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Abstract
This study introduces a non-destructive method by applying convolutional neural networks (CNN) to predict the micro-
hardness of the thread-rolled steel. Material microstructure images were collected for our research, and micro-hardness tests 
were conducted to label the extracted microstructure images. In recent years, researchers have used machine learning (ML) 
and deep learning (DL) models to predict material properties for forming, machining, additive manufacturing, and other 
processes. However, they encountered industrial limitations primarily because of the absence of historical information on 
new and unknown materials, which are necessary to predict material properties by DL models. These problems can be solved 
by employing CNN models. In our work, we used a CNN model with two convolutional layers and visual geometry group 
(VGG19) as transfer learning (TL). We predicted four classes of micro-hardness of the St37 rolled threads. The prediction 
results of the micro-hardness test images by our proposed CNN model and pre-trained VGG19 model are comparable. Our 
proposed model has produced the same precision and recall scores as VGG19 for class B and class C hardness. VGG19 
performed slightly better than our model for precision in class A and recall in class D. We observed that the training time of 
our proposed model using the CPU (central processing unit) was approximately nine times faster than the VGG19 model. 
Our proposed CNN and VGG19 have direct applications in advanced manufacturing (AM). They can automatically predict 
the micro-hardness in the thread rolling of St37. Our proposed model requires less memory and computational power and 
can be deployed more efficiently than the VGG19 model.

Keywords  Micro-hardness · Metallography · Convolutional neural networks · Deep learning · Machine learning · 
Mechanical properties · Microstructure

1  Introduction

Rotational forming is used to form cylindrical bars, pipes, 
and metallic sheets by compressive rotation. This process 
is the most common method for producing bolts and nuts 

and creating gears, balls, rings, cylindrical and conical hol-
low parts, shafts, and other axial symmetrical cross sections. 
Generally, threads are produced by different processes, 
such as machining, grinding, and thread rolling processes. 
The thread rolling process has some advantages, like good 
mechanical properties, and can make threads on small and 
big diameters. This cold working process does not produce 
chips [1, 2]. Deform software has simulated the strain dis-
tribution and material flow in the thread rolling process. 
The effect of friction coefficient on strain and hardening 
has been investigated in ACME and unified threads [3, 4]. 
Stress distribution was studied on metallic-glass threads 
rolled by the thread rolling process. The results showed that 
the cold work due to the thread rolling process improved 
the mechanical properties by creating residual stress [5, 6]. 
Another study reported increasing tensile strength in speci-
mens after the thread rolling process [7]. The thread roll-
ing process increases the precision of the thread, improves 
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surface roughness, and increases the strength of threaded 
joints [8]. Roll forming and machining of threads on car-
bon steel revealed a noticeable increase in hardness in the 
roll-formed threads. This is due to the work-hardening phe-
nomenon resulting from the rolling [9]. Machine learning 
has been employed in science and engineering [10]. Many 
processes in manufacturing screws depend on senior techni-
cians and their experience. In recent years, the reliance on 
technicians’ expertise has been reduced. Machine learning/
deep learning techniques have been applied to manufactur-
ing processes, including the traditional screw processes. 
An artificial neural network (ANN) was used to predict the 
physical properties of screws after heat treatments. A physi-
cal property estimation model was employed to determine 
the appropriate control parameters in the screw manufactur-
ing process [11]. ANN has assisted in accurately predicting 
the mechanical properties of rolling materials [12]. Indeed, 
ANN has allowed researchers to create models to solve 
complex problems without having mathematical limitations 
[13]. The ANN was used for controlling the hot-rolling of 
BHP Steel Co [14]. Moreover, ANN has been used to model 
Al-Si-Cu alloys’ mechanical performance for predicting 
mechanical properties such as hardness, yield strength, and 
elastic limit [15]. In another study, ANN (multi-layer percep-
tron) was used to obtain the hardness of AZ91 magnesium 
alloy. In this study, the aging temperatures and aging times 
were the inputs, and the material hardness was the computed 
output [16].

