 0.834

Table 5  Comparison results for 
the DAGM dataset

Models Backbone network AP1 AP2 AP3 AP4 AP5 AP6 AR mAP

Deep Reg [12] Resnet-50 - - - - - - 0.99 0.980
Cascade R-CNN [32] Resnet-50 0.909 1.00 1.00 1.00 1.00 1.00 0.997 0.987
FDD (Proposed) Resnet-50 0.998 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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Table 6  Comparison results for run time

Metrics YOLOv4 [26] YOLOv5 [27] YOLOX [28] PVTv2 [25] DetectoRS [33] Cascade R-CNN [32] FDD (Proposed)

FPS 47.6 49.7 37.9 12.5 12 25.1 12

Fig. 10  Detection results for 
the Severstal defect dataset: a 
class 1, b class 2, c class 3, and 
d class 4

(a)

(b)

(c)

(d)
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Fig. 11  The sample detec-
tion results on the NEU defect 
dataset: a inclusion, b patches, 
c scratches, d crazing, e pitted 
surface, and f rolled-in scale

(a) (b)

(c) (d)

(e) (f)

Fig. 12  The sample detection 
results on the DAGM dataset: 
a class 1, b class 2, c class 3, d 
class 4, e class 5, and f class 6

(a) (b)

(c) (d)

(e) (f)
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backbone, it achieved the highest mAP of 83.4% and the high-
est AR of 99.7% among all methods in comparison.

With the aim to develop a widely applicable defect detection 
system, the proposed method was also tested on the DAGM 
dataset with an image size of 800 × 800 as chosen by the ulti-
mate scaling scheme. This experiment mimics a real-world 
defect detection scenario. As shown in Table 5, the segmen-
tation-based defect detection system Deep Reg [12] achieved 
an AR of 99% and an mAP of 98% on this dataset. On the 
other hand, the Cascade R-CNN [32] achieved an AR of 99.7% 
and an mAP of 98.7%. The proposed FDD achieved an AR of 
100% and an mAP of 100%, when it is implemented with the 
ResNet-50 backbone.

Moreover, in Table  6, the proposed FDD with the 
ResNet-50 backbone achieved an inference speed of 12 
frames per second (fps) on a single NVIDIA GeForce RTX 
2080Ti GPU, which is on par with that of the state-of-the-
art feature pyramid networks model DetectoRS [33] and 
also meets the criteria of steel surface inspection systems 
as explained in [39, 40], where the inference speed must be 
greater than or equal to 10 fps. Although the other existing 
methods in Table 6 achieve higher speeds, we demonstrated 
in Tables 3, 4 and 5 that they have lower detection accuracy 
than our proposed FDD.

4.4  Subjective performance and discussion

Figures 10, 11 and 12 show sample testing results to dem-
onstrate the subjective performance of the proposed FDD. 
The system shows accurately detected defects from small and 
medium to larger scales. Each image shown in Figs. 10, 11 and 
12 contains a green bounding box, which indicates the loca-
tion of the detected defect along with its predicted class label.

Figure 10 shows that our proposed model accurately 
predicts the four classes of defects in the Severstal data-
set. The defects in this dataset are quite challenging since 
they appear in varying scales. Classes 1 and 2 shown in 
Fig. 10 a and b belong to small defects, while classes 3 and 
4 shown in Fig. 10 c and d belong to larger defects. Fig-
ure 10 demonstrates that the proposed system can not only 
detect defects of various scales, but also accurately predict 
the defect locations when the defective pixels are similar to 
the background.

Figure  11 shows the detection results on the NEU 
defect dataset. This dataset is a very common dataset in 
the steel surface inspection system. Among the six classes 
of defects, the inclusion, patches, and scratches are defects 
of varying scales. On the other hand, the crazing, pitted 
surface, and rolled-in scale defects have pixels that are 
similar to background pixels.

To demonstrate that our proposed FDD model can detect 
general defects, in Fig. 12, we tested our model on the DAGM 

dataset. The results show that our model accurately localized 
six classes of defects with different textures.

5  Conclusion

In this paper, we design a new defect detection system 
called the FDD. We propose the novel concepts of random 
scaling in the data preprocessing pipeline for training 
and ultimate scaling for testing and combine them with 
an improved cascade R-CNN detector, which involves 
deformable convolution, deformable RoI pooling, and 
a guided anchoring RPN. The resulting FDD system is 
used in the defect detection field for the first time in the 
literature. The experimental results demonstrate that the 
proposed model has significantly improved the defect 
detection accuracy on steel surface defect datasets and 
a general defect dataset compared to existing methods, 
while maintaining the processing speed criteria required 
for steel surface inspection systems. In further work, we 
will extend our network structure to a more generalized 
defect detector.
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