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Abstract
Metal working process is one of the main activities in mechanical manufacturing industry; it is considered as a major con-
sumer of energy and natural resources. In material removal process, the selection of cutting parameters and cooling or cutting 
liquid is necessary to save energy and achieve energy efficiency as well as sustainability. During the last two decades, the 
number of publications in this field has rapidly increased and has shown the importance of this research area. This review 
paper identifies and reviews in detail a total of 166 scientific studies which exhibit original contributions to the field and 
address multiple energy efficiency challenges. The recently developed models of energy consumption and different materials 
used in the machining process are presented. Therefore, this study describes various techniques for modeling and optimizing 
machining operations such as turning, milling, and drilling. Modeling techniques, experimental methods, multi-objective 
and single-objective optimization methods, and hybrid techniques optimization are presented in a detailed manner compared 
to previous review papers where only energy models are discussed. It can help practitioners and researchers to select the 
most appropriate approach for the desired experience and to highlight the progress of these methods in terms of machining 
energy efficiency. Additionally, this paper provides a review of different cutting fluids adopted in machining processes. This 
paper assists researchers and manufacturers in making advantageous technical decisions that have substantial economics in 
terms of energy saving.

Keywords Energy efficiency · Machine tool · Optimization methods · Lubrication · Cutting parameters · Cutting metals

1  Introduction

During the last decades, climate change is felt in the four 
corners of the world. Human being and animals are facing 
serious droughts, recurrent heat waves as well as rising sea 
levels. Nowadays, politicians and decision makers are now 
more and more aware of the negative impact of energy con-
sumption and its threat to the global ecosystem. However, 
there are still efforts to be made as the demand for energy 
is supposed to increase by 50% between now and 2050 [1]. 

According to the United Nations Framework Convention 
on Climate Change (UNFCCC), countries worldwide are 
strongly urged to limit manmade temperature rise to 2 °C 
[2]. Moreover, as industries account for about 31% of pri-
mary energy demand and 36% of  CO2 emissions [3], man-
agers have to consider energy consumption at each level of 
decisions (strategic, tactical, and operational levels).

Mechanical manufacturing processes such as casting, 
forming, and machining are the most used to obtain mechan-
ical parts in automotive, aerospace, and marine sectors. 
Machining activity which consists of different operations to 
achieve the desired shape with dimensional and geometrical 
accuracies allows for saving energy consumption and achiev-
ing an efficient process in terms of performance indicators. 
First, it is necessary to define what energy efficiency is. In 
current language use, efficiency is defined as the relationship 
between output and input [4]. Analogously, many authors 
have defined energy efficiency and energy efficiency indica-
tors [3, 5, 6]. Energy efficiency is defined in the ISO 14955 
standard as the “ratio or other quantitative relationship 
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between an output of performance, service, products, or 
energy, and an input of energy” [7]. For the industrial sec-
tor, it is defined as “the relationship between useful process 
output and energy input into a process” [8].

Technically, up to two-thirds of total consumed energy in 
machining operations is not exploited since it is converted 
into heat [9]. The rest is consumed by feed axes, accesso-
ries, idle motors, controllers, and other fixed electronic items 
[10]. Statistics from the US Energy Information Administra-
tion [11] show that energy consumption related to machining 
operations accounts for more than 20% of the total energy 
consumption of the manufacturing industry [12, 13]. To 
make benefit and stay competitive, industrials have to make 
more efforts to adopt strategies that can help to reduce 
energy consumption.

This review aims to tackle this challenge and provide 
recent studies and advances in this area. A detailed analysis 
is conducted in this paper, to help manufacturers to achieve 
greener and more economical production, as well as aca-
demic researchers, make technical decisions about future 
studies. In addition, this article highlights the workpiece 
materials and the used cutting tools. Furthermore, this lit-
erature review focuses on optimization and modeling tech-
niques adopted in machining operations to minimize energy 
consumption. Finally, as part of saving energy and respect-
ing the environment simultaneously, this paper presents 
advances in lubrication and cooling techniques.

The rest of this paper is organized as follows: Section 2 
analyzes existing review articles related to saving energy 
in the manufacturing industries. The research methodology 
adopted in this study is described in detail in Section 3 as 
well as a descriptive analysis of selected articles. Section 4 
provides a structured analysis of the studied machining 
operations and their technological parameters such as mate-
rials and cutting tools. Section 5 gives a synthesized sum-
mary of the adopted optimization and modeling techniques. 
Section 6 presents the different techniques of lubrication 
used in machining process. Finally, the paper ends with a 
conclusion.

2  Preceding review studies

To date, various review papers have been published showing 
the significant efforts that have been made toward energy 
saving. Furthermore, several review papers focusing on 
energy consumption in manufacturing are published and 
each one is tackling this topic from different angles. In this 
section, existing review studies are investigated and com-
pared to provide valuable insights as well as position our 
study. This investigation can begin with [14], which pro-
vide an overview of energy consumption in traditional and 
advanced manufacturing techniques. The authors analyzed 

the electrical energy consumed per unit volume production 
for conventional bulk-forming, subtractive, and additive 
processes. Zhang presented a literature review of energy 
efficiency in manufacturing systems [15]. According to this 
author, additional efforts should be made at global level by 
rapid design, construction, and reconfiguration of a machin-
ing system, or at process level by optimizing machining pro-
cesses based on a selection of cutting parameters, optimizing 
material use, reducing cutting fluid consumption, and cutting 
energy. One year later, and particularly for machine tools, 
Yoon et al. developed a novel hierarchy of energy saving 
techniques for a single device level (only for machining cent-
ers), to propose steps and a direction for energy saving tech-
nologies [16]. This classification is based on “assessment 
and modeling,” “control improvement,” “software-based 
optimization,” “cutting improvement,” “hardware-based 
optimization,” and “design for the environment.” According 
to this study, needless peripheral device operation should be 
reduced in order to consume less energy, and avoid losses of 
energy in electrical, mechanical, and hydraulic/pneumatic.

Zhang conducted a comprehensive review on energy effi-
cient machine tools, which included energy loss analysis, 
modeling, and evaluation of machine tool energy perfor-
mance [17]. The author concludes that a new energy moni-
toring approach must be developed to improve the perfor-
mance of a machine tool with various operation conditions 
and also minimize waste by selecting optimal machining 
parameters. Limitations and major barriers of existing tech-
niques are presented as long as potential enhance energy 
efficiency of machine tools.

Peralta et  al. presented a review on sustainability of 
machining process taking into account improvements of 
the manufacturing technologies in different phases: design, 
modeling simulation, optimization, and assessment [18]. 
Goindi et al. provided a systematic, critical, and compre-
hensive review of all aspects of dry machining, including 
also the sustainability aspect of machining [19]. This study 
discussed both the benefits of using dry machining and 
limitations such as cutting tool life, workpiece geometrical 
accuracies, and surface roughness. The authors also sug-
gested directions to make dry machining more sustainable, 
profitable, and adaptable to product manufacturers. Zhou 
et al. presented a review on the use of technologies or sen-
sors required to achieve energy efficiency in manufacturing 
operations at the unit process, shop floor, and supply chain 
levels [20].

Zhou et  al. proposed a comprehensive review of the 
energy efficiency of machine tools [12]. This research 
focuses on three models: linear cutting energy consumption 
models based on material removal rate, detailed parameter 
cutting energy consumption correlation models, and pro-
cess-oriented machining energy consumption models. Zhao 
et al. proposed a critical review of energy consumption in 
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a machining process, the purpose of this review study is to 
describe predictive methods and saving strategies of energy 
consumption for sustainable manufacturing [21]. May et al. 
presented a comprehensive review on energy management 
in manufacturing with main axes related to energy manage-
ment, namely drivers and barriers, information and com-
munication technologies, strategic paradigms, supporting 
tools and methods, manufacturing process paradigms, and 
manufacturing performance tradeoffs [22]. Lingling et al. 
presented a comprehensive literature review which deals 
with operational strategies to improve energy efficiency of 
CNC machining [23]. Optimization of cutting parameters, 
tool path, process planning, and job shop scheduling are 
identified as the significant factors for energy efficiency. 
Moradnazhad et al. presented a comprehensive review of 
energy-saving strategies to increase efficiency of machining 
operations [24]. The relationship between process variables 
and energy consumption, and optimization of cutting param-
eters are identified and summarized.

