
https://doi.org/10.1007/s00170-022-10516-5

ORIGINAL ARTICLE

Assessment of milling condition by image processing
of the produced surfaces

Nicolas Carbone1,2 · Luca Bernini1,2 · Paolo Albertelli1,2 ·Michele Monno1,2

Received: 3 June 2022 / Accepted: 8 November 2022
© The Author(s) 2022

Abstract
The digital industrial revolution calls for smart manufacturing plants, i.e. plants that include sensors and vision systems
accompanied with artificial intelligence and advanced data analytics in order to meet the required accuracy, reliability and
productivity levels. In this paper, we introduce a surface analysis and classification approach based on a deep learning
algorithm. The approach is intended to let machining centres recognise the adequacy of process parameters adopted for the
milling operation performed, based on the phenomenological effects left on the machined surface. Indeed, the operator will
be able to understand how to change process parameters to improve workpiece quality of subsequent parts by a reverse
engineering procedure that reconstructs the process parameters that generated the analysed surface. A shallow convolutional
neural network was proposed to work on surface image patches based on a limited training dataset of optimal and undesired
cutting conditions. The architecture consists of a series of 3 stacked convolutional blocks. The performance of the proposed
solution was validated through 5-fold cross-validation, measuring the mean and standard deviation of the f1-score metric.
The algorithm arrived at outperformed the best state-of-the-art approach by 4.8% when considering average classification
performance.

Keywords Surface classification · Milling · Neural networks · Process parameters · Inference

1 Introduction

Industry 4.0 introduced the paradigm of smart manu-
facturing plants and machining centres. The term smart
underlies the capability of manufacturing technology to
use advanced data analytics to improve machining perfor-

� Luca Bernini
luca1.bernini@polimi.it

Nicolas Carbone
nicolas.carbone@polimi.it

Paolo Albertelli
paolo.albertelli@polimi.it

Michele Monno
michele.monno@polimi.it

1 Department of Mechanical Engineering, Politecnico di
Milano, via La Masa 1, 20156 Milan, Italy

2 MUSP Macchine Utensili Sistemi di Produzione, strada della
Torre della Razza, Piacenza 29122, Italy

mance and support the operator [1, 2]. In recent decades,
many techniques were developed to deal with this goal,
most of them being in the realm of artificial intelligence.
Research in artificial intelligence received a boost espe-
cially due to advances in information processing technol-
ogy and machine learning techniques, capable of learning
models and decision rules from training sensorial or pic-
torial data [3]. Machine learning algorithms constituted
the benchmark for the approach arrived at in this paper.
With the advent of cheaper sensors, increased storage
capacities and more powerful computers, deep learning
started to become more attractive with the implementation
of neural networks and the discovery of more effective
training algorithms for them. Deep learning represented
the natural evolution of machine learning, gaining the
capacity to automatically identify discriminatory charac-
teristics of signals and pictures from training data [4, 5].
Machine learning firstly, and deep learning, secondly, were
involved in many fields related to image processing and
classification ranging from land-use categories classifica-
tion [6], object recognition and classification in road scans
[7], to traffic signs recognition [8], texture analysis in
turning processes [9] and surface defect recognition [10–
15], as well as prediction of car prices from images [16],

/ Published online: 2 December 2022

The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-10516-5&domain=pdf
http://orcid.org/0000-0002-7064-7518
http://orcid.org/0000-0001-5098-0420
http://orcid.org/0000-0002-1957-3613
mailto: luca1.bernini@polimi.it
mailto: nicolas.carbone@polimi.it
mailto: paolo.albertelli@polimi.it
mailto: michele.monno@polimi.it


robot assembly operations [16] and manufacturing trajec-
tory smoothing [17].

In this paper, we propose a deep learning approach
with the aim of improving the choice of machining
parameters and detecting undesirable machining conditions.
The innovation brought by the presented research regards
the analysis of the phenomenological effects of the milling
process on the machined surface. Thus, the technological
footprint of the milling operation is analysed through
images processing, in order to make inference on the
process. The proposed approach has the goal to perform
a reverse engineering task, thus it is able to reconstruct
both technological and process parameters used to machine
the surface. Indeed, undesired cutting conditions (i.e.
tool chippings and excessive run-out) and inappropriate
cutting parameters are detected through image analysis. The
approach arrived at is based on a shallow convolutional
neural network (CNN) capable of detecting wrong cutting
speeds, feed per tooth, and machining conditions, as well as
technological parameters from machined workpiece surface
images. Thus, from the CNN, the operator can retrieve
useful information on how to take corrective actions on
process parameters to reach higher production quality levels
for subsequent parts to be machined.

The structure of this paper is as follows: in Section 2,
a state-of-the-art view of traditional texture descriptors,
machine learning and deep learning classifiers is presented;
in Section 3 the setup, the experimentation and dataset pre-
sentation are thoroughly explained, together with the defini-
tion of the f1-score performance metric; in Section 4.1, the
extraction of state-of-the-art texture descriptors and appli-
cation of machine learning classifiers to our problem (with
benchmark purposes) are described; in Section 4.2, the CNN
architecture arrived at and selection of hyperparameters are
set out; in Section 5, the f1-score performance metric (mean
and standard deviation) is compared when using state-of-
the-art approaches and the CNN developed, together with
a proper discussion of the results; finally, conclusions are
drawn at the end of the paper, in Section 6.

2 State-of-the-art

2.1 Traditional texture descriptors

In order to prepare images for machine learning classifi-
cation, it is necessary to manually extract features from
them. Traditional texture features may belong to the spec-
tral, structural and statistical world [9] or come from fractal
analysis [18]. When dealing with milled surface images, sta-
tistical features are the most commonly used and relevant
for analysis. Four of them are the most used: Grey-Level
Co-Occurrence Matrix (GLCM), Histogram of Oriented

Gradients (HOG), Local Binary Pattern (LBP) and Dual
Cross Patterns (DCP).

GLCM is a second-order statistical texture descriptor, i.e.
it accounts for the relative position of two pixels. In fact,
GLCM computes the number of occurrences of pairs of
pixels with a given intensity and a given displacement [9].
GLCM was introduced by Haralick et al. [6] and was widely
used in many image classification and analysis problems,
while being selected as a benchmark for deep learning
algorithms for performance evaluation [9, 12, 13]. HOG
computes the frequency of occurrence of the orientation
of the gradient in a localised portion of an image. HOG
was created for object detection in images and was adopted
in image classification and analysis problems [5, 16, 19]
(even as a benchmark). LBP computes the histogram of
a transformation of 8 digit binary numbers obtained on
3x3 pixel cells of the image to decimal format. LBP was
identified as one of the most used and effective statistical
descriptors for classification tasks on textures. Its success
was related to its invariance in relation to grayscale and
rotation. Several modifications to its definition were also
developed to overcome some related challenges, e.g. noise
sensitivity [10]. LBP was applied in several contexts,
not only related to machining: Song et al. applied it for
defect recognition [10], Garcia-Ordas et al. employed it
for tool wear monitoring based on computer vision [19],
Fu et al. used it as a benchmark for steel surface defect
classification [13] and Hou et al. used it as a benchmark for
classifying cancer sub-types [20]. DCP represents a second-
order image descriptor, with the goal of performing local
sampling and pattern encoding. It encodes discriminatory
characteristics of images in the main eight directions. DCP
was born for face recognition [21], but recently found
applications in the detection of steel surface defects, like
in [15].

2.2 Machine learning classifiers for texture
descriptors

Machine learning classifiers are based on the manual
extraction of features/descriptors. Thus, GLCM, HOG, LBP
and DCP are given as input to machine learning approaches
to assign classes to the original data. Machine learning
approaches can perform this task without being explicitly
programmed, but by proper learning from training data [3].
Some of the most common machine learning approaches for
classification purposes are k-Nearest Neighbours (KNN),
Support Vector Machine (SVM) and Random Forest (RF)
classifiers [22, 23].