The application of ANN for predicting the hardness prop-
erties of Sn-9Zn-Cu solder alloy was studied. The training 
and validation data in the ANN were obtained from experi-
mental results [17]. An ANN was used to predict residual 
stress and hardness from ball burnishing [18]. A total of 24 
ball burnishing tests were conducted under different pres-
sures, yield stress, residual stress, and hardness. In another 
work, two ANN and nonlinear regression methods were 
compared to estimate material tensile strength, elongation, 
and hardness of equal channel angular rolled Al-5083 sheets. 
The errors of the ANN model were significantly lower than 
the nonlinear regression model [19]. Other researchers used 
the ANN to predict the mechanical and metallurgical proper-
ties such as surface roughness, hardness, and residual stress 
of steel 316L [20]. In [21], the authors used an ANN pre-
diction model of residual stress and hardness for ultrasonic 
nanocrystal surface modification (UNSM) parameter opti-
mization on nickel alloys. The surface hardness parameters 
of Shot Peening on AISI 1017, 1045, 1050, 1060, and 1070 
were studied experimentally. Microstructural studies were 
conducted with optical and transmission electron micro-
scopes in this research. Furthermore, the micro-hardness 
investigation was implemented to record the surface hard-
ness. Also, the surface hardness of the treated materials 
by the Shot Peening process was analyzed by ANN [22]. 

It should be noted that microstructure forms of elements, 
like shape and their distribution, are often significant param-
eters in modeling micromechanical behavior [23]. Machine 
learning has been able to recognize and classify microstruc-
ture images. This research used a support vector machine 
(SVM) to extract and predict microstructure specifications 
and morphological features [24]. A convolutional neural 
network (CNN) for predicting the mechanical properties 
of hot-rolled steel using chemical composition and process 
parameters was implemented [25]. This research aimed to 
introduce the CNN prediction for the steel properties after 
transforming the production data into two-dimensional 
images. In recent years, CNN has been attractive in indus-
trial applications. There is no need to extract the features 
in CNN manually. It has some advantages in comparison 
with ANNs. CNN reduces the number of trainable param-
eters and provides faster convergence. CNN also reduces 
dimensionality by down-sampling [26]. Indeed, CNNs can 
be trained efficiently because they have fewer connections 
and parameters than regular neural networks [27]. In thread 
rolling, the hardness of the threads is changed due to work 
hardening. The work hardening is accompanied by changes 
in material microstructure and microstructure and can be 
extracted from microstructure images. Traditional machine 
learning methods have been successfully applied to recog-
nize and predict mechanical properties. The ANN models 
have opened new doors to predict material properties expe-
ditiously, precisely, and non-destructively. It is important to 
note that micro-hardness values of material severely vary at 
different material positions due to the heterogeneous distri-
bution of material phases. In recent years, machine learning 
algorithms have been used to recognize micro-hardness by 
defining the chemical percentage of elements, previous pro-
cess conditions, and their equivalent micro-hardness in train-
ing data [15–19, 21, 22]. However, from the industrial point 
of view, the previous process conditions may be unknown 
when examining a new material. Thus, this solution may not 
be useable. Moreover, defining the percentage of elements is 
too expensive and time-consuming, especially when obtain-
ing micro-hardness values for different points in the mate-
rial is necessary. Furthermore, training an ANN model with 
various material parameters such as element percentages, 
previous conditions, and the micro-hardness of any position 
is also costly and time-consuming. Furthermore, obtaining 
micro-hardness needs an expert to analyze the results. They 
may not be accessible or unable to analyze large datasets 
accurately and promptly. However, CNN can overcome 
this problem and automate the micro-hardness test proce-
dure. In our work, we propose a CNN model to predict the 
micro-hardness of the threads rolled. We also compare our 
results with a pre-trained VGG19 model. Our models were 
trained with the material microstructure images obtained 
from metallography.
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2 � Materials and methods

2.1 � Thread rolling process and micro‑hardness

Figure 1 shows the thread rolling machine. Figure 2 shows 
a sample of threads after the thread rolling process on St37 
steel before metallography tests. The thread rolling process 
conditions are presented in Table 1.

In order to take images of material microstructure by 
optical microscope, polishing and etching were initially 
conducted on the threaded samples. Then, the microstruc-
ture images were obtained by metallographic microscope 
and saved in a png format in high resolution. Finally, the 
micro-hardness was recorded by a micro-hardness tester. 
The results are illustrated in Fig. 3.