Later on, Menghi et al. presented a systematic review on 
energy assessment methods and tools, three main groups 
according to ISO 50001 are analyzed, and relating works 
are synthesized (energy analysis, energy assessment, and 
energy-saving measures) [25]. Recently, review studies are 
intensified in this area with various categories like compre-
hensive and systematic reviews. Narciso et al. provided a 
literature review of methods reported in the scientific litera-
ture to investigate the potential value of industrial data using 
machine learning tools to achieve the objectives related to 
energy efficiency [26]. Pervaiz et al. focused on the role 
of energy consumption and then examined the influence of 
cutting tools, part materials and lubrication on the sustain-
ability of the machining process [27]. The authors stated that 
the machining process sustainability can be enhanced by 
integrating different innovative approaches related to energy 
and material consumption of tools and parts. Aqib et al. pro-
posed a state of the art on sustainable machining processes 
based on the application of various coolants/lubricants [28]. 
The authors then reviewed technologies for evaluating and 
modeling energy characteristics as well as overall strate-
gies for saving energy. Sihag et al. presented a systematic 
review of machining energy focusing on six hierarchical 
level models and proposed directions towards sustainability 
of machine tools improvement based on a real time energy 
data monitoring [29].

Daniyan et al. focused in their review on life cycle assess-
ment (LCA) of machine tools to minimize energy consump-
tion and increase environmental sustainability [30]. How-
ever, the studied machine tools are not only CNC machines 
or conventional machines but also flexible and reconfig-
urable machine tools. Yusuf et al. conducted a review of 
energy saving models and their implementation for energy 
minimization problems in production and scheduling [31]. 

Strategies to minimize energy consumption are also dis-
cussed and minimization energy models due to the transient 
state of machine tools need more efforts to achieve sustain-
able manufacturing. Walther and Weigold gave the state 
of the art of approaches to predict energy consumption in 
industrial manufacturing, this study focuses on approaches 
like “system boundary,” “modeling technique,” modeling 
focus,” “modeling horizon,” “modeling perspective,” “mod-
eling purpose,” and “model output”; however, It is not spe-
cifically devoted to machine tools or machining process [32].

This review of existing papers related to saving strategies 
in machine tools energy consumption shows how authors 
tackled this challenge from different perspectives. Moreover, 
it is a crucial step to present the main contributions of the 
present systematic review as well as differences compared 
to the others. This review is a step towards providing practi-
tioners and academicians with a structured review based on 
approaches and techniques used to achieve minimum energy 
consumption for machining operations on both conventional 
machine tools and CNC machines. The main contributions 
of this paper are:

– Explores the existing research study related to machining 
operations and the specific studied variables as well as 
objective functions.

– Identifies the studied materials and different cutting con-
ditions adopted in the literature.

– Provides a detailed analysis of optimization approaches 
and used parameters.

– Highlights the use of various lubrication and cooling 
techniques for minimal energy consumption.

3  Literature search strategy and descriptive 
analysis

As mentioned in the above section, our research focuses on 
the consideration of energy efficiency in process planning 
phase for material removal operations. Keyword searches 
are the most common method for identifying relevant bib-
liography; it is based on the method of combining words 
using common Boolean operators in order to carefully select 
research samples. Our search was conducted in indexed sci-
entific electronic databases:

Web of Science (WoS): It is the oldest, most widely used 
and trusted database of research, publications, and quotes 
in the world. Based on the Science Citation Index created 
by Garfield [33].

• Scopus: It is a comparable multidisciplinary data-
base that was introduced by Elsevier in November 
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2004 [34]. The major difference with WoS is that all 
Scopus content can be accessed through a single sub-
scription without any modulation. Although Scopus 
also comprises content from a number of particular 
databases, including Embase, Compendex, World 
Textile, Index, Fluidex, Geobase, Biobase, and Med-
line [35].

• Google Scholar integrates documents from two dif-
ferent “collections”: the open web and content from 
publishers and scientific societies. Google Scholar 
recognizes that articles can appear on the Web in 
different forms. For example, an article may first 
appear as a pre-publication on the author’s homepage 
and then be published in a commercial publisher’s 
journal. Google Scholar attempts to aggregate these 
instances and allows for the selection of the appro-
priate version. One of the main advantages of GS 
is the immediate availability of articles, no matter 
where they deposit [36].

The current review was based on following search key-
words: (“manufacturing*” AND “cutting parameters*” AND 
“energy*” OR “optimization*” OR “material removal*” 
OR “turning*” OR”milling*” OR “drilling*” OR “lubrica-
tion*”) in the article title. The results of the first search on 
Scopus gave us 588 documents while on Web of Science 
the result was 293 043 documents. Then, a temporal limita-
tion was retained, and we only consider articles published 
before the year 2022. Furthermore, the articles are limited 
to the English language only, and articles related to the field 
of engineering, energy, material science, and environmental 
science. This type of filtering reduces the number of arti-
cles in Scopus to 516 and the number of articles in Web of 
Science to 105,779. For quality reasons, books and book 
series were excluded; at this stage, 378 journal articles are 
conserved. To verify that this number of articles is included 
in our topic and to eliminate the suspicion that they are, we 
read the abstract, introduction, and summary. In the next 
step, we checked the entire article and eliminated 240 irrel-
evant articles; subsequently, the number of items decreased 
to 166. The search process is illustrated in Fig. 1. Next, a 
descriptive analysis of these 151 items was performed and 
presented in the following sections.

4  Journals and year of publication 
distribution

Our research study shows that the 166 articles were pub-
lished in many different scientific journals (37 journals). 
Thirty percent of these articles are published in the “Interna-
tional Journal Cleaner Production”; which can be explained 
by the fact that the focus of the journal is on two topics: 

research and practice of cleaner production. In addition, 14% 
of the articles are published in the “International Journal 
of Advanced Manufacturing Technology,” due to the inter-
est of this journal for articles dealing with topics related 
to advanced manufacturing technologies, and 6% are pub-
lished in “International Journal of Precision Engineering 
and Manufacturing.” The other 50% are distributed in 34 
different journals, such as “Procedia CIRP,” “Journal of 
Materials Processing Technology,” “Journal of Engineering 
Manufacture,” “Journal of Intelligent Manufacturing,” and 
“International Journal of Production Research.” The journal 
distribution of publications is shown in Fig. 2.

Articles related to energy efficiency and optimization of 
cutting parameters were first studied by Draganescu et al. 
[37]. Five years later, Bhattacharya et al. published a paper 
estimating the effect of cutting parameters on energy con-
sumption in the milling process [38]. Since 2013, research-
ers have prioritized energy efficiency in the manufacturing 
sector, which explains the increase in the number of articles 
published from 1 to 7. It can be noted that the number of 
articles published in 2019 is very high, with a total of 27 
articles. The peak of articles dropped to 16 in 2020 and 14 
in 2021 due to the COVID-19 crisis. In terms of cooling and 
lubrication techniques, [39, 40] were the first researchers to 
introduce “cryogenic lubrication technology” in the turn-
ing process. Three years later, a paper on the use of MQL 
techniques in milling was published [41]. Later on, three 
researchers also used MQL in machining; six papers were 
published in 2020, and three papers were published in 2021. 
The distribution of publications by year is shown in Fig. 3.

5  Energy consumption models

Machine tool energy consumption characteristics are actu-
ally predicted with high accuracy thanks to the development 
of exact mathematical models; various energy modeling of 
the machining processes have been conducted during the last 
year. In this section, the relevant models are presented and 
these two definitions are necessary:

• Material removal rate (MRR) is the amount of material 
removed per time unit.

• Specific energy consumption (SEC) is the energy con-
sumed to remove 1  cm3 of material.

The first research paper related to machining energy 
modeling was proposed by Bayoumi and Hutton [42] where 
SEC is studied as machining efficiency. Nine years later, 
Draganescu et al. [37] developed a new model attempting 
to establish relationship between energy consumption of a 
vertical-milling machine and MRR for machining aluminum 
alloy as expressed by the following equation:
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However, this work was limited to the main spindle 
drive motor, whereas other auxiliary motors with an effi-
ciency less than 1 also consume energy. Gutowski et al. 
[9] tried to separate energy consumption into two parts: 
constant energy and variable one, which is proportional to 
the MRR. In this work, authors proposed a theoretical SEC 
model based on thermal equilibrium approach for turn-
ing process, the first term in their energy equation which 
is constant as well as the coefficient of the second term 
are not clearly defined and not tested on other machining 
processes.

Li and Kara [43] proposed an inverse model aiming to 
provide an accurate relationship between MRR and SEC as 
expressed in the following equation:

(1)Ecs =
pc

60�MRR

where C0 and C1 are constants related to the studied machine 
tool. The proposed model is subsequently studied in milling 
process [43] and grinding process [42]. The authors carried 
out various tests to find coefficients for 8 different machines 
in both turning and milling processes. The results show that 
C0 varies from 1.494 to 3.730 and C1 from 2.191 to 2.445 for 
turning; in milling operations, C0 varies from 2.411 to 2.845 
and C1 from 0.971 to 0.997. However, SEC in this work is 
measured during the cutting period; the other machining 
periods such as start-up, stand-by, clamping, and positioning 
periods are ignored; according to the authors, these periods 
consume less than 10% of the total energy. However, this 
study like the previous one is limited to the dry cut and 
not validated for machining hard materials which causes an 

(2)SEC = C
0
+

C
1

MRR

Fig. 1  Flow diagram of adopted 
research methodology
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increasing energy consumption since it requires more energy 
related to the coolant pump. Up to now, the authors only 
focus on the cutting period.