KNN is a simple classifier based on the maximum occurring
class in the k nearest training data according to a
specific distance measurement [24]. It was widely used
in literature for classification tasks, such as steel surface

1682 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



defect detection [10, 13]. SVM finds the optimal hyperplane
for separating features that belong to two or more groups.
It has been applied in the medical sector through image
classification [25], steel surface defects detection [10],
object detection in road environments [7], tool wear
classification [19] and benchmarking [13, 16, 26, 27]. RF
combines a set of trivial classifiers (called decision trees)
and select the output class based on a voting system [28].
RF were used in classification tasks such as object detection
of RGB-D images (RGB images with depth information),
unordered point set context prediction [29] and as a
benchmark [5].

2.3 Convolutional neural networks are end-to-end
classifiers

Deep learning methods typically assume the form of deep
neural networks. Deep learning has the advantage, over
machine learning, of automatically extracting discrimina-
tory features and descriptors from training data. In this way,
they work directly on raw input data/images. Nevertheless,
they typically require a huge amount of training data to learn
how to classify the data provided [4], thus generally prevent-
ing their use for limited datasets. The most used architecture
for classification of images is the CNN [20]. CNNs are
based on stacked convolutional layers that perform auto-
matic extraction of low-level and high-level features across
the layers, while simultaneously classifying images with the
last one. In the recent years, there has been a succession
of many standard architectures, trying to solve commonly
faced problems and increase the performance of CNNs.
The deeper the network is, the more accurate and power-
ful it is. Based on this evidence, He et al. [30] introduced
the so-called Residual Neural Networks (ResNets). ResNets
made it possible to overcome the problem related to the
fact that a deeper and more sophisticated network architec-
ture may collapse on its shallower counterpart simply with
a layer learning the identity function [30]. Facing the gra-
dient vanishing effect problem during training of deeper
and deeper CNNs, Huang et al. proposed Dense Networks
(DenseNets) by connecting multiple layers of CNNs via
short paths [31]. This architecture reached ResNets’ perfor-
mance levels with fewer parameters, lower computational
costs and less optimisation difficulties. Tan et al. intro-
duced a novel compound method to uniformly scale network
architectures, developing the so-called Efficient Networks
(EfficientNets) [32]. Howard et al. proposed a new gen-
eration of Neural Networks specifically designed for their
efficiency, i.e. computational costs. They were thought to
work on mobile devices and were thus called Mobile Net-
works (MobileNets V3) [33]. Finally, several researches
tried to deal with large images and high-resolution images,

that naturally lead to computationally expensive CNN net-
works. Patch-based CNNs were introduced by analysing
patches of large images [8, 26].

CNNs, with all their architectures, were applied to sev-
eral classification tasks based on pictorial input data: object
classification, street view house number recognition [31],
industrial inspection and surface defect detection [4, 5],
face detection and image recolouring [34], and traffic sign
detection and recognition [8] are just a few examples.

Unlike state-of-the-art CNN architectures, typically
featuring wide and deep structures, in this paper we
introduce a shallow architecture made up of 3 stacked
convolutional blocks. This choice was made to respond
to common challenges of deep learning approaches, i.e.
to rely on large and exhaustive training datasets (typically
featuring more than 50,000 images). The CNN is thought to
learn from patches of images in order to limit the number
of parameters and reduce architecture complexity when
dealing with high-resolution images. Moreover, a CNN was
never used as a means to infer the correctness of cutting
conditions, in terms of process parameters, from images of
the machined surfaces. In the future this will open up the
possibility of retrieving process parameter corrective actions
from the CNN for adaptive control strategy purposes.

3Materials

This section presents the milling parameters of interest for
this paper and how the ability of producing many specimens
influenced the overall classifier development process in
terms of the data pre-processing and evaluation metric.

3.1 Experiments

The research activity focused on developing models that are
able to recognise and classify different process and techno-
logical parameters for milling operations by leveraging only
images of machined surfaces. The parameters of interest
were:

– Process parameters: machining conditions, feed rate
and cutting speed;

– Technological parameters: tool diameter and insert nose
radius.

An experimental campaign was designed and carried out
in order to produce the specimens required to collect the
images to be analysed using the classification models. The
specific values of the parameters of interest for the purpose
of this paper are shown in Table 1. To reduce the required
number of specimens, machining costs and times, it was
decided to mill up to 2 sides of the prismatic specimens,

1683The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Table 1 Parameters of interest for which the experimental campaign
was carried out

Parameter type Parameter Values

process machining conditions nominal, run-out,

chipped tooth

feed rate [mm/tooth] 0.10, 0.15, 0.20,

0.60, 0.70, 0.80

cutting speed [m/min] 80, 150, 220

technological tool diameter [mm] 27.9, 32.0

nose radius [mm] 0.4, 0.8, 1.0,

1.2, 1.5

and to machine different portions of the same surface with
different combinations of cutting parameters (Fig. 1).

The starting dataset consisted of 100 very high-resolution
(on average about 8 megapixels) RGB images with a
portrait aspect ratio, similar to those shown in Fig. 1
and in Fig. 2 (left). The images were collected using
a Keyence VHX-7000 digital microscope focused on a
machined area of the specimen (using 20x magnification).
Different combinations of milling parameters lead to
different patterns on the surfaces (Fig. 1), and some of
these patterns can be recognised with ease, while some
cannot. The first objective of the classifiers was to detect
if surface quality is acceptable or not. A surface was
declared unacceptable based on three main aspects: average
rugosity Ra higher than 1μm for finishing operations;
too low shininess (related to low cutting speeds and,
consequently, built-up edge) and scratched surface (related
to chipped tools and excessive run-out). This led to 51
unacceptable surfaces and 49 acceptable ones. Then the
classifiers perform a reverse engineering task, in order to
correctly recognise technological and process parameters
by analysing the input images. The reconstruction of both
technological and process parameters used to produce the
specific surface allows to infer which parameter caused the
surface to be unacceptable.

3.2 Data pre-processing and dataset preparation

The images collected featured very high resolution (about 8
megapixels). Independently of the classification approach,
dealing with a high number of pixels would be cumbersome
and, more importantly, would imply excessive computa-
tional costs. For context, state-of-the-art classification mod-
els were trained using image sizes ranging from 32x32 [4,
5, 16, 30, 31] to 600x600 pixels [32], with one of the
most commonly adopted being 224x224 pixels [13, 16,
23, 30–33]. Furthermore, due to experimental costs related
to machining, the resulting dataset was quite small, and

A1 A2 A3 A4

B1 B2 B3 B4

Fig. 1 Example of a specimen used for the milling tests. Red arrows
show machined sides, divided in portions with different combinations
of cutting parameters indicated by square brackets. Milled surface
images samples are reported as example (all with tools in Nominal
conditions and Largest tool diameter). Samples with label A were
obtained with the Lowest nose radius, while B ones with a High nose
radius. A1: feed - VVL, cutting speed - H; A2: feed - VVL, cutting
speed - L; A3: feed - L, cutting speed - H; A4: feed - L, cutting speed
- L; B1: feed - L, cutting speed - L; B2: feed - VVL, cutting speed -
H; B3: feed - L, cutting speed - H; B4: feed - VVL, cutting speed - L
(where VVL is Very very low, L is Low and H is High)

consisted of 100 total samples. For reference, to train state-
of-the-art classification neural networks, researchers lever-
aged datasets such as Imagenet [35], CIFAR-10 [36] and
MNIST [37] consisting of 14 million, 60,000 and 70,000
images, respectively.

To overcome these limitations, it was decided to split
each raw image into smaller patches [8, 19, 20, 26] with a
dimension of 224x224 pixels. Thanks to this operation, it
was possible to:

– Reduce the dimensions of the input images, dramat-
ically decreasing the computational costs required to
develop and evaluate the models.

– Increase the number of samples in the dataset, since
each raw image got split in about 150 patches.

– deal with overlapping passes and milling strategies with
radial engagements different from 100% without the
need for dedicated training samples. This is possible

1684 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Fig. 2 Left: raw image of a milled surface sample. Right: pre-
processing of the same sample image of milled surface: patches
of 224x224 pixels are extracted from the image, then converted to
grayscale. If this sample image is selected for training purposes, then
all of its patches are assigned to the training set

since patches can be drawn from small regions of the
milled surface, where no overlap occurs.

