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Abstract
Conventional means of producing material via metal casting have long been used for centuries. In spite of its advantages 
in producing durable parts with lower cost implications and the accommodation of large part production, this conventional 
approach is still characterized by the challenges of high lead time in patterns production, poor surface finish, and the need for 
secondary manufacturing operations, which always leads to material loss. Hence, the introduction of additive manufacturing 
(AM) to metal casting process has been immensely recognized because of its huge advantages in negating some of the chal-
lenges encountered in the conventional route. However, the inconsistency in the material properties (such as density, strength, 
elastic modulus, dimensional accuracies, surface finish), produced by one of the AM techniques (rapid sand casting), has not 
been yielding optimum results to be applied in high-tech application like aerospace and automotive industries. Furthermore, 
this technique lacks efficient qualification and certification, which contributes to their disadvantages. This review focuses 
on the challenges and recent progress in producing parts from rapid sand moulds and cores via binder jetting (BJ), as well 
as the need to incorporate efficient qualification and certification in the future production of parts from rapid sand casting.
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1 Introduction

Additive manufacturing (AM), which is also regarded as 3D 
printing, direct digital manufacturing, or rapid prototyping, 
has been developed and studied for more than 20 years [1, 
2]. AM develops 3D components through the introduction 
of layer-by-layer materials directly from computer-aided 
design (CAD) models. This minimizes material wastage and 
provides higher benefits for part building with material and 
geometric difficulties that cannot be fabricated by subtractive 

manufacturing methods [3–5]. This technique is a modern 
and quickly developing technology that is evolving in its 
uses worldwide and is engaged in building physical items 
from scratch via the addition of geometrical representation. 
These print techniques are maximally applied in mass modi-
fication and develop various parts of the open-source design 
in health, aviation, agriculture, locomotives, and automo-
tive [6–8]. In proffering solutions for many challenges in 
material development, 3D printing has stood at the leading 
edge. This technology has created a platform for developing 
a whole gadget fabrication system. [9–13].

American Society for Testing and Materials (ASTM) for-
mally categorized fabrication via 3D technique as a group 
of seven diverse techniques, each with distinctive features 
to perform some specific development. These techniques 
include binder jetting, powder bed fusion, stereolithogra-
phy, vat polymerization, directed energy deposition, mate-
rial extrusion, selective laser sintering, and sheet lamination. 
They differ across many parameters from the components 
being applied to the procedure and mode of object printing 
[14–16]. Some of these techniques apply materials in pow-
der form, while others apply them in another mode, like thin 
wires. The individual technique has certain uses with their 
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disadvantages. Various common AM techniques use a heat 
source to combine raw materials to develop the components. 
Some use light to produce a liquid crosslink constructively. 
Comparatively, the particles are glued layer by layer when 
binder jetting is applied to create the geometry; hence, dur-
ing this fabrication, no heat is needed. Also, temporarily, 
the unbound powder maintains the material fragments to be 
unconnected, which permits interior volumes to be made; 
hence, materials’ waste is noticeably minimized. Materials 
being applied in 3D production are spread across a huge 
spectrum, extending from metals to polymers to different 
materials like ceramics, thermoplastics, and graphene-
based materials. The component being applied should be 
judiciously selected and applied as it directly influences the 
performance, quality, and properties of the fabricated com-
ponents [15, 17–19].

3D printing technique manufactures very precise objects 
with less effort and time, hence making the technique to be 
resourceful for application in most sectors and industries. AM 
printing can enhance production techniques and transform 
industries. This implementation increases production speed 
while minimizing expenses. The utilization of 3D printing 
development in the assembly industry has various chal-
lenges. For instance, the use of 3D manufacturing techniques 
decreases the physical labour or work input into the fabri-
cation method, and this consequently has a negative effect 
on some nation’s economies that rely on a large quantity of 
low-ability jobs [20, 21]. This technique permits users the 
liability to manufacture a huge different object; also, it gives 
high prospects for the new industry to minimize material fab-
rication time and enhance their affordability worldwide. AM 
is an economical technique for complex–shapes or smaller 
collections of parts, which are difficult to be fabricated via 
subtractive methods. AM is developing very fast in applica-
tions; various fields have used AM in rapid tool development 
[22, 23], biomedical engineering [24], mechanical engineer-
ing [25–28], etc. With the innovation of AM technique, its 
uses have changed from manufacturing prototypes for design 
verification to manufacturing the final functional material. 
Presently, direct manufacturing of multi-faceted consumer 
components has emerged as the major development of AM 
technology [29, 30]. One of the techniques under AM, which 
has evolved in recent times, is rapid sand casting (RSC).

