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Abstract
Among the diverse challenges in machining processes, chatter has a significant detrimental effect on surface quality 
and tool life, and it is a major limitation factor in achieving higher material removal rate. Early detection of chatter 
occurrence is considered a key element in the milling process automation. Online detection of chatter onset has been 
continually investigated over several decades, along with the development of new signal processing and machining 
condition classification approaches. This paper presents a review of the literature on chatter detection in milling, 
providing a comprehensive analysis of the reported methods for sensing and testing parameter design, signal pro-
cessing and various features proposed as chatter indicators. It discusses data-driven approaches, including the use of 
different techniques in the time–frequency domain, feature extraction, and machining condition classification. The 
review outlines the potential of using multiple sensors and information fusion with machine learning. To conclude, 
research trends, challenges and future perspectives are presented, with the recommendation to study the tool wear 
effects, and chatter detection at dissimilar milling conditions, while utilization of considerable large datasets—Big 
Data—under the Industry 4.0 framework and the development of machining Digital Twin capable of real-time chatter 
detection are considered as key enabling technologies for intelligent manufacturing.

Keywords Milling · Vibration · Chatter detection · Tool condition monitoring · Signal processing · Feature extraction · 
Stability · Machining dynamics

1 Introduction

Chatter is a self-excited vibration occurring at the tool-work-
piece interface in machining, causing an overabundance of 
cutting forces, reduced dimensional accuracy and surface 
finish, along with accelerated tool wear and tool damage, 
and lower productivity and production quality [1]. Chatter 
has been a topic of continuous study since the early twenti-
eth century by extensive authors [2, 3]. Interest in chatter in 
milling has substantially increased since the middle 2000s 
[2, 4], as evidenced by the number of publications shown in 
Fig. 1. There are diverse sources of self-excited vibration in 

machining, such as regenerative, mode coupling, frictional 
and forced thermal–mechanical [1, 2]. Regenerative chat-
ter is the most common and studied chatter type in milling. 
Like in most of the literature, in this paper, the term “chat-
ter” refers to regenerative vibration unless another type is 
explicitly mentioned.

Research on chatter could be categorized into 3 different 
lines: theoretical modelling and prediction; chatter detec-
tion; and chatter control and suppression [1, 2, 4]. Online 
detection aims to identify chatter occurrence, and it classi-
fies the condition of the milling process in terms of stable 
or unstable cut. The accurate online chatter detection can 
be used as input to an intelligent CNC controller to sup-
press or mitigate chatter by adaptive control of machining 
parameters or to activate active vibration control devices 
installed on the machine tools such as an active damper or 
a smart spindle [5–7]. In recent years, there has been a con-
tinuous development of intelligent machine tools, thanks to 
the rapid development of new information and communica-
tions technologies. Novel artificial intelligence approaches 
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have been utilized for machinery diagnostics and quality 
enhancement [8]. It has accelerated the investigation of 
diverse topics in machining process monitoring and tool 
condition monitoring (TCM), including chatter detection 
[2, 4, 9].

Chatter detection systems are usually composed of the 
following modules: data acquisition, signal processing, fea-
ture extraction, monitoring model and decision/classification 
[10]. These are the major elements being reviewed in this 
paper. The method flow and primary objectives are illus-
trated in Fig. 2.

Due to the high number of studies on chatter and the rel-
evant areas, there have been diverse reviews published with 
related topics to the study of chatter detection, as follows. 
Chatter in milling literature has been reviewed in three dif-
ferent articles by Quintana et al., Zhu et al. and Yue et al. [1, 
2, 4], respectively, in turning by Quintana et al., Urbikain 
et al. and Siddhpura et al. [1, 9, 11], while Wu et al. reviewed 
chatter in thin-wall machining [12]; robotic machining stud-
ies have been discussed by Pan et al. and Yuan et al. [13, 
14], and Yan et al. focused on blade milling [15], along 
with other reviews on the mathematical models of chatter 
and machining dynamics by Altintas et al. [3, 16], Mame-
dov et al. [17] and Insperger et al. [18], and the review on 
vibration measurement by Murthy et al. [19]. Besides, Teti 
et al. [20] reported strategies for process monitoring, while 

Jardine et al. [21] reviewed the diagnostics of mechanical 
systems. Sensors and signal processing are reviewed for 
condition monitoring of manufacturing processes by Goyal 
et al., Iliyas et al. and Liang et al. in [22–24] and for cut-
ting tools monitoring by Nath, Bhuiyan et al. and Rehorn 
et al. [25–27], while Xu et al. and Sayyad et al. [28, 29] 
summarized data-driven cases, and multi-sensor applica-
tions and data fusion were analysed by Kong et al., Majum-
der et al. and Khaleghi et al. [30–32]. TCM technologies 
were reviewed by Sun et  al. [33]. Zhou and Xue [10], 
Mohanraj et al. [34] and Pimenov et al. [35] have summa-
rized TCM in milling, including chatter detection. Sensor 
types were reviewed by Rizal et al. and Dhobale et al. [36, 
37], Lauro et al. [38] outlined the signal processing tech-
niques, Kuntoğlu et al. and Wong et al. [39, 40] discussed 
data acquisition and processing, Imad et al. [41] described 
advances in machining monitoring, while Zhu et al. and 
Peng et al. [42, 43] reviewed wavelet-based methods. The 
use of digital image processing was revised by Dutta et al. 
[44], and vision-based techniques were outlined by Liu et al. 
[45]. The applications of artificial intelligence (AI) and data 
analytics in intelligent manufacturing can be found in vari-
ous reviews [46–49]. AI-based systems are reviewed for 
machining monitoring by Abellan-Nebot et al. [50], in rotat-
ing machinery diagnosis by Liu et al. and Saini et al. [51, 
52] and by Pimenov et al. for TCM [53]. Machine learning 
(ML) techniques in manufacturing are reviewed regarding 
signal processing by Kim et al. [54], for machining pro-
cesses in four different reviews [37, 55–57] and for TCM by 
Tran et al. [58], while other six manuscripts [59–64] listed 
ML applications for machinery and machining diagnostics. 
Deep learning (DL) methods in machining monitoring and 
intelligent manufacturing are discussed by various authors 
in seven peer-review publications [65–71]. All these works 
summarize the findings in machining condition monitoring 
and reflect the increasing interest in chatter and its impact 
in advance manufacturing.

However, in spite of the extensive review papers pub-
lished by Zhu et al. and Yue et al. [2, 4], there is a lack 
of focus on detailing the utilized methods through chatter 
detection, including the signal processing approaches, the 
variety of extracted features, the alternatives for condition 

Fig. 1  Publications on chatter in milling over time [2]

Fig. 2  A common method flow 
in chatter detection
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classification and their advantages, challenges and imple-
mentation. These topics are reviewed in this paper to bridge 
the gap. This paper aims to provide a critical review of chat-
ter detection in milling and the diverse employed methods. It 
has a focus on the signal processing techniques and sensor-
based methods, including feature extraction and classifica-
tion models.

The starting point was to conduct a systematic literature 
search and identify any publications that would contribute 
to answering What methods for chatter detection, in mill-
ing, have been reported since 2008 to date? A total of 134 
peer-reviewed journal publications satisfied the systematic 
search criteria [5, 72–204]. It identified the eleven works—
[72, 112, 117, 194, 205–211]—most cited by chatter detec-
tion publications.

Chatter detection approaches, as with any condition 
monitoring system, can be categorized as “data-driven” or 
“physics-based”. Data-driven systems evaluate historical 
data using diverse signal processing techniques. Physics-
based systems utilize mathematical functions, physics mod-
els and control theory [212, 213]. Recently, Rahimi et al. 
[149] highlighted the advantages and disadvantages of each 
methodology in chatter detection. Data-driven approaches 
may fail due to errors during training or lack of data at dif-
ferent cutting conditions, while the physics-based ones may 
wrongly detect transient states as chatter and require com-
plex mathematical modelling. To solve this, they proposed 
combining both alternatives. This review focuses on the 
data-driven methods which are reported in a larger number.

In the following sections, a critical analysis of chatter 
detection literature is presented. Section 2 describes the 
employed elements for data acquisition and the faced chal-
lenges during the experiment design. Section 3 summarizes 
the signal processing techniques. Section 4 outlines the 
feature extraction and proposed chatter indicators, Sect. 5 
discusses the utilized classification models and their effec-
tiveness, Sect. 6 presents challenges and future research 
directions, followed by the conclusions in Sect. 7.

2  Sensing, data acquisition 
and experimental design

The first step of monitoring is the acquisition of physical 
parameters, in form of a signal, through different sensors. 
Data is acquired by using a single sensor or multiple sen-
sors attached to the machine tool, passing through signal 
conditioners and being connected to a data acquisition sys-
tem (DAQ) for sampling, storage and processing. In chat-
ter detection, the common signals are accelerations, cutting 
force, sound and acoustic emission, while motor current is 
the common signal extracted from an in-machine sensor. 

This section introduces the diverse sensor types, multi-
sensor approaches and sensor fusion techniques, utilized 
in milling process monitoring, followed by a briefing on 
experimental design for data acquisition under stable and 
unstable milling conditions.

2.1  Types of sensors

2.1.1  Accelerometers—vibration

Researchers have come to the agreement that vibration is 
one of the most recommended signals for TCM. There is 
a clear physical reason for that, as acceleration is the first 
reaction on the acting force (see Newton’s law). Moreo-
ver, mechanical vibration can be monitored on the whole 
machine tool-workpiece system (with various sensitivity), 
and it is relatively easy to acquire and deliver vibration infor-
mation highly related to machining dynamics. In general 
terms, vibrations refer to the amplitude and frequencies of 
the oscillations that occurred in the relative displacement of 
the tool-workpiece system. Accelerometers are one of the 
most utilized sensors, as they can measure dynamic changes 
up to 20 kHz, and are employed to estimate cutting forces 
and vibrations in milling [214].

As chatter is a self-excited vibration, it is relatively easy 
to identify chatter occurrence in acceleration signal, when 
the process develops from stable to unstable cut, as shown in 
Fig. 3. The vibration axis with the highest sensitivity to chat-
ter varies according to the milling type, cutting parameters 
and mechanical properties of the workpiece and the cut-
ting tool; however, the most utilized approach is to monitor 
the vibration normal to feed direction. A stable machining 
means forced vibration where tooth pass frequency and its 
harmonics have dominant amplitudes in the signal spec-
tra, while chatter in milling means self-excited vibrations 
where chatter frequency is dominant in the signal spectra, 
as detailed later in Section 3.2.

Literature shows some studies claiming to acquire vibra-
tion signals in chatter using a triaxial sensor, but in their 
results, mostly only one-channel signal was used. They did 
not clarify which one was chosen, the selection criterion or 
any changes observed in the omitted signals. For instance, 
Chen et al. [178] tested different combinations of multi-
channel setups and showed that the fusion of signals per-
pendicular to the feed has the same accuracy as using the 
three axes and requires a lower computational cost, while 
utilizing only the X-axis signal (feed direction) gave the low-
est accuracy. Though, in subsequent work, Chen et al. [165] 
successfully detected chatter in the feed direction, literature 
showed that vibration signals are more sensitive than force 
signals to chatter, in conventional milling [72] and micro-
milling [5]. In addition, some novel sensors have been used 
for vibration monitoring, such as micro-electro-mechanical 
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systems (MEMS) accelerometers [215]. The use of vibra-
tion signals for chatter detection was reported in the works 
[5, 83, 88–90, 95, 96, 106, 111, 113, 118–122, 124, 125, 
128, 132, 134, 138, 143, 147, 150–153, 158, 160, 163–166, 
169, 171, 174–176, 178–181, 183, 188, 189, 194, 197, 198, 
200–203, 216–223].