With that being said, it must be highlighted that patches
from the same image should not be treated as completely
distinct samples: as visible from Fig. 2, two neighbouring
patches are likely to be characterised by similar patterns. If
one of those patches would be used to train the classifier
but the other one to test it, their similarity could be a source
of information leakage, i.e. leading to an overestimation of
the model’s prediction capabilities and hiding the model’s
actual prediction performance. Therefore, to avoid any
information leakage between the train and test partitions, it
was decided to proceed as follows:

1. For each parameter of interest, separate the 100
available raw images into train and test partitions.

2. Split each raw image into as many 224x224 pixel
patches as possible.

Consequently, the image pre-processing pipeline is
completed by the following steps, which are commonly
adopted in literature [12]:

1. Convert the images’ colour space from RGB to
grayscale.

2. Scale the pixels values of each sample from the range
[0,255] to the range [0,1];

3. Compute pixels mean value across the training fold
(xtr ).

4. Centre each training and test sample by subtracting the
mean pixel value of the training partition. Thus, subtract
the training mean xtr from each training and test
sample xi,tr and xj,te (where xi,tr and xj,te are vectors
containing all the pixel values of training sample i and
test sample j , respectively).

A factor that can negatively influence the performance of
the classifiers is the different percentage of samples within
each class, which leads to unbalanced datasets. For instance,
in the case of the machining condition parameter, collecting
data from undesired machining conditions is not trivial and
can be expensive as well as risky. Thus, of the 100 available
samples, a large portion belonged to nominal conditions,
whereas only a limited number of samples to chipped tooth
and run-out. Having fewer samples for a given class means
that the classifier will struggle to learn relevant features for
that class, hindering its overall performance. To compensate
for this limitation the classifiers were developed leveraging
a 5-fold cross-validation process. This process consisted of
evaluating a classifier by looking at a metric averaged over
5 different train-test splits. At each split, a different set
of 20% of the available samples was reserved for testing.
Furthermore, since some target parameters (both process
and technological) presented classes populated by a very
limited number of samples (fewer than 10), a stratified split
approach was used to preserve the percentage of samples for
each class in each train-test split.

3.3 Evaluationmetric

Because of its simplicity and interpretability, accuracy is the
most widely used classification metric, and it is defined as:

accuracy = correctpredictions

totalpredictions
(1)

However, this metric is not suitable for unbalanced datasets.
For instance, if a model was to be trained with a dataset
consisting of 99 images collected from nominal machining
conditions and 1 image collected from run-out, it could
simply learn to assign the 100 samples to the first class
and still score 99% accuracy. Once deployed for production,
it would still assign any new sample to the first class,
since it did not learn how to distinguish between different
machining conditions.

For this reason, a different classification metric was
chosen to better quantify the performance of the classifiers
when dealing with unbalanced datasets: the f-score. This
metric is defined in [38] as the harmonic mean of precision
and recall:

Fβ = (β2 + 1)(P · R)

β2(P + R)
(2)

where:

1685The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



– β is a parameter that controls a balance between
precision and recall;

– P is precision, defined as true positive
true positive + f alse positive

;

– R is recall, defined as true positive
true positive + f alse negative

.

When the same weight is assigned to precision and recall,
meaning β = 1, the f-score becomes what is commonly
referred to as f1-score [39]:

F1 = 2 P R

P + R
(3)

Considering the previous example, the classifier returns an
f1-score equal to 0, highlighting the fact that it actually
did not learn anything useful and can’t be deployed for
production.

In Section 5, the classifiers performance will be
evaluated, for the 5-folds, in terms of mean value and
standard deviation of testing f1-score.

4Methods

This section presents the traditional texture descriptors,
namely LBP, DCP, HOG and GLCM, that were used to train
the machine learning models (SVM, KNN, RF) to classify
the milled surfaces images according to the parameters of
interest (explained in Section 3.1). The results obtained
using these approaches constitute the benchmarks for the
performance of the deep learning approach arrived at. As
a final remark, it is necessary to remind readers that the
data pre-processing steps implemented before computing
the texture descriptors are the same as those presented in
Section 3.2, and the evaluation metric is as presented in
Section 3.3.

4.1 Theoretical background

4.1.1 Traditional texture descriptors: LBP, DCP, HOG, GLCM

From a general point of view, the common starting point
for each traditional texture descriptor are the pre-processed
images. Once the descriptors are computed, it is possible to
proceed in two ways:

1. Use the resulting images as inputs to the ML models.
2. Perform a further step and compute features from the

resulting images, and use those features as input to the
ML models.

Because the ML models implemented in this paper are
not compatible with images (images in the form of 2D
arrays), it was decided to implement option 2. It could be
argued that the images can be converted into a stack of 1D

arrays, but this implies working with very large inputs, that
dramatically increase the computational costs. Furthermore,
it would lead to a situation in which the number of features
vastly exceeds the number of samples, commonly referred
to as the curse of dimensionality [40]. Consequently, once
the LBP, DCP, HOG and GLCM descriptors were computed
for each starting sample, a further reduction step was added
to each descriptor (e.g. histogram extraction, principal
component analysis), obtaining a set of limited feature
vectors. This reduction step was specific for each texture
desciptor. Indeed it will be explained, together with the
associated descriptor in the following.

LBP computes a histogram with the distribution of the
binary configurations of the pixels of the image, based on
thresholding the surrounding window of each pixel with the
intensity of the centre pixel. Generally, the LBP descriptor
works on 3x3 pixels cells, and the centre pixel’s value sets
the threshold. Each neighbouring pixel is converted into a
binary value according to this criterion:

– If the neighbouring pixel’s value is larger than the
threshold, the pixel is converted to 1.

– If the neighbouring pixel’s value is smaller than the
threshold, the pixel is converted to 0.

The resulting sequence of zeros and ones is converted to
a binary number and thus to an integer number (according
to the binary conversion system). This value is assigned to
the centre pixel of the starting 3x3 cell; the same procedure
is repeated for all the other pixels in the image to obtain
an output image. Figure 3 clarifies how a sample 500x500
pixels window changes when LBP is computed, while Fig. 4
relates to a 100x100 pixels window from the same original
sample. A histogram of the output image was computed and
its histogram bin values were selected as the feature vector.
The idea is that surfaces that show different patterns should
present different LBP histograms, and thus, the bins should
have different values. Indeed, it should be possible to train
ML classifiers to recognise those differences.

Fig. 3 Left: 500x500 pixels bottom-left corner of a sample image.
Right: 500x500 pixels of the same portion plotted in terms of LBP
values

1686 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Fig. 4 Left: 100x100 pixels bottom-left corner of a sample image.
Right: 100x100 pixels of the same portion plotted in terms of LBP
values

DCP allows to extract two different pixel maps, encoding
the texture patterns of machined surfaces. DCP works on a
two-level scale defined by an internal and external radius
(Rin and Rext , respectively). Here, Rin = 4 and Rext = 6,
following [21]. Eight pixel values are drawn on the internal
circle and eight on the external circle from a central pixel,
with angle steps of π/4 radians. A decimal number is
assigned to each direction through a two-step difference
(i.e. difference from inner radius to centre and difference
from external radius to inner radius). This number is then
binarised with a threshold at the zero level. The binarised
pixel values are then grouped into two crosses (from which
the descriptor takes its name) and encoded into a pixel value
assigned to the central pixel. The procedure is repeated for
each pixel in the original image, with each cross generating
a processed image. Figures 5 and 6 show the two images
produced by the two DCP crosses for a 500x500 sample and
a 100x100 sample, respectively. Histograms of these images
are computed and concatenated in the texture descriptor
itself. More details on DCP computation can be found
in [15, 21].

HOG descriptors are mainly used to describe the
structural shape and appearance of an object. However,
since HOG is able to capture the local intensity gradients
and edge directions, it is also a good texture descriptor.
By focusing on the gradient and orientation of the edges

(magnitude and direction), it is possible to understand
whether the pixels belong to an edge and find its orientation.
The idea is to leverage the edges and their orientations
to distinguish between different cutting parameters that
generate different patterns on the metallic surfaces. The
orientations were calculated in localised portions, meaning
that the starting image was decomposed into smaller regions
(or cells) and, for each region, the gradients and orientations
were calculated. Consequently, a histogram for each region
was generated from the gradients and orientations of the
pixel values. An example of the output from the HOG
descriptor is shown in Fig. 7 for a window of size 500x500
pixels in size and Fig. 8 for a window of size 100x100 pixels
in size. Moreover, from Fig. 8 it is possible to see how
the starting image was broken down into smaller regions
(with dimensions 32x32 pixels) and a total of 9 possible
orientations was set. To limit the issues caused by the very
high dimensionality implied by the adoption of these texture
descriptors, it was decided to pass the HOG values through
a principal component analysis (PCA) [41] stage to obtain a
feature vector with a length of 8 for each sample.

