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Abstract
In this paper, an approach for selection of materials in metal additive manufacturing based on three-way decision-making is
proposed. The process of this approach is divided into three stages. First, a decision matrix for a material selection problem
in metal additive manufacturing is established based on the basic components of the problem and normalised via a ratio
model and a unified rule. Second, the summary loss function, conditional probability, and expected losses of each alternative
material are calculated according to the weighted averaging operator, grey relational analysis, and the three-way decision
theory, respectively. Third, the three-way decision-making results for the problem are generated according to the developed
generation rules and the best material for the problem is selected based on the generated results. The application of the
approach is illustrated via a material selection example in metal additive manufacturing. The effectiveness of the approach
is demonstrated via a quantitative comparison with several existing approaches. The demonstration results suggest that the
proposed approach is as effective as the existing approaches and is more flexible and advantageous in solving a material
selection problem in metal additive manufacturing.

Keywords Metal additive manufacturing · Design for additive manufacturing · Material selection ·
Multi-criterion decision-making · Three-way decision model

1 Introduction

Metal additive manufacturing (AM) is a set of processes
that join metal materials layer upon layer to build metal
components directly from their three-dimensional model
data [1–4]. Representative metal AM technologies include
direct metal laser sintering, selective laser melting, electron
beam melting, and direct metal deposition [5–7]. The
research and application of metal AM processes are gaining
importance and popularity because of their attractive
advantages over conventional subtractive manufacturing
technologies, which mainly include flexible geometric
design, no extra cost to achieve geometric complexity,
eliminating costs on waste material, tooling, and non-
essential assembly, and reducing the production time [8].
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Application of a metal AM technology to manufacture
a component includes a set of activities, where material
selection is a critical one [9, 10]. In this activity, a
material that can simultaneously optimise certain key
factors for a specific application, such as the quality,
property, manufacturability, and cost of the component,
is selected from a certain number of available materials.
Currently, nearly 1500 materials for metal AM have
been developed and sold on the market [11]. How
to select appropriate materials to build a component
satisfying certain requirements is not easy [12]. There are
two main reasons for this. First, the selection needs a
comprehensive understanding of the utilities, performance,
strengths, and limitations of all alternative materials and the
influence of materials on the property and quality of the
component, which is difficult to achieve. Second, different
materials might belong to the same material type and have
considerable overlap in utilities, performance, properties,
metallurgical incompatibilities, and limitations [13, 14],
which increases the difficulty in actual selection.

To assist selection of materials in AM, many approaches
have been developed in the literature [15]. For example,
a knowledge-based system for AM material selection

/ Published online: 10 March 2023

The International Journal of Advanced Manufacturing Technology (2023) 126:1293–1302

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-023-10966-5&domain=pdf
http://orcid.org/0000-0001-5936-1714
mailto: q.qi@hud.ac.uk


integrated with an existing computer-aided design (CAD)
environment was developed in [16]; an AM process and
material selection approach based on CAD feature analysis
was presented in [17]; a targeted material selection process
for polymers in laser sintering was introduced in [18];
An integrated decision-making model for multi-criterion
decision-making (MCDM) problems in design for AM
based on an aggregation of deviation and similarity models
was developed in [19]; an integrated AM material and
process selection method based on analytical hierarchy
process and simple additive weighting was presented
in [20]; A heuristic and analytical algorithm for AM
material selection based on analytical hierarchy process
was developed in [21]; an integrated AM material-
design-process selection methodology based on analytical
hierarchy process was developed in [22]; a multi-criterion
evaluation system for AM process and resource selection
based on analytical hierarchy process was developed in [23];
an AM machine and material selection approach based on
best-worst method was presented in [24]; a generic method
for MCDM problems in design for AM based on a fuzzy
power weighted Maclaurin symmetric mean operator was
developed in [25]; four MCDM methods including SAW
(simple additive weighting), MOORA (multi-objective
optimisation based on ratio analysis), TOPSIS (technique
for order performance by similarity to ideal solution), and
VIKOR (abbreviation of a term in Serbian that means
multi-criterion optimisation and compromise solution) were
applied to sustainable AM material selection in [26]; a
material selection approach for biomedical AM based on
TOPSIS was developed in [27]; a metal AM material
selection approach based on information entropy method
and CODAS (combinative distance-based assessment) was
presented in [28].