2.1.2  Dynamometer—cutting forces

Cutting force is the parameter with the highest responsive-
ness to variations in the machining process and can be eas-
ily used for monitoring purposes, along with an unstable 
cut that raises cutting forces progressively [3, 224]. In chat-
ter detection, Du et al. [225] presented that the distribution 
of cutting forces had a white noise behaviour at unstable 
condition, while Huang et al. utilized statistical values of a 
force signal as chatter detection criteria in titanium milling 
[86]. The results showed that at chatter, the maximum value 
of cutting forces increased by at least 60% and its standard 
variation by about 80%. Wei et al. [114] utilized only the 
signal in the vertical direction (Z), while Tangjitsitcharoen 
and Pongsathornwiwat [74, 226] registered the three axes 
and calculated the average variance of each axis and the 
normalized ratio of these variances (X/Y, X/Z and Y/Z) in 
a 1-s frame. In chatter condition, these ratios increased for 
two different cutter types, flat and ball nose end mills. Tan-
sel et al. [227] suggested a torque-based tool as an alter-
native to dynamometers, the most reported sensor for the 

acquisition of force signals. A novel alternative is the use 
of measurement systems integrated in the spindle or other 
components of the machine tool, either to sense the cutting 
forces, as introduced by Altintas et al. [228], or to measure 
other physical parameters and employ them to estimate the 
cutting forces. This latest approach has been reported by 
Denkena et al. [229, 230] who have integrated strain gauges 
for active chatter suppression [231].

There is still no consensus about if cutting forces are 
more suitable than vibration signals; nevertheless, literature 
has shown that both signal types can be effectively used for 
chatter detection. A multiscale method was utilized by Li 
et al. with acceleration signals [134] and force signals [157], 
obtaining accurate results in both cases. Likely, Chang et al. 
[143] showed that their approach was suitable for both types. 
In summary, force signals have been employed in chatter 
detection in the studies [73–77, 84, 86, 101, 112, 114–116, 
123, 126, 130, 131, 133, 137, 140, 143, 144, 148, 154, 155, 
157, 159, 162, 167, 170, 173, 184–186, 193, 204, 227, 
232–236]

2.1.3  Acoustic emission and sound signals

The use of acoustic emission (AE) has been proposed as an 
alternative due to its susceptibility to changes in chip for-
mation and having an asymptotic change in the transition 
from stable to chatter [237]. AE is considered as a transient 
stress wave generated by the sudden release of elastically 

Fig. 3  Chatter development in 
a vibration signal in the time 
domain [166]
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stored energy from localized sources within a material, such 
as due to fracture or crack generation. The typical frequency 
range of AE sensors is between 20 kHz and 1 MHz, inaudi-
ble for humans. Marinescu and Axinte [210] discussed the 
efficiency of AE, concluding that it provides better accuracy 
and higher resolution than cutting force, but it requires more 
data processing. The use of an AE sensor is still argued in 
the literature, as AE signals can reveal chatter in high-fre-
quency sampled data but are highly susceptible to contact 
interactions and sensor position. Duro et al. [238] presented 
that AE sensors are highly sensitive to sensor location and 
cutting parameters. On the other hand, in spite of the dif-
ferent nature of physics, Delio et al. [207] proposed sound 
signal acquisition through microphones as an alternative to 
AE. Microphone is a means for acoustic testing to measure 
sound, noise and vibration, with frequencies inside the audio 
band <20 kHz. It was ratified by Sallese et al. [78], while 
Tsai et al. [187] used the acoustic peak value as a chatter 
threshold, and Gao et al. [79] employed microphones in thin-
wall milling. Cao et al. [80] removed from sound signals the 
disturbance of tooth passing frequency and its harmonics, 
increasing detection accuracy. Morgan et al. [239] employed 
pre-recorded acoustic signals to plot and evaluate the chatter 
stability. Although acoustic emission and sound is just vibra-
tion, the interested frequency range is different. Conventional 
microphones are limited to a frequency response of 20 kHz, 
while AE sensors have a higher frequency range of up to 1 
MHz. Both alternatives are more sensitive and suitable for 
wide frequency ranges than conventional accelerometers 
[240, 241]. A detailed discussion of the different sensors 
employed for TCM, including their technical specifications, 
can be found in the reviews by Sun et al. [33], Pimenov et al. 
[35] and Kuntoğlu et al. [39]. The use of acoustic or sound 
based signals for chatter detection was reported in [78–80, 
87, 91, 124, 142, 146, 149, 168, 187, 197, 216, 224, 239, 
242, 243].

2.1.4  Other sensors and simulated signals

Other physical parameters have been utilized such as dis-
placement measurement [129, 131, 139] and image of 
the machined surface [161, 244], which has gained wide 
attention recently due to the emerging of DL techniques. 
Other innovative sensor alternatives are the use of thin-
films [245–247], embedded devices [82], workpiece sen-
sor-integrated fixtures [229, 248] and wireless sensors [99, 
249–251]. Ma et al. [246] employed a thin-film piezoelectric 
and obtained the same detection accuracy as the use of a 
dynamometer and higher accuracy than an accelerometer 
and a microphone. Similar results were reported by Luo 
et al. [247, 252]. The use of no conventional sensors for 
chatter detection is reported in [82, 85, 120, 129, 131, 135, 
139, 161, 188, 190–192, 215, 229, 244–247, 249, 252, 253].

In contrast, the use of internal sensors and signals intrinsic 
to the machine tool is also an alternative. Aslan and Altintas 
[127] developed a model-based system that uses drive motor 
current for chatter detection. Such sensorless approaches may 
suffer limited detection accuracy unless the current signals 
are compensated. Yamato et al. [254] and Sugiyama et al. 
[255] detected chatter in turning and milling by phase moni-
toring in the electrical system, respectively. They also evalu-
ated servo information in the spindle for the detection of chat-
ter by applying a disturbance observer [172, 256, 257]. The 
works [84, 127, 172, 177, 199, 255–259] reported research 
on chatter detection using signals intrinsic to the machine tool 
control, which require complex mathematical modelling and 
profound knowledge of the machining dynamics. In contrast, 
Zheng et al. [260] confirmed the suitability of internal signals 
for chatter detection compared to acceleration signals while 
using diverse features and signal processing techniques com-
monly employed with external signals.

Simulated signals have been widely used as a conveni-
ent input to assess signal processing algorithms for chatter 
detection or to validate some proposed chatter features, 
for instance, as shown in [120, 121, 130, 141, 164, 194, 
234, 235, 261–263]. Using model-based simulation for 
AI training and experimental signals for testing has also 
been reported, such as by Ozgur and Sener [89] and Vash-
isht and Peng [199]. Different modelling approaches have 
been used for generating simulated dynamic signals. Some 
models can represent more realistic scenarios and consider 
several process variables, such as a complex tool or work-
piece geometries and variable cutting conditions over time.

2.1.5  Influence of sensor direction

The literature shows that for some types of sensors, such 
as force and vibration sensors, the measurements in differ-
ent directions have different characteristics and sensitivity. 
Usually using data from one single axis could be enough 
for chatter detection. However, it is reported that the assess-
ment of multiple channel signals in different directions, 
along with sensor fusion, increases the accuracy of chatter 
detection. According to Kuljanic et al. [72], it is identified 
that chatter is observed from vibration signals in the 3 direc-
tions of movement, while Navarro-Devia et al. [264] gave 
experimental data showing that acceleration signals have 
a different response to cutting parameters and tool condi-
tion in each axis. Moreover, models of chatter stability in 
milling as a multipoint operation (i.e., multiple teeth with 
interrupted cut) indicate that the dynamic chip thickness is 
caused by the vibrations in the feed and normal to feed direc-
tions, affecting the forces in both directions, as detailed in 
[3, 265–267]. Consequently, the assessment of signals in the 
three axes increases the detection performance, as shown by 
Chen et al. [178] and Tangjitsitcharoen et al. [74] for diverse 
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signal types. Nevertheless, the processing of multi-channel 
data increases the computation time.

In summary, each sensor type has some advantages and 
disadvantages. Force signals are not recommended for high 
tooth passing frequency due to the limited bandwidth of con-
ventional dynamometers [4], and the use of the latest gen-
eration equipment may be required. In addition, they have 
shown some distortion when the sampling frequency is far 
larger than the natural frequencies, caused by the spindle 
modes [228]. Acceleration signals have a wide frequency 
operation range, but they are sensitive to vibrational distur-
bance from different sources and require filtering to reduce 
the noise effect. Acoustic emission and sound signals are 
affected by sensor position and tool wear and are suscep-
tible to external noise. The cost of the sensors, reliability 
and service life is also a major concern for the selection of 
sensors in designing a monitoring system that can be used 
in industry.

2.2  Multi‑sensor approach and sensor fusion

Considering the limitations of each sensor type and the 
increasing demand on higher accuracy and robustness in 
chatter detection, simultaneous acquisition and process-
ing of multiple signal types has been used. Multi-sensor 
approach refers to the simultaneous acquisition of signals 
from two or more different sensors. In chatter detection, 
most of the published work employed a single-sensor 
approach. However, chatter detection by using a multi-
sensor approach can improve the detection accuracy and 
reliability through sensor fusion, in which the data from 
different sensors are combined to reduce the detection 
uncertainty that may arrive from a single-sensor approach.

There are 3 main types of information fusion strategies, 
i.e., data-level fusion, feature-level fusion and decision-level 
fusion. In chatter detection, feature-level fusion is the most 
reported approach. Data fusion techniques are mostly applied 
for a multi-channel sensor, as done by Duro et al. [238], to 
merge data rather than selecting the top-ranked features. 

Srinivasan et al. [216] integrated vibration and acoustic sig-
nals for chatter and tool condition classification in milling 
and found that the combination of acoustic and vibration 
data had a higher classification accuracy as compared to the 
individual data sources. Ding et al. [77] recommended using 
cutting forces in conjunction with acoustic and acceleration 
sensors to increase chatter detection accuracy.

Kuljanic et al. [72, 117] carried out a series of mill-
ing tests with several sensors to detect chatter onset. 
The sensors included a rotating dynamometer, acceler-
ometers, acoustic emission and electrical power sensors 
under different combinations. A set of chatter indicators 
were obtained in the time and frequency domains, and the 
single-sensor systems and multi-sensor systems were com-
pared both in terms of accuracy and robustness. Results 
showed that all the multi-sensor approaches had a higher 
performance compared to single sensor alternatives. It was 
concluded that “multisensors systems composed of three 
or four sensors are the most promising solution for reli-
able and robust chatter identification.” Furthermore, they 
recommended that the optimal configuration would be “the 
multisensor system composed of the axial force sensor 
and accelerometers” [72]. The scheme of this multi-sensor 
approach is shown in Fig. 4.

Overall, the use of multiple signals and sensor fusion has 
achieved better accuracy for chatter detection than that with 
a single-sensor approach. Sun et al. [81] combined accelera-
tion and force signals for chatter detection and forecasting. 
Tran et al. [145] developed multi-sensor data fusion with a 
cheap and easy implementation using microphone and accel-
erometer sensors. They combined sound and acceleration 
signals, obtaining a classification accuracy of 97% against a 
92% using only sound signal and 90% with vibration signal. 
Li et al. [156] merged features from force and acceleration 
signals obtaining 96% of accuracy, and Gao et al. [182] uti-
lized 7 signals from 3 diverse sensors and extracted a total 
of 36 features. In contrast, Arriaza et al. [268] utilized accel-
eration and sound signals, but no significant difference was 
obtained compared to single sensor. However, it could be 

Fig. 4  Scheme of multi-sensor approach for chatter detection by Kuljanic et al. [117]
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due to the dataset size or the feature generation. It indicates 
that the detection performance does not only depend on the 
type and number of signals, but also the signal processing 
and features extraction.