GLCM consists of computing statistical experiments on
the matrix (or matrices) that contain the co-occurrences of
the pixel intensities at given angles and distances. These
statistical experiments intuitively provide measurements of
properties such as smoothness, coarseness and regularity on
the distribution of pixels within the texture. By definition
a GLCM is the probability of the joint occurrence of grey-
levels i and j, where i ≤ G and j ≤ G and G identifies
the grey-level depth of the image, within a defined spatial
relation in an image. This spatial relation is defined in
terms of a distance D and an angle θ . From the GLCM, it
is possible to compute statistical features that can then be
stacked together to build the feature vector. In particular, the
features evaluated according to [42] were:

– contrast;
– dissimilarity;
– homogeneity;
– energy;
– correlation.

Fig. 5 Left: 500x500 pixels of
bottom-left corner of a sample
image. Centre: 500x500 pixels
of the same portion plotted in
terms of DCP values with cross
at [0, π/2, π, 3π/2] directions.
Right: 500x500 pixels of the
same portion plotted in terms of
DCP values with cross at
[π/4, 3π/4, 5π/4, 7π/4]
directions

1687The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Fig. 6 Left: 100x100 pixels of
bottom-left corner of a sample
image. Centre: 100x100 pixels
of the same portion plotted in
terms of DCP values with cross
at [0, π/2, π, 3π/2] directions.
Right: 100x100 pixels of the
same portion plotted in terms of
DCP values with cross at
[π/4, 3π/4, 5π/4, 7π/4]
directions

In this paper, to compute the 5 features it was decided
to set D equal to 100 and θ equal to 0◦. These values
might not be the best ones, and evaluating the best possible
combination is actually very time consuming since a sweep
of all possible combinations would be required. This is
one of the disadvantages of trying to classify images when
leveraging highly engineered features such as GLCMs.

An example of the GLCM evaluated is shown in Fig. 9
for two different cutting speed values. It is possible to
notice that the resulting GLCMs were slightly different,
and these matrices were leveraged to compute the statistical
parameters mentioned above. In this example, the difference
between the two raw samples was highlighted by the
contrast feature, while the other features didn’t highlight
large differences.

4.1.2 Machine learning classifiers: SVM, KNN, RF

To establish a performance baseline for the classification
problem presented in this paper, it was decided to utilise
three of the most widely known supervised machine
learning classifiers, namely SVM, KNN and RF.

Considering a binary classification problem, meaning
classifying between just two classes, the objective of the
SVM was to find the hyperplane that maximises the distance
to the nearest input data point of any class, as per Fig. 10
(the distance is called margin, the nearest sample is called

Fig. 7 Left: 500x500 pixels bottom-left corner of a sample image.
Right: 500x500 pixels of the same portion plotted in terms of HOG

support). SVMs proved to be able to perform both linear and
non-linear classification; for the latter, a kernel trick [43] is
exploited to map the input data onto a higher dimensional
space. The idea behind the kernel trick is that if the input
data is not linearly separable in the current space, it may
be separable at a higher dimension, as shown in Fig. 11,
computed using combinations of simple functions and the
starting input data. Two of the best known kernel functions
are polynomial and gaussian radial basis functions. The
disadvantage of the kernel trick is that by increasing the
dimensionality of the problem, the testing error increases,
too; thus, to compensate for this, more data is required to
train the SVM.

The KNN classification algorithm [24] is quite intuitive:
for any new sample, a distance metric is computed to find
the k-nearest samples and assign it to a class according
to a voting mechanism based on the most recurring class
among the k-neighbours (Fig. 12). The main parameter that
has to be tuned is k, which sets the number of neighbours
considered to classify a new sample (i.e. participants in the
voting mechanism):

– If k is too high the testing error increases because the
boundaries between classes are less distinct. This means
that samples of different classes can be mixed together
and assigned to a single region (underfitting). When
a new sample falls within that boundary, it may be

Fig. 8 Left: 100x100 pixels bottom-left corner of a sample image.
Right: 100x100 pixels of the same portion plotted in terms of HOG

1688 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Fig. 9 Top: two raw samples representing different cutting speed
values (a: high cutting speed, b: low cutting speed). Middle: GLCM
from raw samples (a) and (b). Bottom: features computed from GLCM
(a) and (b) respectively

incorrectly classified because the most recurring class
among its k-neighbours is actually different from that
for the region (which is the correct one).

– If k is too low the computational cost and time increase
dramatically, especially if the dataset is large and the
samples have high dimensionality. Furthermore, KNN
may end up learning the noise (overfitting).

So, k is usually tuned by applying some optimisation
methods that test different possible values and evaluate the
performance of the KNN classifier accordingly.

optimal hyperplane

max. margin

x1x1

x2 x2

Fig. 10 SVM defines the hyperplane that maximises the margin
between the samples of the two classes

x1

x2

x2

x1

x3

Fig. 11 SVM: example of kernel trick application and how it makes
it possible to define a plane that separates the two classes in a higher
dimensional space

Random forest classifiers are built by combining multiple
decision trees that operate as an ensemble [28]. The main
features that characterise the random forest classifiers are:

– Bootstrap aggregating algorithm (bagging), leveraged
to assign the input data to each decision tree.

– Each decision tree operates on a random subset of
features to reduce the correlation between different
trees.

– The classification output of the random forest is
selected based on the most voted class by the decision
trees.

To better adapt the random forest classifier to the specific
task it is possible to tune a variety of parameters, such
as: the number of estimators (decision trees), the number
of features for each estimator and the maximum depth of

k=3

k=5

Feature 1

Fe
at

ur
e 

2

Fig. 12 KNN: example of classification with a different number of
neighbours

1689The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



each estimator. The number of estimators sets the number
of decision trees that will be used to build the random forest
classifier. It is not always clear if this parameter should
be tuned or set to the maximum value possible given the
available computing resources [44]. The number of features
for each estimator sets the number of features that will be
leveraged by each decision tree to classify any given sample,
and it is usually set equal to the square root of the number of
total features available. The depth of the estimators can be
limited to a maximum value to avoid overfitting the training
data and to improve the bias-variance trade-off (very deep
decision trees lead to very good performance at the expense
of becoming very sensitive to small variations in the input
data, which leads to large variations in the predicted class).

From an operative perspective, the three algorithms
(SVM, KNN, RF) were tuned and trained using a
common strategy that leveraged a combination of cross-
validation and grid-search. As reported in the pseudo-
code in Algorithm 1, the first step was loading the data
(meaning the raw images) and computing a set of traditional
feature descriptors such as LBP, DCP, HOG or GLCM. The
different sets of tuneable hyperparameters characterising
each model in this paper were the following:

– SVM: C, kernel, polynomial kernel degree.
– KNN: number of neighbours, weights, power parameter

for Minkowski distance.
– RF: number of estimators, maximum number of

features.

For each hyperparameter multiple possible values were
set. The second for loop, split the dataset into an 80%-
20% training-testing proportion. In the third for loop, the
model was tuned and trained. Here, two approaches were
deployed at the same time: grid-search was used to generate
all possible hyperparameters’ value combinations, 5-folds
cross-validation was used to evaluate which combination led
to the best testing results. The third for loop, was actually
repeated 20 times (see line 7 in Algorithm 1): the objective
was to find the most recurring best architecture from the
grid-search cross-validation process to limit the detrimental
effects of imbalanced datasets as much as possible.

4.2 Custom CNN for surface classification

This section explains the proposed CNN model’s architec-
ture, highlighting some of the design choices that were made
to compensate for the limitations introduced in Section 3.2.