RSC applies AM procedure to hasten the production of 
sand cores and moulds in contrast to the conventional tech-
niques. The use of binder jetting in RSC supports the deposi-
tion of sand and binders, layer by layer on the build platform 
with the aid of recoater and the inkjet head, respectively, 
aimed at developing the inputted design model. The binder 
glues the sand together, after some curing or sintering at cer-
tain parameter. Despite the importance of RSC, their incon-
sistency or variability in properties, as well as the absence 
of efficient qualification and certification for these products, 

has limited their cognizance in high-tech application. The 
inconsistency or variability in the properties for RSC product 
has been observed in the sand cores and moulds production 
after two or three batches. The properties of the successive 
products diminish with respect to the designed model.

This review focuses on the challenges and recent progress 
in the production of rapid sand moulds and cores via BJ, with 
more emphasis on property consistency, dimensional accu-
racy, surface finish, and other important features, as well as 
the need to incorporate efficient qualification and certification 
in the future production of parts from rapid sand casting.

1.1  RSC

This is also regarded as three-dimensional sand printing 
(3DSP), which is a typical AM techniques that directly 
manufactures sand cores and moulds. This manufacturing 
technique allows quick fabrication of castings using sand. 
RSC can manufacture small to large volumes and fabricate 
sand parts for particular metal casting [31–33].

There are diverse AM techniques that are available to 
manufacture sand cores and moulds, one of them being 
binder jetting. This sand part fabrication technique has 
received a high industrial application. RSC comprises an 
advanced binder jetting system, which involves a liquid 
binder that is successively deposited on the sand, layer by 
layer, and pre-coated with a liquid catalyst. The recognized 
3D model techniques for producing sand cores and moulds 
are ExOne and Voxeljet machines [31, 34–36].

The RSC is a self-hardening technique established on 
organic binders and inorganic resins, such as alkaline phe-
nolic and furan resin-bonded sand systems [37–40]. Chemi-
cally bonded sand is generally applied in casting because 
its casting products have superior dimensional accuracy 
and mechanical properties. However, alkaline phenolic 
and furan resin mechanisms are appropriate for RSC, and 
the furan mechanism has been hugely applied compared to 
alkaline phenolic mechanism. The furan mechanism com-
prises furfuryl alcohol (FA) and acidic activator (sulphonic 
acid), which provide 3D polymer chains via acid solidifying 
reactions, polymerization, and establishment. The polymer 
chain system (H-C bonds) is discovered in furan-bonded 
sand, which is the cause behind the cohesive strength of the 
sand particles [39, 41, 42]. This mechanism now develops 
solid 3D objects such as cores and moulds. For the sand 
particles to sustain their reliability when in contact with 
the molten metal, cohesive strength is needed. The reaction 
between the sulphonic acid and the furan produces a build-
up reaction that delivers water. Contrastingly, dehydration 
happens, which is more inclined to hinder the pace-setting 
and thus impact the moulds and cores’ mechanical features 
[35, 43–45].
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A typical binder jetting (Fig. 1) applied in 3DP technique 
is a Voxeljet furan-based printer fortified with a recoater that 
spreads a slice or fine layer of acid-mixed sand on the print-
ing board. Subsequently, the other machine component which 
deposits a resin binder on a specific cross-sectional area is 
the print head. For a fresh material layer, the build platform 
for the design printing will then be lowered. Then, one layer 
at a time, these approaches are interruptedly repeated until 
a solid 3D component is developed from multiple bonded 
material layers. The chemical reaction between the catalyst 
and the binder starts to occur within the area where the sand 
layer is wet by the binder. The additional process of oven cur-
ing at a certain temperature is accompanied to attain the sand 
particle cohesion [43, 46]. The stages involved in producing 
RSC moulds and cores are depicted in Fig. 2.

1.2  Importance of RSC

The introduction of a rapid manufacturing system has ini-
tiated foundries to apply this technique because it offers 
substantial benefits. Casting models, for example, were 
fabricated by AM and used to manufacture castings. Cast-
ing models were similarly produced via the high-speed 
milling method [31, 48]. A vital improvement in AM was 
the automatic development of the core and mould in a 
single period. For instance, investment casting has been 
advanced because of AM, wholly to patterns production 
made of wax, which is further immersed in plaster or 
refractory slurry to manufacture a solidified cylindrical 
part encompassing a mould chamber. Recently, materi-
als can be quickly produced without using plaster or shell 
mould [49–51]. Also, RSC, a category of rapid manufac-
turing system, has begun to be used to produce sand cores 

Fig. 1  A typical diagram of a 3D sand core and mould printing [47]

Fig. 2  An overview of the stages in producing RSC of mould and 
cores
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and moulds (Fig. 3) instead of the conventional method 
of making patterns. This system of rapid manufacturing 
always minimizes lead time for part production.