Li et al. [44] tried to take into account the effect of 
spindle speed “n” as major factor in the energy consump-
tion and proposed an improved model as expressed in this 
equation

where “n” is the spindle speed; k0, k1, and k2 are constants 
related to the studied machine tool. However, in this work, 
the authors performed experiments under dry-cutting condi-
tions in vertical-machine center using the AISI 1045 steel as 
work piece material. The coefficients k0, k1, and k2 of this pro-
posed model were 5.1175, 7.7875, and 478.797, respectively. 
With these values, the authors are able to determine: 66.797 
W as the power loss of spindle motor and approximately no 

(3)SEC = k
0
+

K
1

MRR
+

K
2

MRR
n

power loss of the feed motor. Zhao et al. [45] adopted this 
model and tried to study the effect of saving energy on sur-
face quality with the same machining process and material 
workpiece. Cutting parameters such as “side cutting depth,” 
“feed rate,” “cutting depth,” and “spindle speed” are opti-
mized for both surface roughness and SEC separately.

Balogun et al. [46] investigated the effect of tool wear, 
chip thickness, nose radius, and cutting environment on 
SEC for both turning and milling operations. Liu et al. 
[47] developed a new model to predict energy consump-
tion in turning process, where total machining period is 
broken down into three types of periods: start-up periods, 
idle periods, and cutting periods. Liu et al. [48] proposed 
a new model focusing on the standby period, air-cutting 
period, cutting period, and energy consumption of tool 
changing. The aim of this work is to estimate the SEC with 
better accuracy, and the developed model is expressed in 
the following equation:

where the term Etotal aggregate all electrical energy consump-
tion (J), Pin (t) is power loss of a machine tool (W), and tc is 
cutting time (s). In this model, the total energy consumption 
is broken into four elements: “standby period,” “air-cutting 
period,” “cutting period,” and “tool changing period.” Finally, 
a multi-objective optimization technique is proposed which is 
on particle swarm to find a trade-off point between “processing 
time” and “energy efficiency” under technological constraints of 
the machining process like “tool life,” “surface roughness,” cut-
ting parameters, cutting force as well as machine power limits.

(4)SEC =
Etotal

MRV
=

∫ Pin(t)dt

MRR.tc
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The authors conclude that in the case of machining 
AISI 1045 steel, an increasing level of MMR leads to a 
low SEC and a slight increase of processing time since 
changing cutting tool is needed in this case. Therefore, an 
optimum solution to satisfy both processing time and SEC 
can be reached. However, it is not clear which parameter 
directly affects energy consumption since the MMR can be 
obtained from various values of cutting parameters. Huang 
et al. [49] focused only on the acceleration of spindle sys-
tem and their impact on consumed energy in turning, mill-
ing, and drilling operations.

Zhou et al. [12] developed an improved cutting power 
model which is the influence of spindle speed, MRR, and 
cutting parameters on machining power during the mill-
ing process. The proposed SEC in a milling process is 
expressed in Eq. 5:

where C
1
∼ C

4
 are coefficients related to material and 

machine tool. In this study, the authors investigated the pre-
vious works related to SEC and dealt with cutting param-
eters as independent variables in order to obtain greater 
accuracy of energy modeling. This study shows that SEC 
mainly depends on MRR and “n” with a little sensitivity 
with regards to Vf, ae, and ap for milling process. However, 
tool wear is not considered in this study which could show 
the impact of higher machining parameter on SEC.

Chen et al. [50] developed a new model where energy 
is broken down into two elements: “direct energy” and 
“indirect energy.” The first term (Edirect) is the energy con-
sumed during the machining process mainly by spindle 
and feed motors. The second one (Eindirect) refers to the 
embodied energy of cutting tools and cutting fluids. The 
total energy is the sum Edirect and Eindirect. Therefore, the 
SEC is expressed as follows:

where “MRV” is the material removal volume  (mm3). For 
“Edirect,” energy is decomposed to “startup energy,” “standby 
energy,” “spindle acceleration/deceleration energy,” “air cut-
ting energy,” and “cutting energy.” The last one is depending 
on cutting parameters. The authors conclude that among the 
parameters of MRR, “cutting speed” is the most significant 
parameter that influences the specific energy consumption. 
The effect of tool wear is not investigated, and its impact 
on energy consumption is not considered. Imani et al. [51] 
studied the milling operation considering machine tools as 
a thermodynamic system and expressed power consumption 
as a function of spindle speed “n,” feed rate, and the MRR.

(5)SEC = C
1
nC2 + C

3

n

MRR
+

C
4

MRR

(6)SECtotal =
Edirect + Eindirect

MRV

A recently published paper is dealing with the total 
energy as a separated energy consumption of a machine tool: 
“start-up,” “standby,” “spindle acceleration,” “idle,” “rapid 
positioning,” “air-cutting,” and “cutting” [52]. Total energy 
is expressed as:

In this model, the authors tried to overcome the limi-
tations of the previous models by subdividing the cutting 
energy consumption module into the constant MRR machin-
ing process “CMRR” and variable MRR machining process 
“VMRR.” Two operations are carried out: turning, where 
“cutting speed,” “feed rate,” and “cutting depth” are fixed 
for the CMRR, end facing operations, “cutting speed” was 
changing continuously until the tool reaches to the center of 
the part, and therefore, spindle speed “n” was selected with 
feed rate and cutting depth as process parameters in VMRR. 
Aluminum “Al 6061” is adopted as material workpiece for 
both the dry and wet conditions, and the fitting coefficients 
of the proposed model for different energy modules are 
determined with high accuracy, according to the authors.

6  Machining process optimization 
with energy consideration

The main objective of this section is to provide a concise 
and focused summary of each material removal experiment 
published between 2003 and 2022. This summary includes 
machining process, cutting tool materials, workpiece materi-
als, cutting conditions, objective functions, and so on.

6.1  Distribution of studied machining processes

Machining operations have been considered as the core of 
manufacturing since the industrial revolution. The process 
of removing material from a workpiece is performed using 
cutting tools and machine tools to achieve the desired prod-
uct dimensions with better surface roughness. Additionally, 
the processes comprise traditional techniques like turning, 
milling, grinding, drilling, and finishing. Our study shows 
that 91 researchers adopted the turning process and 60 used 
the milling process. On the other hand, the drilling process is 
only studied in 5 papers. It should be noted that 8 research-
ers attempted to investigate two processing techniques, 6 
are for turning and milling, and three are for drilling and 
milling. Finally, one article found in our study that used 

(7)

Etotal =

tstp

∫
0

Pstatup(t)dt +

tstd

∫
0

Pstandby(t)dt +

tstpacc

∫
0

Pacc(t)dt +

trpd

∫
0

Prapid(t)dt

+

tidle

∫
0

Pidle(t)dt +

ttc

∫
0

Ptc(t)dt +

tair

∫
0

Pair(t)dt +

tcool

∫
0

Pcool(t)dt +

tcut

∫
0

Pcut(t)dt
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simultaneously three types of material removal operations 
(milling, turning, and drilling). Figure 4 shows the machin-
ing process distribution from 2003 to 2022.

6.2  Adopted objective functions for energy 
efficiency

In the context of minimizing production cost, consumption 
of natural resources, and improving product quality, manu-
facturers and researchers are dealing with different objec-
tive functions which are presented in Fig. 5. It is noticed 
that 34% of researchers have focused on reducing “energy 
consumption,” while 27% aimed at reducing “surface rough-
ness.” According to Aryan et al. [53], surface roughness is 
the best parameter for evaluating product quality. “Material 
removal rate” is considered an important indicator to meas-
ure productivity in CNC machining [54]; therefore, 12% of 
researchers minimize MRR to reduce the cost of waste recy-
cling (chips) and ensure energy efficiency. Moreover, 7% and 
5% of the studied papers are dealing with “power consump-
tion” and “machining cost,” respectively. Additionally, 5% of 
studies have used “energy efficiency” as an objective func-
tion. Furthermore, in some studies up to 10% of researchers 
include “tool wear,” “ CO

2
 emissions,” and “machining time” 

as objective functions to minimize.

6.3  Decision variables and optimization parameters

This section presents the common materials used in work-
piece machining experiments. One of the most often stud-
ied materials for machining is steel and its variants. This 
is explained by the fact that 66% of researchers used this 
category. Alloy steel, carbon steel, tool steel, and stainless 
steel are the four categories of investigated steel. It is clear 
from Fig. 6 that carbon steel is frequently employed (38% 
of researchers). While 10%, 9%, and 8% of researchers, 
respectively, adopted stainless steel, alloy steel, and tool. In 
addition, 20%, 15%, and 3% of studies, respectively, used 
aluminum, titanium, and cast iron. The other materials such 

as composite, brass, and copper alloy were less adopted (6% 
of researchers). These materials are summarized in Fig. 6.

