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Abstract  
In assembly processes, collaborative robots (cobots) can provide valuable support to improve production performance (assem-
bly time, product quality, worker wellbeing). However, there is a lack of models capable of evaluating cobot deployment 
and driving decision-makers to choose the most cost-effective assembly configuration. This paper tries to address this gap 
by proposing a novel cost model to evaluate and predict assembly costs. The model allows a practical and straightforward 
comparison of different potential assembly configurations in order to guide the selection towards the most effective one. The 
proposed cost model considers several cost dimensions, including manufacturing, setup, prospective, retrospective, product 
quality and wellbeing costs. The cost estimation also considers learning effects on assembly time and quality, particularly 
relevant in low-volume and mass customised productions. Three real manufacturing case studies accompany the description 
of the model.
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1 � Introduction 

Major advances in robotics have made it possible to replace 
humans with automated systems in many production pro-
cesses. Until a few years ago, a common goal of manufac-
turing managers was to develop so-called automated fac-
tories, i.e. factories where humans supervise the work of 
automated equipment performing all the operations neces-
sary for producing goods. This paradigm achieved fruitful 
results in contexts based on the production of large volumes 
of standardised products since the financial investment in 
automated production lines was quickly repaid over time 
by lower production costs and higher production capacity.

Nowadays, most industrial sectors are experiencing an 
increasing demand for mass-customised and servitised prod-
ucts, i.e. market goods modified to satisfy specific customer 
needs [1, 2].

Mass customisation and the resultant increase in prod-
uct variety urge the development of modern manufactur-
ing systems combining the flexibility and personalisation 

of custom-made products with the low unit costs [3–5]. 
In this context, total automation is not always the most 
economically, organisationally and socially efficient 
choice [6].

The implementation of collaborative robots (cobots) can 
be advantageous in contexts where a high degree of flex-
ibility is required [7] since it consents the employment of 
“hybrid” automation in which the strengths of robots and 
humans are combined [8–10]. Traditional industrial robots 
are usually isolated from workers to avoid physical con-
tact with humans. On the contrary, cobots are cooperating 
robots that can work safely with human workers in a shared 
workspace [11]. Moreover, cobots are less expensive than 
traditional industrial robots and are easier and faster to 
reprogramme and move, allowing greater flexibility of use. 
These characteristics also enable cobots to be employed by 
small- and medium-sized companies where low volumes 
are produced and where the amount of available budget for 
investment is limited.

Cobots proved to be particularly performant in supporting 
humans in assembly tasks since they can set up precisely 
repeatable and monotonous tasks (e.g., bolting, nut driving, 
part fitting, insertion), consequently reducing the physical 
and mental workload of the operators and increasing perfor-
mances in terms of productivity and quality [12].
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While cobots offer significant advantages; their deploy-
ment is still limited in manufacturing processes with high 
collaboration potential. Assembly is a typical process 
where collaborative robotics could provide substantial 
benefits, but its diffusion is limited by technological imma-
turity and lack of design tools helpful in promoting its 
deployment. Manufacturers are often faced with the choice 
of which assembly configuration to adopt. For this pur-
pose, however, there is a lack of tools to guide decision-
makers towards efficient decisions.

In order to bridge this gap, the present study tried to 
answer the following research questions (RQs):

(RQ1)When is it cost-effective to introduce a col-
laborative robot in an assembly process?
(RQ2)What are the main components of the assembly 
cost that a decision-maker must take into account?

Trying to address these questions, this paper provides a 
cost model capturing the most relevant decision drivers for 
the choice of the most cost-effective assembly configura-
tion. The model shows how production volume, assembly 
lot sizes, quality requirements, technology and wellbeing 
costs influence the decision on the selection of assembly 
configuration. Learning processes that influence assem-
bly performance in terms of productivity and defects are 
included in the model.

The formulation of the model is intended to be gen-
eral, as it can be used for different assembly settings, and 

practical, since it introduces some reasonable approxima-
tions simplifying the evaluation process.

The remainder of the paper is organised as follows. Sec-
tion 2 introduces the conceptual background of this study. 
Section 3 describes the proposed cost model. Section 4 pro-
vides recommendations for the production throughput analy-
sis. Three case studies in different manufacturing contexts 
are presented in Section 5. Finally, the concluding section 
summarises the contributions of the work, its limitations and 
possible future research.

2 � Conceptual background

2.1 � Collaborative robots

The concept of a collaborative robot is not new: More than 
25 years ago, Colgate [13] defined the term cobot (short 
for collaborative robot) as a passive mechanical device used 
to aid humans in solving industrial tasks. Over the years, the 
concept has evolved and been enriched with additional ele-
ments. Table 1 shows some differences between traditional 
industrial robots and cobots.

In addition to the technical characteristics listed in 
Table 1, other elements differentiate roles and operations 
performed by cobots and industrial robots. According to 
Gil-Vilda et al. [14], cobots should satisfy the following 
requirements to achieve effective collaboration with humans: 

Table 1   Characteristics of traditional robots and collaborative robots. Partially adapted from Cohen et al. [12]

Industrial robots Cobots

Role Replacing a worker Assisting a worker
Human interaction Commands and programming assigning loca-

tions movements and gripping
Intelligent interaction: gesture recognition, 

speech recognition and anticipating operator 
moves

Camera and computer vision External camera and external system Built-in standard (as part of the cobot), coupled 
with artificial intelligence

Workspace Separate safe workspace for robots and opera-
tors — usually fenced

Sharing the same workspace — no fencing

Work envelop Essential and rigid Not relevant
Rapid handling of disruptions and obstruc-

tion
Usually needs a full setup after disruption Built-in standard

Reprogramming Rare — requires a significant amount of time 
and specific competences