It is possible to notice from the graph in Fig. 13 that
the proposed CNN was very shallow and consisted of a
series of stacked convolutional blocks. This went against the
design trends of deeper (and sometimes wider) models that
characterised recent state-of-the-art convolutional neural

Algorithm 1 SVM, KNN, RF train-test loop.

networks for image classification such as ResNets [30],
DenseNets [31] and EfficientNets [32], just to name a few.

Keeping the network shallow and limiting the number
of trainable parameters was necessary due to the dataset
shortcomings highlighted in Section 3.2:

– Training deep models, with many trainable parameters,
leveraging only a limited number of samples would
inevitably lead to overfitting. This overfit tendency
would hinder the model’s performance when deployed
for production.

– Having a model with few trainable parameters facili-
tates the training and inference processes when dealing
with limited computing resources.

Nonetheless, if necessary, it is possible to increase the
depth of the proposed model by stacking more convolutional
blocks. Similarly, the model can be widened by increasing
the number of filters generated by each convolution
operation.

From an operating perspective, the input images were
fed into a first convolutional block (stem block), with
the purpose of increasing the number of channels while
decreasing the spatial dimensions. The stem was very
similar to implementations found in literature, consisting of
a convolutional layer with a large filter size followed by
the batch normalisation, rectified linear unit (relu) activation
function and a max pool operation for further down-
sampling. The resulting outputs were passed through a stack
of three inverted residual linear blocks (called conv block,

1690 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



STEM

CONV BLOCK 1

CONV BLOCK 2

CONV BLOCK 3

CLASSIFIER

Input image

Output class

Fig. 13 Compact CNN architecture overview

based on MobileNetV3 [33] and EfficientNets) detailed in
Fig. 14: the conv blocks were characterised by state-of-the-
art features such as depth-wise convolutions, squeeze-excite
blocks, residual connections and hard-sigmoid activation
function. The inverted residual linear block was integrated
into the proposed CNN and custom developed to:

– Be lightweight.
– Optimise the accuracy-latency trade-off on limited

resources (mobile devices), which are desirable features
for this paper’s research purposes.

– Efficiently generate feature maps that synthesise
meaningful information from each sample, making
it possible to recognise the different machining
parameters of interest.

The last stage of the proposed CNN was the classifier
block, where the output filters were averaged and passed
through a convolutional layer and softmax layer combina-
tion in order to obtain the predicted classifications.

A detailed summary of all the parameters that defined the
architecture of the proposed CNN (dimensions, kernel sizes,
filters, strides, activation functions) is given in Table 2.
Some further details regard the squeeze-excite block, which
adopted convolutional layers as weight layers and it was
characterised by the absence of batch-normalisation layers.

Fig. 14 Convolutional block detailed view

The reduction factor was set to 8. In the classifier block the
dropout layer had a survival probability of 90%.

The proposed CNN model was trained using the
stochastic gradient descent algorithm (SGD) with an initial
learning rate 0.9 and momentum 0.9. The learning rate
was adjusted after every batch according to the OneCycle
policy [45]. The number of epochs was set to 20 and batch
size to 128.

5 Results

In this section the classification results obtained from the
two approaches are reported, that is:

– Traditional texture descriptors (LBP, DCP, HOG,
GLCM) and machine learning classifiers (SVM, KNN,
RF);

– End-to-end classifier model (CNN).

Firstly, the acceptability of the surface is classified, then
for each process (machining condition, feed rate, cutting
speed) and technological (tool diameter, tool nose radius)
parameter, the classifiers’ performance was evaluated via
the f1-scores over the 5-fold cross-validation process. The
results in the following tables describe the classification
performance levels in terms of testing f1-score mean value
and its standard deviation.

1691The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Table 2 Custom CNN architecture

Output size Layers Activation

54x54 conv, 11x11, 32, stride=4 relu

26x26 max pool, 3x3, stride=2

13x13

⎡
⎢⎣

conv, 1x1, 64

dwconv, 3x3, 64, stride = 2

conv, 1x1, 48

⎤
⎥⎦ x1 relu

7x7

⎡
⎢⎣

conv, 1x1, 96

dwconv, 3x3, 96, stride = 2

conv, 1x1, 64

⎤
⎥⎦ x1 hard-sigmoid

7x7

⎡
⎢⎣

conv, 1x1, 128

dwconv, 3x3, 128, stride = 2

conv, 1x1, 64

⎤
⎥⎦ x1 hard-sigmoid

1x1
global average pool

dropout

1x1 conv, 1x1, classes softmax

5.1 Surface acceptability classification results

Table 3 shows the testing performance levels of each model
when classifying the surface samples as:

– Acceptable.
– Unacceptable.

The proposed CNN was the best performing model when
classifying the acceptability of a surface. The CNN
marginally outscored the RF+HOG combination (0.91801
and 0.91667, respectively). All the other state-of-the-art
combinations led to lower f1-scores, ranging from 0.61667
to 0.88750. The CNN showed a higher reliability in
the classes prediction, which was highlighted by lower
standard deviation of the f1-score. In fact, CNN standard
deviation was ±0.02953, which is about three times lower
with respect to the RF+HOG combination (±0.08756).
This may be associated to the capability of the deep
learning algorithm to extract meaningful features compared
to traditional descriptors. In general, the recognition of an
unacceptable surface seem to be an easy task, aided by
the fact that it is a binary classification problem. Machine
learning algorithms seem to have a low influence on the
classification results, which are mainly driven by the feature
extraction process. GLCM was the worst descriptor for
this case, performing badly with any machine learning
algorithm (0.61667 is the lowest f1-score, obtained with
KNN, whereas 0.71364 is the highest one when paired
with SVM). DCP slightly outscored GLCM, still resulting
ineffective for the classification of the surface quality.
Despite HOG and LBP resulted to be good traditional
surface quality descriptors, they did not allow to reach the
CNN results.

5.2 Machining condition classification results

Table 4 shows the testing performance of each model
when classifying the samples according to the machining
conditions. We wish to remind that the available samples in
the dataset were collected for 3 machining conditions:

– Nominal.
– Run-out.
– Chipped tooth (insert).

When classifying the three machining conditions, the
best performing model was the proposed end-to-end
CNN, which marginally outscored the KNN+GLCM and
RF+LBP combinations (0.86838 compared to 0.86667 and
0.86364). It is interesting to note how the CNN showed
slightly more reliable testing performance, highlighted by a
lower standard deviation than KNN+GLCM (±0.02786 vs
±0.03275). This could be an indicator of the CNN’s better
generalisation capabilities compared to KNN+GLCM, and
of its effectiveness in learning synthetic features that capture
meaningful information within each sample. With that being
said, the classifier and feature pairs were able to perform
very well on average, with f1-scores comfortably above
the 80% threshold. Unexpected behaviour was shown by
SVM when paired with LBP, DCP and GLCM: SVM
was completely unable to properly separate the samples
when leveraging features obtained from these three texture
descriptors, and this was true across the different parameters
analysed (see tables in the pages that follow). Considering
that the SVM’s hyperparameters were tuned using a grid-
search approach and that the samples were cycled by cross-
validation, it is fair to assume that this phenomenon is due

Table 3 Surface acceptability classification results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.82000 ± 0.07888

DCP 0.72500 ± 0.11292

HOG 0.86818 ± 0.07833

GLCM 0.71364 ± 0.07103

KNN LBP 0.85000 ± 0.07906

DCP 0.70000 ± 0.05477

HOG 0.88750 ± 0.06440

GLCM 0.61667 ± 0.07906

RF LBP 0.84167 ± 0.07360

DCP 0.69286 ± 0.07868

HOG 0.91667 ± 0.08756

GLCM 0.66875 ± 0.06512

CNN 0.91801±0.02953

Bold line represent the algorithm with the best f1-score

1692 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Table 4 Machining condition classification results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.10000 ± 0.00000

DCP 0.10000 ± 0.00000

HOG 0.83750 ± 0.03536

GLCM 0.10000 ± 0.00000

KNN LBP 0.80714 ± 0.07319

DCP 0.86250 ± 0.03536

HOG 0.84615 ± 0.04770

GLCM 0.86667 ± 0.03257

RF LBP 0.86364 ± 0.02335

DCP 0.85556 ± 0.01667

HOG 0.85000 ± 0.00000

GLCM 0.83000 ± 0.02582

CNN 0.86838±0.02786

Bold line represent the algorithm with the best f1-score

to a poor choice in the features selection process (namely in
terms of type of features and quantity of features). It is also
true that LBP, DCP and GLCM features did perform well
when leveraged to train other ML models, so this problem
appears to be limited to the SVM.