6.3.1  Experiments conducted on AISI 1045 material

To perform the machining process on the previously dis-
cussed materials and achieve the intended objective, many 
input parameters must be taken in consideration. Details of 
the experimental design of AISI 1045 are listed in Table 1. 
The result presented in this table makes it clear that carbide 
tools are frequently used for machining AISI 1045 steel, 
although high-speed steel (HSS) tools are rarely used in 
these experiences. In comparison to other techniques such 
as milling and drilling which are used with 38% and 6% of 
researchers, respectively, turning is one of the most com-
monly used processes (56% of researchers) for cutting and 
finishing AISI 1045. In this process, it is crucial to select 
cutting parameters with absolute accuracy. Generally, the 
most studied cutting parameters are feed rate ( f  ), axial depth 

91
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of cut ( ap ), cutting speed ( Vc ), spindle speed ( n ), and radial 
depth of cut ( ae ). Although, tool wear (TW), number of cut-
ting passes (N), spindle rotation speed (SRS), number of cut-
ting layers (m), and cutting tool diameter (d) are less taken 
in consideration.

According to our research, 23% of studies were to select 
optimal machining parameters in order to save energy with 
the objective functions such as specific energy consump-
tion (SEC), cutting energy consumption (CEC), unit energy 
consumption (UEC), cutting energy (CE), energy con-
sumption (EC), machining energy consumption of machine 
tools (MTEs), specific cutting energy (SCE), energy loss, 
and energy footprint. There are other objectives such as 
energy efficiency (EE) and machining efficiency that 10% 
of researchers optimized. Additionally, 19%, 10%, 9%, 3%, 
and 1% of research aim to minimize surface roughness 
(Ra), power including power consumption (PW) and cut-
ting power (CP),  CO2 emissions, cutting force (CF), and 
temperature (T), respectively. Besides, material removal rate 
(MRR) and quality are the objective functions that 8% and 
2% of researchers are trying to maximize, respectively. Also, 
5% of studies aim to reduce costs including processing costs, 
carbon emission costs, and machining costs; thus, 3% aim to 
minimize time including production time (PT) and process-
ing time (PRT).

It is noticed that the authors take into consideration in 
their experiments surface roughness and cutting tool wear. 
Moreover, the dominance of the AISI 1045 could be poten-
tially explained by the fact that this kind of material is 
widely used in automobile sector as well as other industrial 
sectors. The next subsections deal with the other materials.

6.3.2  Experiments conducted on stainless steel material

The results of the stainless steel machining experiments are 
listed in Table 2. This table clearly shows that the machin-
ing of stainless steel is performed with different cutting 
tools such as carbide, diamond, cubic boron nitride (CBN), 
polycrystalline cubic boron nitride (PCBN), and high-speed 
steel (HSS). Carbide is the most common material tool for 
machining various stainless steel (AISI 304, AISI 410, AISI 
316, and AISI 420). Seventy-nine percent of the authors used 
these materials for turning and 21% for milling in both wet 
and dry conditions. In most of the experiments conducted 
using this sort of material, Vc , f, ae , and ap have been widely 
used, while cutting force, spindle speed, tool material, and 
nose radius were also used in some of these experiments. 
Reducing energy including EC, SEC, and SCE are the main 
objectives of 28% of researchers; However, Ra and CF are 
the objectives of 20 and 8% of researchers, respectively. In 
addition, 10% and 8% of studies were to maximize MRR and 
tool life, respectively. Moreover, reducing power factor (PF), 
quality, temperature (T), heating rate, and PW are the goal 

of one paper, while cost reduction or PRT is an objective 
function of 5% of studies.

6.3.3  Experiments conducted on other materials

In recent years, a significant number of researchers have 
used different materials other than stainless steel and AISI 
1045 for machining parts including aluminum, titanium, cast 
iron, composites, and copper, among others. Carbide, dia-
mond, HSS, and CBN are the cutting tools used for machin-
ing these materials. Based on the results shown in Table 3, 
several studies performed turning and milling operations 
while a few studies (less than 4%) used the drilling process. 
In these processes, the most cutting parameters selected are 
cutting speed, feed, axial, and radial depth of cut. It should 
be noted that some researchers use additional parameters 
such as tool nose rotation radius (R), number of cutting tools 
(Z), tool angles (relief angle, inclined angle, helix angle, rake 
angle), tool wear (TW), nose radius (r), cutting tool diameter 
(d), number of cutting passes (n), burnishing force (BF), 
diameter of the burnishing ball (D), edge radius, relief angle, 
and spindle speed (n). These studies aim to find machining 
parameters that can reduce energy on the one hand (37% 
of researchers), including SEC, SCE, net cutting energy 
(NSCE), active energy consumed by machine (AECM), 
energy loss, and energy demand, and on the other hand mini-
mize Ra (18 of studies) and maximize EE or MRR (14% of 
studies). Other studies (8%) optimize cutting parameters to 
reduce time, including cycle time, RTP, PT and machining 
time (MT), while 7% of studies reduce active power con-
sumed by the machine (APCM), cutting power consumption 
(CPW), and cutting power (CP). In addition, some works 
(3%) aimed at decreasing  CO2 emissions or tool wear (TW). 
Wear rate, resultant force (RF), CF, PF, torque, and flank 
are the functional objectives that one article have reduced. 
One percent of researchers identified machining rate (MR), 
production rate (PR), quality, and tool life as maximum per-
formance objectives. The experimental details realized with 
various materials are summarized in Table 3.

6.4  Experiments with nontraditional lubrication 
techniques

The authors emphasize the need to improve machining pro-
cess in terms of economy, environment, and product quality. 
To achieve these objectives, several studies conducted to 
save energy take into account new constraints on cooling and 
lubrication systems. The results of the experiments made 
with different cooling lubrication techniques are presented 
in the Table 4. This table shows that conventional cutting 
materials such as HSS, carbide, cermets, and advanced cut-
ting materials such as CBN, diamond, and ceramic are used 
for material removal operations.
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1 3

Half of the researchers performed turning operations, 
while 35% and 8% used milling and drilling processes, 
respectively. These processes are carried out in various 
cutting conditions such as dry machining, minimum quan-
tity lubrication (MQL), cryogenic cooling, hybrid cool-
ing (MQL + LN2), high-pressure coolant (HPC), hybrid 
nanofluid-assisted MQL (HNFMQL), mono nanofluid 
assisted MQL (NFMQL), nanofluid small quantity cooling 
lubrication (NFSQCL). Cutting speed, feed, axial depth of 
cut, radial depth of cut, spindle speed, lubricant flow rate, 
cutting environment, and nose radius are the parameters 
selected in the material removal operations. These studies 
aim to find processing parameters that can reduce surface 
roughness on the one hand (27% of researchers) and on the 
other hand reduce energy (21% of studies), including CSE, 
ACE, EC, and SCE, and maximize MRR (8% of studies). 
Other studies (6%) optimized cutting parameters to save 
time; including cutting time (CT) and cycle time, while 3 
papers maximized tool life. Additionally, one paper was 
aimed at reducing burr height, flank wear, T, thrust, and 
 CO2 emissions. PW and TW were the objective functions 
for 8% and 6% of researchers, respectively.

This table shows that MQL and NFMQL are gaining 
more attention in recent years compared to cryogenic for 
saving energy. Moreover, papers deal with hard materials 
to demonstrate the interest of using these advanced cooling 
technologies compared to conventional methods.

7  Modeling and optimization techniques 
for energy saving

For mechanical manufacturing processes, optimal cutting 
parameter selection is considered to be one of the most 
essential energy conservation strategies. Newman et al. 
noted that the variation of the cutting settings causes a 
noticeable difference in the energy consumption during 
machining operations [203]. About 6–40% of overall 
energy consumption can be decreased by optimizing cut-
ting conditions, tools, and tool trajectory [86]. In addi-
tion, reasonable selection of processing parameters can 
also help to improve tool life, to decrease production costs 
and  CO2 emissions, and to enhance production efficiency 
[204]. Optimization of cutting parameters in machining 
operations (turning, milling, drilling) is carried out in two 
steps: modeling the relationship between input–output and 
process parameters and determining the optimal cutting 
parameters [205]. In this section, the adopted optimiza-
tion and modeling techniques are presented with their used 
parameters.
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7.1  Design of experiments (DoE) techniques

DoE is a statistical method for organizing and designing 
experiments that enables the collection of the greatest 
amount of data with the minimum number of experiments 
and the least number of resources. Generally, there are a 
large number of experimental designs in the literature such 
as Latin hypercube, Box-Behnken design (BBD), Taguchi 
methods, and central composite design (CCD). The studies 
using the experimental design are summarized in Table 5. 
In this table, Taguchi is widely used in experimental design 
(86% of researchers), while CCD is one of the most com-
monly used second-order models [206], used by 3 research-
ers. In addition, two articles used design experts, while one 
article adopted robust optimization and D-optimal designs, 
respectively.