Figure 5 illustrates the percentage of the different signal 
types reported. Vibration signal has been demonstrated as 
the most reported single-sensor method, and cutting forces 
measurement is the second, as reported in TCM literature 
[10, 269]. Besides, this review reveals that the use of multi-
sensor approaches in chatter detection has been overlooked 
over the last decade, but it has gained attention again in the 
last 2 years. This situation shows that there is a gap in the 
use of multi-sensor for chatter detection when compared to 
other TCM areas of research, as this approach has been con-
tinually reported over the last decade for tool wear and tool 
failure monitoring [10, 36].

2.3  Experimental design and model‑based testing 
condition selection

In a monitoring system, the selected sensors convert the 
physical conditions such as force or vibration to electrical 
signals through signal conditioning circuitry. A data acquisi-
tion (DAQ) system is used to sample the conditioned sen-
sor signals to digital values and store them in a computer 
for analysis and processing. To acquire useful and reliable 
data from monitoring, a machining process requires an ade-
quate design of the experiments. It includes the selection of 
diverse parameters which are also relevant and could affect 
the detection accuracy. For instance, to set up the sampling 
rate and apply anti-aliasing filters, the sampling rate is a rel-
evant setting for accurate data acquisition. It should comply 
with the Nyquist–Shannon sampling theorem and be higher 
than at least twice the useful frequency of the original signal. 
A too high sample rate could lead to an increase in noise 

susceptibility and an overlook of low-frequency informa-
tion [269], as occurred in the study by Dubey et al. [270]. 
Some authors have acquired data on air cutting and tool 
idling to identify and remove background noise, as in [78, 
91, 101, 138, 239]. Therefore, the cutting parameters should 
be carefully selected before the cutting tests to cover a wide 
range of the cutting stability conditions and also to reduce 
the experimental cost and time. Determination of milling 
parameters, such as spindle speed, feed rate and depths of 
cut, can be facilitated by using chatter prediction concepts 
such as a stability lobe diagram (SLD). These methodolo-
gies, their challenges and the reported design considerations 
are briefly discussed in this section.

2.3.1  Stability diagram and chatter prediction

Modelling and simulation of chatter stability can facilitate 
the experimental design for chatter detection significantly. 
A comprehensive review on chatter prediction and stability 
modelling can be found in [1–4]. There has been extensive 
research on chatter stability in milling by many research-
ers, such as by Altintas and co-workers [16, 271–275]. In 
milling, chatter occurs in a bandwidth close to a natural fre-
quency or its harmonics. It may be modulated by the funda-
mental frequencies [112], due to the system dynamics and 
the cutting conditions [143]. Moreover, milling processes 
have multiple chatter frequencies, while turning usually has 
a specific chatter frequency [206]. Chatter stability limits 
can be estimated in the stability lobe diagram (SLD), which 
is a figure to expose cutting parameters for a chatter-free 
process. In an intelligent CNC controller, the SLD can 
be used for the selection of optimal cutting parameters to 
avoid chatter occurrence or for the adjustment of the cutting 
parameters to suppress or mitigate chatter when a chatter 
onset is detected. The SLD is obtained from the dynamic 
response of the machine tool, predicting the stability limits 
as a function of the axial depth of cut (DOC) and the spindle 
speed [1–4]. Figure 6 presents a typical SLD and the selec-
tion of the experimental parameters based on it. It illustrates 
how the researchers choose the parameters, before testing, to 
obtain data from diverse stability conditions. Li et al. [261] 
proposed a chatter criterion for the dynamic milling process 
simulation in the time domain to generate a set of stability 
diagrams, which can be used in the determination of chatter-
free cutting conditions.

The identification of the dynamic response of the machine 
tool and workpiece system is traditionally through ham-
mer testing to obtain a set of frequency response functions 
(FRFs). The hammer test has some limitations in dealing 
with a slender and rotating structure like an end mill [4, 
106, 276, 277]. The calculation of SLD using stationary 
FRFs may be inaccurate for a rotating component, espe-
cially at high spindle speed [206, 278]. It may lead to the 

Fig. 5  Percentage of the signal types processed in chatter detection 
literature
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omission of bistable zones, which are stable zones where a 
sizeable perturbance can still cause chatter [279, 280]. The 
stability islands as shown in Fig. 7 are isolated zones in the 
SLD where the chatter condition shifts back and forth, and 
it is associated with the time periodicity. They are mostly 
dependent on the number of teeth, radial depth and the tool 
geometry [3, 265, 280–285] and may occur even with mul-
tivariable cutters [286–288]. However, it is noted that when 
using FRF measurements for the calculation of the stability 
lobes, the results by Otto et al. [289] showed that no stable or 
unstable islands were found because the probability for sta-
bility islands decrease for an increasing number of flexible 
eigenmodes. The measured FRF means that more structural 
degrees of freedom are considered.

Some researchers have explored different approaches 
to obtain more accurate SLDs to estimate chatter stability 

[290, 291] or novel prediction methods [292]. The effects 
of the mass and the connecting cable of an accelerometer 
on the FRF measurement of a thin-wall workpiece were 
assessed by Olvera et al. [293]. It was found that the eigen-
frequencies were shifted to high frequencies. Grossi et al. 
[294–296] identified the speed-varying FRFs under opera-
tional conditions based on the spindle speed ramp-up test. 
Brecher et al. [297] presented a method to determine the 
SLDs experimentally by varying the spindle speed and/or 
depth of cut in-process continuously, which was enabled 
through communication between the machine control and 
chatter detection algorithm. Kiss et al. [298, 299] identi-
fied stability boundaries with an impact test in operational 
conditions. Bravo et al. [277] proposed a method to deter-
mine the stability lobes of thin-wall milling with both the 
flexibility of the workpiece and the machine considered. In 
the development of a 3-D stability model for the machining 
of thin walls and thin floors, Campa et al. [300, 301] also 
considered the flexibility of both the machine and the work-
piece in three Cartesian directions. Olvera and Elías-Zúñiga 
introduced an enhanced multistage homotopy perturbation 
method (EMHPM) to solve differential equations with strong 
nonlinearities [302]. This method has been utilized to calcu-
late the stability lobes for a multivariable milling tool with 
variable pitch, variable helix and variable rake angle [286, 
287, 303]. To avoid mislabelling in terms of the stability 
condition, i.e. labelling the data as stable or unstable cut, 
the inspection of the workpiece surface and signal analysis 
is highly recommended for chatter identification [277, 304].

2.3.2  Cutting parameters and experiment setup

Diverse milling parameters were reported at the cutting 
tests in chatter detection literature to obtain signals at stable 

Fig. 6  Selection of the milling parameters based on the stability lobe 
diagram [159]

Fig. 7  Representation of 
stability islands in the SLD. 
a Stable island in the chatter 
zone, adapted from [280], and b 
unstable island in the rightmost 
stability lobe, adapted from 
[265]
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and unstable conditions. Most tests were conducted with 
constant DOC and different spindle speeds. To acquire data 
from the transition from stable to chatter conditions, some 
experiments continuously increase the DOC using a wedge-
shape workpiece (i.e. ramp-shape), as shown in Fig. 8. The 
ramp configuration allows collecting data from a wide range 
of DOC and easy identification of chatter [301], but it may 
generate uneven forces in each tooth and reduce the regen-
erative effect. Alternatively, a step-shape configuration has 
also been reported in [101, 133, 134].

Considerations in the chatter detection tests include the 
cutting tool type and geometry, tool material, tool immer-
sion, tool runout, workpiece material, chip load and milling 
types. The works by Jensen et al. and Dong et al. [305, 306] 
studied the effect of diverse milling parameters in the SLD 
and the impact on chatter occurrence. Tool immersion was 
studied by Merdol and Altintas [307], while the effect of 
the workpiece material is evaluated by Ibañez et al. [308]. 
Tool runout was studied by Insperger et al. [309] and Ma 
et al. [310], and their results showed that it modifies the 
chatter frequencies but enhances the stability boundaries, 
while Otto et al. [289] pointed out the necessity of consid-
ering the runout and tool geometry for an accurate predic-
tion of the stability. Mann et al. [311, 312] investigated the 
effect of milling type, down milling and up milling, from 
an analytical and experimental approach, respectively. The 
authors verified that different dynamic response occurs for 
each milling type at the same cutting parameters. Alber-
telli et al. [164] detected chatter on variable spindle speed 
regimen, while Qu et al. [313, 314] analysed the effect of 
feed per tooth in thin-wall milling stability. Recent studies 
found that chatter stability limits in thin-wall milling are 
also dependent on the tool position and workpiece geometry 
[304, 315, 316].

Regarding the workpiece material utilized  in chat-
ter detection  literature, aluminium alloys are the most 
employed materials, as in [73, 76, 78, 79, 81, 83, 84, 87–91, 
93, 95, 96, 101, 106, 111–162, 172, 183, 194, 198, 200–202, 
204, 222, 234, 235, 290]. Whereas interest has risen for 
Ti6Al4V milling and it was utilized in [77, 86, 117, 160, 
169–171, 173–182, 184–186, 197, 243, 317], other studies 
employed various steels [5, 72, 74, 117, 135, 149, 163–168, 
203, 221, 223, 236, 260]. Few scholars either utilized simu-
lated signals, as mentioned in the previous section, no con-
ventional materials as composites ones, or neglected to indi-
cate the machined material [141, 187–193, 195, 196, 199]. 
Assessment of chatter detection for dissimilar materials has 
been studied only in 3 works [117, 135, 160]. The works by 
Li et al. and Ren et al. [101, 138] claimed to have utilized 
different materials, while others have employed dissimilar 
tools as Hauptfleischová et al. [223], but more details on 
their effect on chatter occurrence and detection were not 
provided. It is also noted that the effect of tool coating on 
chatter has not been widely studied, despite the fact that 
coatings modify the tribological behaviour in machining 
such as varying wear, friction, cutting forces and tempera-
ture [318–321].

3  Signal processing

Signal processing is performed to obtain useful informa-
tion on signals acquired by the sensing devices. In chatter 
detection, the signals are also processed aiming to filter and 
reduce noise, identify the dominant frequencies, isolate data 
from specific frequency bands and ease the extraction of 
chatter features. Different techniques have been employed to 
identify chatter onset, as in the time domain, the frequency 
domain, the time–frequency domain or by using other 
approaches as well, which will be discussed in this section.

3.1  Time domain analysis

Time domain analysis refers to the assessment of a signal 
over time as chatter causes transients and amplitude modu-
lations, as shown in Fig. 3. The use of statistical parameters 
has been a constant to reduce computational cost. While 
most studies aim to extract statistical or other conventional 
features that represent the signal characteristics in the time 
domain, as detailed in Section 4.1, some have proposed 
various dimensionless chatter indicators based on statistical 
parameters, as done, for instance, in [5, 74, 182]. Others 
have treated the signals as time series and utilized different 
mathematical approaches for data analysis, as presented 
in [144, 147, 170]. All methodologies aim to identify the 
chatter onset as early as possible by extracting diverse chat-
ter features. It includes the use of nonlinear parameters to 

Fig. 8  Wedge-shape workpiece configuration and surface finish tran-
sition [153]
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evaluate the degree of randomness, complexity or simi-
larity of the signals. Different novel features have been 
reported in recent years from the time domain analysis, 
based on entropy concepts, multiscale techniques, topologi-
cal analysis and fractal patterns, but statistical features are 
still widely used. Details about signal features utilized as 
chatter indicators are discussed in Section 4.