RSC subdues the common challenges experienced in 
the conventional fabricating method. The comparison 
between the conventional technique and RSC technique 
is shown in Fig. 4, depicting the comparative advantage 
of RSC in the production of cores and moulds [52–55].

RSC produces the following advantages:

• Adaptable development, low-volume, and cost-effective
• Minimized fabrication time and expenses
• It has the capability to immensely enhance the properties 

of components

• It has the ability to make designs that have complex 
geometries that are suited for a specific application

• It minimizes environmental influence
• It minimizes the need for expensive tools

1.3  Qualification and certification of rapid sand 
casting

Qualification and certification are important phases for 
fabrication popularization, verification, inspection, and 
product evaluation. Qualification is a procedure of exam-
ining a design template, a component, and the product 
during production. Things to be evaluated or qualified 
can be materials, machines, techniques, and parts of the 

Fig. 3  The application of RSC 
in developing sand cores and 
moulds

Fig. 4  Conventional technique 
compared with rapid sand cast-
ing technique
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suppliers [56–59]. Certification is mainly introduced for 
product approval by a certification organization or author-
ity. Things to be certified can be components, parts, equip-
ment, systems, or the evaluating techniques for a mate-
rial or component or product during or at the concluding 
establishment/production stages. In most circumstances, 
certification and qualification can be interchanged because 
the two evaluation strategy aims to satisfy specific neces-
sities [60–64]. Qualification concentrates on whether the 
component is designed or produced in respect to indus-
trial requirements, while certification focuses largely on 
the contentment of deliverables (products) by the required 
authority. Certification and qualification have three pillars, 
and they are standards, rules, and regulations. Standards 
are intended to fulfil diverse necessities from consumer 
groups, industries, and trading system globally. Some 
organizations are establishing metal AM standards that 
encompass parts, techniques, post-techniques, and inspec-
tions. These organizations comprise the ASTM Interna-
tional, Aerospace Materials Society (AMS), Society of 
Automotive Engineers (SAE), International Organization 
for Standardization (ISO), American Society of Mechani-
cal Engineers (ASME), and American Welding Society 
(AWS). The establishment of AM standards gives indus-
tries some guidelines for strong communication, robust 
manufacturing, easy trade, accurate measurement, and 
mutual understanding [65–68].

Rules can be defined as industrial practices or guide-
lines, while regulations denote the statutes or directives 
imposed by the law. Both are governed by international 
organization standards, and they are established to ful-
fil technical, regulatory, and safety necessities in specific 
areas. For instance, aviation license like the European 
Aviation Safety Agency (EASA) and Federal Aviation 
Administration (FAA) established their rules and regula-
tions in the aerospace industry for metal AM. Owing to the 
aerospace products’ complexity and specificity, their certi-
fication and qualification systems may not be used by other 
industries. Hence, some commercial administrations that 
include Bureau Veritas (BV), Det Norske Veritas (DNV), 
Underwriters Laboratories (UL), American Bureau of 
Shipping (ABS), Technischer Überwachungsverein (TÜV 
SÜD), and Lloyd’s Register (LR) have been operating on 
developing particular standards, rules, and regulations for 
establishing metal AM [63, 69–73].

There are some voids in qualification and certification 
for rapid sand casting, like ‘standards’ which can sustain 
the certifying and qualifying criteria for a different mecha-
nism. In contrast to conventional manufacturing techniques, 
the generally accepted procedures for examining defects in 
products from RSC (for instance, non-destructive testing for 
porosity and cracks) have not been produced. Specifically, 
some complexity in metallurgical techniques in RSC has 

made it hard to develop standards in a universal and system-
atic form. Thus, limiting this route (RSC) to be employed in 
producing some sophisticated parts in vital industries.

2  Challenges of rapid sand casting

For high-tech applications such as aerospace, biomedical, 
and automotive, the application of RSC in these fields has 
been limited because of the quality and property inconsist-
ency or variability of the parts produced from this technique. 
The inconsistency or variability in this technique has been 
observed in the sand core and mould production after two or 
three batches, where the properties of the successive prod-
ucts diminish with respect to the designed model. Also, the 
lack of efficient qualification and certification as well as the 
lack of in-depth procedures for which RSC must undergo 
for it to be prominently used has created some devoid of 
reliability and trust in the parts produced.

The inconsistency in the parts’ quality and properties are 
density, bearing capacity, strength, elastic modulus, dimen-
sional accuracies, and surface finish (roughness). These 
challenges are a consequence of certain parameters (such 
as curing temperature and time, binders, shell mould thick-
ness, and shapes). The lack of in-depth processes of these 
parameters has brought some limitations to this technique.