2.2 � Convolutional neural network model

Convolutional neural network (CNN) is a deep learning 
neural network (DLNN) commonly employed for various 
computer vision tasks. CNNs can classify, cluster images, 
and recognize objects within an image. CNNs are widely 
used in physics, engineering, and medical applications. In 
CNN, the pooling layers decrease the dimensionality of the 
input data and the computational scale [28]. A CNN model 

contains two parts, feature extraction and prediction parts. 
The predicted micro-hardness labels are the output of the 
last layer in the present model. Figure 4 is a schematic of a 
CNN model. The microstructure images of the threads will 
be the input layer. A set of convolutional filters is used for 
the convolution operation. In the convolution procedure, 
each convolution kernel provides a feature map. Parameter 
sharing is an essential characteristic of CNN. It decreases 
the number of parameters and extracts features efficiently 
[28, 29].

The output nodes of the fully connected layer equal the 
number of classes [30]. Adam and categorical cross-entropy 
have been applied in our model as the optimizer and loss 
function, respectively. We built our CNN model using the 
python programming language (version 3.9.7) [31] and the 
TensorFlow platform (version 2.7.0) [32]. In our research, 
160 images were used for training and 26 for testing. We 
employed two convolutional layers + (Rectified Linear 
Unit) ReLU activation function, two max-pooling layers, 
two dense layers + ReLU and one dropout, and a Softmax 
activation function. The ReLU activation function is math-
ematically defined as

(1)f (x) ≡ max(0, x) ≡

{

0ifx < 0

xifx ≥ 0

}

Fig. 1   Thread rolling machine 
and dies

3263The International Journal of Advanced Manufacturing Technology (2022) 123:3261–3274



1 3

Figure 5 elucidates the workings of the convolutional neural 
network with a simple example. In the first step, this example 
applies a filter size of (3 × 3) to the image. Then, elementwise 
multiplication between the image’s pixel values and the filter 
is performed. Finally, all the values are summed. This process 
will continue for all the cells. In this example, we assumed 
stride = 1. Stride is the number of pixels the kernel window 
will slide at each convolution step. Below is the computation 
for two cells.

Pooling layers are constructed to reduce the size of the 
image across layers. This operation selects the maximum 
value in each window and creates a pooled feature map. 
In the final step, we flatten the output of the pooled fea-
ture map into a column vector and connect it to the final 
classification model with the number of classes. It should 
be noted that a typical kernel/filter size in most CNN 
applications is a 3 × 3 filter [33].

(2)

(0 × 0 + 0 × 0 + 1 × 1)

+ (0 × 1 + 0 × 1 + 0 × 0)

+ (0 × 0 + 1 × 1 + 1 × 0) ≡ 2

(3)

(0 × 0 + 0 × 0 + 1 × 1)

+ (0 × 1 + 1 × 1 + 1 × 0)

+ (0 × 0 + 1 × 1 + 1 × 0) = 3

Fig. 2   Cross section of the 
threads produced by thread roll-
ing and metallography images

Table 1   Process and material conditions

Work-
piece 
material

Work-
piece 
diameter 
(mm)

Thread 
pitch 
(mm)

Rotational 
speed 
(rpm)

Lubricant Die 
material

St37 46.1 2 22 Oil 10 D2 Steel
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2.3 � Input data

After micro-hardness testing, the micro-hardness values 
were classified into four classes (a, b, c, and d), as shown 
in Fig. 3. Then, each class was labeled from zero to three 
based on its average micro-hardness. The microstructure 
images with 100*100 pixels were extracted from primary 
images taken from an optical microscope with 2560*2048 
pixels. They were labeled according to their micro-hard-
ness and used as our training set. Table 2 summarizes their 
labels, numbers, and their equivalent micro-hardness.

3 � Results and discussion

3.1 � Metric for deciding our CNN model

Accuracy is a metric used in classification problems. It is 
obtained by dividing the number of correct predictions by 
the total number of samples. In the best-case scenario, the 
accuracy for training and validation datasets should converge 
to 1. Since we had limited images in our work, we used 
image augmentation (IA) to improve our validation metric. 
The animation of learning curves at the New York Insti-
tute and Laboratory for Artificial Intelligence illustrates the 
evolution of training accuracy and validation accuracy [34].