The selection of AM materials is usually associated with
the selection of AM processes/machines, since the mate-
rials supported by different processes/machines are usu-
ally different. In practice, to fabricate a part or a group
of parts, an AM process/machine to be used is gener-
ally determined first, and then a material satisfying certain
requirements is selected from among those supported by
the process/machine and also available on the market [20].
An AM process/machine selection approach might also be
applied to AM material selection. Currently, there are also
many AM process/machine selection approaches in the lit-
erature [29]. For example, an AM process selection method
based on graph theory and matrix approach was devel-
oped in [30]; an approach for selection of AM techniques
based on an adaptive analytical hierarchy process was pre-
sented in [31]; six MCDM methods including TOPSIS,
graph theory and matrix approach, analytical hierarchy pro-
cess, multiplicative analytical hierarchy process, simple pair
analysis, and Verein Deutscher Ingenieure were applied to

selection of AM technologies in [32]; an AM process selec-
tion approach based on analytical hierarchy process and
the technical specifications of a part was presented in [33];
a decision-making methodology to facilitate AM process
selection and assist product/part design based on analytical
hierarchy process was developed in [34]; an AM process
selection method based on fuzzy logic was proposed in [35];
An experimental design approach for the selection of AM
processes based on TOPSIS was developed in [36]; a deci-
sion support method for AM process selection based on
knowledge value measuring was proposed in [37]; a deci-
sion support system for AM process selection based on
fuzzy set was developed in [38]; a weighted rough set based
fuzzy axiomatic design approach for AM process selection
was presented in [39]; an integration of fuzzy analytical
hierarchy process and fuzzy TOPSIS was applied to priori-
tise AM processes for micro-fabrication in [40]; a decision
support system for AM process selection based on a hybrid
of analytical hierarchy process and a modified TOPSIS
was developed in [41]; an approach to evaluate the AM
machine selection problem for healthcare applications based
on an integration of fuzzy analytic hierarchy process and
TOPSIS was presented in [42]; an AM machine selection
approach based on fuzzy power weighted Bonferroni aggre-
gation operators was proposed in [43]; an MCDM method
for AM process selection based on stepwise weight assess-
ment ratio analysis and complex proportional assessment
was presented in [44].

Each of the AM material/process/machine selection
approaches above can work well in its specific context, but
they lack flexibility and could generate undesirable results
when prior knowledge for selection is insufficient or the cost
of improper decisions is high, because they are all based
on two-way decision model (2WDM). 2WDM is a granular
computing technique commonly used in MCDM. As the
name suggests, there are two decisions on an alternative
in 2WDM. They are acceptance and rejection, which mean
that an alternative is either accepted or rejected. 2WDM is
simple and direct and has certain advantages when prior
knowledge for decision-making is sufficient or replacement
of improper decisions does not require a high cost. However,
there is yet no evidence that a comprehensive knowledge
base for selection of materials in metal AM has been
established. Further, many metal AM processes are widely
known for their high machine, material, and processing
costs [45, 46].

In this paper, three-way decision model (3WDM) is
introduced to propose a new approach for selection
of materials in metal AM. 3WDM is another granular
computing technique used in MCDM [47]. Compared
to 2WDM, 3WDM has an additional decision called
abstaining. This makes the model more flexible and
advantageous than 2WDM since it effectively prevents
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Fig. 1 A comparison of 2WDM
and 3WDM using a real-life
example

premature classification of the alternatives at the edge of
acceptance and rejection. Because of such feature, 3WDM
is more suitable for the decision-making problems where
there is not enough prior knowledge or replacement of
inappropriate decisions is costly [48]. Here a real-life
decision-making example cited from [49] is introduced to
intuitively compare the two models. A woman was going
to make an omelette with only six eggs left in her kitchen.
After she had beaten five eggs in a bowl, her husband arrived
to assist with the last egg. He appreciates decision-making
theory. Two thoughts crossed his mind as he picked up the
last egg: Was this egg a good one? Which decision-making
model was most suitable for the current circumstance? If
he adopts 2WDM, there will be two options for him. One
option is beating the egg to the bowl and the other is
discarding it. The benefits and possible costs associated
with these options are shown in Fig. 1. Naturally, if he
is confident that the last egg is a good egg, then the first
option is more suitable; Otherwise, the second option is
better. However, if it is difficult for him to judge whether
the last egg is good or bad, then neither option seems to
be suitable. In other words, it appears that 2WDM is not
suited for this circumstance. If the man adopts 3WDM, an
additional option, beating the egg to a new bowl to have a
check, will be available for him. The benefits and possible
costs associated with this option are also shown in Fig. 1. It
can be seen that 3WDM is more suitable than 2WDM under
the circumstance.