Schmitz et al. [322] evaluated a chatter detection tech-
nique based on the statistical variance in the once per revo-
lution sampling (OPRS) audio signal during milling, which 
uses the synchronous and asynchronous nature of stable and 
unstable cuts, respectively, to identify chatter. Zhao et al. 
[141, 323] used multiple sampling per revolution (MSPR) 
to improve the reliability in representing the stability char-
acteristics and to achieve real-time detection of early chat-
ter in high-speed milling. A study on assessing some key 
statistical features in the time domain from multiple sensors 
in monitoring titanium milling was presented by Navarro-
Devia et al. [324], in which signal segmentation methods 
were considered, as the window size affects computational 
efficiency and accuracy of TCM [141, 324].

The Poincaré section method for chatter detection in the 
time domain is based on two-dimensional vibration, i.e. vibra-
tion in a plane. For a stable milling process, the trajectory 

points at the same angular position will lie close to one 
another, while for an unstable process, this trajectory becomes 
chaotic, and the bisection points do not lie close to one another 
[217]. The Poincaré section approach employing OPRS has 
been applied to analyse different signal types, such as vibra-
tion acceleration [217, 220, 265], displacement [312] and force 
signals [325, 326], and several indicators can be extracted. The 
once-per-tooth period sampling has been used to identify and 
characterize stable milling, secondary Hopf (quasiperiodic 
chatter) and period-n instabilities [265, 327, 328], as shown in 
Fig. 9, while subharmonic sampling allows identifying each 
instability type and the stability islands [265, 329]. Alterna-
tively, to observe the state transitions under diverse stability 
conditions, scholars utilized the bifurcation diagram, which 
compiles multiple Poincaré maps over a range of axial depths 
on a single spindle speed [265, 330].

All these methods analyse the behaviour of the signal 
over time to identify changes that indicate the chatter onset. 
The time domain analysis could require fewer data and pro-
cessing time than an FFT-based method and show an accept-
able accuracy, but frequency-based methods have been more 
widely utilized, mostly when the chatter frequencies and 
the system dynamics characteristics are known or estimated 
beforehand, as described in the next section.

Fig. 9  Time domain representation of acceleration signals under 
diverse cutting conditions.  Adapted from Fig. 7 of [331], correspond-
ing to sampled acceleration signals (d, e, f) and Poincaré diagrams (g, 

h, i), for unstable period-doubling chatter (d, g), stable cut (e, h), and 
quasi-periodic unstable cut (f, i)
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3.2  Frequency domain analysis

Signal information expressed in the frequency spectrum is 
effective to identify frequency variations due to chatter. FFT 
and power spectral density (PSD) are the most employed meth-
ods in signal pre-processing, data labelling and determination of 
dominant frequencies. It is because chatter is characterized by 
a change in the frequency components and the energy distribu-
tion, rising uncertainty of the signal [113, 206]. Besides, it is 
common to use the frequency spectrum to compare machining 
conditions and signal analysis, identifying if the acquired data 
corresponds to stable or chatter cut, as shown in Fig. 10. Fre-
quency analysis also works as a reference method to show the 
viability and advantages of a proposed technique, as in [77, 147, 
191, 233]. Recent research efforts are aimed to extend frequency 
analysis by using new chatter indicators. Jo et al. [253] proposed 
the sum of frequency components in a high-frequency band to 
later extract statistical features to identify chatter. Chang et al. 
[143] searched the vibration frequencies under diverse cutting 
conditions and identified chatter occurrence without needing a 
threshold. Jeong et al. [236] employed a liftered spectrum, while 
Shimana et al. [191] suggested the pseudo-auto-correlation func-
tion as a faster alternative.

Frequency domain methods are also utilized to obtain 
decomposition parameters, estimate frequency bands, detect 
chatter occurrence or validate a new chatter model, as seen 
in [73, 88, 119, 162, 218, 332, 333]. For instance, Afazov 
and Scrimieri [334] proposed a Digital Twin model for chat-
ter in milling and utilized the FFT of measured signals for 
model validation. These techniques allow easy identification 
of chatter occurrence; however, one limitation of the FFT is 
that it cannot provide a track of the frequency fluctuations 
throughout time. Hence, it is required to use time-frequency 
domain methods to assess non-stationarity and time-varying 
signals. Hence, other methods have been widely employed 
over the last decade and are detailed in the next section.

3.3  Time–frequency domain analysis

Diverse time-frequency domain analysis methods are 
reported to analyse frequency components of nonlinear and 
time-variant signals for mechanical diagnosis. In most chat-
ter applications, the first step is the decomposition of a signal 
into a group of new sub-signals, usually as a function of the 
dominant frequencies, specific frequency bands or just to 
reduce the noise effect. The difference between each method 

Fig. 10  Analysis of cutting forces in the time domain and the frequency domain to label signals as a stable, b slight chatter and c severe chatter, 
when employing a two flutes end mill. Adapted from: [112]
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is the criteria and the mathematical manipulation to decom-
pose and filter the original signal.

The short-time Fourier transform (STFT) generates a 
group of signals from Fourier transforms in a fixed time, 
with a windowing function. However, the window param-
eters disturb the resolution of the generated time-frequency 
spectrograms, where a higher frequency resolution reduces 
the time resolution and vice versa. For chatter detection, it is 
recommended to select the window parameters in such a way 
that each band contains a dominant frequency of the system 
but as narrow enough so each dominant frequency is within 
a unique spectrogram [179].

In contrast, the wavelet transform (WT) converts the 
information into a group of wave-like signals, from which 
the original data can be reassembled using the weighting 
coefficient of each signal (i.e. wavelet coefficients). Yoon 
and Chin [233] showed that WT has the same reliability 
as FFT, and it can also act as a noise filter. A continuous 
WT (CTW) provided better resolution and noise filtering 
compared to an STFT [79, 325]. Tangjitsitcharoen et al. 
[75] identified that chatter frequencies can appear in dif-
ferent bands when using WT decomposition. Wang and 
Liang [163] used discrete WT (DWT) for denoise and the 
probability distribution of wavelet modulus maxima as a 
non-dimensional chatter index. Cabrera et al. [115] recon-
structed a denoised signal through wavelet denoising, and 
their resultant peaks were defined as chatter thresholds.

WT-based methods provide low-frequency resolution 
for high-frequency components and low time resolution for 
low-frequency bands, which may affect the signal analysis 
with relevant information in some frequency bands. More 
flexible methods are the wavelet packet transform (WPT) 
and wavelet packet decomposition (WPD), as they offer the 
same frequency resolution in the full frequency range [194]. 
WPD performance increases with the number of generated 
frequency bands, but this also increases computational cost 
[176]. Yuan et al. [203] reported that the wavelet coherence 
function provides a higher performance compared to the 
wavelet cross-spectrum. Nevertheless, these methods require 
the selection in advance of some decomposition parameters, 
and these values modify the obtained sub-signals.

Self-adaptive approaches and nonlinear signal processing 
methods have been developed as an alternative to WT-based 
ones. Among these, empirical mode decomposition (EMD) 
is widely applied to fault diagnosis [335]. EMD decomposes 
the signals into a group of intrinsic mode functions (IMF) 
representing simple oscillatory modes. In contrast to simple 
harmonic functions, the IMFs have a variable amplitude and 
frequency over time. The Hilbert-Huang transform (HHT) 
combines the EMD and the Hilbert spectral techniques. It 
is utilized in chatter identification to compute instantaneous 
amplitude and frequency. Rusinek et al. [170] concluded that 
chatter states could be detected by the determination of HHT 

modal functions and the assessment of IMF’s statistical fea-
tures. Susanto et al. [125] demonstrated that HHT can be 
employed for chatter detection and tool condition monitor-
ing simultaneously, while Cao et al. [194] applied WPT and 
HHT sequentially in end-milling, and Rusinek and Lajmert 
[193] used the improved HHT in the milling of a composite 
material. Liu et al. [116] instead combined diverse methods. 
They obtained IMFs using EMD, then used WPD for signal 
reconstruction and extracted chatter features from the HHT 
spectrum.

The ensemble empirical mode decomposition (EEMD) 
alleviates mode mixing in EMD for noisy signals by add-
ing white noise, suppressing the noise level and enhancing 
the narrow-band quality, which enhances chatter detection, 
as presented in [111, 113], while Wan et al. [122] utilized 
EEMD in the HHT. Local mean decomposition (LMD) 
decomposes the signal into a group of product functions, 
and it has also been employed in chatter detection by [81, 
87, 151, 336], with better performance than EMD. However, 
the LMD method is not widely used as it cannot converge 
when the step size is poorly selected according to Yang et al. 
[133], and as with EEMD, they are iterative processes and 
cannot extract the fault feature [337]. Also, the sampling 
frequency has an effect on mode mixing in noise-assisted 
EMD-based algorithms [338].

Variational mode decomposition (VMD) is an alterna-
tive that overcomes these issues. It performs an adaptive 
decomposition of the signal in IMFs and does not lack theo-
retical basis and noise sensitivity, compared to other EMD 
decomposition methods [176, 337]. For chatter detection, 
Zhang et al. [112] decomposed force signals using VMD, 
and they obtained a higher response to chatter than when 
using WPD, while an adaptive filter was added to remove 
the spindle harmonics by Li et al. [138]. A constraint in 
VMD is that the decomposition parameters K and α (the 
mode number and balancing parameter) are required to be 
defined in advance. Liu et al. [130] identified the dominant 
frequencies with FFT and proposed an automatic parameters 
selection approach, which would generate the Kurtosis value 
in the reconstructed signal able to represent the condition of 
interest. Moreover, they compared their approach to the one 
used by Zhang et al. [112] and showed that the detection sen-
sitivity was increased when the chatter indicator was evalu-
ated in IMFs of non-dominant frequencies. Yang et al. [133] 
selected the VMD decomposition parameters automatically 
by using the simulated annealing (SA) algorithm, while Liu 
et al. [181] utilized particle swarm optimization (PSO) and 
the maximum crest factor of the envelope spectrum (CE). 
Both works show that the selection of decomposition param-
eters could affect the value of the chatter index. It was shown 
that VMD has a better performance in chatter detection 
than EMD and EEMD, while Seyrek et al. [339] recently 
presented a detailed comparison of the results with these 
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3 techniques. Hence, VMD is one of the most acceptable 
methods for signal processing currently. Figure 11 illustrates 
the decomposition of a signal using VMD, the identification 
of the fundamental frequency (fz), their harmonics and the 
chatter frequencies along the IMFs.

This review exposes that when decomposing the monitor-
ing signals in different frequency bands, either into IMFs or 
wavelet packets, the number of decomposed signals varies 
in the literature in the range of 5 to 16. While each study 
manages diverse chatter features and classification mod-
els, most of the studies only employed up to 3 decomposed 
components with high energy rates or containing the funda-
mental and chatter frequencies for signal reconstruction and 
feature extraction. To enhance the identification of the chat-
ter frequency bands, diverse alternatives have been studied. 
Energy operators, like the squared energy and Teager-Kaiser 
operators, have been used in chatter detection to estimate 
instantaneous frequency and amplitude, along with diverse 
decomposition methods [179, 189]. Lee et al. [168] utilized 
the Teager-Huang transform (THT), which combines EMD 
with the Teager energy operator. Moreover, novel methods 
have been considered as an alternative to VMD. The syn-
chrosqueezing transform (SST), an STFT-based method, has 

been employed to decrease the effect of tooth passing fre-
quency and its harmonics. It has been successfully applied to 
sound [80], displacement [131] and vibration signals [201], 
while Yan and Sun proposed a multi-SST for early chatter 
detection [93]. Variational nonlinear chirp mode decomposi-
tion (VNCMD) and short-time difference spectrum analysis 
(STDSA) have been applied in turning, while Tu et al. [148] 
utilized the iterative nonlinear chirp mode decomposition 
(INCMD) in milling, which combines VNCMD and HHT. 
Dong et al. [155] proposed a Vold-Kalman filter and showed 
that it has better performance against noise compared to 
EMD and VMD. Singular spectrum analysis (SSA) has 
been considered for chatter detection using force [126] and 
acceleration signals [166], showing accurate and rapid detec-
tion of the transition state. It consists of a non-parametrical 
decomposing of the signals, as time series, into a sequence 
of segments with simpler components.