Loss is the sum of the errors for each sample in training 
or validation datasets. A decrease in a loss function implies 
that the validation and training errors are getting smaller. 
Hence, there is improvement in the predictability of our 
CNN model. In an ideal situation, the training loss and vali-
dation loss should ultimately converge to zero. However, in 
many real-world applications, this may not be possible. If 
our model validation loss increases while our training loss 
decreases, we have an overfitting problem. The loss function 
for our model is categorical cross-entropy (CCE) since we 
have a multi-class classification problem (four classes). CCE 
is the combination of Softmax activation and cross-entropy 
loss and is defined as:

where,

f	� is a Softmax function

si	� is the raw output i

(4)CCE = −

C
∑

i=1

ti log
(

f (s)i
)

(5)f (s)i =
esi

∑C

j
esj

is a Sof tmax activation function

Fig. 3   Micro-hardness results 
and labels of regions (a, b, c, 
and d)
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sj	� is the raw output j

c-	� is the total number of classes

ti	� is the true label class

If the predicted probability of our sample deviates from 
the true label, then the cross-entropy loss will increase. For 
instance, if our model predicts a probability of 0.1 when the 
true label is 1, then the cross increases. On the other hand, 
if our model predicts a probability of 0.8 when the true label 
is 1, the cross-entropy loss decreases.

3.2 � Convolutional layer, image augmentation, filter 
number, and dropout rate effects

CNN models with several layers can be trained to detect 
complex features. More convolutional layers can detect 
complicated features from input images. However, this does 

not necessarily mean that more convolutional layers will 
improve prediction accuracy. Indeed, more convolutional 
layers have more trainable parameters, requiring more com-
putational resources. Image augmentation (IA) is a technique 
employed in computer vision tasks. In many cases, providing 
big input data is not possible. IA applies transformations to 
all the images and then uses the original and transformed 
images for training. For instance, we can use shift, rotation, 
and horizontal flips. IA assists us in increasing the overall 
accuracy of our model and minimizing overfitting, particu-
larly when we have limited examples for our training data. 
Keras provides the [ImageDataGenerator] class [35, 36]. 
We applied transformations as we trained our model. The 
dropout technique turns off some neurons during training, 
which means the model does not consider these neurons. We 
used dropout in our first dense layer. Dropout randomly puts 
a fraction of neurons in a particular layer to zero. Dropout 
is not used when our model makes an inference for the test 
images. Convolutional filters are used to extract information 
from an input image. In many CNN applications, the number 

Fig. 4   Schematic of a CNN model
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of convolutional kernels will also increase when the network 
depth increases. Convolutional kernels are learned during 
training [37].

In our study, we built three CNN models with two con-
volutional layers using width shift parameter = 0.05, 0.4, 
and 0.6 and number of filters = 16–64, 16–32, and 32–32 
and dropout rate = 0.05, 0.1, and 0.06. We also tested our 
CNN model with three convolutional layers using width 
shift parameter = 0.05, number of filters = 16–64-64, and 
dropout rate = 0.05. Our model with three convolutional 
layers did not yield better results. Hence, we used two 
convolutional layers. Through many trials, we obtained 
the best width shift parameter, the number of filters, and 
the dropout rate. We then computed the validation met-
ric for all the models. Our results are illustrated in Fig. 6 

and Table 3. We chose model A with two convolution 
layers using width shift parameter = 0.05, number of fil-
ters = 16–64, and the dropout rate = 0.05. Model A’s vali-
dation accuracy is more than other models (B, C, and D) 
and has the lowest validation loss.

We observed fluctuations during our training time 
because we had a small dataset with 160 images for training. 
Indeed, the oscillations can be minimized, and the validation 
accuracy of our CNN model can be improved by using more 
training images.

4 � Transfer learning and VGG model

Training a model from scratch is often difficult because it 
warrants many training examples. Transfer learning is a 
technique that assists us in training our model with a few 
training examples by utilizing a pre-trained model such as 
NASNet, ResNet, VGG, EfficientNet, and Inception. In this 
process, we first chose a pre-trained model, which in our 
case is VGG19.