Frequent — rapid and feasible for the operators

Physical disruptions Mostly hazardous, setup required for re-
initiation

Safe with easy re-initiation

System self-awareness Basic failure detection Real-time monitoring of load on each axis and 
segment, tactile pressure and axis locations

Agility Rapid motions Slow motions (usually)
Payload May be heavy Not heavy (usually)
Acquisition cost High Low
Ability to work in a dynamic environment, 

possibly with moving entities
No Yes
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(i) mobility, i.e. the ability to easily move the cobot in the 
production plant,(ii) intelligence, i.e. the awareness of the 
resources and job characteristics, and their implications; 
(iii) connectivity, i.e. human–cobot communication, and 
cobot system communication; (iv) actuation, i.e. the ability 
to develop safe and dynamic trajectories; and (v) human-
centricity, the support to the human operator from the physi-
cal, mental and psychosocial point of view. These features 
allow cobots to interact closely with operators and assist 
them in their activities.

The study of the technical aspects related to collabora-
tive robotics is often accompanied by studying the human 
and social factors strongly impacted by the new technol-
ogy [8, 9]. In these regards, Gervasi et al. [15] proposed a 
conceptual framework to assess HRC composed of 8 latent 
dimensions: autonomy, information exchange, team organi-
sation, adaptivity and training, task, human factors, ethics 
and cybersecurity.

The cobot market is rapidly expanding because of their 
flexibility, ease of use and affordability. In industrial con-
texts, cobots are deployed for performing tasks of packing, 
assembling, palletising, welding, handling material, inspect-
ing parts and products, loading/unloading machines, part 
cleaning, bin picking and kitting [16]. To date, however, 
the collaborative features of cobots are not fully exploited: 
cobots are often used to perform simple repetitive tasks with 
very limited interactions with human operators. A possible 
reason for this might be found in the lack of practical and 
quantitative tools capable of demonstrating the benefits of 
the technology in new application contexts.

2.2 � Assembly operations and cobots

Assembly is the operation where component parts and sub-
assemblies are integrated together to obtain the end manu-
factured goods (Hu et al., 2011b). Assembly lines usually 

consist of many workstations in charge of carrying out a 
specific set of tasks, and the product moves from one work-
station to the next in a well-defined order [17].

Assembly tasks can be performed (i) manually by human 
operators, (ii) in collaboration between human operators and 
collaborative robots, or (iii) exclusively by robots specifi-
cally designed and programmed [18] (see Fig. 1).

Some assembly tasks still require the flexibility and dexter-
ity of human operators. These characteristics make the human 
element still a vital part of assembly lines [19]. Consider, for 
example, the final assembly of a car that is still mainly per-
formed by human operators,the assembly tasks require a dex-
terity that existing robotic systems are unable to satisfy [20].

The combination of a human operator’s flexibility, dexter-
ity and intelligence with the strength and precision of a robot 
allows for more efficient and effective assembly processes 
and improved worker wellbeing [21].

2.3 � Evaluation and cost modelling of cobot 
implementation

A key aspect concerning the implementation of collaborative 
robots in industrial processes is the evaluation and prediction 
of production costs. In this view, some attempts have been 
made to define practical approaches and economic models 
to assess cobot deployment. Table 2 compares the state of 
the art on the topic comparing the different dimensions of 
analysis considered in the proposed models.

Bukchin and Tzur [17] developed a heuristic algorithm 
for the problem of designing a flexible assembly line when 
several equipment alternatives are available. The objective 
was to minimise total equipment costs.

Takata and Hirano [22] proposed a method for planning 
human and robot allocation in hybrid assembly systems to 
select the solution that minimises the expected total produc-
tion cost, including robot investment and labour cost.

Fig. 1   Representation of differ-
ent assembly configurations. A 
Manual assembly; B collabora-
tive assembly; C automated 
assembly
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Fast-Berglund et al. [23] investigated the deployment 
of cobots for O-ring assembly applying the methodology 
Dynamo +  + for measurement and analysis of the level 
of automation (cognitive and physical), cycle time and 
quality.

Dalle Mura and Dini [24] presented a genetic algorithm 
to approach the assembly line balancing problem in the case 
of human–robot collaborative work. The aim of the proposed 
approach was the minimisation of: (i) the assembly line cost, 
evaluated according to the number of workers and equip-
ment on the line, (ii) the number of skilled workers on the 
line and (iii) workers energy expenditures.

Li et al. [25] addressed the cost-oriented assembly line 
balancing problem with collaborative robots, where several 
different types of collaborative robots with varying costs of 
purchasing are available. A multi-objective mixed-integer 
programming model was developed to minimise the cycle 
time and the total collaborative robot purchasing cost.

Fager et al. [26] presented a model aiming at supporting 
economic assessment of cobot implementation considering 
operators, equipment and quality costs. The model includes 
the relative cost difference between a manual and a cobot-
supported process.

Peron et al. [27] proposed a decision support system 
based on tactical-level variables (i.e. throughput, operator 
and equipment cost, operation time and type).

Cohen et al. [12] presented a summary of the major con-
siderations related to cobot acquisition and deployment and 
provided a productivity analysis procedure that supports 
cobot acquisition and deployment decisions. Their work 
presented a computational technique to analyse and support 
this decision for a single workstation per se and for a station 
in an assembly line.

The presented papers address the problem of economic 
evaluation of cobot implementation by focusing on individual 
aspects or specific application contexts. A general cost model 
capable of including all cost dimensions is still missing.