Albertelli et al. [164] pointed out that it is highly challeng-
ing to apply the time-frequency methods to a process with 
variable spindle speed. Instead, they employed the cyclosta-
tionary analysis in the tool angular domain for machining at 
constant and variable speeds. Cyclostationarity analysis and 
angular synchronous averaging (ASA) have been employed 

Fig. 11  IMFs obtained through 
optimized VMD and their FFT 
spectra, with the identification 
of the fundamental and chatter 
frequencies [181]
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with vibration [134] and cutting force signals [157]. Lam-
raoui et al. [259] utilized signals from the spindle encoder 
to evaluate instantaneous angular speed (IAS), showing that 
chatter increases the second-order components (i.e. energy 
properties). Cyclostationary-based indicators were proposed 
in the angular domain from the periodic and residual parts 
of angular speed and cutting force signals for chatter detec-
tion, and the indicator based on IAS is recommended as it 
does not require additional sensors [84]. The application of 
adaptive variational mode decomposition for chatter detec-
tion has been lately reported in [142] and [198]. Mishra and 
Singh [87, 340–343] investigated a spline-based local mean 
decomposition technique, while Zhang et al. [137] used a 
morphological empirical wavelet transform (EWT). Ren and 
Ding employed an adaptive Hankel low-rank decomposi-
tion to adaptively separate the chatter-related components 
from the observations [101]. However, the works cited in 
this paragraph agree that they are still diverse challenges to 
the adaptation of these methods in an industrial application. 
Some of these challenges are discussed in Section 6.

3.4  Additional analysis approaches

One additional approach is to analyse the information in a 
bidimensional form, i.e. the data is transformed and pro-
cessed as an image instead of as a signal. The use of image 
decomposition techniques, especially deep learning, has 
become recurrent in chatter detection in recent years. In 
3 different investigations [91, 165, 179], different signal 
types were processed in the time-frequency domain, and the 
obtained spectrogram is evaluated as an image, resulting in a 
better performance than conventional methods, as it allows 
describing non-stationary properties of the signals as scalar 
features. For instance, in the works by Chen et al. [165, 179], 
the spectrogram was separated into a group of grayscale 2D 
images in terms of the domain frequency bands, as shown 
in Fig. 12. Next, candidate features were extracted using 
the second-order image statistics (e.g. contrast, correlation, 
homogeneity, among others). The authors compared their 

technique against the time domain features used by Lam-
raoui et al. [106] and the wavelet-based chatter indicators 
of Yao et al. [209]. Tran et al. [159] utilized a convolutional 
neural network (CNN) to process scalograms. Meanwhile, 
Koohestani et al. [220] employed image processing in the 
Poincaré sections. The bidimensional analysis allows quan-
tifying properties and to assemble the information into a 
monitoring algorithm in a more flexible way.

There are some risks with this approach. Additional data 
processing could lead to an increase in time delay, accu-
mulated error or lost information. This can be observed by 
comparing the results of [165] and [179], where the number 
of dominant frequencies changed from one work to the other, 
resulting in the number of images and the selected features 
differing from each other. Thus, the transformation of data 
into an image could potentially increase the required pro-
cessing before signal information can be used as input in a 
monitoring model.

Another type of image processing is to analyse the 
images of the machined surface on the workpiece. Khalili 
and Danesh [344] employed the WT to decompose sur-
face images, and Zhu et al. [192] employed images of the 
machined parts with CNN, along with optimization tech-
niques. A similar method was applied to evaluate chatter 
marks in turning [345]. However, the processing of surface 
images could be hard to achieve for real-time detection due 
to the harshness of the machining environment, including 
narrow spaces, tool and workpiece movements, interference 
of chips and the effect of cutting fluids in the image quality 
and the image transmission speed.

On the other hand, the transformation of sensor data 
into an image has facilitated the use of DL techniques 
in TCM, as these methods have been extensively studied 
for image processing tasks. Image processing has been 
applied to a T-F representation in [136, 152, 159, 196] and 
to pictures of the surface roughness using vision-based 
techniques in [135, 161, 188, 190, 192]. Analysis of cut-
ting information as an image, instead of as a signal, has 
been successfully applied for other machining tasks. Sun 

Fig. 12  Processing of STFT 
spectrograms into a group of 
grayscale images [179]
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et al. [346] combined texture images and features from 
vibration signal IMFs to monitor the surface condition and 
evidenced chatter occurrence. Furthermore, image decom-
position methods have been reported on diverse applica-
tions of fault diagnosis, including bidimensional EMD 
(BEMD)-based approaches and texture analysis. These 
methods could also be considered for chatter detection.

In summary, there are extensive signal processing 
approaches that have been developed and applied to chat-
ter detection. The different signal processing methods 
employed in data-driven chatter detection are compiled in 
Table 1. For the publications that compared two or more 
techniques, the table presents only the method which had 
the best performance, according to the respective authors. 
VMD is a relatively new method for this application, and 
current research efforts are focused on the use of optimiza-
tion techniques to select and define the best decomposition 
parameters. Singularity analysis, SST, EWT, synchronous 
average techniques, cyclostationary analysis and angular 
sampling are the emerging approaches. Nevertheless, con-
ventional T-F methods are still being studied in terms of 
extraction of new candidate features, automatic selection 
of the chatter indicators, use of a hybrid method (i.e. the 
combination of two or more approaches) and feasibility of 
novel techniques, as the bidimensional analysis, along with 
the continuous study of model-based systems.

Regardless of the signal processing technique, most of the 
reported methods need to identify signal characteristics that 
can represent or indicate the chatter onset. To achieve this, 

a wide range of features have been extracted and assessed 
to assess the stability condition. The following section dis-
cusses the diverse features reported in chatter detection 
literature.

4  Feature extraction

It is essential to extract a signal characteristic which repre-
sents the condition of machining processes while reducing 
the dimension of raw data and keeping the relevant infor-
mation about the process condition. Over the last decade, 
diverse features have been proposed and evaluated as indica-
tors of chatter occurrence. In a data-driven machine health 
monitoring system, including chatter detection, features are 
proposed based on expert knowledge and extensive human 
labour may be required for hand-crafted features  [65].

4.1  Feature generation

A variety of methods have been used to construct signal 
indicators that reflect the condition of the machine, known as 
features. They should have characteristics like high sensitiv-
ity to the condition occurrence and which can be computed 
by a monitoring algorithm. For instance, Fig. 13 shows the 
response of 3 common chatter features (i.e. fractal dimen-
sion, standard deviation and power spectral entropy) over 
a vibration signal and illustrates how the selected features 
varied as the process shifted from stable to unstable cut. 

Table 1  Signal processing methods employed in chatter detection in milling

* Two or more signal processing methods combined

Signal processing References

Time domain and time series [74, 82, 83, 106, 120, 128, 132, 141, 144, 146, 171, 183, 187, 189, 195, 197, 199, 202, 
204, 217, 220]

Frequency domain FFT [85, 124, 129, 143, 146, 162, 172, 177, 185, 215, 222, 224, 239, 244, 246, 253]
PSD [77, 139, 174, 219, 249]
Others [78, 119, 123, 127, 184, 191, 221, 236, 242, 255]

Time–frequency domain STFT [216]
CWT and DWT [75, 79, 86, 115, 160, 163, 180, 203, 233, 245]
WPT and WPD [5, 76, 96, 112, 117, 118, 200, 347]
EMD and EEMD-based [90, 111, 113, 114, 121, 140, 154, 178, 186]
HHT [125, 167, 170, 193, 218, 232]
LMD [81, 87, 151]
VMD-based [112, 130, 133, 134, 138, 142, 158, 175, 176, 181, 188, 198, 234, 235, 317]
SST [80, 131, 201]
SSA [126, 166]

Hybrid methods* [88, 89, 116, 122, 134, 145, 149, 152, 153, 156, 165, 179, 182, 194, 346]
Image representation [91, 136, 152, 159, 165, 179, 192, 196, 220, 348]
Other methods [72, 73, 84, 95, 101, 135, 137, 147, 148, 150, 155, 157, 161, 164, 168, 173, 190, 227, 

258, 259]
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There is a wide diversity of extracted features in chatter lit-
erature, chosen according to the signal type, the number of 
sampling tests and the expert knowledge. The features can 
be preliminarily categorized into the following types.

• Statistical features: They are mostly extracted from the 
time domain and frequency domain and represent the 
data as a statistical parameter of a probability distribu-
tion.

• Energy features: As chatter occurrence is characterized 
by the change of frequency and energy distribution, many 
authors have extracted features that represent it.

• Complexity features: Latterly, there is a trend in features 
that describe the irregularity or complexity of the signals.

Some signal features, such as Kurtosis, spectral kurtosis, 
power spectral entropy (PSE) and nonlinear energy opera-
tors, among others, have been utilized also as a criterion of 
decomposition, feature selection, optimization criteria or as 
a performance indicator. In the frequency domain, it is com-
mon to evaluate the amplitude and frequency components, 
along with other frequency features such as PSE.

It was identified that the most common features selected 
as a chatter indicator were some common statistical features 
like Root-mean-square (RMS), standard variation (SD), PSE, 
Kurtosis, peak-to-peak and other common statistical features. 
They are still utilized as chatter features from decomposed and 
filtered signals. However, a sizeable percentile of the literature 
has introduced and validated new features, along with new cri-
teria to choose the candidate feature and threshold value. Cri-
terion selection usually emerges from multiple experiments 
under several cutting parameters in both stable and unstable 
conditions. Hence, many authors aimed to eliminate cutting 

condition influences by defining a normalized or a dimension-
less threshold, while some recent studies in milling dynamics 
[341, 349–351] have suggested a different approach, the use 
of a quantitative value to represent chatter stability, instead 
of a qualitative designation (e.g. stable, transition, chatter). 
In other words, these four studies have proposed that chat-
ter occurrence should be represented as a numeric variable 
instead as a categorical state. Next, they determined chatter 
occurrence whenever the calculated value was higher than a 
defined threshold. This methodology is comparable as it is 
done in the literature with flank wear (VB) for tool lifetime 
assessment. Concisely, it involves that flank wear is meas-
ured, and next a value of a uniform VB≥0.3 mm is usually 
utilized as a criterion to determine that the tool is worn and 
has reached its useful lifetime, as detailed in the international 
standard ISO 8688-2 - item 7.4 [352]. The study of chatter 
from a quantitative perspective is detailed in Section 6.

Some features are being used as a reference to validate 
new proposed alternatives and therefore have been replicated 
continually in the literature. Cao et al. [111] evaluated the C0 
complexity index and PSE, two features related to stochastic 
noise, which are parameters that decrease due to periodic 
chatter. They proposed the consideration of features that may 
decrease, instead of the conventional exploration of a feature 
that rises in unstable cutting, as most of the traditional sta-
tistical parameters. Similarly, Ji et al. [90] extracted fractal 
dimension (FD) and PSE, two complementary features that 
one increases and the other one decreases in chatter, to later 
include the standard deviation [121]. Furthermore, Liu et al. 
[176] handled decomposed vibration signals, and the RMS 
of the sub-signals were used as input of a hybrid algorithm. 
They noticed that the system had a lower error for chatter 
detection when using the VMD method rather than WPD; 
showing the fitness of a feature is also dependent on the 
utilized signal processing and its ability to remove or filter 
irrelevant information. The energy entropy criterion, pro-
posed by Zhang et al. [112], has been used as a reference 
for novel features and techniques. Yang et al. [133] used 
statistical features while using a genetic algorithm (GA) as 
an alternative to the iterative method proposed by Liu et al. 
[130]. Liu et al. [177] defined a feature where the threshold 
value varies with the tool geometry. Dong and Zhang [120] 
proposed the complexity index, while Zhao et al. [141] used 
a maximum entropy-based feature.