2.1  The influence of some process parameters 
on the properties of rapid sand casting moulds 
and cores as well as on the cast material

The repetitive use of RSC materials (cores and moulds) for 
a long time often results in the decline of the dimensional 
accuracy, density, surface finish, strength, hardness, etc., of 
the parts fabricated from them. The parameters responsible 
for the inconsistency or variability in properties are the type 
of binder, sand, curing temperature and time, the type of 
materials for the casting, etc., [40, 74, 75]. The following 
sections will highlight and elaborate on how the parameters 
mentioned above influence the properties of RSC.

2.1.1  The influence of binder on the printed moulds 
and cores as well as on the cast material

Various activators, binders, and sand mechanisms are applied 
to fabricate 3D-printed sand cores and moulds needed for 
many types of alloy casting [76–78]. The organic binder 
often applied for 3D printing can initiate harmful gases in 
casting, which are not ecologically friendly, although they 
help the industry better in respect to the casting. Likewise, 
it has been discovered that furan initiates a health danger to 
machinists because of its carcinogen. Hence, it is important 
to search for alternative binders. The available binder in the 
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market for 3D sand core and mould printing is a silicate 
binder with low gas emission, but this binder requires further 
study. The features of sand cores and moulds fabricated via 
the 3D printers can be influenced by diverse conditions dur-
ing the printing/curing cycle. These features can be affected 
by the sand properties, the type of binder, concentration of 
binder, type of printing speed and activator, building orienta-
tion of sample printed and job-box co-ordinate, and locker 
thickness [79–82]. It has been discovered that reducing the 
layer thickness and improving saturation enhances the ten-
sile strength and decreases the surface quality of moulds or 
cores [83–87].

Huge differences in the physical features of 3DP sand 
moulds bonded with resin have been encountered by found-
ries. The features such as permeability and three-point bend-
ing (3 PB) strength of 3DP resin-bonded sand moulds rely 
on specific parameters like binder and moisture content. 
Generally, higher binder compositions in the sand moulds 
often produce enhanced mechanical strength, although it 
consequently evolves more gas during the metal casting. 
Likewise, a huge quantity of binder allows the 3DP sand 
mould highly rigid hence inhibiting efficient expansion 
and prompting hot tearing defects and elevated residual 
stresses. In comparison, lesser binder quantity minimizes 
the off-gassing, although it negatively affects the mechani-
cal strength, which causes molten metal penetration into the 
interstices of the large inter-sand; thus, bloated rough sur-
faces are developed on the casting. Contrastingly, the mould 
filling techniques need some measures in air evacuation from 
the mould cavity because there is often gas compression 
induced the melting. The melt can capture gases and air in 
the mould cavity, aided by turbulent filling. Therefore, it is 
important to remove the gas effectively to achieve a com-
plete casting component with minimal defects [84, 88–90]. 
Owing to these facts, the achievement of this modern tech-
nique is highly accustomed via the establishment of enough 
permeable sand moulds with suitable mechanical strength 
for their operation. As a result of the immense demand for 
high mechanical strength and dimensional precision of the 

cast components, 3DP furan bonded resin sand is hugely 
applied in casting. The furan binder (FB) is comprised of 
furfuryl alcohol and acid catalyst (toluene sulfonic acid) that 
establishes a 3-D polymer chain system (furan resin bridges) 
via polymerization, acid-hardening reaction, and conden-
sation. It has been discovered that the polymer bridges in 
furan-bonded resin sand mould give additional strength and 
cohesion to the silica sand particles, which is important to 
maintain the 3D-printed sand-shaped moulds when in con-
nection with the melt. The reaction from the condensation 
of furan binder gives water (dehydration); this inclines to 
lower the curing rate and thus influences the permeability 
and strength of the moulds [34, 79, 91].

Snelling et al. [92] differentiated the binder burnout fea-
tures and the strength of the ExOne™ furan resin with a 
sulphonic acid catalyst system (3D printed) with selected 
available binder and sand as well as their strength. In assess-
ing the binder burnout, the materials were set to curing 
cycles of  105–900 °C. It was discovered that the ExOne™ 
printed materials possessed an optimum strength of 1.3 MPa 
because they were well-distributed binder and sand. The 
printed samples also sustained their shape to greater tem-
perature burnout of 450 °C. It was discovered that the 3D 
printed mechanism performed more excellently than the con-
ventionally arranged sand mould using phenolic acid and 
furan resin system. The research revealed that the printed 
moulds are higher in quality than traditional fabricated 
moulds and possess lesser and exact well-regulated binder 
constituents, which brings about gas build-up minimization 
and thus enhanced casting.