The next section presents a proposal of a more general 
cost model to support assembly designers and managers in 
analysing the convenience of introducing cobots into a pro-
duction line.

3 � A general cost model

To support the introduction of cobots in assembly produc-
tion lines, this section introduces a general cost model aimed 
at estimating the unit assembly costs. The model can support 
decision-makers in choosing the most cost-effective assem-
bly configuration by taking into account relevant elements 
defining the total assembly cost of a single unit. The model 
is designed to be applied in production contexts character-
ised by small lot production. In particular, it considers the 
learning processes of human operators, both from the pro-
ductivity and product quality point of view. Nevertheless, the 
model can also be successfully applied in mass production, 
characterised by large volumes of standardised products.

3.1 � Notation

The following notations are used in the remainder of the 
paper:

i	� Assembly configuration (for example: 
i={manual, collaborative, automated})

CAi	� Unit assembly cost (€/unit)

Cmi	� Unit manufacturing costs (€/unit)

Csi	� Unit setup costs (€/unit)

CPCi	� Unit prospective costs (€/unit)

CRCi	� Unit retrospective costs (€/unit)

Table 2   State of the art on 
evaluation and cost modelling 
of cobot implementation

References Dimensions of analysis

Equipment 
costs

Labour costs Quality costs Production 
throughput

Operators’ 
workload

Bukchin and Tzur [17] x
Takata and Hirano [22] x x
Fast-Berglund et al. [23] x x x
Dalle Mura and Dini [24] x x x
Li et al. [25] x
Fager et al. [26] x x x
Peron et al. [27] x x x
Cohen et al. [12] x x
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Cqi
	� Unit quality costs (€/unit)

Cwi	� Unit wellbeing costs (€/unit)

co	� Cost of operative assembly time (€/hours)

tai	� Operative assembly time (hours)

t(n)i	� Operative assembly time for the n-th lot unit 
(hours)

t(1)i	� Operative time for the 1st lot unit (hours)

tai	� Average unit assembly time (hours)

tsi	� Setup time attributable to the individual assem-
bly operation (hours)

Tsi	� Total time required to setup the workstation. 
(hours)

csi	� Cost of setup time (€/hour)

bi	� Productivity leaning factor

�i	� Productivity learning percentage ([0;1])

Ki	� Total life-cycle cost of investments (€)

vi	� Service life of the equipment (years)

N	� Estimated lot size (unit)

L	� Estimated number of lots processed in a year

di	� Average defectiveness ([0;1])

d(n)i	� Defectiveness related to the n-th lot unit ([0;1])

d(1)i	� Defectiveness related to the 1st lot unit ([0;1])

qi	� Quality learning factor

�i	� Quality learning percentage ([0;1])

cd	� Average cost of a defective unit (€/unit)

RCTOTi
	� Total annual retrospective costs (€)

CWTOTMAX
	� Maximum wellbeing costs (€)

�i	� Wellbeing costs reduction factor ([0;1])

tws	� Duration of the work session (hour)

nws	� Number of work sessions in a working day

ews	� Efficiency in the use of the production resources 
(workforce and equipment) ([0;1])

WD  	� Number of working days in a year

Section 3.5 introduces some guideline for estimating 
model parameters.

3.2 � Model assumptions

Before developing the model, basic assumptions and features 
associated with modelling problem are provided:

a.	 In order to perform the assembly tasks, a specific set 
of equipment is required. Equipment costs vary accord-
ing to the assembly configuration. Equipment costs are 
related to the overall expenditure arising in their entire 
life cycle (purchase, operating costs, maintenance, etc.).

b.	 The process throughput is ex-ante predefined.
c.	 The duration of the assembly task is deterministic and 

depends on the assembly configuration chosen. The 
implementation of an automatic or collaborative robotic 
systems can reduce operative time [28–30].

d.	 It is possible to estimate model inputs using (i) pre-tests, 
(ii) historical data from similar previous projects/imple-
mentations and (iii) the experience of the equipment/
technology suppliers (see Section 3.5)

e.	 The defectiveness of the assembly process is determin-
istic and depends on the assembly configuration. The 
implementation of automatic or collaborative robotic 
systems can reduce assembly defectiveness [28–30].

3.3 � Model formulation

The proposed model for assembly costs considers six differ-
ent cost components:

•	 Manufacturing costs ( Cm ): referring to the cost of the 
time during which the human operator performs assem-
bly operations.

•	 Setup costs ( Cs) : referring to the cost of the time dur-
ing which the human operator setup the assembly station 
between one production lot and the next.

•	 Prospective costs ( CPC) : referring to the acquisition of the 
relevant equipment required to perform the assembly process.

•	 Retrospective costs ( CRC) : referring to the costs that will 
still occur if the currently implemented assembly con-
figuration is modified.
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•	 Product quality costs ( Cq ): referring to the costs arising 
from the defectiveness of the assembly process.

•	 Wellbeing cost ( Cw ): referring to the costs resulting from 
excessive physical and cognitive workload for operators.

Similar to other analytical models in which the cost esti-
mation is decomposed into a sum of multiple components 
[31], the unit cost of assembly in the i th assembly configura-
tion can be calculated as follows:

3.3.1 � Manufacturing costs

Unit manufacturing costs ( Cm) can be calculated as the 
product of the cost of operative assembly time ( co ) and the 
required operative assembly time ( ta):

The operative assembly time ( ta ) is influenced by the 
number of tasks involved in the assembly process and their 
complexity. In mass productions, the assembly time can be 
approximated as a constant; it converges to a specific stand-
ard time ( tstd ) as the number of units produced increases. 
Conversely, in low-volume productions (small lots), the 
assembly time is strongly influenced by the learning pro-
cesses, and the standard time is not reached. The smaller the 
production lots, the more significant the impact of learning 
processes on average assembly time.