5.3 Feed rate classification results

Table 5 shows the testing performance of each model
when classifying the samples according to the feed rate.
Remember that the available samples in the dataset were
collected for a total of 6 different feed rate classes:

Table 5 Feed rate classification results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.10000 ± 0.03536

DCP 0.54167 ± 0.07360

HOG 0.47500 ± 0.08018

GLCM 0.10000 ± 0.00000

KNN LBP 0.42000 ± 0.04472

DCP 0.41000 ± 0.12450

HOG 0.50000 ± 0.03162

GLCM 0.38333 ± 0.06124

RF LBP 0.44375 ± 0.10155

DCP 0.57500 ± 0.08216

HOG 0.47000 ± 0.07583

GLCM 0.33889 ± 0.09610

CNN 0.59577±0.01170

Bold line represent the algorithm with the best f1-score

– Very very low.
– Very low.
– Low.
– High.
– Very high.
– Very very high.

For this classification task, the best performing model
was the proposed CNN, clearly outscoring all the tested
models-texture descriptors combinations by quite some
margin (the second best model-texture descriptor combina-
tion is RF+DCP, trailing by more than 2 basis points). As
noted for the machining conditions classification, the pro-
posed CNN was very stable, registering the second-lowest
f1-score spread (±0.01170). With that being said, it is pos-
sible to notice how each model was struggling to correctly
classify the samples according to the feed rate. The pro-
posed CNN was the only model that achieved meaningful
performance levels, with the remaining models registering
very low f1-scores (below 50%, except for RF+DCP and
SVM+DCP). This is likely due to the models assigning most
of the testing samples to just one or two classes (out of the
six available), therefore the training process didn’t have the
expected impact. One other reason could be that recognising
this cutting parameter simply by looking at an image is hard
even for human experts. This may be amplified for models
trained on a limited number of samples.

5.4 Cutting speed classification results

Table 6 shows the testing performance of each model when
classifying the samples according to the cutting speed.

Table 6 Cutting speed classification results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.67692 ± 0.05250

DCP 0.66176 ± 0.10082

HOG 0.81667 ± 0.11902

GLCM 0.51667 ± 0.17224

KNN LBP 0.82143 ± 0.05669

DCP 0.62500 ± 0.15083

HOG 0.76111 ± 0.12693

GLCM 0.61429 ± 0.10690

RF LBP 0.78000 ± 0.05701

DCP 0.73000 ± 0.10368

HOG 0.78571 ± 0.06901

GLCM 0.66875 ± 0.05939

CNN 0.88718±0.03529

Bold line represent the algorithm with the best f1-score

1693The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



Remember that the available samples in the dataset were
collected for a total of 3 different cutting speed classes:

– Low.
– Mid.
– High.

Similarly to the previous classification tasks, the best
performing approach for the cutting speed classification was
the proposed CNN, registering a mean f1-score of 0.88718
over the 5-folds. The second best performing approach
was represented by the KNN+LBP combination with a
mean f1-score of 0.82143. Once again, the proposed CNN
showed very stable classification performance, highlighted
by a testing f1-score standard deviation of ±0.03529
which is the tightest across all other models-feature
combinations. For reference, the KNN+LBP combination
shows a f1-score spread that is almost 60% wider
(±0.05669) than that of the proposed CNN. The overall
testing performance of all models was acceptable, with most
model-feature combinations registering f1-scores above the
70% threshold, signalling that it is feasible to recognise
different values of the cutting speed parameter.

5.5 Tool diameter classification results

Table 7 shows the testing performance of each model when
classifying the samples according to the tool diameter.
Remember that the available samples in the dataset were
collected for a total of 2 different tool diameter classes:

– Small.
– Large.

Table 7 Milling tool diameter classification results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.89333 ± 0.07528

DCP 0.94167 ± 0.04618

HOG 0.98636 ± 0.02335

GLCM 0.80000 ± 0.04472

KNN LBP 0.91000 ± 0.02236

DCP 0.92500 ± 0.10000

HOG 0.97727 ± 0.02611

GLCM 0.82188 ± 0.05468

RF LBP 0.93333 ± 0.04330

DCP 0.95000 ± 0.04472

HOG 0.95714 ± 0.05345

GLCM 0.76429 ± 0.03780

CNN 0.97464 ± 0.00785

Bold line represent the algorithm with the best f1-score

For this classification task it is possible to see that
almost all the approaches performed very well, registering
testing f1-scores above the 90% mark. With that being said,
the benchmark was set by the SVM+HOG combination,
showing a mean test f1-score of 0.98636 which slightly
outperformed the proposed CNN model (0.97464). At
the same time, the proposed CNN showed excellent
performance reliability across the 5-folds: it registered a test
f1-score deviation of just ±0.00785, which was a third of the
deviation registered by the SVM+HOG combination. This
confirmed both the effectiveness of the features generation
and learning processes and the generalisation capabilities
of the proposed CNN model, even when classifying a
technological parameter such as the tool diameter. One must
remember that this classification task was somewhat simpler
compared to the other tasks, since it only had to distinguish
between just 2 classes. Consequently, since the total number
of samples was fixed and equal to 100, more samples
were available to describe each class, which is desirable to
effectively train machine learning models.

5.6 Nose radius classification results

Table 8 shows the testing performance of each model when
classifying the samples according to the insert nose radius.
Remember that the available samples in the dataset were
collected for a total of 5 different nose radius classes:

– Lowest.
– Low.
– Mid.
– High.

Table 8 Milling tool insert’s nose radius results

ML algorithm Texture descriptor F1-score (5-fold)

SVM LBP 0.50000 ± 0.08165

DCP 0.59643 ± 0.11679

HOG 0.76667 ± 0.09374

GLCM 0.59000 ± 0.09947

KNN LBP 0.67727 ± 0.10574

DCP 0.75000 ± 0.06124

HOG 0.71429 ± 0.08522

GLCM 0.48571 ± 0.08187

RF LBP 0.54000 ± 0.15572

DCP 0.61667 ± 0.08756

HOG 0.74375 ± 0.08634

GLCM 0.43125 ± 0.10329

CNN 0.79475±0.04724

Bold line represent the algorithm with the best f1-score

1694 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



– Highest.

The proposed CNN model was the best performing
approach when classifying the samples according to the
nose radius of the milling tool’s inserts. It managed to
outperform the SVM+HOG combination, registering a
mean test f1-score of 0.79475 compared to 0.76667. As
previously shown across the other classification tasks, the
proposed CNN was a very reliable approach, with a test
f1-score deviation of ±0.04724, which is almost half the
score for the SVM+HOG combination (±0.09374). Overall,
the results were mixed: HOG features led the machine
learning models to the best performance followed by DCP,
while LBP and GLCM were unable to generate features that
correctly identify the different nose radii from the surface
images. It should be noted that, similarly to the feed rate,
recognising different values of nose radii through vision
only is a complex task even for experts.

5.7 Average classification results

From an overall perspective, it was possible to note
that the proposed CNN performed very well across the
whole spectrum of classification tasks: it was the best
performing model in the case of surface acceptability,
machining conditions, feed rate, cutting speed, nose
radius classification, and it was marginally outperformed
in the case of tool diameter (−1.2% compared to the
SVM+HOG combination). This can be seen from Table 9,

Table 9 Average classification performance across the parameters of
interest (surface acceptability, machining condition, feed rate, cutting
speed, tool diameter, nose radius)

ML algorithm Texture descriptor Global F1-score

SVM LBP 0.51504 ± 0.31808

DCP 0.59442 ± 0.25476

HOG 0.79173 ± 0.15673

GLCM 0.47005 ± 0.27648

KNN LBP 0.74674 ± 0.16234

DCP 0.71208 ± 0.16752

HOG 0.78105 ± 0.15161

GLCM 0.63142 ± 0.17073

RF LBP 0.73373 ± 0.17895

DCP 0.73668 ± 0.13048

HOG 0.78721 ± 0.15921

GLCM 0.61699 ± 0.17525

CNN 0.83979±0.12175

Bold line represent the algorithm with the best f1-score

where the average performance of the different model-
feature combinations and proposed model across the 5
classification tasks are reported:

– The proposed CNN was, on average, the best perform-
ing model across all tasks, with an average f1-score of
0.83979. It was the most consistent too, highlighted by
a f1-score spread of ±0.12175.