Energy features have also been studied. Energy ratio 
(ER) is the energy proportion of the decomposed signal, 
the IMF, the wavelet packet or the frequency band, com-
pared to the total energy of the original signal. Nonethe-
less, Kuljanic et al. [72] proposed a different indicator also 
called energy ratio  (CIER), which represents the ratio of the 
aperiodic component over the total energy of a signal, by 
frequency domain analysis. Perrelli et al. [92] calculated the 
 CIER using WPD, showing that frequency-based  CIER has 

Fig. 13  Response of 3 common chatter features—fractal dimension 
(c2), standard deviation (c3) and PSE (c4)—for an acceleration signal 
(c1) from stable to chatter state. Adapted from [121]
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a better chatter response. Al-Regib and Ni [189] proposed 
an energy ratio index based on the Wigner time-frequency 
distribution. Caliskan et al. [124] employed ER, with diverse 
sensors and a Kalman filter, to identify chatter frequencies. 
Fu et al. [113] proposed to calculate two energy features, 
normalized energy ratio (NER) and coefficient of variation 
of the spectrum (CV), which represent the energy addition 
and variation in chatter.

To assess the change in energy distribution that occurred 
with chatter, Zhang et al. [112] employed the energy entropy 
(EE), which represents the distribution of the ERs based on 
the Shannon entropy, to classify three types of chatter. Yao 
et al. [76] evaluated the energy entropy from a unique fre-
quency band and called it relative wavelet packet EE (WPE), 
while Cuka et al. [219] utilized the Teager’s energy operator, 
which detects variations in instantaneous amplitude and fre-
quency. It resulted in a smaller computational cost compared 
to FFT-based features.

Entropy features represent the signal randomness and 
complexity. Some of them have been reported for chatter 
detection, including permutation entropy (PE) [134, 157], 
Rényi entropy (RE) [162], Sample entropy (SampEn) [133, 
142, 186], approximate entropy (ApEn) [88, 133, 169, 170, 
183] and dispersion entropy [151]. Tran et al. [154] uti-
lized fuzzy entropy for feature selection. Wang et al. [151] 
achieved the highest accuracy when using conventional sta-
tistical features and signal processing rather than entropy-
based features from raw data. Yang et al. [133] identified that 
chatter occurred at the time point when ApEn and SampEn 
had an asymptotical change of direction, which agrees with 
the results by Li et al. [134, 157], who alternately proposed 
to use multiscale entropy features. However, it was only 
observed in an IMF with the chatter frequency and not in the 
whole signal or reconstructed signal. Recently, Hauptfleis-
chová et al. [223] compared the performance of several chat-
ter indicators including coarse-grained entropy rate (CER), 
RE, SD and FD and PSE for the online identification of 
chatter in milling. It was reported that CER criterion appears 
to be the most useful with high reliability and relatively fast 
computation.

In many studies, the threshold value was highly depend-
ent on the cutting parameters, the employed signal process-
ing technique and the number of cutting tests, so recent 
studies aim for features that are not affected by the cutting 
condition parameters. Chen et al. [162] employed the thresh-
old value of an entropy-based feature which was previously 
normalized as a function of the cutting parameters. Yang 
et al. [133] extracted chatter features from the filtered signal 
to reduce the cutting parameter effect, while Cheng et al. 
[198] proposed a coefficient indicator instead of using an 
absolute threshold. Entropy theories have been also applied 
as criteria for feature ranking and selection, as in [258]. Mei 
et al. [126] processed force signals by SSA, and the singular 

value entropy (SVE) was used as a chatter indicator. A simi-
lar approach was presented by Wang et al. [166] using the 
singular spectrum entropy as a feature, along with the energy 
ratio in WPD. Liu et al. [130] evaluated an entropy-based 
feature in a frequency band that does not include the funda-
mental frequency or its harmonics.

Diverse nonlinear analysis methods have also been stud-
ied; for instance, Lyapunov exponents were reported in [169, 
193, 326, 353]. Fractal dimension (FD) is also an employed 
feature to measure the complexity of a pattern and the intrin-
sic properties of a signal, although fractal properties can also 
be detected by the CWT [38]. Zhuo et al. [354] employed 
the FD in the time and frequency domains, while Chen 
et al. [180] and Liu et al. [355] evaluated multifractal-based 
features and Feng et al. [356] utilized a dichotomy-binary 
strategy to reduce the time consumption required by frac-
tal methods. Jing et al. [357] designed two indicators based 
on the p-leader multifractal spectrum to identify the stable, 
weak-chatter and chatter occurrence for a micro-milling 
scenario, where the high spindle speed over 20,000 rpm, 
the reduced-sized of the cutter and the miniature dimension 
of the workpiece affect the process dynamics. Topological 
features and similarity measure were proposed as they are 
noise-robust, as shown in turning experiments [358, 359], 
and in simulated signals of end milling by Yesilli et al. [263]. 
Among other candidate features, there is the Holder expo-
nent of vibration signals [360], while diverse wavelet packet-
based features are reported in turning [361–363], including 
a proposed multiscale wavelet packet entropy (MWPE) to 
detect chatter regardless of the beat effect [364].

Multiscale features are utilized as they can represent 
the system dynamics over multiple temporal scales, by 
the coarse-grained procedure [365], and its concepts have 
been applied as chatter features. Liu et al. [181] studied the 
effect of the scale factor and VMD decomposition param-
eters using multiscale PE (MPE). Li et al. [134, 157] and 
Liu et al. [234] presented the advantages of multiscale PSE 
(MPSE) and MPE, while multiscale dispersion entropy 
(MDE) is reported by Liu et al. [317]. Nevertheless, due 
to the reduction of data point and scale factor, multiscale 
entropy features may have information aliasing, but to face 
this issue Zhao et al. have proposed different alternatives 
applied in mechanical fault diagnosis [366, 367], while 
Chen et al. [368] have proposed an improved PE (IPE) 
with higher recognition of complexity than PE for noisy 
conditions.

At the same time, some hand-crafted features have been 
also reported. A distribution-based criterion was proposed 
as a threshold value independent of cutting conditions [80, 
118]. Jia et al. [202] designed a synthetic criterion (SC) that 
mixes standard deviation and autocorrelation function. Sim-
ilarly, the multi-dimensional indicator (Q-factor) uses the 
centre frequencies and the oscillatory characteristics of the 
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signal [129], and it was employed in mirror milling [123]. 
Sun et al. [81] correlated several features from vibration and 
force signals with a hidden Markov model (HMM). Vela-
Martinez et al. [128] introduced the rescaled range (R/S) 
which refers to the predictability of a long-term signal, along 
with a fractal-based index, the Hurst exponent, as an indica-
tor of the stable condition. It was also utilized in detrended 
fluctuation analysis [150] and with multiscale entropy [171]. 
The chatter indicators proposed by Kuljanic et al. in [72] and 
[117] are widely utilized as a reference. Chen et al. [147] 
proposed a normalized cyclostationary energy ratio (NER), 
compared it to 2 indicators in [72] (i.e. the autocorrelation 
coefficients  CIAC and  CIER), the variance ratio from [122] 
and some entropy features, with an overwhelming perfor-
mance as shown in Fig. 14.

In summary, it is seen that there is no consensus about 
the best feature for chatter detection, which has promoted 
the continuous research of new indicators, as listed in 
Table 2. It was found that statistical features are still highly 
employed. However, over the last 10 years, various chatter 
criteria have been presented aiming to reduce the effect of 
the cutting parameters and background noise. The use of 
multiple features instead of a unique index has been inves-
tigated to increase the system performance, either in single-
sensor, multi-channel, or multi-sensor configurations. As the 
number of potential features has increased, it is required to 
select the best features that can provide the highest accu-
racy with lesser computational cost. The considerations and 
approaches for feature selection are discussed in the follow-
ing section.

4.2  Feature selection

The trend of using more than one signal feature for chatter 
detection demands the utilization of methods for feature 
selection and dimensionality reduction. They eliminate 
irrelevant or redundant features, along with reducing the 
computational cost and the risk of overfitting. The lit-
erature review showed that the selection of features and 
thresholds seems to be dependent on the number of tests, 
signal type and milling parameters. For instance, time-
frequency image analysis was done by Chen et al. for a 
difficult-to-cut material with 82 tests; the top features were 
second-order statistical features [179], while for a micro-
milling of low carbon steel with 29 tests, the candidate 
features were first-order statistical features [165]. It has 
also been reported that the selection of optimal features 
and sensor type varies with the condition of interest and 
experimental settings [106, 370, 371].

As to feature dimension reduction, principal component 
analysis (PCA) is a commonly utilized technique, as shown in 
[175, 186, 196]. Fu et al. [132], Chen et al. [144] and Dun et al. 
[185] employed it as a reference to show the advantages of their 
methods. Jo et al. [253] suggested that the use of the modified 
independent component analysis (MICA) method outperforms 
PCA, while Liu et al. [175] illustrated the contribution of PCA 
with different signal processing and classification methods.

In the cases of using multiple features, or assessment 
of the same feature from multiple signals, the techniques 
reported for feature selection include ReliefF [180], t-SNE 
[153, 195, 236] and the recursive feature elimination (RFE) 

Fig. 14  Comparison of the NER 
(proposed) to other indicators, 
for chatter occurrence at 8.6 s 
[147]
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[145, 151, 200, 372, 373], among others. In a study by Wang 
et al. [151], different features of the amplitude domain, fre-
quency domain and nonlinear domain were extracted from 
acceleration sensors. A feature evaluation model based on 
recursive feature elimination (RFE) was used to obtain the 
main feature parameters related to the machine tool state, 
which helped to improve the accuracy of chatter detection 
in a CNC machine. It was noted that when using only one 
feature out of 15, the RMS value from the denoised vibra-
tion signal provides the highest accuracy regardless of the 
classification models.

The findings of this review suggest that the number of 
training tests and experimental conditions may affect the 
definition of chatter criteria and the selection of the candi-
date features. It could result in the system not working in 
cutting conditions outside the parameters considered by the 
training. However, resolutions are being made through novel 
techniques in the monitoring model and the use of multiple 
features for more accurate chatter detection. Hence, the use of 
diverse AI methods for the classification of data using vari-
ous features has been reported in chatter detection literature. 
The next section discusses the diverse techniques published 
over recent years.

5  Classification models

5.1  Supervised learning

Once features are extracted and selected, the next step is to 
train and assess the monitoring model, which will be uti-
lized to detect chatter occurrence. Nonetheless, the number 
of studies that included the use of classification models is 
significantly low in comparison to the total number of stud-
ies on chatter detection. Various methods have been applied 
in the literature including support vector machine (SVM) 
and NN, while HMM was reported mostly in turning.