According to one of the prevalent mathematical model, 
learning processes are described by a power model [32]. The 
time required to produce the n th lot unit in the i th assembly 
configuration is equal to:

where:

•	 n is the cumulative unit number;

(1)CAi = Cmi + Csi + CPCi + CRCi + Cqi
+ Cwi (C∕unit)

(2)Cm = co ⋅ ta (C∕unit)

(3)t(n)i = t(1)i ⋅ n
−bi

•	 t(1)i is the operative time required to assembly the 1st lot 
unit, i.e. the initial productivity performance, in the i th 
assembly configuration;

•	 bi is the learning productivity factor in the i th assembly 
configurations.

The learning productivity factor can be related to the 
learning productivity percentage � by the following:

The smaller is the value of �i , the larger is the value of bi 
and the higher is the productivity learning effect [33].

Figure 2 shows the examples of learning curves for an 
assembly operation performed in three different configura-
tions: manual, collaborative and full automated (in this case, 
the production time can be considered almost constant over 
time). It can be observed that the support of cobots allows 
for shorter assembly times and faster learning with respect 
to manual configuration (Cohen et al., 2021).

The average unit assembly time ( tai ) is influenced by the 
lot size, and it can be calculated as follows:

where N is the estimated production lot size.
Considering this, the unit manufacturing costs in the i th 

assembly configuration can be calculated as follows:

3.3.2 � Setup costs

Setup times in an assembly line and related costs cannot 
be neglected in a real-world scenario. Unit setup costs ( Cs) 
originate from the passive time required to reorganise the 
workstation according to production requirements. When 
switching production from one lot to the next, passive time 
caused by the need to change tools, reprogram robotic 

(4)bi = −log2
(

�i

)

(5)tai =

∑N

n=1
t(1)i ⋅ n

−bi

N

(6)Cmi = co ⋅ tai (C∕unit)

Fig. 2   Fictitious examples of 
productivity learning curves in 
assembly operations
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systems or change the layout of the workstation should be 
taken into account.

In operations performed in manual configuration, setup 
times are usually very limited. However, the issue is quite 
different when robotic systems are implemented. Robotic 
systems cannot yet completely reprogram their activities 
autonomously, and consequently, human intervention is still 
needed to (i) select trajectories, (ii) reprogram task sequence 
and task allocation and (iii) change tools and grippers to be 
used [34].

Cobots are very flexible, can be moved with agility and 
reprogrammed very intuitively and quickly. High expertise 
is often not required to reprogram cobots. In contrast, tradi-
tional industrial robots usually cannot be moved, and their 
reprogramming is highly complex and time-consuming.

Unit setup costs ( Cs) can be calculated as the product of 
the cost of setup time ( cs ) and the time required to setup the 
assembly station attributable to an individual unit produced 
( ts) . Note that the cost of setup time may be very different 
from the cost of operative time because higher skills may be 
required for workstation setup. Unit setup costs vary depend-
ing on the assembly configuration and can be calculated as 
follows:

The setup time that can be associated to the individual 
assembly operation is a function of the estimated lot size 
( N):

where Tsi is the total time required to setup the workstation 
in the i th assembly configuration.

3.3.3 � Prospective costs

Investments related to new instrumentation, equipment, 
operator support systems and robotic systems need to be 
included in the prospective costs. Prospective costs should 
include any cost that the current decision on assembly con-
figuration can alter.

Unit prospective costs in the i th assembly configuration 
can be calculated as follows:

where Ki is the total life-cycle cost of investments needed to 
perform the i th assembly configuration, vi is the service life 
of the equipment (expressed in years) in the i th assembly 
configuration, N is the estimated production lot size and L is 
the estimated number of lots processed in a year.

(7)Csi = csi ⋅ tsi(C∕unit)

(8)tsi =
Tsi

N

(9)CPCi =
Ki∕vi

N ⋅ L
(C∕unit)

Unit prospective costs should consider only those costs 
affected by the current decision. So-called sunk costs, such 
as costs for instrumentation already purchased in the past, 
should not be considered. If the workstation is newly organ-
ised, all investments in equipment fall into this category.

3.3.4 � Retrospective costs

Retrospective costs, on the other hand, emerge when the 
assembly systems already exist, and the decision maker has 
to choose whether and how to introduce changes. In these 
cases, there may be active costs due to past decisions that 
must be taken into account for future choices. A typical 
example of retrospective costs is the cost of employees that 
cannot be dismissed or allocated to other activities.

Unit retrospective costs in the i th assembly configuration 
can be calculated as follows:

where RCTOT i are total annual retrospective costs in the i th 
assembly configuration.

3.3.5 � Product quality costs

Product quality costs are caused by errors or failures in the 
assembly process that generate defects in the final product. 
Product quality costs have significant impact on production 
costs in many industries. Consider, for example, aerospace or 
precision manufacturing productions where product defective-
ness is critical, and the presence of defects can imply very 
high economic costs. Product quality costs may be due to 
various factors, including re-manufacturing costs, costs for 
discarded products, image loss and after-sales repair costs 
[35–37].

As a first approximation, an estimate of product quality 
costs for the i th assembly configuration can be calculated 
as the product between the average defectiveness ( di ), i.e. 
the proportion of defective assembled unit and the average 
cost of a defective unit 

(

Cdi

)

:

Alternatively, more sophisticated quality cost estimation 
models can be applied whenever the application requires it. 
Some examples are the methods proposed by Caputo et al. 
[38], 36, 37, Fager et al. [26] and Verna et al. [39].