The remainder of the paper is organised as follows:
Section 2 describes the details of the proposed approach.
An illustration of the application of the approach and a
demonstration of the effectiveness of the approach are
documented in Section 3. Section 4 draws a conclusion of
the paper.

2 The proposed approach

In this section, the proposed approach for selection of
materials in metal AM is described in detail. A general
flow of this approach is delineated in Fig. 2. The proposed
approach takes as input a set of alternative materials,

certain selection criteria, value of each selection criterion
of each alternative material, and weight of each selection
criterion and outputs three-way decision-making results
together with the best material for a material selection
problem in metal AM. Its main process is divided into
three stages: initialisation, calculation, and determination.
In the initialisation stage, a decision matrix for the
problem is first established and then normalised. In the
calculation stage, the summary loss function, conditional
probability, and expected losses of each alternative material
are successively calculated. In the determination stage,
the three-way decision-making results for the problem are
generated and the best material for the problem is selected.
The details of these three stages are explained below.

2.1 Initialisation stage

There are two steps in the initialisation stage. The first
step is to establish a decision matrix for a material
selection problem in metal AM. Formally, the basic
components of this problem include m alternative materials
M1, M2, ..., Mm, n selection criteria C1, C2, ..., Cn, value
of each selection criterion (Cj ) of each alternative material
(Mi) xi,j (i = 1, 2, ..., m; j = 1, 2, ..., n), and weight
of each selection criterion (Cj ) wj (0 ≤ wj ≤
1 and �n

j=1wj = 1). The alternative materials can
be screened from current material types available for
metal AM, which mainly include stainless steel, tool
steel, titanium alloy, aluminium alloy, inconel, nickel
alloy, and copper alloy [11]. The selection criteria are
generally identified according to the specific requirements
of the component to be built, in which the properties of
alternative materials (e.g. density, melting point, tensile
strength, hardness, thermal conductivity), the predicted
properties of the built component (e.g. predicted tensile
strength, predicted hardness, predicted elongation, predicted
surface roughness), and the predicted cost to build
the component may be considered [50]. The values of
selection criteria of alternative materials can be acquired
from vendor documents and benchmark data, prediction
based on theoretical models, simulations, or experiments,
or evaluation based on expert experience [29]. Based
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Fig. 2 A general flow
of the proposed approach

on these components, a decision matrix is established
as A = [xi,j ]m×n.

The second step is to normalise the established decision
matrix. The values of different criteria usually have
different ranges, which cause inconvenience to subsequent
calculations. To this end, each criterion value is converted
into a number in [0, 1] using the following ratio model [51]:

yi,j = xi,j√∑m
i=1 x2

i,j

(1)

Further, there are generally two types of criteria in an
MCDM problem. They are positive and negative criteria.
The value of a positive criterion is positively correlated with
the decision-making results, while the value of a negative
criterion is the opposite. For example, the hardness and price
of a material respectively belong to a positive criterion and

a negative criterion in a material selection problem in metal
AM, since the greater the hardness and the lower the price,
the better the decision-making results. To unify the effect
of different types of criteria, the following unified rule is
applied to each converted criterion value:

zi,j =
{

yi,j if Cj is a positive criterion
1 − yi,j if Cj is a negative criterion

(2)

Through the conversion and unification, a normalised
decision matrix is obtained as B = [zi,j ]m×n.

2.2 Calculation stage

The calculation stage consists of two parallel steps and a
subsequent step. The first step is to calculate the summary
loss function of each alternative material. Let Sj and ¬Sj be
two states that respectively stand for the alternative material
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Table 1 Relative loss function derived from zi,j

Decision Sj ¬Sj

DACC 0 1 − zi,j

DABS λj zi,j λj (1 − zi,j )

DREJ zi,j 0

Mi meets the selection criterion Cj and Mi does not meet
Cj . Each state corresponds to the three decisions acceptance
(denoted as DACC), abstaining (denoted as DABS), and
rejection (denoted as DREJ) in 3WDM. Inspired by the
relative loss functions developed in [52–54], a relative loss
function derived from the normalised criterion value zi,j is
established in Table 1, where 0 ≤ λj ≤ 1 is a risk avoidance
coefficient that corresponds to Cj .