Mita et al. [93] researched the impacts of binder com-
position on the mechanical strength and permeability of 
3DP sand moulds at varying parameters. With regard to 
distinguishing between the pores, the sand particles, and 
the furan resin bridges, the SEM images of the samples 
(Fig. 5) depict the furan resin bridge’s formation within 
the 3D-printed sample cross-section. In determining the 
impacts of the inertia pressure, the local permeability of 
3DP samples was assessed as a dependency on the injection 

Fig. 5  SEM image of the 3DP 
sample — zoom (a and b) 
depicting the resin bridges [93]
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flow rate. The printed moulds’ mechanical strengths were 
discovered to be highly reliant on the curing system and the 
amount of binder. For all the binder compositions, the three-
point bending (3 PB) strength was detected to improve when 
cured at 100 °C and declined at 200 °C (Fig. 6). Hence, 
the optimum strength of 3 PB was achieved when cured at 
100 °C for all the binder compositions. However, the amount 
of binder within the functional binder range mass fraction 
(1.02–1.98%) was observed not to significantly influence 
the samples’ initial permeability before curing. Optimum 
permeability was achieved at similar parameters as the 3 PB 
strength. Thus, indicating that the samples’ mechanical 
strength can be improved within the examined binder range 
constituents without producing any decline in permeability.

Kafara et al. [94] examined the effect of binder quality on 
resilience and dimensional accuracy in 3D printing. Five dif-
ferent categories of samples were printed with binder con-
tents equivalent to 40%, 55%, 70%, 85%, and 100%, respec-
tively. Depending on the binder content, the printed samples’ 

bending strength is depicted in Fig. 7a. It was discovered that 
the printed samples’ bending strength improves almost line-
arly in a researched area with increasing binder quantities. The 
amount of binder effect on the compressive strength is revealed 
in Fig. 7b. The samples’ compressive strength rises almost 
linearly with an increasing amount of binder (40%, 55%, and 
70%). In contrast, a lower compressive strength was achieved 
for the samples with 85% and 100% amount of binders. Simi-
larly, the results of examined samples with the two amounts 
of binders show a huge deviation among the samples with a 
similar quantity of binder. This is because with the increas-
ing amount of binder, the samples’ surface loaded during the 
experiment decreases (Fig. 8). Thus, this revealed that with an 
increasing amount of binders in a sample, there is declination 
in the dimensional accuracy [85, 95]. It is consequently pro-
jected that with the evaluated outcomes for the binder satura-
tion, there is no reflection of 85% and 100% of the binder. Most 
likely, binder saturation has the same effect on the compressive 
strength as similarly detected on the bending strength.

Fig. 6  The curing time effect on 
3 PB strength [93]

Fig. 7  The samples’ a bending 
strength and b compressive 
strength — depending on their 
binder quantity [94]
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Khandelwal and Ravi [96] investigated the impact of binder 
quantities on the features and shrinkage of moulds and cores 
fabricated via a three-part binder system (resin, catalyst, and 
crosslinking agent). It was found that the rise in the quantity of 
resin (of approximately 2.4% of the sand weight) produces an 
increased core shrinkage of about 0.15% in length. A rise in 
the quantity of catalyst (with the quantity of resin unchanged) 
depicted a similar total shrinkage degree; however, the initial 
shrinkage rate increased (during the first 3 h after curing). 
Additional assessment via hardness test, weight measure-
ment, and SEM provides details on the shrinkage system. The 
bridges which were developed during the resin polymerization 
reaction occur between compacted sand particles in the mould 
(Fig. 9). The bridge’s shortening, which consequently led to 
core shrinkage, was prompted by the gradual evaporation of 
the solvent existing in the resin bridges. This was vindicated 
via weight reduction measurements (Fig. 10) comprising 
only a chemical mixture (deficient of sand). Another impor-
tant assessment is that the catalyst with a higher percentage 
yields rapid curing and thus a greater core shrinkage rate. 
This observation was buttressed by hardness measurement 
(Fig. 11) and weight reduction tests.

Ramakrishnan et al. [97] examined the mechanism of 
an organic binder for sand mould printing by Voxeljet 3D 
printer, which was first established for developing polymer 
powders. The binder-dehydrate sodium silicate powder was 
mixed with quartz sand, and the fluid for printing contained 
thickened water, which is capable of liquefying the sodium 
silicate (deposited via the printing head). Changing two 
factors, such as heat input and the concentration of binder 
ratio to fluid printing, can all be used to examine the effect of 
strength and fluid migration of the printed samples. Hence, 
by heating the sample while printing or by decreasing the 
input fluid to the sand binder mechanism, the fluid migration 
can be decreased. The average peak strength of 5.65 N/
mm2 was attained when the fluid migration was increased. 
However, it declined to 4.14 N/mm2 during printing when 
the heat was used. It is being observed that the printed 
components that can resist higher mechanical weight can 
produce smaller dimensional tolerances between thin walls 
because of sand adhesion.