First, it is required to label the input data (i.e. the chat-
ter features), indicating the corresponding classes. Most 
of the studies utilized a binary classification; however, 
some scholars have outlined the need to identify the tran-
sition zone as a separate class, also named as slight chatter, 
instead of considering it as chatter state [112, 121, 134, 
147, 152, 156, 157, 159, 181, 182, 201]. Figures 3, 9, 10, 
12 and 13, in previous sections, show the diverse stabil-
ity states in different signal types and domains. Figure 15 
illustrates the change of a force signal throughout different 
states and its effect on the surface quality [157]. There are 
3 main approaches for data labelling, i.e. using the tradi-
tional SLD, as shown in Fig. 6; analysing the frequency 
spectrum of the signals, as shown in Fig. 10; or by inspec-
tion of the machined surface, as illustrated in Fig. 15. 
However, each approach has its challenges which could 
cause a mislabelling of the data, especially to determine 
the transition between states, as discussed in Section 2.3. 
Wan et al. [153] evaluated the impact of wrong labelling on 
detection accuracy and proposed to analyse unlabelled data 
with an ANN, combined with Adaboost-SVM to reduce the 
impact of mislabelling. Dun et al. [185] proposed an unsu-
pervised DL to reduce mislabelling, and Liu et al. [355] 
investigated a semi-supervised method requiring a small 
quantity of labelled data. The k-means clustering has been 
utilized with different signals and features in [75, 197, 243] 
to avoid the complex process of the training model and 
mislabelling. Tangjitsitcharoen et al. [75] used the ratio 
of the average variances of dynamic cutting forces to the 
absolute variances of themselves, while Wang et al. [197] 
employed a structure-function method (SFM).

The most employed classification method was SVM, 
as it gives high accuracy in the classification of machine 
conditions. For instance, SVM was utilized by Chen et al. 
with EEMD [178] and image processing [165] and shows a 
similar performance to k-nearest neighbours (KNN) [180]. 
Wang et al. [151] compared different classification models 
with single and multiple features. Their results, as in Fig. 16, 

Table 2  Feature types reported for chatter detection

Chatter features References

Statistical [5, 74, 75, 81, 82, 86, 87, 96, 106, 116–118, 121, 131, 145, 153, 154, 
156, 160, 168, 170, 178, 182, 194, 195, 198, 200, 201, 203, 233, 258, 
268, 369]

Energy-based [72, 81, 111–114, 122, 124, 130, 156, 158, 186, 189, 198, 216, 218, 219]
Entropy-based Approximate entropy [88, 133, 169, 170, 183]

Sample entropy and others [133, 141, 142, 162, 171, 186, 198, 223]
Power spectral entropy [90, 111, 121, 134, 138, 157, 175, 176]
Permutation entropy [134, 157]

Complexity and hand-crafted [76, 78, 80, 83, 84, 90, 115, 118, 120, 121, 123, 126, 128, 129, 132, 144, 
146, 147, 149, 150, 163–165, 169, 174, 177, 179, 180, 184, 193, 197, 
202, 204, 217, 220, 227, 239, 244, 255, 259, 326, 353]
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showed that the accuracy of each model varies according to 
the utilized feature, and SVM had the highest susceptibility 
compared to the other methods, while the probabilistic neu-
ral network (PNN) had a slightly lower accuracy. The per-
formance of NNs is similar to SVM, and it has some advan-
tages such as lower training time [145, 180]. Wang et al. 
[166] showed that an SVM with PSO outperforms diverse 
models, including NNs. It is reported by Shi et al. and Cao 
et al. [146, 195] that reinforced KNN has higher accuracy 

than SVM and decision trees; however, it uses the training 
observations as part of the model itself, requiring a sizable 
memory space. The performance of classification methods is 
quite diverse in different literature, possibly due to the differ-
ences in each study regarding the cutting conditions, the type 
of signals, the employed features, etc. The development of 
other classification approaches, such as novel neural network 
architectures and deep learning, is needed to overcome the 
aforementioned limitations.

Fig. 15  States of the force sig-
nal and the corresponding work-
piece surface quality captured 
by a portable microscope with a 
magnification of × 100 [157]

Fig. 16   The detection accuracy 
of diverse classification models 
under single feature condition 
[151]
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5.2  Deep learning

Deep learning (DL) approaches have been utilized in 
monitoring different machining processes, including 
TCM. DL techniques can automatically identify, select 
and extract features, without needing an expert interven-
tion and have shown a better performance than SVM in 
classification tasks. Moreover, DL allows the classifi-
cation of multiple conditions or the unsupervised use 
of multi-channel signals in the condition monitoring of 
machinery. However, it should be mentioned that DL is 
a relatively new approach and the application of DL for 
chatter detection has only been conducted recently by 
limited researchers.

Rifai et  al. [135] developed a system for surface 
roughness estimation and chatter identification based 
on machine vision. They integrated deep learning with 
convolutional neural networks into the system to bypass 
the feature extraction method. Fu et al. [132] trained a 
deep belief network (DBN) using vibration signals. Their 
method was compared to WT for feature extraction and to 
SVM for chatter classification. Tran et al. [159] utilized 
a CNN and CWT of force signals, as shown in Fig. 17, 
which resulted in higher accuracy than conventional ML 
methods. Instead, Zhu et al. [192] employed images of 
the machined parts with CNN, along with optimization 
techniques, but in contrast, Jeong et al. [236] proposed a 
one-dimensional CNN. Gao et al. [196] utilized a deep 
residual CNN (DR-CNN) and CWT of a vibration signal. 
Later, they used SVM-VMD for chatter detection. Unver 
and Sener [89] evaluated the capabilities of a CNN using 
model-based simulation for training and experimental sig-
nals for testing. However, Zheng et al. [260] show that 
CNN requires a sizable training dataset for chatter detec-
tion regardless of the employed type of signal.

Long short-term memory (LSTM) networks are com-
monly utilized to process sequential data. Shi et al. [136] 
utilized it with the sigmoid function to process the STFT 
of multiple accelerations as images and Sharmila and 

Balasubramanian [100] compared the performance of 3 
different DL architectures. Although DL techniques report 
accurate performance for chatter detection, it faces the same 
challenges that DL approaches shown in other applications, 
including dependency on the scale and quality of the data-
set, use of domain knowledge to reduce the size of the DL 
and to enhance performance, management of imbalanced 
class, transfer learning and visualization of learned repre-
sentation, as detailed by Zhao et al. [65].

5.3  Discussion of classification models

A summary of the commonly employed classification mod-
els in chatter detection is listed in Table 3. It shows that less 
than half of the literature included the classification model 
as part of the methodology. As to the classification accuracy 
of various chatter detection models, a detailed comparison 
has been reported by Tran et al. [154], as shown in Table 4. 
The latest systems have achieved accuracies of over 93% 
while using multiple features. Nevertheless, there are diverse 
metrics for the performance in binary classification besides 
accuracy, which is only recommended when using balanced 
data. Some of these metrics are recall or sensitivity, preci-
sion, specificity or selectivity and F1 score. They evaluate 
the incorrect predictions and the rate of accuracy for each 
class. Only the works [146, 152, 165, 178, 180, 192] have 
considered additional performance metrics, besides the 
commonly employed accuracy. In addition, other common 
subjects in classification using ML, such as underfitting and 
overfitting, class imbalance, misclassification cost, transfer 
learning and data mislabelling, have not been extensively 
explored in chatter detection.

One of the factors which reduce the accuracy is the influ-
ence of random values for initial weights, hyperparameters 
and thresholds at the training phase, mainly for NNs [269]. 
The definition of threshold values also varies with the 
dynamic conditions of the machine reducing the classifica-
tion accuracy [375]. Some optimization methods have been 
used for the selection of various parameters in the signal 

Fig. 17  CNN architecture for chatter detection [159]
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processing and training of AI as a classification model, as 
reported in [96, 121, 133, 136, 145, 166, 176, 181, 188, 192, 
234, 317, 343], identifying the recurrent application of PSO 
and GA. Tran et al. [154] proposed to use of a similarity 
classifier, as the performance of conventional approaches 
is greatly dependent on the parameters adjustment. Zhang 
et al. [112] advised that the selection of decomposition 
parameters highly affects the chatter sensitivity. It is worth 
mentioning that Sick [269] reviewed TCM with ANN in 
turning and described overall considerations and criteria for 
the optimal design of any intelligent TCM system. Most of 
the author’s recommendations might be also valid for chat-
ter detection systems using NNs or other alternatives. Other 
considerations to be studied in classification models may 
include class imbalance, misclassification cost, mislabelling, 
multi-class and multi-label cases and diverse performance 
metrics. While the use of DL has shown promising results, to 
achieve a real-world application, it is also recommended to 
carry out research in data curation, model interpretation and 
physics-based alternatives, as recently indicated by Zhang 
et al. and Arias et al. [376, 377].

6  Challenges and future perspectives

This literature review reveals that for chatter detection in 
milling, research efforts have been focused on the devel-
opment of new techniques for signal processing and the 
definition of new features and chatter indicators. In com-
parison with TCM literature, studies on chatter detection 
using multi-sensor and information fusion approaches 
are relatively low. A practical and reliable online chatter 
detection system is required for advanced manufactur-
ing processes, but it has not been reported yet within a 
wide industrial application. It is noted that Altintas and 
Aslan [378] introduced a process control and monitoring 
system, which was implemented in a production scenario 
detecting diverse tool conditions. It was claimed that the 
system could detect and avoid chatter in real time, but 
more details are expected. The following section sum-
marizes some major challenges in the development of 
accurate and robust chatter detection systems and future 
perspectives for further research efforts to address.

Table 3  Methods employed as 
classification model in chatter 
detection in milling (2007–
2022)

Method for monitoring model References

SVM [91, 121, 123, 156, 165, 166, 178, 180, 186, 188, 200, 216, 258, 372]
NNs [106, 117, 118, 132, 145, 151, 175, 176, 242, 268, 342]
HMM [81, 119]
Decision trees based [142, 144, 157]
Deep learning [89, 132, 135, 136, 149, 152, 153, 159, 192, 199, 222, 374]
Others and ensemble [72, 75, 134, 153, 154, 182, 185, 195, 196, 204, 227, 239]

Table 4  Classification accuracy of diverse chatter detection models using feature selection. Adapted and expanded from [154]

* Authors claimed in their article

Reference Signal(s) Feature(s) Feature selection Classifier Accuracy*

[165] Vibration Multi-domain features Area under the receiver 
curve (AUC)

SVM 97.7%

[178] Vibration IMF chatter features Fisher discriminant ratio SVM 93.8%
[153] Vibration Multi-domain features Sacked-denoising autoen-

coder
Adaboost-SVM 93%

[222] Vibration Time domain Hand-designed Multi-layer perceptron 96.3%
[117] Force and vibration Wavelet chatter features Four different methods Neural network 95.9%
[145] Vibration and sound WPD chatter features Recursive feature elimina-

tion
Backpropagation neural 

network
97.56%

[154] Force IMF chatter features Fuzzy entropy Similarity classifier 98%
[151] Vibration Time domain pre-treated 

with LMD
Recursive feature elimina-

tion
Various 99%

[182] Force, vibration and torque Multi-domain features Signal-to-noise ratio Mahalanobis-Taguchi 95%
[106] Multi-channel vibration Time domain statistical 

features
Kullback–Leibler distance Neural network 98%
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6.1  Multi‑condition monitoring and identification

There are different types of abnormal conditions in a machin-
ing process, such as chatter onset, tool wear, tool chipping or 
breakage. In a machining process monitoring system, either 
for tool wear monitoring, tool failure identification or chatter 
onset detection, the system extracts and evaluates the main 
attributes in the acquired signal to classify the process condi-
tion. Most of the existing monitoring approaches are focused 
on a single malfunction condition since it is difficult to extract 
the signal features that can distinguish multiple conditions 
[379]. Further, the occurrence of one could affect the feature 
values employed for the other monitoring purpose. Hence, it 
is meaningful to study the tool wear effect on chatter occur-
rence and detection. Tool wear has been studied and modelled 
for frictional chatter, and some researchers reported how this 
issue affects the dynamics greatly in metal cutting [380–383], 
while the coexistence of regenerative and frictional chatter has 
been studied and recently modelled by Yan et al. [384–386] 
and Weremczuk et al. [387], and the no co-occurrence of mode 
coupling and regenerative chatter is reported by Celikag et al. 
[388]. Similarly, Matsumoto et al. [389] and Stavropoulos et al. 
[390] concluded that chatter reduces TCM accuracy.