This relative loss function is explained as follows: The
cost of correct decisions is 0; The cost of rejection is zi,j

when Mi meet Cj ; The cost of acceptance is 1 − zi,j

when Mi does not meet Cj ; The cost of abstaining in each
state lies between the cost of acceptance and the cost of
rejection in this state. According to the relative loss function
in Table 1, each normalised criterion value zi,j is converted
into a relative loss function:

f (zi,j ) =
⎡
⎣

0 1 − zi,j

λj zi,j λj (1 − zi,j )

zi,j 0

⎤
⎦ (3)

Using the weighted averaging operator, the relative loss
functions of each alternative material (i.e. the n relative loss

functions f (zi,1),f (zi,2), ...,f (zi,n)) are aggregated into a
summary loss function:

f (zi) =
⎡
⎢⎣

0 �n
j=1wj(1 − zi,j )

�n
j=1wjλj zi,j �n

j=1wjλj (1 − zi,j )

�n
j=1wjzi,j 0

⎤
⎥⎦ (4)

The second step is to calculate the conditional probability
of each alternative material. One of the crucial elements of
3WDM is the conditional probability. In some applications
of 3WDM, the conditional probabilities are assigned an
identical fixed value. However, the conditional probabilities
of the alternatives in an MCDM problem are typically
different and generally need to be determined according to
the values of criteria of alternatives. In [55], TOPSIS is used
to determine the conditional probabilities. The two states of
a criterion are referred to as the positive and negative ideal
solutions. The conditional probabilities of alternatives are
implied by the final relative closeness degrees. This method,
which uses distance as a scale, can only reflect how the data
curves are positioned in relation to one another and cannot
convey the significance of alternatives through the trend in a
data sequence. Grey relational analysis [56], a technique for
assessing the degree of relationship between data sequences,
was found to provide an effective measure for the trend
difference of data sequences and the similarity between data
curves [53]. To this end, grey relational analysis is applied
to calculate the conditional probability of each alternative
material. Firstly, the grey relational coefficients between the
alternative material Mi and maxn

j=1{zi,j } and between Mi

and minn
j=1{zi,j } are calculated as

δ+
i,j = minm

i=1 minn
j=1

{∣∣zi,j − maxn
j=1{zi,j }

∣∣} + 0.5maxm
i=1 maxn

j=1

{∣∣zi,j − maxn
j=1{zi,j }

∣∣}
∣∣zi,j − maxn

j=1{zi,j }
∣∣ + 0.5maxm

i=1 maxn
j=1

{∣∣zi,j − maxn
j=1{zi,j }

∣∣} (5)

δ−
i,j = minm

i=1 minn
j=1

{∣∣zi,j − minn
j=1{zi,j }

∣∣} + 0.5maxm
i=1 maxn

j=1

{∣∣zi,j − minn
j=1{zi,j }

∣∣}
∣∣zi,j − minn

j=1{zi,j }
∣∣ + 0.5maxm

i=1 maxn
j=1

{∣∣zi,j − minn
j=1{zi,j }

∣∣} (6)

Then, the grey relational degrees of Mi with respect to
maxn

j=1{zi,j } and of Mi with respect to minn
j=1{zi,j } are

calculated as

δ+
i = �n

j=1wjδ
+
i,j (7)

δ−
i = �n

j=1wjδ
−
i,j (8)

Finally, the conditional probability of Mi is computed as
the relative closeness of the grey relation of Mi

P (S|[Mi]) = δ+
i

δ+
i + δ−

i

(9)

where S is a state that stands for the alternative material Mi

meets an aggregation of all n criteria.
The third step is to calculate the expected losses of each

alternative material. Let ¬S be a state that stands for the
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alternative material Mi does not meet an aggregation of
all n criteria. If P(S|[Mi]) + P(¬S|[Mi]) = 1, according
to the three-way decision theory [47], the summary loss
function in Eq. (4), and the conditional probability in
Eq. (9), the expected losses of Mi when making the decision
D∗ (∗ = ACC, ABS, REJ) are calculated as

L(DACC|[Mi]) = (
1−P(S|[Mi])

)(
�n

j=1wj(1−zi,j )
)
(10)

L(DABS|[Mi]) = P(S|[Mi])
(
�n

j=1wjλj zi,j

)

+(
1 − P(S|[Mi])