Fig. 8  The test of a sample’s compressive strength with 100% amount 
of binder [94]

Fig. 9  SEM depicting resin 
bridges between the sand 
grains [96]

Fig. 10  Weight reduction with different quantities of catalyst (resin 
percentage) [96]
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2.1.2  The influence of curing parameters (temperature 
and time) on the printed moulds and cores as well 
as on the cast material

Curing is a chemical reaction technique (such as polymeriza-
tion) or physical action (like evaporation), producing a tougher, 
harder, or more firm substance (like concrete) or linkage (like 
an adhesive bond). In some curing techniques, there may be the 
need to sustain the procedure for specific humidity and tempera-
ture level; others may be specific time and pressure [99–101]. 
Cure monitoring techniques provide an important understanding 
of the chemical system and describe procedural actions to attain 
a certain quality of the cured component. Curing may entail 
any technique where heat application is engaged to initiate or 
catalyse molecular-level and chemical structural modification 
in a polymeric substance like silicones, epoxies, polyesters, and 
phenolics. These substances are used in various routes to many 
products for insulation, sealing, protective coating, bonding, 
and other applications. Also, curing with efficient parameters 
provides enhanced mechanical properties, ensures material dura-
bility, inhibits cracking in material, and minimizes permeability 
[96, 102, 103].

McKenna et al. [104] examined the impacts of curing 
time and temperature on the mechanical features, especially 
the sand moulds’ permeability and strength. These were 
fabricated using Zb56 resin binder mechanism with ZCast 
501 powder. The temperature and curing time were altered 
between 150 and 250 °C and 4–8 h, respectively. These were 
applied to characterize the combined and individual influ-
ence of these conditions on the printed mould’s permeability 
and compressive strength. A linear regression model with 
a 99% confidence level was attained when the statistical 
design of the experiment was utilized. It was established 

that as a result of the volatile escape of components, the 
permeability rises with the curing time. Prolonged heating 
could have initiated embrittlement of gypsum plaster and 
low melting temperature fusion phases, causing decreased 
compressive strength and permeability, respectively. The 
research excluded the other features of the produced cores 
and moulds like cohesiveness, refractoriness, and collaps-
ibility; the study ignited the curiosity to further establish 
the understanding for the correct uses of the technique to 
produce quality castings from the moulds and cores. Prim-
kulov et al. [98] examined the impacts of curing temperature 
on strength samples of sand-based rock and furfuryl alcohol 
resin. It was discovered that the composite material’s com-
pressive strength (equivalent to 19.0 MPa) got enhanced at 
the optimum temperature of 80 °C, and beyond this tempera-
ture, there was a depreciation in furfuryl alcohol resin and 
consequently reducing the 3D printed sand-stones strength.

Another research tried to optimize the temperature and 
time for optimum compressive strength with cylindrical 
ZCast samples [105]. In contrast to McKenna et al. [104], the 
temperature ranges from 423 to 523 K, and the compressive 
strength changed from 6.2 to 2.4 MPa. It was stated that the 
curing time was insignificant on the optimized temperature 
and strength. These conflicting outcomes necessitate more 
investigation in this area. Others have considered the casting 
flaws because of volatile off-gassing of the binder materials; 
this was attempted by optimizing the curing cycle. Owing 
to the high surface area to volume ratio of ZCast powder, it 
needs 8–9% higher quantity of binder in contrast to foundry 
sand (1.4%). Diverse curing cycles were done to adequately 
remove the binder and the casted component from the 
moulds, and a curing temperature of 316 °C for 1 h was 
discovered to be efficient with adequate mould strength and 
with no visible defects.

The 3DP powders, which are ZCast and ViriCastTM and 
no-bake foundry sand, were juxtaposed by Snelling et al. 
[49], depending on their properties and handleability of the 
fabricated cast metal. From A356 alloy, cylindrical samples 
of length 101.6 mm and 25.4 mm diameter were cast out. 
The samples were examined for hardness, surface roughness, 
density, microstructure, and porosity. It was detected that 
the casted parts’ strength and hardness from the 3D moulds 
were similar to conventional cast alloy (A356). Although 
from the microstructural evaluation (Fig. 12), ZCast and 
ViriCast mould reveal dendritic arm spacing. The prepared 
samples with no-bake moulds had considerably lesser 
spacing in the dendrite arm than the prepared 3DP samples. 
This indicated the 3DP and the no-bake’s heat treatment 
parameters differ, and thus, their strength and hardness are 
incomparable. The no-bake sand had a marginal higher 
density and hardenability in the casted parts, with much 
lower porosity. Contrastingly, ZCast moulds exhibited higher 
surface roughness. It was established that in producing cast 

Fig. 11  Core hardness (with different content of catalyst and resin) 
after 3 h [96]
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parts with the same feature of no-bake sands, the powders 
applied for the 3D printing were appropriate.