Taguchi method requires only a small number of orthogo-
nal test combinations, which greatly improves the efficiency 
of the experimental design [207]. In addition, it is an inte-
grated approach that takes into account all the variability of 
materials and processes at the design stage [86]. Taguchi 
method is used to produce the most high-quality products at 
the lowest cost. It is a conventional method that allows the 
effective and efficient design of experiments and analysis 
of parameters affecting the process in the shortest possible 
time [53].

Taguchi uses a loss function to establish quality speci-
fications; the value of the loss function is converted into a 
signal-to-noise ratio (S/N). This ratio is a powerful indicator 
value which offers the possibility to find the importance of 
the parameters involved in the studied process. It is the ratio 
between the signal intensity and the noise intensity, usually 
expressed in decibels. S/N analysis is based on three separate 
quality criteria which are “higher-the-better,” “lower-the-
better,” and “nominal-the-better.” For each level of process 
parameters, the signal-to-noise ratio (S/N) is based on the 
“orthogonal array” experiment, which significantly reduces 
the “variance” of the experiment by controlling the optimal 
parameter settings. The orthogonal array tables offers a set 
of balanced (minimum) experiments and the required results 
as an objective function for optimization, facilitating data 
analysis, and predicting the best results [208].

The experimental details using Taguchi method are sum-
marized in the Table 6. This table shows that the lower-
the-better (LTB) quality characteristic type is more useful 
to researchers than the higher-the-better (HTB), while the 
nominal-the-better (NTB) quality characteristic type is not 
adopted. Forty-two percent, 36%, and 11% of researchers 
adopted the dimension of the orthogonal table L27, L9, and 
L16, respectively; however, only one paper used L35, L25, 
L22, and L11. Additionally, “ Vc ,” “ ap ,” and “ f  ” are the most 
three used common cutting parameters. It should be men-
tioned that 83% of the experiments were conducted for three 
levels, 14% for four levels, and one article for five levels.

Bilga et al. adopted in their study Taguchi techniques 
and ANOVA for selecting the optimal cutting parameters in 
order to reduce energy consumption in the turning process 
[115]. Fratila and Caizar used Taguchi methodology to opti-
mize cutting fluid flow and milling parameters (axial depth 
of cut, feed rate, cutting speed, etc.), for  AlMg3 machin-
ing with high-speed steel (HSS) cutting tool to achieve bet-
ter surface roughness and lower cutting power [41]. The 
results show that the optimal cutting conditions for reducing 
energy consumption are minimum depth of cut as well as 
feed rate, minimum cutting speed, and maximum lubricant 
flow rate. Qasim et al. adopted Taguchi method and ANOVA 
to reduce cutting force, temperature, energy consumption, 
and deformed chip shape [57]. Bagaber and Yusoff evalu-
ated the machining performance of coated carbide cutting 
tool for machining AISI 316 hard steels under dry turning 
technology [103]. The influence of cutting parameters such 
as cutting speed, feed rate, and depth of cut is determined 
using the central composite plane. The results adopted with 
ANOVA technique showed that the energy consumption is 
cutting speed proportional to cutting speed and tool wear, 
feed rate most significantly affects energy consumption and 
surface roughness, followed by cutting depth. Bhattacharya 
et al. examined the impacts of cutting parameters such as 
cutting speed, feed rate, and depth of cut on surface rough-
ness and energy consumption using Taguchi techniques [38]. 
The results showed that power consumption and surface 
roughness are significantly affected by cutting speed.

Finally, in this powerful technique, the length of the 
orthogonal table depends on factor levels, and it is shown 

Table 5  A summary of DoE-
based energy optimization 
research

Experimental design Reference articles

Taguchi method [38, 40, 41, 52, 57–59, 70, 72, 78, 82, 86, 99, 109, 112, 115, 118, 133, 
141, 150, 160, 161, 164, 166, 170, 172–174, 176–178, 182, 188, 
189, 201, 202]

CCD [39, 40, 114]
Design expert [116, 169]
Robust optimization [71]
D-optimal design [98]
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from the previous table that “three levels” is the most 
adopted. Additionally, “ Vc ” and “ ap ” are studied in almost 
all these papers related to DoE; this is shows that the authors 
are more aware of the effect of these variables on energy 
saving.

7.2  Modeling techniques

For process planning phase, methods for modeling 
input–output process parameters can be economically 

advantageous. As shown in Table 7, there are a number 
of popular modeling methods, including response surface 
methodology (RSM), radial basis function (RBF), artificial 
neural network (ANN), kriging, fuzzy logic theory, and 
bottom-up approach (BUA). In this table, it can be noticed 
that RSM is the most used method by researchers (82% of 
researchers). This method was proposed by Box and Wil-
son [209], and it is based on the adaptability of empirical 
models to experimental data and offers good empirical mod-
eling performance. It is based on a set of mathematical and 

Table 6  Taguchi parameters

References Factors Level of each 
factor

Dimension of the orthogonal table Nature of the ratio 
S/N

vc ap ae f Others 3 4 5 L
35

L
27

L
25

L
22

L
16

L
11

L
9

HTB LTB NTB

[112] √ √ √ √ √ √
[109] √ √ Tool material √ √ √
[159] √ √ √ √ √ √
[115] √ √ √ r √ √ √ √
[57] √ √ √ α √ √
[118] √ √ n √ √ √ √
[60] √ √ √ √ √
[70] √ √ √ √ √ √ √
[53] √ n √ √ √ √
[133] √ √ n √ √ √
[72] √ d, n √ √
[138] √ √ √ r √ √ √
[141] √ √ √ √ √
[78] √ √ √ √ √ √
[82] √ √ √ √ √
[150] √ √ √ √ √ √
[12] √ √ √ SRS √ √
[86] √ √ √ n √ √ √
[38] √ √ √ √ √ √
[160] √ √ √ r √ √ √
[164] √ R √ √
[59] √ √ √ √ √
[58] √ √ √ √ √ √
[61] √ √ √ √ √
[187] √ √ Flow rate √ √ √
[189] √ √ √ √ √ √ √
[182] √ √ √ n √ √
[41] √ √ √ Lubricant flow rate √ √ √
[56] √ √ √ √ √ √
[113] √ √ √ √ √ √
[201] √ √ √ √ √
[176] √ √ √ n √ √
[170] √ √ √ √ √
[172] √ √ √ √ √
[173] √ √ √ √ √
[202] √ √ √ √ √
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statistical techniques to provide the relationship between 
responses and input decision variables in order to maximize 
or minimize response attributes. Furthermore, 7% of work 
used ANN which solved complex input–output and in-pro-
cess parameter relationships for machining control problems 
[205]. Moreover, “kriging” model that entails approximating 
the output from deterministic data and defining the outcome 
as the realization of a stochastic process [210] is used by 
three papers. Finally, the fuzzy set used by two papers plays 
a vital role in modeling input–output relationships and in-
process parameters.

Campatelli et al. optimized process parameters using a 
RSM to minimize energy consumption in milling process 
[129]. The results showed that the optimal radial engage-
ment value which minimizes specific energy related to cut-
ting efficiency reached 1 mm, and the optimal feed rate per 
tooth value is 0.12 mm. Camposeco-Negrete improved cut-
ting parameters for turning AISI 6061 T6 aluminum using 
RSM and ANOVA to reduce machine tool energy consump-
tion and surface roughness [114]. The results of this study 
showed that feed rate and depth of cut are the most impor-
tant variables for reducing total specific energy consumption 
to 14%, while feed rate is the most important variable for 
reducing surface roughness to 360%.

Rajesh investigated the impact of cutting settings on 
machine energy consumption and tool life using RSM and 
desirability analysis [10]. This work showed that multire-
sponse optimization by desirability analysis reduces energy 
consumption to 13.55% and increases tool life to 22.12%. 
The most crucial parameter is cutting speed, which is fol-
lowed by feed rate, depth of cut, and nose radius. Tlhab-
adira et al. developed a mathematical model for energy con-
sumption optimization using response surface methodology 
(RSM) [157].

7.3  Mono‑objective and multi‑objective 
optimization

One of the most prevalent and important issues in both engi-
neering development and scientific research is optimization 
issues. Optimization can be divided into two groups based on 

the number of optimized objective functions: single-objective 
optimization and multi-objective optimization issues.