)(
�n

j=1wjλj (1−zi,j )
)

(11)

L(DREJ|[Mi]) = P(S|[Mi])
(
�n

j=1wjzi,j

)
(12)

2.3 Determination stage

There are two steps in the determination stage. The first
step is to generate three-way decision-making results for
the material selection problem. According to the Bayesian
decision theory, the decision with the lowest cost is the best
one [47]. Based on this, three decision rules are developed
as follows:

(1) If L(DACC|[Mi])≤L(DABS|[Mi]) and L(DACC|[Mi])
≤ L(DREJ|[Mi]), then make the decision DACC for
Mi ;

(2) If L(DABS|[Mi]) ≤ L(DACC|[Mi]) and L(DABS|
[Mi])≤L(DREJ|[Mi]), then make the decision DABS

for Mi ;
(3) If L(DREJ|[Mi]) ≤ L(DACC|[Mi]) and L(DREJ

|[Mi]) ≤ L(DABS|[Mi]), then make the decision DREJ

for Mi .

On the basis of these decision rules, the three-way decision-
making results can be generated according to the following
rules: If the decision DACC is made for Mi , then classify Mi

to an acceptance set MACC; If the decision DABS is made
for Mi , then classify Mi to an abstaining set MABS; If the

decisionDREJ is made forMi , then classifyMi to a rejection
set MREJ.

The second step is to select the best material. According
to the three-way decision theory [47] and the generated
three-way decision-making results, the best material is
selected from the acceptance set MACC if this set is
non-empty. Otherwise, it is selected from the abstaining
set MABS.

3 Application and demonstration

In this section, the application of the proposed approach is
first illustrated via a material selection example in metal AM
[28]. Then a quantitative comparison between the proposed
approach and several existing approaches is carried out to
demonstrate the effectiveness of the approach.

3.1 Application of the proposed approach

A user needs to select a material from eight alternative
materials to build a component using a metal AM process.
The eight alternative materials are 316L stainless steel
(M1), H13 tool steel (M2), Ti6Al4V titanium alloy (M3),
AlSi10Mg aluminium alloy (M4), AlSi12Cu2Fe aluminium
alloy (M5), Inconel 718 (M6), Hastelloy X nickel alloy
(M7), and CuSn10 copper alloy (M8). The selection criteria
of these materials are identified as price (C1), density
(C2), tensile strength (yield) (C3), elastic modulus (C4),
Brinell hardness (C5), and electrical resistivity (C6). The
values of these criteria of the eight alternative materials are
cited from [28] and listed in Table 2. The weights of the
selection criteria are assumed to be 0.3, 0.1, 0.3, 0.1, 0.1, and
0.1, respectively.

Using the proposed approach, the material selection
problem above can be solved according to the following
steps:

(1) Establish a decision matrix. Based on the eight
alternative materials, six selection criteria, and values of

Table 2 Values of six selection criteria of eight alternative materials

Material Price Density Tensile Elastic Brinell Electrical

(/kg) (g/cm3) strength (MPa) modulus (GPa) hardness resistivity (μ�·m)

316L 380 8.000 170 193.0 217 0.74000

H13 190 7.800 1380 215.0 207 0.52000

Ti6Al4V 1990 4.420 910 114.0 334 1.78000

AlSi10Mg 280 2.580 190 70.0 75 0.05943

AlSi12Cu2Fe 650 2.670 140 74.5 100 0.07500

Inconel 718 3000 8.192 550 204.9 363 1.18200

Hastelloy X 4000 8.220 385 205.0 230 1.18000

CuSn10 600 8.800 180 130.0 70 0.16000
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Table 3 Calculated summary loss functions

Material Function Decision S ¬S

M1 f (z1) DACC 0 0.5464

DABS 0.1587 0.1913

DREJ 0.4536 0

M2 f (z2) DACC 0 0.3424

DABS 0.2301 0.1199

DREJ 0.6576 0

M3 f (z3) DACC 0 0.4902

DABS 0.1784 0.1716

DREJ 0.5098 0

M4 f (z4) DACC 0 0.6412

DABS 0.1256 0.2244

DREJ 0.3588 0

M5 f (z5) DACC 0 0.6637

DABS 0.1177 0.2323

DREJ 0.3363 0

M6 f (z6) DACC 0 0.5838

DABS 0.1457 0.2043

DREJ 0.4162 0

M7 f (z7) DACC 0 0.6865

DABS 0.1097 0.2403

DREJ 0.3135 0

M8 f (z8) DACC 0 0.6118

DABS 0.1359 0.2141

DREJ 0.3882 0

the six selection criteria of the eight alternative materials,
a decision matrix for the material selection problem is
established as A = [xi,j ]8×6, where the values of xi,j are
listed in Table 2.