2.1.3  The influence of other parameters (such as shell 
mould thickness, shapes, and heat transfer) 
on the printed moulds and cores as well 
as on the cast material

The influence of shell mould wall thickness, casting vol-
ume, and pouring temperature on the surface roughness of 
fabricated castings was carried out by Chhabra and Singh 
[106]. Mould of varying shell thickness and volumes were 
produced and applied to cast brass, aluminium, and copper. 
The shell wall thickness and pouring temperature were dis-
covered to have a respective 2% and 97.55% contribution to 
the surface roughness. This outcome is ascribed to the vola-
tile substance decomposition at the metal-mould interface, 
and thus, the produced gas might influence the cast part’s 
property which is above the sand particle size effect.

Gill and Kaplas [107] made a comparison analysis on 
the parts produced from split pattern shells via 3D print-
ing and the components designed from investment mould 
casting. In assessing the thickness effect on the casting, the 
moulds whose shell thickness decreases were produced; 
hence, 3 mm and 6 mm were the highest values discovered 
for A356 aluminium alloy and ZA12 zinc alloy respectively. 
The microstructural evaluation revealed the impact of shell 
wall thickness on the ZCast technique. Non-uniform dis-
persal of dendritic structures were observed on the A356 

aluminium alloy microstructures whose shell wall thickness 
are 12 mm (Fig. 13a) and 6 mm (Fig. 13b). The ‘white’ 
areas in the Fig. 13, which are defined by the eutectic silicon 
elements edges, are the dendritic cells. The ‘darker black’ 
areas are the silicon elements in the A356 aluminium alloy 
microstructures, in which they can collate with other silicon 
elements to develop bands. The 3D printed components have 
poor properties in hardness and surface roughness in con-
trast to investment casting. This is because the solidification 
process affects the microstructure and consequently relies on 
the mould capability to convey the heat [108]. Other factors 
which could contribute to these are uneven distribution and/
or higher amount of the binder about the sand substances 
inside the 3D printed mould. As for the binder, the binder 
distribution relies on the binder viscosity and chemical reac-
tion speed, and thus, if these parameters are low, the sprayed 
binder via the print head possibly will not wet the entire 
surface of the individual sand particles. The moulds’ thermal 
and mechanical features manufactured with ZCast mixture 
via ZPrinter 310 plus have been analysed in [109]. The fea-
tures were applied to enhance the mould wall thickness and 
to pattern the casting procedure. By changing their thick-
ness and calcination period, the parts’ tensile strength was 
measured. After calcination, a 7-mm thickness was discov-
ered to be tougher than the 15-mm indicated manufacturer 
thickness, thus promoting efficiency in mould printing. The 
thermal transfer properties such as heat capacity, heat dif-
fusivity, and thermal conductivity were assessed and applied 
to plot the AK81 cooling curves. The results depicted better 

Fig. 12  A356-T6 alloy — den-
dritic microstructure cast in a no-
bake moulds, b ViriCast moulds, 
and c ZCast moulds [49]
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convergence with experimental cooling curves. The research 
has connected the knowledge space concerning mould char-
acteristics and their importance for procedural modeling. 
More mould characteristics, especially density, permeability, 
and their relationship with thermal properties, are needed to 
be studied.

Shangguan et al. [110] examine the cooling efficiency 
of a casted stress frame Al alloy (A356) sample by com-
paring the influence of a conventional dense mould with a 
3D printed rib-enforced shell. The outcomes indicated that 
the casting cooling efficiency significantly improved when 
rib-enforced shell mould was applied, and hence, in natural 
conditions, about 40% of cooling time is preserved, and in 
air blowing conditions, 35% is further preserved for the 
stress frame samples prior to shakeout. It was discovered 
that this mould technique compared to traditional mould 
can feasibly allow the associated cooling condition area 
to be easily modified and also ensures uniform and rapid 
casting cooling. This consequently enhances manufactur-
ing efficiency and minimizes the casting residual stresses 
and deformation. Likewise, the fabricated casting has the 
excellent surface finish and dimensional accuracy. Fur-
thermore, the 3D printing rib-enforced moulds preserved 
per mould about nine-tenths of the sand. Some samples’ 
analysis based on the variation of temperature with time at 
various stages on the dense sand mould and the rib-enforced 
sand mould is depicted in Fig. 14. Figure 14 shows that the 
rib-enforced sand mould approached the optimum tempera-
ture after pouring at 800 s. Also, during solidification, the 
shell approached a temperature of 596 K. Throughout the 
overall cooling procedure, the temperature range for the 
shell is from 620 to 380 K, therefore indicating that the 
new sand mould has an excellent heat discharging capacity 
to the surrounding.