The defectiveness, as a first approximation, can be 
assumed constant for large-volume productions. However, 
similarly to productivity, defectiveness is also influenced 
by a learning process; consequently, the observed average 
defectiveness can be affected by the size of the assembled 
lot. The defectiveness related to the assembly of the n th 

(10)CRCi =
RCTOT i

N ⋅ L
(C∕unit)

(11)Cqi
= di ⋅ cdi(C∕unit)
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unit in the i th assembly configuration can be calculated as 
follows [40]:

where:

•	 n is the cumulative unit number;
•	 d(1)i is the defectiveness related to the 1st unit, i.e. the 

initial quality performance, in the i th assembly configu-
ration;

•	  qi = −log2
(

�i
)

 is the quality learning factor;
•	 �i is the quality learning percentage in the i th assembly con-

figuration. The smaller is the value of �i , the larger is the 
value of qi and the higher is the quality learning effect [41].

Figure 3 shows examples of quality learning curves 
that compare the performance of an assembly opera-
tion performed in manual, collaborative or automated 
configuration.

The cost of quality in the i th assembly configuration can 
be expressed as a function of the estimated lot size:

where di is the average defectiveness and can be calculated 
as follows:

3.3.6 � Wellbeing cost

In order to optimise both human wellbeing and overall sys-
tem performance, physical and mental ergonomics need to 
be considered in the design of modern workplaces [42]. In 
this perspective, considering worker wellbeing costs is cru-
cial in evaluating an assembly configuration.

The use of human support systems in repetitive and physi-
cally demanding tasks is often designed to promote the oper-
ator’s wellbeing [8, 9]. Cobots can improve work conditions 

(12)d(n)i = d(1)i ⋅ n
−qi

(13)Cqi
= di ⋅ cd(C∕unit)

(14)di =

∑N

n=1
d(1)i ⋅ n

−bi

N

and can provide a valuable support to relieve human opera-
tors' physical and mental workload [43–46].

Highly advanced and quantitative wellbeing cost models 
are available in the literature [42]. However, for a prelimi-
nary analysis, a rough estimation of wellbeing costs in the 
i th assembly configuration can be taken into account as 
follows:

where CWTOT i are the total wellbeing costs for the ith assem-
bly configuration.

In order to further simplify the estimation of these param-
eters, CWTOT i can be approximately determined for a specific 
i th assembly configuration as the product between the well-
being costs of the most onerous assembly configuration for 
the operator ( CWTOTMAX

) and a reduction factor specific for 
the i th assembly configuration ( �i):

where �i ∈ [0;1] . If, for example, the implementation of 
cobots allows a 30% reduction in wellbeing costs with 
respect to the manual assembly configuration (consid-
ered the most onerous assembly configuration), then 
�collaborative assembly = 0.7.  

3.4 � Overall assembly cost

The overall assembly cost resulting from the proposed model 
is a function of (i) the specific input parameters of the pro-
cess, (ii) the assembly configuration and (iii) the estimated 
lots size processed by the assembly station ( N ). The output 
is a cost curve representing the cost of assembly of a single 
unit in relation to the average size of the processed lots. As 
an example, three cost curves for three different assembly 
configurations are shown in Fig. 4. Through the analysis 
of the cost curves, it is possible to identify the most cost-
effective assembly configuration of a specific application.

For the fictitious example of Fig. 4, manual assembly is the 
most cost-effective choice when assembling lots are smaller 

(15)Cwi
=

CWTOTi

N ⋅ L
(C∕unit)

(16)CWTOTi
= CWTOTMAX

⋅ �i

Fig. 3   Fictitious examples of 
defect learning curves in assem-
bly operations
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than eight units. The collaborative assembly configuration is the 
most cost-effective option if the estimated lot size is between 8 
and 29. The automated assembly configuration is preferable for 
processes where the estimated lot size is above 29.

The cost curves highlighted by the model clearly show the 
potential of collaborative robotics to make small lot assem-
bly processes more efficient.

3.5 � Model parameter estimation

The prediction of the performance and features of a pro-
duction process still at the design stage is a critical aspect, 
as it is usually performed at an early development phase 
characterised by the non-abundance of information and data 
to be used [31]. In order to make the proposed model eas-
ily applicable in real production contexts, Table 3 provides 
some suggestions for roughly estimating model parameters.

3.6 � Preliminary sensitivity analysis

A sensitivity analysis can be conducted on the proposed cost 
model to identify which cost components had the greatest 
impact on the total cost. To perform the analysis, the indi-
vidual cost components were preliminary assumed to be 
independent. The sensitivity analysis was conducted on the 
case study reported in Section  5.3 (input parameters are 
reported in Table 7 — scenario 2).

For each cost component, the impact on the assembly unit 
cost was calculated, as well as the impact that a 10% varia-
tion could have on the assembly unit cost. As an example, if 

the manufacturing cost increases by 10% 
(

ΔCm

Cm

%
)

 , the 
impact on the total cost is as follows:

where CA is the initial unit cost of assembly; Cm is the ini-
tial value of the cost of manufacturing; C′

A
 is the total unit 

increased cost of assembly; and C′

m
 is the increased value of 

the cost of manufacturing.
The output of this preliminary sensitivity analysis is 

reported in Table 4.
For this specific case study, the results of the sensitivity 

analysis showed that manufacturing costs, prospective costs 
and retrospective costs had the greatest impact on the total 
cost of assembly. This means that changes in these cost 
components had a significant effect on the overall cost of the 
assembly process. In particular, their variation had a corre-
spondingly large impact on the total cost, showing that these 
cost components are sensitive to changes and are therefore 
important to consider when seeking to optimise or minimise 
costs. In contrast, again for the considered case study, setup 
costs, quality costs and wellbeing costs had a lesser impact 
on the total cost of assembly. These findings suggest that, 
while these cost components may still be worth consider-
ing as part of assembly costs, efforts to reduce or optimise 
them may have a less significant impact on the overall cost.