7.3.1  Mono‑objective optimization

Several techniques used by various researchers are listed in 
Table 8; these methods are generally based on meta-heuristic 
search including genetic algorithms (GA), neighborhood 
cultivation genetic algorithm (NCGA), Tabu search (TS), 
simulated annealing (SA), gray wolf optimization (GWO), 
artificial bee colony (ABC), and particle swarm optimization 
(PSO), and evolutionary strategy (ES). In the following sub-
section, parameters of these techniques are well presented. 
Methods that researchers adopted in recent years are criti-
cally evaluated in the section below.

7.3.2  Multi‑objective optimization

Multi-objective optimization has many different approaches 
that have been proposed. However, this study only sought to 
the methods that were used in our reference papers, which 
were published between 2003 and 2021, as seen in Table 9. 
Forty-two percent and 29% of the researchers, respectively, 
used nondominated genetic sorting algorithm II (NGSA-II) 
and grey relational analysis (GRA). Multi-objective particle 
swarm optimization algorithm (MOPSO), multi-objective 
simulated annealing (MOSA), multi-objective genetic algo-
rithm mode II (MOGA-II), multi-objective particle swarm 
optimized neural networks system (MOPSONNS), multi-
objective improved teaching–learning-based optimization 

Table 7  Modeling techniques Techniques Reference articles

RSM [10, 37, 39, 40, 43, 58, 59, 61, 63, 74, 82, 86, 92, 92, 94, 100, 104, 
106, 107, 110, 114, 119, 125, 129, 137, 142, 143, 146, 157, 162, 177, 
180, 185–187, 187, 190, 191, 196]

ANN [45, 148, 184]
Kriging model [128, 132, 190]
Fuzzy logic theory [102, 126, 174]

Table 8  Optimization techniques

Optimization techniques Reference articles

GA [64, 66, 79, 83, 94, 142, 149, 180]
PSO [50, 54, 123, 144, 184, 190]
ABC [59, 164]
SA [13, 68]
ES [76]
NCGA [156]
TS [65]
Direct search method [85]
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(MO-ITLBO), adaptive multi-objective particle swarm 
optimization (AMOPSO), augmented-enhanced normal-
ized normal constraint (AENNC), meta-reinforcement 
learning (MRL), and multi-objective grey wolf optimization 
(MOGWO) are adopted for each paper.

NSGA is a popular method for multi-objective technique; 
it is widely adopted in various industrial optimization prob-
lem. As for manufacturing, it can give to practitioners to 
select the adapted solution from the pareto front. Whereas, 
the problems studied in these papers cannot be generalized 
to other similar machining process, since different machin-
ing parameters could not be the same. Here, sensitivity 
analysis is critical at this stage and could solve this problem.

7.3.3  Hybrid optimization method

The literature review indicates that some researchers used 
hybrid optimization methods; this approach is based on 
two techniques in order to achieve a rapid convergence of 
high quality. Khan et al. used the hybrid particle swarm 
optimization-firefly algorithm (PSO-FA) to solve nonlin-
ear MOO problems with multiple variables for reducing 
specific energy, carbon emission, and product cost [175]. 
Furthermore, Gupta et al. introduced analytic hierarchy 
process (AHP) combined with TOPSIS to assess sustain-
ability [199]. The decision criteria are cutting temperature, 
surface roughness, cutting force, energy consumption, and 
carbon emissions. Younas et al. used grey relational analysis 
(GRA) coupled with AHP to find the optimal combination 
of parameters for optimization of MRR, Ra, and SCE in 
turning process [134]. This study showed that the combina-
tion of these two techniques provides the best result. Song 
et al. proposed a MOO model for turning operations, aim-
ing to simultaneously reduce energy consumption, machin-
ing cost, and machining time [135]. To solve this formula-
tion, the authors proposed a dynamic multi-swarm particle 

swarm optimizer (DMS-PSO). Tanvir et al. used a hybrid 
whale optimization algorithm (WOA) to optimize cutting 
parameters for turning processes [108]. The results of this 
experience show that thanks to this hybrid algorithm, the 
number of experiments is greatly reduced and an optimal 
parameter combination is obtained. Xiao et al. optimized 
cutting parameters using adaptive particle swarm optimiza-
tion (APSO) and NGSA-II in order to reduce energy effi-
ciency and cost [87]; this approach assists manufacturers to 
make between energy usage and processing costs decision 
tradeoff. Kant and Sangwan used GRA with RSM to develop 
multi-objective predictive models to reduce power consump-
tion and surface roughness [58]. The hybrid optimization 
methods are listed in Table 10.

Hybrid optimization techniques allow to develop pow-
erful optimization tools. In one hand, the use of hybrid 
techniques helps decision makers to select optimal solution 
adapted to the process. In other hand, it can overcome the 
limitation of some optimization method, such as premature 
convergence, high computational time, and stability.

7.4  Meta‑heuristics

7.4.1  Genetic algorithm (GA)

GA is based on the natural evolutionary process to solve 
the optimization problems, and its operating principle is 
“survival of the fittest.” Existing literature shows that GA 
are effective tools for obtaining global optimums [212]. 
GA using basic operators: population size, number of itera-
tions, number of generations, crossover rate, and mutation 
rate. The values of the GA parameters implemented by the 
researchers in their optimization code are shown in Table 11. 
It can be seen that the population size parameter takes the 
following values: 20, 24, 40, 50, 60, 100, and 500. Some 
researchers set the number of iterations to 200 and 300. For 
the crossover rate, the researchers set it to 5 values, 0.6, 0.7, 
0.8, 0.9, and 1. Finally, the mutation rate takes a minimum 
value of 0.001 and a maximum value of 0.2.

Table 9  Multi-objective optimization method

Optimization techniques Reference articles

NSGA-II/NSGA-III [55, 62, 63, 80, 90, 91, 96, 97, 104, 137, 
139, 151, 163, 189, 198]

GRA [74, 77, 89, 100, 101, 112, 189, 194, 195]
MOPSO [86]
MOSA [23]
MOGA-II [179]
MOPSNNS [124]
MO-ITLBO [69]
AMOPSO [73]
AENNC [127]
MRL [105]
MOGWO [93]

Table 10  Hybrid optimization method

Optimization techniques Reference articles

AHP-TOPSIS [199]
GRA-AHP [134, 140]
DMS-PSO [135]
PSO-FA [192]
GRA-RSM [58]
APSO-NSGA-II [87]
CS-GWO [145]
GRA-WOA [108]
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GA optimization technique is proposed to optimize 
machining parameters in multi-pass dry milling processes 
[117]. The objective in this study is to find a trade-off 
between processing time, energy consumption, and car-
bon emission through principal component analysis and 
regression analysis based on experimental data. Zhou 
et al. suggested using GA to optimize the cutting param-
eters for the end milling process [64], The aim of this 
work is to minimize the cutting time and energy con-
sumption per unit of material. To reduce computation 
time of machining sequence search; Hu et al. adopted 
two algorithms which are deep first search (DFS) and GA 
[66]. Reducing energy consumption of the machine tool 
was used as objective function of this search; DFS can 
accurately find the optimal global solution. In contrast, 
GA generally takes less time to reach the best or near-
optimal solution. As a result, GA is 30% or less likely to 
find the global optimal solution, and due to the nature of 
meta-heuristics, it often returns a near optimal solution.

7.4.2  Particle swarm optimization (PSO)

PSO is a meta-heuristic that allows finding the optimal 
solution in a reasonable processing time, except for large 
instances where the computation is intensive and requires 
considerable computing time. This method is based on 
“social interactions” between “agents” called “particles,” to 
reach a given objective in a common search space where 
each particle has a certain capacity for memorizing and 
processing information. This stochastic optimization meta-
heuristic was proposed by Kennedy and Eberhart [213]. The 
correct configuration of the parameters of the PSO algo-
rithm is a difficult task since it requires evaluating a large 
number of parameter combinations to find the most suitable 
settings. Population size, number of iterations, inertia weight 
(w), learning factors (C1 and C2), and velocity ranges ( Vmin

,Vmax ) are the parameters of the PSO, PSO-FA, MOPSO, and 
AMPSO algorithms. Table 12 lists the different parameter 
values adopted by some researchers; it is important to note 
that the selection of population size depends on the problem 
to be solved; in this study, there were 4 population sizes, 

Table 11  GA parameters References Method Population size Number of 
iterations

Number of 
generations

Crossover rate Mutation rate

[180] GA 20 1 0.7 0.05
[117] 100 50
[66] 100 300 0.9 0.05
[64] 40 200 0.8
[83] 100 300 0.7 0.7
[132] AMGA 40 40 0.9
[156] NCGA 24 44 1 0.01
[137] NSGA-II 20 20 0.9
[62] 100 300 0.8 0.2
[63] 50
[151] 100 200 0.7 0.05
[80] 500 200 1000 0.001
[139] 60 0.8 0.05
[90] 100 0.6 0.1
[96] 300 100 0.7 0.2

Table 12  PSO parameters Reference Method Population size Coefficients Inertia 
weight(w)

Velocity 
ranges

Number 
of itera-
tions

C
1

C
2

w
min

w
max

V
min

V
max

[144] PSO 30 1.4944 1.4944 1 50
[184]  > 0  > 0 300
[192] PSO-FA 50 1.5 2 0.5 1.4 100
[86] MOPSO 60 1 1 0.4 0.9  − 1.5 1.5
[73] AMPSO 60 0.9 1.2 0.67 200
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30, 50, and 60. Regarding the learning factor, there are in 
some cases where C

1
 and C

2
 have the same value, such as C

1

=C
2
 = 1.4944 and C

1
 = C

2
 = 1. In other cases, C

1
 was set to 

1.5 and 0.9 and C
2
 was set to 2 and 1.2. Researchers did not 

specify a maximum velocity Vmax that could be used as an 
overall velocity limit affecting the PSO. Furthermore, some 
researchers have used in their experiences 50, 100, 200, and 
300 iterations.