– The second best approach was, on average, the SVM
paired with HOG features. This approach showed an
average f1-score of 0.79173 (-4.8% compared to the
proposed CNN) and a standard deviation of ±0.15673
(+3.5% compared to the proposed CNN).

– The worst approaches were, on average, the SVM
paired with GLCM features or LBP features (as stated
before, when discussing the machining conditions
results).

– From the texture descriptor point of view the most
effective approach appears to be the HOG (remember
that this feature was paired with PCA) followed by DCP
and LBP, while the least effective was the GLCM.

6 Conclusions

In this paper, we have presented a deep learning approach
for machined surface classification tasks. A shallow end-
to-end Convolutional Neural Network (CNN) classifier was
built and trained upon 100 raw surface very high-resolution
images, split into 224x224 pixel batches. The CNN learned
to classify images for 6 classification tasks: machining
conditions, feed rates, cutting speeds, tool diameters and
nose radii. The proposed approach was compared to state-
of-the-art machine learning techniques (Support Vector
Machines, k-Nearest Neighbours and Random Forests),
fed with traditional surface feature descriptors (Local
Binary Patterns, Dual Cross Patterns, Histogram of Oriented
Gradients and Grey-Level Co-Occurrence Matrix). The
approach developed outperformed state-of-the-art machine
learning techniques in all the classification tasks, except for
the milling tool diameter showing a mean f1-score of 97.5%
(just 1.2% less than the best state-of-the-art algorithm).
Furthermore, the CNN results were 4.8% better than the best
machine learning approach when considering the average
classification performance levels. Thus, the proposed CNN
structure proved to be robust, reliable, flexible and accurate
enough for possible industrial deployment. The CNN
training procedure on the whole dataset (not considering
cross-validation) took 149.7 min, whereas the prediction of
a new image class (including all its patches) is performed
in 0.385 s, on average. Thus, the CNN is really fast and
does not prevent its application in an industrial context
(the application time is related just to the prediction time

1695The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697



for a new image). The CNN training and test times were
computed on a Dell XPS 15 7590 featuring an Intel®

Core™ i7-9750H CPU @ 2.60GHz. Nevertheless, there
are still margins for improvement especially regarding the
feed rate classification, where the CNN still struggles to
reach optimal performance. This will be the subject of
the authors’ future works, together with the deployment
of the approach developed in an adaptive process control
framework (i.e. the CNN will suggest milling parameter
changes and tool failure detection). Furthermore, when
testing the approach on different materials, i.e. Aluminium
alloys, the algorithm did not provide reliable results, most
likely due to the material reflectivity. Thus, in order to
enhance the generalisation properties of the developed CNN
and deal with different materials, at least some training
samples (performed on the new materials) are needed.

Acknowledgements The authors would like to thank Eng. Mattia
Torta for the support provided during the experimental activities.

Author contribution N. Carbone conceived the methodology, imple-
mented it and wrote the paper. L. Bernini designed and performed the
experiments, conceived and implemented the methodology, wrote and
revised the paper. P. Albertelli conceived the research, designed the
experiments, performed them and supervised the research. M. Monno
performed the proofread of the paper.

Funding Open access funding provided by Politecnico di Milano
within the CRUI-CARE Agreement. This work was developed in the
DIGIMAN project, funded by “Asse 1 – Azione 1.2.2 POR-FESR 2014
– 2020 Emilia-Romagna”.

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Wang J, Ma Y, Zhang L, Gao RX, Wu D (2018) Deep learning
for smart manufacturing: methods and applications. J Manuf Syst
48:144–156. https://doi.org/10.1016/j.jmsy.2018.01.003

2. Mehta P, Rao P, Wu Z, Jovanović V, Wodo O, Kuttola-
madom M (2018) Smart manufacturing: state-of-the-Art Review
in Context of Conventional and Modern Manufacturing Pro-
cess Modeling, Monitoring and Control. https://doi.org/10.1115/
MSEC2018-6658

3. Kim DH, Kim TJ, Wang X, Kim M, Quan YJ, Oh JW, Min SH,
Kim H, Bhandari B, Yang I, Ahn SH (2018) Smart machining
process using machine learning: a review and perspective on
machining industry. Int J Precision Eng Manuf-Green Technol
5:555–568. https://doi.org/10.1007/s40684-018-0057-y

4. Weimer D, Scholz-Reiter B, Shpitalni M (2016) Design of
deep convolutional neural network architectures for automated
feature extraction in industrial inspection. CIRP Ann 65:417–420.
https://doi.org/10.1016/j.cirp.2016.04.072

5. Park JK, Kwon BK, Park JH, Kang DJ (2016) Machine learning-
based imaging system for surface defect inspection. Int J Precision
Eng Manufact-Green Technol 3:303–310. https://doi.org/10.1007/
s40684-016-0039-x

6. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features
for Image Classification. IEEE Transactions on Systems Man, and
Cybernetics SMC-3, 610–621, https://doi.org/10.1109/TSMC.
1973.4309314

7. Lehtomäki M, Jaakkola A, Hyyppä J, Lampinen J, Kaartinen H,
Kukko A, Puttonen E, Hyyppä H (2016) Object classification and
recognition from mobile laser scanning point clouds in a road
environment. IEEE Trans Geosci Remote Sens 54:1226–1239.
https://doi.org/10.1109/TGRS.2015.2476502

8. Meng Z, Fan X, Chen X, Chen M, Tong Y (2017) Detecting small
signs from large images. In: Proceedings - 2017 IEEE Interna-
tional Conference on Information Reuse and Integration, IRI 2017
2017-January, pp 217–224. https://doi.org/10.1109/IRI.2017.57

9. Gadelmawla ES (2004) A vision system for surface roughness
characterization using the gray level co-occurrence matrix. NDT
& E International 37:577–588. https://doi.org/10.1016/j.ndteint.
2004.03.004

10. Song K, Yan Y (2013) A noise robust method based on completed
local binary patterns for hot-rolled steel strip surface defects. Appl
Surf Sci 285:858–864. https://doi.org/10.1016/j.apsusc.2013.
09.002

11. Mentouri Z, Moussaoui A, Boudjehem D, Doghmane H (2018)
Steel strip surface defect identification based on binarized
statistical features. Scientific Bulletin Series B: Chemistry and
Materials Science, 80(4)

12. Tao X, Zhang D, Ma W, Liu X, Xu D (2018) Automatic metallic
surface defect detection and recognition with convolutional neural
networks. Appl Sci, 8. https://doi.org/10.3390/app8091575

13. Fu G, Sun P, Zhu W, Yang J, Cao Y, Yang MY, Cao Y (2019)
A deep-learning-based approach for fast and robust steel surface
defects classification, vol 121

14. Mentouri Z, Moussaoui A, Boudjehem D, Doghmane H (2020)
Steel strip surface defect identification using multiresolution
binarized image features. J Fail Anal and Preven 20(6):1917–
1927. https://doi.org/10.1007/s11668-020-01012-7

15. Mentouri Z, Doghmane H, Moussaoui A, Bourouba H (2020)
Improved cross pattern approach for steel surface defect
recognition. Int J Adv Manuf Technol 110(11-12):3091–3100.
https://doi.org/10.1007/s00170-020-06050-x

16. Chen S, Chou E, Yang R (2018) The Price is Right. Predicting
Prices with Product Images. arXiv: https://doi.org/10.48550/
https://doi.org/10.48550/

17. Li B, Zhang H, Ye P, Wang J (2020) Trajectory smooth-
ing method using reinforcement learning for computer numer-
ical control machine tools. Robot Comput Integr Manuf, 61.
https://doi.org/10.1016/j.rcim.2019.101847

18. Kassim AA, Mian Z, Mannan MA (2006) Tool condition
classification using Hidden Markov model based on fractal
analysis of machined surface textures. Mach Vis Appl 17:327–
336. https://doi.org/10.1007/s00138-006-0038-y