It is worth noting that the relative importance of dif-
ferent cost components may vary depending on the con-
sidered context. Overall, the sensitivity analysis provides 
interesting insights into the factors that drive the cost of 

(17)
C

�

A
− C

A

CA

=
ΔCA

CA

% =
C

�

m
− Cm

CA

Fig. 4   Fictitious examples of 
cost curves for different assem-
bly configurations. Different 
background colours highlight 
the most cost-effective assembly 
configurations as lot sizes vary: 
(A) manual assembly; (B) 
collaborative assembly; (C) 
automated assembly

Parameters

Manual 
assembly

Collaborative 
assembly

Automated 
assembly

[€/hour] 30 30 0

(1) [hour] 2 1,5 0,5

[0;1] 0,98 0,95 1

[hour] 0,1 1 6

[€/hour] 30 30 60

[€] 25.000 150.000 1.000.000

[years] 10 10 10

[lot/year] 150 150 150

[hour /session] 8 8 8

[session/day] 1 1 1

[day] 0,8 0,8 1

250 250 250

(1) 0,05 0,03 0,01

[0;1] 0,97 0,95 0,99

[€/defect] 100 100 100

[€/year] 0 0 0

[€/year] 2000 2000 2000

[0;1] 1 0,7 0

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

tinu
elgnis

afo
ylb

messafotso
C

(€
/u
n
it
)

Lot size

(A) (B) (C)

Collaborative

Manual

Automated

5255The International Journal of Advanced Manufacturing Technology (2023) 125:5247–5266



1 3

Table 3   Cost model parameter preliminary estimation

Parameters Estimation

Cost of operative assembly time co The cost of operative assembly time includes the hourly cost of the worker employed 
in assembly activities and all related business costs (taxes, workers' compensation, 
insurances, cost of recruitment and training, protection equipment, etc.)

Operative assembly time for the 1st lot unit t(1) The operative time of each process is estimated based on methods-time measurement 
(MTM)

The operation time of the robots is estimated as the sum of the motion, gripping and 
assembling times

Productivity learning percentage � The productivity learning percentage is estimated using (i) historical data from 
similar previous projects/implementations and (ii) the experience of the equipment/
technology suppliers

Setup time Ts The setup time can be estimated using (i) pre-tests, (ii) historical data from similar 
previous projects/implementations and (iii) the experience of the equipment/tech-
nology suppliers

Cost of setup time cs The cost of operative assembly time includes the hourly cost of the worker employed 
in the workstation setup activities and all related business costs (taxes, workers’ 
compensation, insurances, cost of recruitment and training, protection equipment, 
etc.). Note that this cost may be different from the cost of operative assembly time 
because the skills required of workers may be different

Total life-cycle cost of investments K The total life cycle cost of investments can be estimated by inquiring from the 
equipment/technology suppliers. It must include all costs that will be generated 
during the life cycle of the required equipment: purchase, maintenance, spare parts, 
upgrades, consumables, etc

Service life of the equipment v The service life of the equipment can be estimated by inquiring from the equipment/
technology suppliers

Estimated number of lots processed in a year L The estimated number of lots processed in a year can be estimated from historical 
data and/or market forecasts

Estimated lot size (unit) N The estimated lot size can be estimated from historical data and/or market forecasts

Duration of work session tws The duration of the work session can be estimated using historical data and/or fore-
casts

Number of work session in a working day nws The number of work session in a working day can be estimated using historical data 
and/or forecasts

Efficiency on the use of production 
resources (workforce and equipment)

ews The efficiency on the use of production resources can be estimated using (i) historical 
data from similar previous projects/implementations and (ii) the experience of the 
equipment/technology suppliers

Number of working days in a year WD The number of working days in a year can be estimated using historical data and/or 
forecasts

Defectiveness related to the first unit d(1) The defectiveness related to the first unit can be estimated using (i) historical data 
from similar previous projects/implementations and (ii) the experience of the 
equipment/technology suppliers

Quality learning percentage � The quality learning percentage can be estimated using (i) historical data from 
similar previous projects/implementations and (ii) the experience of the equipment/
technology suppliers

Average cost of a defect cd The average cost of a defect can be estimated as the sum of costs for re-manufacturing, 
discarded products, image loss and after-sales repair. In case the implementation 
involves a new assembly line, they can be estimated using: historical data from simi-
lar previous projects/implementations

Total annual retrospective costs RCTOT Retrospective total annual costs emerge only in the case of already-established organ-
isations. They can be calculated as the sum of all active costs that the organisation 
will face without productive returns resulting from choices that vary the assembly 
configuration

Maximum wellbeing costs CWTOT
MAX

   The maximum wellbeing costs can be estimated as the sum of the overall costs 
related to absenteeism, presenteeism, production stops and occupational diseases

They can be estimated using historical data from similar previous projects/implementations
Wellbeing cost reduction factor � The wellbeing cost reduction factor can be estimated using (i) historical data from 

similar previous projects/implementations and (ii) the experience of the equipment/
technology suppliers
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the assembly operations and can help decision-making 
about cost optimization strategies.