Deng et al. proposed the PSO approach to optimize a 
multi-objective optimization model, with the minimum pro-
cessing time and highest carbon utilization efficiency defined 
as objectives; compared to the GA, PSO is more useful 
method in terms of accuracy and fast convergence [144]. The 
results of this study showed that the optimized machining 
parameters significantly reduce the carbon emission, pro-
cessing time and remarkably improve the carbon utilization 
efficiency. Jang et al. used the PSO algorithm to minimize 
the specific cutting energy in a milling process [184]. Li 
et al. first analyzed the energy consumption characteristics 
of the multi-pass surfacing and then used the AMPSO algo-
rithm, which aims to improve energy efficiency and mini-
mize production costs [73]. To improve the efficiency of the 
PSO algorithm, Song et al. developed a DMS-PSO [135]. 
This multi-objective optimization model is aimed at simul-
taneously minimizing the energy consumption, machining 
cost, and cutting time of turning operation. The goal of using 
PSO is to obtain a fast convergence speed. However, PSO 
performed well in the first iteration, but it was inefficient to 
reach a near-optimal solution, and there was a risk of falling 
into a locally optimal solution. Due to these two problems, 
Li et al. proposed a new modified MOPSO algorithm [86]. 
In this study, the modified MOPSO was used to analyze the 
trade-offs between several objective functions: processing 
time and energy efficiency of the CNC machining process.

7.4.3  Cuckoo search (CS)

CS is a new nature-inspired meta-heuristic algorithm devel-
oped by Yang and Deb [214]; it is an effective approach for 
solving global optimization problems. CS is based on the 
parasitism of some cuckoo species. Moreover, the algorithm 
is improved by Levy flights [215], instead of a simple iso-
tropic random walk. Recent research suggests that CS may 
be more efficient than PSO and GA [214].

Chen et al. used a MOCS method to solve a milling opti-
mization model including tool and cutting parameters [75]. 
The objective of this approach is to reduce production time 
and energy consumption. For effective resolution, CS might 
be combined to other techniques. Zhang et al. proposed a 
hybrid cuckoo-gray wolf (CS-GWO) algorithm to find the 
best cutting parameters, intending to consume the minimum 
energy [145].

7.4.4  Tabu search (TS)

TS is a neighborhood method, using techniques that avoid 
local optima and cycles. This meta-heuristic has been devel-
oped by Fred Glover [216] and it is very successful due to 
the very satisfactory results obtained on a large number of 
problems. TS was proposed to solve multi-objective optimi-
zation models [65]; for the AISI 1045 steel milling process, 
this model is designed to maximize energy efficiency and 
reduce production time. The number of partition neighbor-
hoods was set to 50, the length of the Tabu list was set to 7, 
the number of iterations was set to 100, and the number of 
initial solutions was set to 50.

7.4.5  Simulated annealing (SA)

SA is a meta-heuristic method that simulates the anneal-
ing process in metallurgy in order to guide the system from 
any initial state to the ground state with the lowest internal 
energy, it was created by Kirkpatrick et al. [217]. SA may 
be used to find the approximate value of the global mini-
mum of a multivariate function [13]. The SA parameters are 
initial temperature (T0), end temperature (Te), temperature 
decreases function (Tk) and length of Markov chain (Lc). 
Luoke et al. used SA to find the optimal spindle speed (SRS) 
and feed rate that achieves the minimum machining energy 
consumption (MEC) of machine tools for turning operations 
[13]. The experimental results showed that SA can obtain 
the overall optimal value in a shorter computation time when 
the spindle speed and feed rate are 0.1 and 0.001, respec-
tively. The optimal solution reduced the ECM to 19.28%. Hu 
et al. employed SA to optimize cutting parameters in order 
to reduce energy consumption in end face turning operation 
[68]. This study showed that SA has more than 96% prob-
ability of achieving the overall optimal value and can reduce 
energy consumption to 14.03%.

7.4.6  Grey wolf optimization (GWO)

GWO is a recently developed technique compared to the 
other ones, it is proposed by Mirjalili et al. [218]. This algo-
rithm is inspired from the social hierarchy and hunting tech-
niques of grey wolves in nature. The leadership hierarchy is 
divided into four types of grey wolves (alpha, beta, delta, 
and omega). Zhao et al. proposed the MOGWO method to 
find the best cutting parameters for a three-piece turning 
process [93]. Energy consumption and production time are 
optimized using these factors.

It is noticed that, in this kind of evolutionary algorithm, 
optimal solution is directly based on the value of some 
parameters: population size, crossover, and mutation rates. 
However, variation of these values has a great impact on 
the optimal solution which justifies the need of tuning these 
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parameters in order to select the adapted value for the prob-
lem to be optimized. Moreover, the authors used a fixed 
number of iterations to obtain the optimal solution instead 
of “stopping criterion” which guarantee a better accuracy 
of optimal solution.

8  Optimization with cooling/lubrication 
techniques for energy saving

In manufacturing process, cutting fluids are used to increase 
tool life, decrease surface roughness, and improve overall 
machining process efficiency. Minimum quantity lubrica-
tion (MQL) technology improves overall machining per-
formance in terms of cutting fluid consumption [188]. The 
cutting environment is an important parameter for energy 
consumption compared to others, as pump power in wet 
conditions and compressor power in MQL conditions are 
added for measuring the total energy [186]. To achieve envi-
ronmentally friendly manufacturing, dry cutting is highly 
recommended [62]. In addition, dry cutting accounts for a 
large portion of processing costs [110], therefore, dry cut-
ting is used for sustainable machining [211]. Figure 7 shows 
the different lubrication techniques used by the researchers 
between 2003 and 2021.

On the other hand, conventional emulsions with cooling/
lubricating characteristics play a vital role to reduce tool 
wear, and to improve product quality, and machinability 
[199]. In this sense, several researchers used emulsions in 
the machining process namely Lu and Wang who used a 
mixture consisting of 5% emulsifier and 95% water by vol-
ume for the turning process of AISI 1045 steel [51, 77]. In 
the drilling operation of the same material, Jia et al. used a 
plain water-based emulsion [72]. Priarone et al. performed 
the turning experiments of Ti-48Al-2Cr-2Nb and Ti-6Al-4 V 
alloys through traditional flood cooling technology [147].

However, the massive use of emulsions is dangerous from 
the ecology point of view, as well as air, and water resources, 
which leads researchers to explore new ways to intro-
duce biodegradable oil as an alternative to mineral-based 

emulsions. In the experiment of turning steel AISI 1045 
[59], used a cutting fluid containing 3% vegetable oil emul-
sion. Also, Pereira et al. used the wet cutting lubricant which 
is a soluble biodegradable emulsified oil used to deal with 
aluminum alloy Al 7075 for milling operations [127]. In 
addition, Kara and Li conducted turning and milling experi-
ments on two materials namely brass and mild steel under 
dry and wet cutting [43]. The coolant used in this experience 
contains almost no minerals and is mixed with water.

Researchers adopted various cooling/lubrication tech-
niques in a single machining process. Mia et al. studied three 
types of cutting conditions for turning process of Ti-6Al-4 V 
alloy such as dry condition, single and double jet of cryo-
genic liquid nitrogen [195]. In the dry condition, no external 
cooling or lubrication is used, while in the single-jet condi-
tion, the cryogenic liquid nitrogen jet is sprayed onto the 
cutting surface, while in the double-jet condition, the jets are 
sprayed onto the cutting surface and the flank surface simul-
taneously. The results showed that cryogenic cooling jet-
assisted turning operation is better than dry cutting in terms 
of the clean manufacturing environment, energy-saving, and 
improved cutting mode performance. Simultaneous applica-
tion of two cryogenic nitrogen jets on the cutting surface and 
the flank surface is more effective than the application of a 
single cryogenic jet.