19. Garcı́a-Ordás MT, Alegre-Gutiérrez E, Alaiz-Rodrı́guez R,
González-Castro V (2018) Tool wear monitoring using an online,

1696 The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jmsy.2018.01.003
https://doi.org/10.1115/MSEC2018-6658
https://doi.org/10.1115/MSEC2018-6658
https://doi.org/10.1007/s40684-018-0057-y
https://doi.org/10.1016/j.cirp.2016.04.072
https://doi.org/10.1007/s40684-016-0039-x
https://doi.org/10.1007/s40684-016-0039-x
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TGRS.2015.2476502
https://doi.org/10.1109/IRI.2017.57
https://doi.org/10.1016/j.ndteint.2004.03.004
https://doi.org/10.1016/j.ndteint.2004.03.004
https://doi.org/10.1016/j.apsusc.2013.09.002
https://doi.org/10.1016/j.apsusc.2013.09.002
https://doi.org/10.3390/app8091575
https://doi.org/10.1007/s11668-020-01012-7
https://doi.org/10.1007/s00170-020-06050-x
https://doi.org/10.48550/ARXIV.1803.11227
https://doi.org/10.48550/ARXIV.1803.11227
https://doi.org/10.48550/ARXIV.1803.11227
https://doi.org/10.1016/j.rcim.2019.101847
https://doi.org/10.1007/s00138-006-0038-y


automatic and low cost system based on local texture. Mech Syst
Signal Process 112:98–112. https://doi.org/10.1016/j.ymssp.2018.
04.035

20. Hou L, Samaras D, Kurc TM, Gao Y, Davis JE, Saltz JH (2016)
Patch-based convolutional neural network for whole slide tissue
image classification. 2424–2433. https://doi.org/10.1109/CVPR.
2016.266

21. Ding C, Choi J, Tao D, Davis LS (2016) Multi-directional
multi-Level dual-Cross patterns for robust face recogni-
tion. IEEE Trans Pattern Anal Mach Intell 38(3):518–531.
https://doi.org/10.1109/TPAMI.2015.2462338

22. Gopaluni B, Tulsyan A, Chachuat B, Huang B, Lee JM,
Amjad F, Damarla SK, Kim JW, Lawrence NP (2020) Mod-
ern machine learning tools for monitoring and control of
industrial processes: a survey. IFAC-PapersOnLine 53:218–229.
https://doi.org/10.1016/j.ifacol.2020.12.126

23. Azimi M, Eslamlou AD, Pekcan G (2020) Data-driven structural
health monitoring and damage detection through deep learn-
ing: state-of-the-art review. Sensors, 20. https://doi.org/10.3390/
s20102778

24. Fix E, Hodges J (1951) Discriminatory analysis: nonparametric
discrimination: consistency Properties. USAF School of Aviation
Medicine

25. Huang GB, Zhu QY, Siew CK (2006) Extreme learning
machine: theory and applications. Neurocomputing 70:489–501.
https://doi.org/10.1016/j.neucom.2005.12.126

26. Sharma A, Liu X, Yang X, Shi D (2017) A patch-based convo-
lutional neural network for remote sensing image classification.
Neural Netw 95:19–28. https://doi.org/10.1016/j.neunet.2017.
07.017

27. Wu J, Ye Y, Chen Y, Weng Z (2018) Spot the difference by object
detection. arXiv e-prints

28. Breiman L (2001) Random Forests. Mach Learn 45:5–32.
https://doi.org/10.1023/A:1010933404324

29. Griffiths D, Boehm J (2019) A review on deep learning
techniques for 3D sensed data classification. Remote Sens, 11.
https://doi.org/10.3390/rs11121499

30. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning
for image recognition. 770–778. https://doi.org/10.1109/CVPR.
2016.90

31. Huang G, Liu Z, van der Maaten L, Weinberger KQ
(2017) Densely Connected Convolutional Networks. 2261–2269.
https://doi.org/10.1109/CVPR.2017.243

32. Tan M, Le QV (2019) EfficientNet: rethinking model scaling for
convolutional neural networks. ArXiv https://doi.org/10.48550/
ARXIV.1905.11946

33. Howard A, Sandler M, Chu G, Chen LC, Chen B, Tan M, Wang
W, Zhu Y, Pang R, Vasudevan V, Le QV, Adam H (2019) Search-
ing for MobileNetV3. arXiv https://doi.org/10.48550/ARXIV.
1905.02244

34. Wu S, Zhang M, Chen G, Chen K (2017) A new approach
to compute CNNs for extremely large images. Association
for Computing Machinery New York, pp 39–48. NY, USA.
https://doi.org/10.1145/3132847.3132872

35. Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009)
ImageNet: a large-scale hierarchical image database. Insti-
tute of Electrical and Electronics Engineers (IEEE), 248–255.
https://doi.org/10.1109/CVPR.2009.5206848

36. Krizhevsky A (2009) Learning Multiple Layers of Features from
Tiny Images

37. LeCun Y, Cortes C (2010) MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/. Accessed 20 May 2022

38. Chinchor N (1992) MUC-4 Evaluation metrics. Association
for Computational Linguistics, 22–29. https://doi.org/10.3115/
1072064.1072067

39. Sasaki Y (2007) The truth of the F-measure
40. Bellman R (1966) Dynamic programming. Science 153:34–37.

https://doi.org/10.1126/SCIENCE.153.3731.34
41. Jolliffe I (2011) Principal component analysis, 1094–1096

springer berlin heidelberg. Berlin, Heidelberg. https://doi.org/10.
1007/978-3-642-04898-2 455

42. Hall-Beyer M (2017) GLCM Texture. A Tutorial 3:0. https://doi.
11575/PRISM/10182

43. Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for
optimal margin classifiers. Association for Computing Machinery,
144–152. https://doi.org/10.1145/130385.130401

44. Probst P, Boulesteix AL (2018) To tune or not to tune the number
of trees in random forest. J Mach Learn Res 18:1–18

45. Smith LN, Topin N (2019) Super-convergence: very fast training
of neural networks using large learning rates. https://doi.org/10.
1117/12.2520589

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1697The International Journal of Advanced Manufacturing Technology (2023) 124:1681–1697

https://doi.org/10.1016/j.ymssp.2018.04.035
https://doi.org/10.1016/j.ymssp.2018.04.035
https://doi.org/10.1109/CVPR.2016.266
https://doi.org/10.1109/CVPR.2016.266
https://doi.org/10.1109/TPAMI.2015.2462338
https://doi.org/10.1016/j.ifacol.2020.12.126
https://doi.org/10.3390/s20102778
https://doi.org/10.3390/s20102778
https://doi.org/10.1016/j.neucom.2005.12.126
https://doi.org/10.1016/j.neunet.2017.07.017
https://doi.org/10.1016/j.neunet.2017.07.017
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.3390/rs11121499
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.48550/ARXIV.1905.11946
https://doi.org/10.48550/ARXIV.1905.11946
https://doi.org/10.48550/ARXIV.1905.02244
https://doi.org/10.48550/ARXIV.1905.02244
https://doi.org/10.1145/3132847.3132872
https://doi.org/10.1109/CVPR.2009.5206848
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.1126/SCIENCE.153.3731.34
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.1007/978-3-642-04898-2_455
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.11575/PRISM/10182
https://doi.org/10.1145/130385.130401
https://doi.org/10.1117/12.2520589
https://doi.org/10.1117/12.2520589

	Assessment of milling condition by image processing of the produced surfaces
	Abstract
	Introduction
	State-of-the-art
	Traditional texture descriptors
	Machine learning classifiers for texture descriptors
	Convolutional neural networks are end-to-end classifiers

	Materials
	Experiments
	Data pre-processing and dataset preparation
	Evaluation metric

	Methods
	Theoretical background
	Traditional texture descriptors: LBP, DCP, HOG, GLCM
	Machine learning classifiers: SVM, KNN, RF

	Custom CNN for surface classification

	Results
	Surface acceptability classification results
	Machining condition classification results
	Feed rate classification results
	Cutting speed classification results
	Tool diameter classification results
	Nose radius classification results
	Average classification results

	Conclusions
	Declarations
	References