4 � Production throughput analysis

Throughput analysis is essential for designing, operating 
and managing production systems. This aspect should also 
be included in the analysis to evaluate and select the best 
assembly configuration. Assembly configurations can per-
form differently and can provide distinct volumes of units. 
Figure 5 shows the maximum throughput for three different 
assembly configurations. It can be noted that the expected 
amount of units that the assembly station can process varies 
as the assembly configuration and estimated lot size change. 
An assembly configuration might perform better from an 
economic point of view than the others, but it could not 
be sufficiently productive for the required demand. In this 
view, the cost analysis should always be complemented by 
a productivity analysis to verify if the selected assembly 
configuration can fulfil the required demand.

A rough estimate of the maximum annual throughput for 
the ith assembly configuration can be calculated as follows:

where:

•	 tws is the duration of the work session
•	 ews is the efficiency in the use of the production resources 

(workforce and equipment)
•	 nws is the number of work sessions in a working day
•	 WD is the number of working days in a year
•	 tai is average unit assembly time
•	 tsj is setup time attributable to the individual assembly 

operation

The maximum annual throughput should be compared 
with throughput required by the production system:

where:

(18)Maximum throughputi =
tws ⋅ ews ⋅ nws ⋅WD

tai + tsi

(19)Required throughput = N ⋅ L

Table 4   Result of the sensitivity 
analysis for the case study 
reported in Section 5.3

Cost component Initial values
(€/unit)

Impact on total cost 
of assembly

Increased values 
(+ 10%)
(€/unit)

ΔCA

CA

%

Manufacturing costs Cm 8.96 47.89% 9.85 4.79%
Setup costs Cs 0.11 0.60% 0.12 0.06%
Prospective costs CPC 2.00 10.69% 2.20 1.07%
Retrospective costs CRC 7.00 37.43% 7.70 3.74%
Product quality costs Cq 0.15 0.82% 0.17 0.08%
Wellbeing cost Cw 0.48 2.57% 0.53 0.26%
Unit cost of assembly CA   18.70 100%

Fig. 5   Fictitious examples of 
productivity curves for different 
assembly configurations
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•	 N is the estimated lot size
•	 L is the estimated number of lots processed in a year

The ith assembly configuration allows the required 
demand to be fulfilled, if the following condition is satisfied:

5 � Case studies

This section aims to show the use of the proposed model. 
The cost model is applied to three different case studies, 
each showing how process variables can influence technol-
ogy deployment choices in assembly processes.

5.1 � Case study 1 — Choice of the best assembly 
configuration

The first case study concerns the final assembly process of an 
electric motor for agricultural machinery (see an exemplifi-
cative representation of the product in Fig. 6). The assembly 
process is implemented in a medium-sized manufacturing 
company that, on average, produces 150 production lots per 
year, each consisting of about 15 units.

A decision must be taken whether to perform the final 
assembly operation in a manual, collaborative or fully auto-
mated configuration. Estimated model parameters for the 
three assembly configurations are shown in Table 5.

Figure 7A shows the cost curves for the three configura-
tions related to the case study. The choice regarding the most 
appropriate assembly configuration clearly depends on the 
estimated lot size (see Fig. 7A). The manual assembly con-
figuration appears to be the most cost-effective solution for 

(20)Required throughput ≤ Maximum throughputi

the assembly of a lot composed of less than six units. The 
collaborative assembly configuration is more convenient for 
productions with lot sizes between 6 and 21. The automated 
assembly configuration is progressively more economically 
efficient for the assembly of lot sizes larger than 21.

In our case study ( N  =15), collaborative assembly 
appears to be the most efficient configuration.

As previously introduced, production capacity must 
also be taken into account. Figure 7B shows the maximum 
throughputs for the three assembly configurations under con-
sideration. In detail, the manual configuration is not able to 
satisfy the demand ( N ⋅ L = 2250 units ). In contrast, for lots 
with an estimated size of 15 units, the collaborative assem-
bly configuration can generate a maximum throughput of 
around 2600 units per year, which is higher than the required 
throughput.

From the reported evidence (see Fig. 7), we observed that 
the collaborative configuration is the most efficient solution 
for the assembly process under investigation.

5.2 � Case study 2 — Effects of product quality costs

The second case study focuses on the effects of product 
quality costs on the selection of the assembly configuration. 
The case concerns the design of a new assembly station for 
actuators used in the aerospace industry (see an exemplifi-
cative product in Fig. 8). The assembled unit is a critical 
component, and the presence of defects can compromise its 
operation. For this reason, the costs of the occurrence of 
defects are very high. The process under analysis involves 
the assembly of highly customised products, and each pro-
duction lot includes one or two units.

In the past, the company considered the implementation 
of a fully automated assembly process to reduce the defec-
tiveness of final products. However, it was estimated that 
the production costs were too high. The implementation 
of collaborative robots to support the operator in the final 
assembly operations is to be evaluated. In detail, it was 
estimated that cobot deployment could reduce assembly 
defectiveness. The model parameters for the three poten-
tial assembly configurations are reported in Table 6. Two 
different scenarios have been analysed, the first in which 
defect costs are limited and the second in which defect 
costs are the actual costs of the company (high cost of 
defects).

Figure 9 shows the cost curves of the three assembly 
configurations in the two scenarios (low defect cost, high 
defect cost). It is evident that collaborative configuration per-
forms better than manual configuration even for very small 
lots (also for single unit lots), when product quality costs 
are high and collaborative automation enables defectiveness 
reduction.

Fig. 6   Schematic representation of the assembled product. Electric 
motor for agricultural machinery
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The assembly of small lots is more convenient in the 
manual configuration in the scenario with limited costs of 
defects. In contrast, the collaborative assembly configura-
tion becomes more cost-effective if high costs of defects 
are considered. In this case, the expenses of the necessary 
technological equipment and the costs of cobot setup are 
largely repaid by the improved production performance 
in terms of quality and productivity.