It has been reported that tool wear progress changes the 
tool-workpiece contact and affects the process damping and 
cutting force coefficients [3]. The chaotic vibration becomes 
dominant when tool wear width increases, as identified by 
Moradi et al. [391, 392], while regenerative chatter acceler-
ates tool wear and reduces lifespan, as demonstrated by Ghor-
bani [393]. Li et al. [394], Gurdal et al. [395] and Wang et al. 
[396] agree that the stability limit is time-varying due to tool 
wear progress, as it modifies cutting forces and tool geometry, 

affecting the dynamics and process damping of the cutting sys-
tem. Nevertheless, the conclusions contradicted each other on 
some points. Wang et al. [379] have proposed a multi-condition 
identification approach for both worn tool and chatter, although 
they used dissimilar spindle speeds for each case which may 
have affected the AI accuracy and the co-occurrence of both 
events under spindle speeds different than those employed in 
their experiments. Similarly, Srinivasan et al. [216], Tansel 
et al. [204] and Lamraoui et al. [95] reported that it is possible 
by using a single monitoring system to acquire signals from 
indirect sensors for simultaneous chatter detection and tool 
wear diagnosis, but the correlation between the two phenom-
ena has not been widely revealed. In addition, diverse studies 
[264, 397–402] provided experimental results of the tool wear 
effect on the signal waveform and the energy distribution of the 
frequency bands, during the machining of different materials, 
as shown in Fig. 18. Recent models also indicated that chatter 
frequencies are time-varying, particularly in thin-walled mill-
ing as studied by Wang et al. [403]. Consequently, it is sug-
gested to study the tool wear effect on chatter occurrence and 
the subsequent chatter detection more comprehensively from 
a data-driven view. The development of monitoring systems 
able to assess and identify diverse malfunction conditions in 
machining operations simultaneously will be of interest, along 
with investigations to understand the correlations among them.

6.2  Robustness enhancement

A robust monitoring system must be able to work with varying 
machining conditions. The literature review has shown that few 
studies in chatter detection have been applied to different tool 

Fig. 18  The variation of tool 
wear and vibration waveforms 
[401]
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geometries, workpieces and cutting parameters, as discussed 
in Section 2.3. Real-time chatter detection should be able to 
identify chatter onset for dissimilar machining conditions. This 
could be enhanced by using novel AI methods. Chatter thresh-
old definition and model training require a comprehensive set 
of data under wide cutting conditions, and one method may 
not be suitable for a condition different from the range of train-
ing data. Yesilli et al. [373, 404] evidenced that the monitor-
ing models have lower accuracy when tested with dissimilar 
cutting parameters. To address this, one potential is transfer 
learning, which studies the knowledge transfer capabilities of 
an ML, in other words, the response to test data from a differ-
ent domain of the training condition. It has been researched 
in diverse engineering applications on fault diagnosis and 
anomaly detection and recently reported in chatter detec-
tion in milling by Unver and Sener [89, 405]. This approach 
may attract more research efforts in the near future, due to 
the advantages and contributions to enable chatter detection 
under dissimilar conditions. In addition, the establishment of 
open-source datasets is also needed to facilitate and accelerate 
the development of chatter detection systems, like the milling 
datasets of NASA-Ames and the 2010 PHM challenge which 
are frequently employed for assessment of TCM and tool wear 
prognostics approaches. The lack of access to real-word data-
sets makes it difficult for fair benchmarking of novel methods 
to the published ones, along with the high cost and effort for 
data acquisition as indicated by Theissler et al. [406].

The advantages of the multi-sensor approach and infor-
mation fusion have been reported in diverse literature [10, 
269, 407, 408]. These methods can be employed to improve 
the reliability of chatter detection systems. The fusion of 
different chatter indicators [121], the feature reduction and 
selection [145] or the use of multiple classification methods 
with data fusion [409] could be useful for the determination 
of transient states, early chatter detection or the identifica-
tion of the instability type.

6.3  Hybrid approaches and parameters 
optimisation

Model-based chatter prediction can facilitate online chatter 
detection significantly. However, quite often the dynamic 
conditions from the computation of the stability lobe diagram 
(SLD) have some inaccuracies, which make the predicted sta-
bility parameters not so useful for real-time chatter detection. 
One example is the common ignoration of the possible occur-
rence of stability islands when labelling the data in most liter-
ature. Kai et al. [134, 157] identified a few cutting conditions 
where the experimental results did not fully match with the 
stability states predicted by the conventional SLD. Hence, 
the use of hybrid chatter detection approaches and novel AI 
algorithms may lead to promising solutions. For instance, 
Hanachi et al. [410] fused data-driven and physics-based 

results to enhance tool wear prognosis and RUL estimation 
in milling, while Rahimi et al. [149] and Liu et al. [140] 
have proposed hybrid chatter detection systems which com-
bine data-driven and physics-based methods. Oleaga et al. 
[411] employed three different machine learning techniques 
to predict chatter frequency and critical depth in milling, and 
Postel et al. [412] used DL with ensemble transfer learning to 
improve the prediction of the SLD using experimental data.

The optimal and automatic selection of parameters for sig-
nal processing is a current research trend in chatter detection, 
especially for VMD and WPD. For each database, a unique 
setup of constraints might be required throughout the moni-
toring system, including the decomposition parameters and 
the classification model hyperparameters, with various ML. 
Literature does not have a consensus about the best features 
representing chatter occurrence, while the features with the 
highest response for a tool condition are not necessarily the 
optimal features for accurate classification [370, 413]. The 
use of diverse optimization methods through chatter detection 
processes is an emerging trend, as discussed in Section 5.3.

6.4  Industry 4.0 and Digital Twins

In recent years, Industry 4.0 has been the latest trend in man-
ufacturing towards automation and data exchange, thanks 
to the rapid advancement of cyber-physical systems (CPS), 
internet of things (IoT), cloud computing and artificial intel-
ligence. The success of a smart factory relies heavily on the 
functionality and reliability of the manufacturing equipment, 
such as machine tools [8, 46, 47]. Thus, the demand for 
machining process monitoring is crucial. Li et al. [6] intro-
duced a system framework based on Industry 4.0 concepts 
for fault diagnosis and prognosis in machine centres based 
on data mining approaches. However, this investigation is 
still at an early conceptual stage, and there exist quite some 
challenges as pointed out by the authors. In the context of 
Industry 4.0, instrumented machine tools are widely used, 
along with the proliferation of sensory technology and the 
emergence of the IoT paradigm, which makes large volumes 
of manufacturing data available, leading to the realization of 
Big Data at the shop floor level. The recently developed DL 
algorithms present broad opportunities as well as many chal-
lenges in handling the Big Data to extract useful informa-
tion from the machining process status such as the stability 
condition and the chatter onset [68].

On the other hand, the development of intelligent machine 
tools with the ability to monitor and control multiple process 
modules has been considered a key to building the next gen-
eration of smart factories of Industry 4.0 [7]. Over the last 10 
years, there have been investigations on the development of 
intelligent spindles with the capabilities of sensing, decision-
making and control, aiming to achieve optimum machining 
process and reliable operations. A major expected function 
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is the monitoring and control of chatter [7]. In the concept 
of such a spindle, displacement sensors and accelerometers 
are integrated into the spindle structure to measure the vibra-
tion signals. The measured signals are analysed by advanced 
signal processing techniques in the decision-making module 
for chatter detection/prediction. When chatter occurs, the 
control module is activated to achieve active chatter control 
of the intelligent spindle [7]. There have been reports on the 
development of smart cutting tools [414], including force-
based smart cutting tools, cutting temperature-based inter-
nally cooled cutting tool, fast tool servo (FTS) and smart 
collets for ultraprecision and micro-manufacturing purposes 
and instrumented smart spindle as well [415]. These tools 
are able to provide real-time in-process data such as the cut-
ting forces and thus are more proactive to cope with machin-
ing dynamics, process variations and complexity. Hence, in 
the next generation smart machining systems equipped with 
these smart tools to provide useful information regarding 
the machining dynamics, the capability of chatter detection 
and control will be further enhanced with the latest devel-
opment of novel sensors and their integration at the factory 
level. However, there is still a long way to go with extensive 
research efforts for such an intelligent spindle and smart 
tools to be employed practically in the industry.

Digital Twin is a core component of CPS that can sense 
and detect accurately the behaviour and real-time state of 
the manufacturing system [416]. Ladj et al. [416] proposed a 
knowledge-based Digital Shadow as the core component of a 
future Digital Twin, with tool failure detection demonstrated as 
a case. Ward et al. [417] presented a machining Digital Twin 
capable of real-time adaptive control. The digital machining 
platform consists of a number of modules, including an online 
machining-induced residual stress (MIRS) control system, chat-
ter detection and control system and adaptive feed rate control 
system. The method used real-time model-based simulations 
to predict stability conditions, and the closed loop feedback 
updated the spindle speed and feed rate in real time to prevent 
chatter occurrence without the use of additional sensors. Nev-
ertheless, this approach relies on the accuracy of the stability 
model for the simulation, and the computational demands for 
practical machining operations are heavy. A further note is that 
the available literature on the chatter detection using Digital 
Twins through simulated signals is still very limited so far. Con-
sidering the importance of the Digital Twins in the Industry 4.0 
paradigm, this should be a topic worth more attention.

7  Conclusions

This paper presents a comprehensive review of recent litera-
ture on chatter detection methodologies for milling. It has 
critically analysed the diverse reported techniques, includ-
ing data acquisition and the employed sensor types, stability 

models for experimental design, signal processing methods, 
feature extraction and condition classification models. It 
shows that recent research efforts have been concentrated 
on the development of new techniques for signal processing 
and the definition of new chatter indicators for single-sensor 
approaches. While vibration is the most utilized signal type, 
detection accuracy is enhanced when using multiple signals 
and more than one feature; therefore, the study of multi-
sensor and information fusion is one of the current topics 
of research.

Regarding signal processing, VMD and WPD are among 
the most popular methods, while significant research efforts 
are on the automatic selection of their optimal decompo-
sition parameters. Another trend is the use of novel sig-
nal processing techniques to overcome the limitations of 
VMD performance, where singularity analysis, SST, EWT, 
cyclostationarity analysis and angular sampling are the 
emerging alternatives. Deep learning has been recently 
utilized along with image representation, while supervised 
machine learning techniques are employed along with 
diverse signal processing methods.

The literature analysis suggests that the selection of features 
and thresholds seems to be dependent on the experimental 
conditions and the acquired data, due to the lack of open data-
sets. At present, there is no agreement about the best feature 
to detect chatter, which has promoted the continuous study of 
new alternatives; however, it is reported the benefit of using 
multiple features and information fusion, instead of employing 
a unique chatter indicator. The performance of a chatter detec-
tion system depends on the employed signal type, the signal 
processing technique, the feature extraction and the selection 
and training of the classification model. To this point, it can-
not be claimed which is the optimal configuration, as it will 
depend on the application itself, the selection of chatter indica-
tors, the experimental conditions and the size and segmenta-
tion of the data.

Research challenges and future perspectives have been 
discussed and can be summarized as simultaneous moni-
toring of different tools and machining conditions using 
multiple-sensor and information fusion; development of 
a robust monitoring system that can work under varying 
machining conditions with accurate and reliable chat-
ter detection; integrating model-based chatter prediction 
into the online chatter detection system; employment of 
novel AI algorithms for optimal and automatic selection 
of parameters for signal processing and classification; uti-
lization of Big Data at the shop floor and smart manu-
facturing systems under the Industry 4.0 framework; and 
development of machining Digital Twin capable of real-
time chatter detection and prevention or adaptive control. 
In addition, research of novel signal processing methods 
and chatter features will be still a topic of interest.
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