(2) Normalise the decision matrix. According to Eq. (1),
each criterion value in A (i.e. xi,j ) is converted into a
number in [0, 1] (i.e. yi,j ). Further, among the six selection
criteria, price is a negative criterion, while the remaining
ones are positive criteria. Based on this, the converted
criterion values (i.e. [yi,j ]8×6) are normalised according to
Eq. (2) and a normalised decision matrix is obtained as

B = [zi,j ]8×6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.9306 0.4157 0.0936 0.4234 0.3403 0.2836
0.9653 0.4053 0.7596 0.4716 0.3246 0.1993
0.6367 0.2297 0.5009 0.2501 0.5237 0.6821
0.9489 0.1341 0.1046 0.1535 0.1176 0.0228
0.8813 0.1388 0.0771 0.1634 0.1568 0.0287
0.4523 0.4257 0.3028 0.4495 0.5692 0.4529
0.2697 0.4272 0.2119 0.4497 0.3607 0.4522
0.8905 0.4573 0.0991 0.2852 0.1098 0.0613

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3) Calculate the summary loss functions. According to
Eq. (3), each normalised criterion value in B (i.e. zi,j ) is
converted into a relative loss function (i.e. f (zi,j )), in which
the risk avoidance coefficients of the six selection criteria
take the same value 0.35. Then according to Eq. (4) and the
given weights, the relative loss functions of each alternative
material (i.e. f (zi,1),f (zi,2), ...,f (zi,9)) are aggregated
into a summary loss function (i.e. f (zi)), as listed in
Table 3.

(4) Calculate the conditional probabilities. According to
Eqs. (5)–(9), the conditional probability of each alternative
material (i.e. P(S|[Mi])) is respectively calculated, as listed
in Table 4.

(5) Calculate the expected losses. According to Eqs. (10)–
(12), the expected losses of each alternative material when
making the decision D∗ (∗ = ACC, ABS, REJ) are
respectively calculated, as listed in Table 5.

(6) Generate three-way decision-making results. Accord-
ing to the developed decision and classification rules, the
three-way decision-making results for the material selec-
tion problem are obtained as MACC = {M2}, MABS =
{M1, M3, M6}, and MREJ = {M4, M5, M7, M8}.

(7) Select the best material. Based on the generated
three-way decision-making results, M2 (i.e. H13 tool steel)
is selected as the best material for the material selection
problem.

3.2 Demonstration of effectiveness

As reviewed in the introduction, most of the existing AM
material/process/machine selection approaches are based
on certain MCDM methods, which mainly include ana-
lytical hierarchy process, best-worst method, fuzzy power
weighted Bonferroni aggregation operators (FPWBAOs),
fuzzy power weighted Maclaurin symmetric mean opera-
tor (FPWMSMO), SAW, MOORA, TOPSIS, VIKOR, and
CODAS. To demonstrate the effectiveness of the proposed
approach, a quantitative comparison between it and the
existing approaches based on FPWBAOs [43], FPWMSMO
[25], SAW [26], MOORA [26], TOPSIS [26], VIKOR [26],
and CODAS [28] is carried out. In this comparison, each
approach is applied to solve the material selection problem
above. Each value in Table 2 is converted into a number
in [0, 1] using the ratio model in Eq. (1). The converted
results together with the given criterion weights are taken
as the input of the existing approaches. It is worth noting
that the existing approaches based on analytical hierarchy

Table 4 Calculated conditional probabilities

M1 M2 M3 M4 M5 M6 M7 M8

P(S|[Mi ]) 0.4708 0.5489 0.5384 0.4405 0.4402 0.4826 0.4841 0.4538
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Table 5 Calculated expected losses