Figure 10 shows that all three assembly configurations 
allow the production demand to be satisfied.

5.3 � Case study 3 — Effects of retrospective costs

This last case study aims to show the effect of retrospec-
tive costs on the assembly configuration choice. In previous 
case studies, the design of the workstation regarded assem-
bly processes that were either new or where the existing 
resources were allocated to other operations. In this sense, 
the two previous case studies did not consider retrospective 
costs.

This case study concerns an existing assembly process 
of premium leather shoes. On average, about 5,000 pairs of 
shoes are produced each year, divided into 50 lots of around 
100 units each. The process involves assembling, stitching 
and gluing the different shoe components. Two workers were 
handling the assembly tasks in two work shifts. Considera-
tion is being given to how to make the assembly process 
more efficient. Specifically, the aim was to evaluate whether:

1)	 Automating the process with the acquisition of a fully 
automated robotic system, thus excluding the two work-
ers from the assembly process;

2)	 Supporting a human worker with a collaborative robot. 
In this case, the increased efficiency of the assembling 
process allows the number of workers involved in each 
working shift to be reduced to 1.

3)	 Continuing to assemble the shoes manually without 
making relevant investments.

The costs of workers not employed in the assembly pro-
cess should be considered as retrospective costs since for 
the company it is not possible to dismiss or assign workers 
to other activities.

The model parameters for the three potential assem-
bly configurations are reported in Table 7. Two different 
scenarios were developed (the first one does not consider 

Fig. 7   Case study 1: final 
assembly process of an electric 
motor for agricultural machin-
ery. (A) Cost curves for three 
different assembly configura-
tions. (B) Productivity curves 
for three different assembly 
configurations
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Fig. 8   Schematic representation of the assembled product — actuator 
used in the aerospace industry
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retrospective costs, while the second one also includes ret-
rospective costs).

The model provides the cost curves shown in Fig. 11.
Not considering retrospective costs, the automated assem-

bly configuration appears to be the most cost-effective solu-
tion. On the contrary, the collaborative assembly configu-
ration emerges as the most cost-effective alternative when 
considering the existing human resources and their related 
costs.

Figure 12 shows that the analysed collaborative assembly 
configurations allow the production demand (5000 unit) to 
be satisfied.

6 � Discussion and conclusions

The main objective of this research was to explore how to 
evaluate the adoption of collaborative robotics in indus-
trial assembly processes. To achieve this goal, a new cost 
model that takes into account the main factors that influ-
ence the selection of an assembly configuration, such as 

manufacturing costs, setup costs, prospective costs, retro-
spective costs, product quality costs and wellbeing costs, 
was developed. Importantly, the model also considers the 
learning dynamics associated with productivity and quality, 
which are especially relevant in small batch productions. 
Overall, this study provides a comprehensive framework for 
evaluating the potential costs and benefits of adopting col-
laborative robotics in assembly operations.

Three application cases followed the presentation of the 
proposed model. The preliminary findings suggests that the 
use of collaborative robots in assembly operations can be a 
cost-effective alternative to manual or fully automated con-
figurations. Specifically, the deployment of cobots is likely 
to be beneficial when (i) the assembly lot size is small, (ii) 
cobots can help reduce defects and resulting quality costs 
and (iii) it is not possible to dismiss or reallocate existing 
workers. These conditions are often present in assembly 
production processes in small- or medium-sized enterprises 
(SMEs) and in manufacturing contexts that involve mass 
customization. Our findings imply that cobots can be a valu-
able tool for improving the efficiency and cost-effectiveness 
of assembly operations in these types of settings.

The deployment of cobots has been shown to have posi-
tive effects on job retention, worker wellbeing and industrial 
production performance [41]. However, a number of techno-
logical, organisational and economic barriers still hinder the 
widespread adoption of cobots. The cost model proposed in 
this study may be useful for policy makers as they develop 
targeted interventions to encourage the use of cobots in 
manufacturing companies. These interventions could help 
overcome some of the barriers to adoption and facilitate the 
integration of cobots into manufacturing operations.

The model developed in this study was specifically designed 
for applications related to assembly processes. However, with 
slight modifications, it can be applied to a wide range of other 
situations where a decision needs to be made about whether to 
fully automate or partially automate a manufacturing process 
using collaborative robots. This flexibility makes the model 

Fig. 9   Case study 2. Cost curves 
for three different assembly 
configurations
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a useful tool for evaluating the potential benefits and costs of 
implementing cobots in various types of manufacturing contexts.

One of the main limitations of this study is that it only 
focuses on the evaluation of a single assembly station. While 
this allows the potential benefits of deploying cobots in a 
specific setting to be examined, it does not provide a com-
plete picture of how cobots might perform in a more com-
plex and dynamic environment like an assembly line. There-
fore, in future research, it is needed to extend the model to 
consider the deployment of cobots in a variety of assembly 
stations, with the goal of identifying the most suitable loca-
tions for integrating these technologies.

Additionally, it is worth noting that the calculation of 
certain cost drivers, such as those related to quality and 
worker wellbeing, involves some level of approximation. 
This was done in order to create a model that is both easily 
applicable in real-world manufacturing contexts and readily 
understandable by a wide range of stakeholders. However, 
we recognise that these approximations may not capture all 

of the nuances of how cobots impact these important factors. 
Therefore, further modelling work is needed to determine 
how to more accurately assess the impact of collaborative 
robotics on the above-mentioned costs.
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Fig. 11   Case study 3. Cost 
curves for three different assem-
bly configurations
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