The model of the Visual Geometry Group at Oxford 
University, also known as the VGG model, is a deep-CNN 
architecture with 16 and 19 layers [38]. The VGG research-
ers examined the effect of the convolutional network depth 
on the ImageNet Challenge dataset in 2014. The ImageNet 

Fig. 5   Convolutional neural 
network—simple example

Table 2   Micro-hardness range and the equivalent labels

Region according to 
Fig. 3

Micro-hardness 
(HV)

Number Equiva-
lent 
label

Region “a” 245–255 40 0
Region “b” 255–265 40 1
Region “c” 265–275 40 2
Region “d” 275–295 40 3
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Large Scale Visual Recognition Challenge (ILSVRC) was 
established in 2010 to improve object detection and image 
classification tasks on a large scale [39]. VGG19 is a pre-
trained model accessible in Keras with Theano and Ten-
sorFlow backends. We employed the pre-trained model 
(VGG19) as a feature extractor. We then froze all the layers 
of the pre-trained model and included our classifier on top 
of the pre-trained model. We finally trained our model with 

our micro-hardness dataset with four classes and obtained 
predictions [40]. The input size image for the VGG model 
is 224 × 224. Figure 7 shows the architecture and configura-
tion of VGG19. Figure 8 is the loss and accuracy plots for 
our training and validation sets using VGG19.

5 � Classification report

The authors evaluated the precision and recall scores for each 
class and compared the performance of VGG16, ResNet50, 
and SE-ResNet50 on the test dataset [41]. The classification 
report measures the model’s performance on the test data by 
estimating the model’s precision, recall, F1 score, and accu-
racy. Precision is the fraction of correctly predicted positive 
images among all images the model predicted positive. It is 
mathematically defined by TP/(true positives + false posi-
tives). Recall is the fraction of correctly predicted positive 

Fig. 6   Convolutional layers with image augmentation, filter number, and dropout rate

Table 3   Accuracy and loss metrics

Validation accuracy Validation loss

A 0.925 0.2181
B 0.8 0.4981
C 0.55 0.9077
D 0.775 0.775

3268 The International Journal of Advanced Manufacturing Technology (2022) 123:3261–3274



1 3

Fig. 7   The VGG19 architecture
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images among images that are positive and mathematically 
is defined by true positives/(true positives + false negatives). 
The recall and precision values are from 0 (lowest value) to 
1 (highest). The F1 score is the weighted harmonic mean 
of the precision and recall [42]. Support is the number of 
test samples in each class. Accuracy computes the sum of 
correct classifications and divides it by the total number of 
classifications. In our model, the first, second, third, and 
fourth rows indicate the precision, recall, and F1 scores for 
the first, second, third, and fourth classes, respectively. The 
results of the model’s prediction for our test images consist-
ing of 26 images are provided in Fig. 9. The predictions 
by our proposed CNN model with two convolutional lay-
ers are comparable with the pre-trained VGG19 model. The 
results in Fig. 9 show that our proposed model for class 
B and C hardness has produced the highest precision and 
recall score of 1, the same as the precision and recall scores 
(1) for VGG19. Also, the recall score for class A hardness 
in our model and VGG19 is 1. Furthermore, our model and 
VGG19 have produced the same precision score (1) for 
class D. VGG19 performed slightly better than our model 
for precision in class A and recall in class D. The validation 
accuracy for our model and VGG19 was 0.925 and 0.950, 
respectively. In VGG19, the precision score for class A is 1, 
which is higher than our proposed model (0.86). For class 
D hardness, the recall score for VGG19 is 1, which is also 
higher than our proposed model (0.86). Our proposed model 
has two advantages. First, our model’s training time using 
the CPU was approximately nine times faster than VGG19. 
VGG19 architecture is more complex than our convolutional 
neural network with two layers. Second, our model can be 
deployed more efficiently via Flask and requires less compu-
tational power. We had a small dataset and used 160 images 

to train our model. Our model performance can be improved 
with more training images.

Tables 4, 5, and 6 show a sample of prediction results for the 
VGG19 and our model. According to these results, the VGG19 
model predicted 7 images correctly. Our model predicted 5 
images correctly and misclassified two images. The model’s 
performance can be increased, and the misclassification of 
images can be minimized if training examples are increased 
[43]. In our proposed CNN model, the reason for the misclas-
sification of images is our small training samples (160 images). 
Indeed, with more images, we can minimize overfitting and 
decrease the number of misclassified images. It should be noted 
that if we are predicting a few images, the expert prediction can 
be as good as the CNN prediction or better. However, in real-
world situations, we often deal with many images. Most likely, 
human experts will not be able to predict the correct class label 
of micro-hardness images as fast and as accurately as CNN. 
Therefore, many CNN models can outperform humans with 
sufficient training examples. For example, in 2021, researchers 
used a large dataset with 17,302 images of melanoma (dan-
gerous skin cancer) and nevus. They compared the diagnosis 
(image classification) of their optimized deep-CNN model with 
157 dermatologists from 12 university hospitals in Germany. 
The experimental results demonstrated that their deep-CNN 
model outperformed 157 dermatologists [44].