Another vital parameter affecting the value of the cast 
metal components is the thermal gradient present in the 

mould and the heat trapped at the mould metal interface. 
The heat features and binder depreciation properties of 3D 
printed (phenolic and furan mechanisms) spherical cores 
were studied by Fourier thermal [111]. The conditions that 
were assessed are the overall and fraction heat absorbed, 
as well as the heat rate absorption under casting factors of 
aluminium and iron. The disparity of the amount of water 
in the phenolic mechanism and the thermal degradation 
behaviour causes the furan absorbed 30% higher heat of 
283 kJ/kg as against 221 kJ/kg and possessed a greater heat 
absorption rate. The furan process was discovered to behave 
better since it has a moderate and smoother degradation 
and better cooling capacity. This fact will be necessary to 
establish numerical simulations of the heat distribution and 
binder degradation. The research examination varies in the 
route that it regard the core properties that will assist in 
achieving better core design and their influence on the inter-
nal cast part properties. Excluding the mould properties, it 
is pertinent to research the mould influence on the fabri-
cated castings. As mentioned earlier, this can be a result of 
the heat transfer features at the metal-mould boundary and 
because of the off-gassing in the course of the binder deple-
tion. The thermal transfer features influence the solidifica-
tion rate, and as a result, the density and strength of the cast 
component are affected. The release of volatile substances 
produces unwanted surface abnormalities.

3  Futuristic approaches or progress needed 
in RSC technique for part production

Various researches have shown that there are numerous 
parameters influencing the 3DP sand mould quality, com-
prising curing temperature and time, furan resin binder 
content, heat transfer properties, types of sand grain size, 
and base sand. The lack of in-depth processes for all these 

Fig. 13  Micrograph image of 
A356 aluminium alloy with 
shell wall thickness of a 12 mm 
and b 6 mm [107]
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parameters has contributed to the inconsistencies and vari-
ability of 3DP sand moulds and cores as well as the parts 
produced from them. These challenges have limited this 
technique from being used in high-tech applications. Recent 
or futuristic approaches to curtail all these challenges are to 
establish an efficient qualification such as design specifica-
tion, specification review, materials and feedstock evalu-
ation, manufacturing follow-up procedure, and product 
testing and inspection, and certification procedure such as 
test specimen observation, test and inspection, verification 
of compliance to requirement, and verification of trace-
ability, which are all needed to certify the products for the 
intended application. The establishment of this qualifica-
tion and certification in any production of parts from RSC 
will ensure that deficiency in any path can easily be traced 
and corrected before the final production stages for the part 
usage in service. These approaches have been carried out 
in metal AM, where fine metal powders are applied to form 
strong, intricate parts which are developed by employing a 
scan 3D object or by CAD program. The software computer 
divides the design into various layers which behave as the 
structure or outline which AM process will follow. Then, 
a sophisticated approach in qualifying and certifying the 
various procedures to produce the components is employed 
in the manufacturing routes. This mechanism has been car-
ried out to produce different AM components especially for 
marine, energy, and offshore industries [112]. American 
Petroleum Institute uses the qualification routes to develop 
an outline for the metallic parts production in gas and oil 
sectors [113]. Burea veritas [114] established a qualification 
and certification routes for AM components for ship and 
offshore units. The overall outcomes from the application 
of these mechanisms indicated an outstanding performance 
without failure of the products during service.

Therefore, this approach is envisaged to also bring an 
excellent productivity when newly introduced in RSC tech-
nique. Consequently, making the faultless production of 
parts possible for high-tech industries such as in aerospace, 
automotive, medical industries, etc.

4  Conclusion

In the production of parts for high-tech application like 
aerospace, automotive, and biomedical industries, different 
sophisticated approaches in AM have been used, because of 
their high performance in producing different intricate parts. 
However, RSC, one of the approaches in rapid prototyping 
of AM, has been limited in application. This is due to the 
absence of in-depth processes that control the parameters 
for RSC, and this has consequently produced inconsistency 
or variability in components’ properties. Also, the lack of 
qualification and certification for RSC compared to other 
AM techniques have all stood as challenges for RSC. This 
review conspicuously highlights the various parameters (such 
as type of binder and sand, curing temperature and time, the 
materials type for casting, shell mould thickness, shapes, and 
heat transfer) required to be considered so that future produc-
tion of parts from RSC will nullify the aforesaid challenges. 
Furthermore, the establishment of efficient qualification and 
certification as stated in the section ‘Futuristic approaches or 
progresses needed in RSC technique for part production’ is 
needed to be incorporated in any fabrication of components 
from RSC. This approach has similarly been done in metal 
AM, and profound results have been reported from it. Hence, 
applying the same approach in the RSC technique will make 
it feasible to produce components for high-tech application.
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