M1 M2 M3 M4 M5 M6 M7 M8

L(DACC|[Mi ]) 0.2892 0.1545 0.2262 0.3587 0.3715 0.3020 0.3542 0.3342

L(DABS|[Mi ]) 0.1759 0.1804 0.1753 0.1809 0.1818 0.1760 0.1771 0.1786

L(DREJ|[Mi ]) 0.2136 0.3610 0.2745 0.1581 0.1480 0.2009 0.1517 0.1762

process and best-worst method are not included in the com-
parison, because these two methods are based on pairwise
comparison of criteria and require specific pairwise com-
parison matrices as input, while there are not such matri-
ces in the material selection problem. When adapting the
FPWMSMO, both of the controlling parameters of Maclau-
rin symmetric mean and Hamacher t-norm and t-conorm
are set to 3. When adapting the FPWBAOs, both of the
controlling parameters of Bonferroni mean and geometric
Bonferroni mean are set to 1 and 2; The controlling param-
eter of Hamacher t-norm and t-conorm is set to 3; The risk
attitude factor is set to 0.5. The results of the comparison are
listed in Table 6.

As can be seen from Table 6, M2 is the alternative
material in the first position of each order, M3 and M1 or
M3 and M6 are the alternative materials in the second and
third positions, and the remaining alternative materials are
in the following positions. Such results are fully consistent
with the three-way decision-making results generated by
the proposed approach: M2 is recommended, M4, M5, M7,
and M8 are not recommended, and the remaining alternative
materials require more prior knowledge to make further
decisions. This validates the proposed approach in solving a
material selection problem in metal AM.

The quantitative comparison above has demonstrated that
the proposed approach is as effective as several existing
approaches from the perspective of generated decision-
making results. As the proposed approach comes from a
combination of 3WDM and MCDM, it has a significant
advantage over these existing approaches. The existing
approaches are based on conventional 2WDM, while the
proposed approach is based on 3WDM. As illustrated in the
introduction, 3WDM is more flexible than 2WDM since it

can effectively avoid hasty classification of the alternatives
in a state of hesitation. Benefiting from this feature, 3WDM
is more suitable for a decision-making problem in which
there is not sufficient prior knowledge or replacement of
improper decisions requires a high cost. There is not a
comprehensive knowledge base for material selection in
metal AM and many metal AM processes are widely known
for their high costs. From these two aspects, the proposed
approach may be more advantageous than the existing
approaches.

4 Conclusion

In this paper, an approach for selection of materials
in metal AM based on three-way decision-making is
presented. The main process of this approach consists of an
initialisation stage, a calculation stage, and a determination
stage. In the initialisation stage, a decision matrix for a
material selection problem in metal AM is established
and normalised. The summary loss function, conditional
probability, and expected losses of each alternative material
are successively calculated in the calculation stage. In the
determination stage, the three-way decision-making results
for the problem are produced and the best material for
the problem is determined. The paper also introduces a
material selection example in metal AM to illustrate the
application of the presented approach and demonstrates the
effectiveness of the approach via a quantitative comparison
with several existing approaches. The demonstration results
suggest that the presented approach is as effective as the
existing approaches and is more flexible than them in
solving a material selection problem in metal AM.

Table 6 Results of the
quantitative comparison with
several existing approaches

Selection approach Reference Order or partition of alternative materials

FPWBAOs-based approach Ref. [43] M2 � M3 � M1 � M6 � M8 � M7 � M4 � M5

FPWMSMO-based approach Ref. [25] M2 � M3 � M6 � M1 � M7 � M8 � M4 � M5

SAW-based approach Ref. [26] M2 � M3 � M1 � M6 � M8 � M4 � M5 � M7

MOORA-based approach Ref. [26] M2 � M3 � M1 � M6 � M8 � M4 � M5 � M7

TOPSIS-based approach Ref. [26] M2 � M3 � M1 � M8 � M4 � M5 � M6 � M7

VIKOR-based approach Ref. [26] M2 � M3 � M6 � M1 � M8 � M7 � M4 � M5

CODAS-based approach Ref. [28] M2 � M3 � M6 � M1 � M4 � M7 � M8 � M5

The proposed approach This paper {{M2}, {M1, M3, M6}, {M4, M5, M7, M8}}
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Future workwill aim especially at studying the application
of three-way decision-making in solving other MCDM
problems in the field of AM. For example, three-way
decision-making would be applied to determine the optimal
AM part design variant from a set of candidate design
variants, choose the best AM machine to fabricate a
specific component from several available machines, find
the optimal orientation to build an AM part from a
certain number of alternative orientations, select the best
combination of process parameters to build an AM part
or a group of AM parts from some possible combinations,
and schedule AM component batches to a network of
AM machines.
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