6 � Conclusions

In our research, we studied a prediction method of material 
micro-hardness after threading by the rolling process. We 
used convolutional neural networks (CNN) and VGG19 as 

Fig. 8   The loss and accuracy 
plots using VGG19
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transfer learning (TL). We predicted four classes of micro-
hardness of the St37 rolled threads. The conclusions of our 
work are provided below:

1.	 Our study presents an automated approach using CNN 
and VGG19 for micro-hardness evaluation when it is 

necessary to detect the micro-hardness of new material 
with no historical information.

2.	 We used two convolutional layers in our final proposed 
CNN model. The number of filters = 16 (first convolu-
tional layer)—64 (second convolutional layer), and the 
dropout rate (0.05) in the fully connected layer were the 

Fig. 9   Confusion matrix and 
classification report: A: pro-
posed model, and B: VGG19
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best hyperparameters. The optimum width shift param-
eter was 0.05. These values were obtained through com-
putational trials.

3.	 The prediction results of the micro-hardness test images 
by our proposed CNN model and pre-trained VGG19 
model are comparable. Our proposed model has produced 
the same precision and recall scores as VGG19 for class 
B and class C hardness. However, VGG19 performed 
slightly better than our model for precision in class A and 
recall in class D. More training examples can improve the 
performance of our proposed CNN model and minimize 
the fluctuations during our training time.

4.	 Our proposed CNN and VGG19 both have direct appli-
cations in advanced manufacturing (AM) and can auto-

matically predict the micro-hardness in thread rolling of 
St37.

5.	 The training time of our proposed model using the CPU 
(central processing unit) was approximately nine times 
faster than the VGG19 model. Our proposed model 
requires less memory and computational power and can 
be deployed more efficiently than the VGG19 model.

7 � CNN performance and future work

In our future research, we will collect more images. We 
will employ EfficientNetV1, the current state-of-the-art 
for image recognition tasks. EfficientNetV1 was developed 
using inverted residual blocks of MobileNetV2 and Neural 
Architecture Search (MNAS). EfficientNetV1 includes the 
Swish Activation Function and SE (Squeeze and Excita-
tion) blocks. We will also use Residual Neural Network 
(ResNet), a novel convolutional neural network architec-
ture with skip connections and batch normalization. In 
standard CNN architecture, training and validation errors 
stop improving after a specific depth, and adding more lay-
ers will not improve the model’s performance. However, 
instead of stacking layers on top of each other to accom-
plish the desired accuracy, the network will fit a residual 
mapping in ResNet. We will improve our CNN model with 

Table 4   The correct prediction labels by VGG19 model

Predicted Label: 0

Actual Label: 0

Predicted Label: 1

Actual Label: 1

Predicted Label: 2

Actual Label: 2

Predicted Label: 3

Actual Label: 3

Predicted Label: 0

Actual Label: 0

Sample 

Image

Predicted Label: 2

Actual Label: 2

Predicted Label: 3

Actual Label: 3

Table 5   The correct prediction labels by our proposed CNN model

Predicted Label: 0

Actual Label: 0

Predicted Label: 1

Actual Label: 1

Predicted Label: 2

Actual Label: 2

Predicted Label: 3

Actual Label: 3

Predicted Label: 0

Actual Label: 0

Sample 

Image

Table 6   The incorrect prediction labels by our proposed model

Predicted Label: 3

Actual Label: 0

Predicted Label: 2

Actual Label: 1

Sample 

Image
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more images and compare its performance with Efficient-
NetV1 and ResNet. We also intend to deploy our model 
with Flask and build a CNN web application similar to 
the AI web app that the second co-author of this paper has 
created with his colleagues for detecting COVID-19 using 
X-ray images and classifying galaxy images [45, 46]. The 
second co-author of this paper has already built a CNN 
web application for our proposed model with his research 
colleague [47]. We will improve their CNN application 
with more images in our future work. We have provided 
three videos in the supplementary section of our paper. 
These videos show the application of convolutional neural 
networks when deployed as a web application.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00170-​022-​10355-4.
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