Gupta et al. discussed the potential of dry, LN2, and 
LN2 + MQL machining in turning process Ti-6Al-4 V tita-
nium alloy [199]. The experimental results showed that in 
dry turning, the main costs include tooling costs and energy 
costs during operation. However, in the case of LN2 and 
LN2 + MQL cooling, these costs will be reduced because 
the tool wear is negligible and better results are obtained. 
Analysis of the results shows that LN2 plus MQL cooling 
consumes lower energy than dry cooling and LN2 cooling. 
Therefore, compared to dry cooling and LN2 hybrid cooling, 
LN2 + MQL gives the best results. Priarone et al. performed 
the turning of a Ti-6Al-4 V alloy under three conditions of 
wet, MQL, and dry cutting [183]. For wet cutting, the flood 
cooling system provides a water emulsion. For MQL, a plant 
aerosol delivered by compressed air is applied to the cutting 
area. Results showed that wet turning reduces overall energy 
requirements at higher cutting speeds, while dry turning is 
the better option to offset lubricant consumption. Under the 
selected cutting conditions, MQL does not appear to be a 
favorable solution. This is due to the consumption of air 
compressors, which are one of the most expensive equip-
ment in industrial facilities. Mozammel Mia performed the 
end milling operation of AISI 1060 steel under the applica-
tion of conventional oil and cryogenic condition through the 
tool by liquid nitrogen, in addition to dry cutting [196]. The 
experimental results showed that cryogenic cooling is more 
effective than dry cutting and conventional cutting oil. This 
cooling technology can improve surface quality, reduce the 

High 
Pressure 
Coolant 
(HPC)

Traditional
(flood) 
cooling 

Hybrid
cooling
(MQL
+LN2)

Cryogenic
cooling

Minimum 
Quantite 

Lubrication 
(MQL)

Dry 
machining 

Lubrification/Cooling techniques 

Conventional methodClaen manufacturing 

Fig. 7  Techniques for lubrication and cooling
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cutting force, improve the surface quality and reduce spe-
cific cutting energy, thereby improving durability. Cica et al. 
used three cutting conditions for the AISI 1045 steel turning 
process, namely flood cooling, MQL, and HPC environment, 
to evaluate the impact of the cooling/lubrication technique 
on SCE [188]. The experiments showed that the use of flood 
cooling increases the SCE requirements, compared to the 
MQL and HPC environments.

In recent years, the concept of minimal lubrication by 
nanofluid is adopted by Teimouri et al. [191] in the drill-
ing process of AISI 1045 carbon steel. Also, Khan et al. 
dissolved smaller size graphite nanoparticles to produce 
graphite nanofluid in order to make the cutting fluid more 
efficient [193]. Thus, end milling experiments of AISI 1045 
steel were conducted in MQL nanofluid conditions. The 
different cooling/lubrication techniques that can be used in 
machining processes namely: turning, milling, and drilling 
are summarized in Table 13.

The cutting condition proportions in material removal 
process between 2003 and 2022 are shown in Fig. 8. It can 
be clearly seen in this figure that half of the researchers 
employ the dry method due to its many benefits for durabil-
ity, cleaner manufacturing, and human health. Additionally, 
31% of machining processes use cutting fluids. Finally, over 
the past few years, 20% of research is moving to the use of 
modern cooling and lubrication technologies, such as HPC, 
MQL, cryogenic cooling, and hybrid cooling.

It is shown that from this literature review that, dry cut-
ting was considered as a clean and an efficient technology 
compared to processes that use coolant liquids until the 
development of new techniques such as MQL, NFMQL, 
HPC, and cryogenic lubrications. The MQL cutting 

conditions enhance the cutting tool life with maximum 
MMR and then minimize the SEC. The use of NFMQL in 
machining could save up to 50% of consumed energy as 
it uses 1000 times less of liquid, an advanced step toward 
saving energy is made when the hybrid NFMQL is pro-
posed. Moreover, a mixed lubrication based on LN2 and 
MQL showed an improvement of energy saving, around 
16% more compared to dry cutting. The other lubrication 
technology such as cryogenic is also a promising cooling 
method since it is known as nontoxic and nonexplosive liq-
uid, and gives also better results in terms of energy saving, 
productivity as well as, product quality. Finally, the HPC 
machining environment is attracting recently researchers, 
however, more efforts are needed to investigate the effect 
on surface roughness and energy consumption since addi-
tional power is consumed to activate the hydraulic system.

Table 13  Type of lubrication

Dry cutting Without lubrication [13, 41, 43, 44, 48, 50, 52, 53, 56–58, 60, 60, 62, 64, 68, 70, 74, 77, 79, 84, 91–96, 96, 
99, 101, 103, 104, 106, 109–112, 112, 116, 117, 121–123, 128–130, 132–134, 133, 
134, 141, 147, 150, 152, 153, 157, 159, 161, 168–170, 172–174, 173, 174, 182–184, 
183, 194–197, 195, 196]

Wet cutting Water-based emulsion [55, 72, 147, 183]
Vegetable-based oil emulsions [59, 98, 127, 188]
Conventional flood lubrication [113, 114, 159, 196]
Water-based cutting fluid [43, 81, 88, 151, 186]
Others cutting fluid [10, 50, 56, 66, 67, 83, 86, 90, 97, 100, 104, 115, 120, 123, 131, 138, 148, 156, 160, 

171, 175, 176]
Cryogeniccooling Liquid nitrogen mono/dual jets [39, 40, 194–196, 199]
MQL NFSQCL [189, 198]

HNFMQL [193]
NFMQL [190–193]
Oil-based lubricant [41, 179–181, 181, 184, 187]
Others [182, 183, 186, 188, 201, 202]

High pressure coolant [188]
Hybrid cooling LN

2
 + MQL [199]

54%31%

5%
1% 9%

Dry cu�ng Wet cu�ng
Cryogenic High pressure coulant
MQL

Fig. 8  Cutting condition proportions adopted
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9  Conclusions

In recent years, the industrial sector is gradually oriented 
toward a sustainable and cleaner production due to the 
increase in energy consumption and environmental pollu-
tion. In this context, our study provides a literature review 
of energy efficiency in the machining processes. In this 
review paper, we focused in three electronic scientific 
databases which are Web of Science, Scopus, and Google 
Scholar. A descriptive analysis of 166 papers published 
between 2003 and 2022 is clearly presented, a preliminary 
analysis shows that these articles are published in 37 sci-
entific journals, and 2019 was an excellent year due to the 
large number of publications. Furthermore, the most used 
machining process is the conventional machining known 
as turning. Additionally, half of the researchers adopted 
AISI 1045 steel because of its low cost as well as ease of 
machining and “carbide” is the most commonly used cut-
ting tool material in the studied research papers.

Studies over the past few decades have sought to pro-
vide more practical strategies for achieving energy and 
environmental objectives. It has been observed that the 
energy consumption for machining can be saved by opti-
mizing the cutting parameters. Moreover, a reasonable 
selection of processing parameters can also contribute to 
extend tool life, reduce production costs, decrease carbon 
emissions, and improve production efficiency. Optimiza-
tion of process parameters in machining operations (turn-
ing, milling, and drilling) is carried out in two steps: mod-
eling the relationship between input–output and process 
parameters and determining optimal cutting conditions.

This work provides an overview of machining optimiza-
tion methods with energy consideration, which are divided 
into five types, namely modeling techniques, experimen-
tal methods, multi-objective and single-objective opti-
mization methods, and hybrid techniques optimization. 
Detailed definitions and descriptions are provided for all 
these optimization methods in order to present the regu-
larly adopted parameters. Scientific research shows that 
“Taguchi” is the most widely used design of experiments 
(DoE) method (86% of researchers) and “response sur-
face methodology” is the most popular modeling approach 
(82% of researchers). Additionally, meta-heuristics such as 
“genetic algorithms” and “particle swarm optimization” 
are commonly used for single-objective optimization, and 
half of researchers address multi-objective problems using 
“NSGA II” technique.

Since material removal process generates a lot of heat 
and consumes a lot of energy. In this case, an appropri-
ate cooling liquid or cutting liquid should be used. Two 
types of lubrication/cooling technologies were identified 
from the literature review, including those used for clean 

manufacturing (e.g., dry machining, minimum quantity 
lubrication (MQL), cryogenic cooling, Hybrid cooling 
“MQL + LN2”), and conventional methods such as (tra-
ditional cooling, HPC). Some of these methods gener-
ate waste as well as environmental and social damage. 
Researchers have attempted to address machining com-
ponents by integrating the three general dimensions of 
sustainability (economic, ecological and equity). Thus, 
based on experiments studied between 2003 and 2022, 
they reveal that revolutionary cryogenic technology offers 
a cost-effective and ecological solution; it is a promising 
metal-working technology in terms of energy saving.
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