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Abstract
Turning of the thin-walled cylindrical workpiece is technologically highly demanding process due to the high flexibility of 
the workpiece. In this paper, a mathematical treatment of integral-based model of the cutting force which takes into account 
feed, cutting speed, depth of cut and tool nose radius leading to a model of tool-workpiece interaction is presented. The 
force interaction together with the compliant workpiece dynamics leads to a machining stability formulation. The effect of 
the aforementioned parameters on characteristic exponents is calculated and validated by comparison with experimentally 
identified exponents. One of the outputs with immediate practical value is identification of the process damping, which is in 
the studied case shown to be significantly higher than structural damping of the workpiece itself. This means that without 
loss of reliability in stability prediction the experimental modal analysis of a given workpiece may be omitted and work-
piece’s dynamics may be described only by mass and stiffness matrices which can be easily and reliably obtained by a finite 
element analysis.
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Nomenclature
ap	� Depth of cut
e�	� Circumferential basis vector of engagement coor-

dinate system
er	� Radial basis vector of engagement coordinate 

system
ez	� Axial basis vector of engagement coordinate 

system
�	� Specific force per chip width
fe	� Feed per revolution
h	� Undeformed chip thickness
s	� Cutting edge curve parameter

s1, s2	� Engaged cutting edge limits in the 
parametrization

t, t0	� Tangential local basis vectors based on actual 
(resp. nominal) relative tool-workpiece velocity

n, n0	� Normal local basis vectors based on actual (resp. 
nominal) relative tool-workpiece velocity

b, b0	� Binormal local basis vectors based on actual 
(resp. nominal) relative tool-workpiece velocity

u	� Workpiece displacement in radial direction
v, v0	� Actual (nominal) cutting velocity
s	� Chip width
Ad	� Radial cutting force derivative with respect to 

vibration velocity (process damping)
Ar	� Radial cutting force derivative with respect to 

regenerative displacement (regenerative process 
stiffness

As	� Radial cutting force derivative with respect to 
actual displacement (process stiffness)

�	� FEA-based damping matrix
Fc	� cutting force
�	� FEA-based stiffness matrix
Kij	� Cutting coefficients in multiparametric cutting 

force model
�	� FEA-based mass matrix
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�	� Matrix defining cutting process position on the 
workpiece in nodal DOFs

�	� Local (edge) to global coordinate system trans-
formation matrix

V	� GEVP eigenvector
Z	� Axial coordinate of the machining position point 

on the workpiece
�, �0	� Actual (nominal) local rake angle
�	� Laplace parameter/GEVP eigenvalue
�	� Cutting edge curve
�0	� Setting angle
�, �0	� Actual (nominal) local inclination angle
�c	� Stability exponent
�c	� Chatter frequency
�	� Radial (modal) components of workpiece eigen-

vector at the point of machining
�	� Tool nose radius
�	� Regenerative process delay (period of workpiece 

revolution)
�	� Structural damping diagonal matrix
�	� Matrix of workpiece eigenfrequencies
�	� Matrix of mass-normalized workpiece eigenvec-

tors from FEA
DOF	� Degree of freedom
FEA	� Finite element method
GEVP	� Generalized eigenvalue problem

1  Introduction

Finishing highly compliant thin-walled workpieces is one of 
the most technologically demanding operations, particularly 
due to the high risk of regenerative vibration. Tuning the 
cutting process by testing different conditions is very costly 
for larger parts and the parts are often unique. Successful 
machining requires the use of one of the techniques to avoid 
chatter [30]. In practice, this is usually addressed either by 
reducing the dynamic compliance of the workpiece by addi-
tional reinforcement [12], damping with active or passive 
dampers, or by appropriate intervention in the force action of 
the process — either by disrupting the regenerative principle 
or by reducing the magnitude of the force response. In case 
of disturbance of the regenerative principle, either the use of 
gaps between lobes in high-speed machining (especially in 
milling [24]), speed variation in low-speed machining [2, 16, 
20] or one of the newer methods such as regenerative com-
pensation by active control [23], machining with ultrasonic 
vibration [33] or the method of time-varying longitudinal 
workpiece stiffness due to external force [6].

These approaches contribute to stabilizing the system 
only to a certain extent. Since the dynamic stiffness of the 
structure is typically very low, instability can be built up by 
a very small force response from the cutting process, which 

places higher demands on the accuracy of its modelling. The 
force response is determined by the physical effects caused 
by the vibration of the workpiece against the tool — either 
the usually dominant ones, such as chip thickness regenera-
tion [37], or the less commonly considered ones, such as the 
change in tool-workpiece engagement at the circular tool tip 
[15] or the process damping associated with the velocity-
dependent orientation of the cutting forces and the geom-
etry of the cutting process [3]. Understanding the behavior 
of the cutting process as a function of process parameters 
and its mathematical model will allow reliable technological 
design of cutting conditions that can ensure the elimination 
of chatter.

The problem of turning thin-walled cylindrical parts is a 
challenging problem where relatively complex workpiece 
dynamics interact with the cutting process. One of the domi-
nant themes in the literature is the focus on the dynamic 
behavior of the workpiece itself, where the cutting force 
itself is mostly modelled only schematically. Lorong [22] 
and Chanda [11] consider a stability problem involving the 
motion of the point force on the workpiece and a Kienzle 
model of the cutting force. Chanda’s follow-up papers [9, 10] 
focus on the link between the structural nonlinearity of the 
workpiece and the regenerative effect. Khasawneh and Otto 
[21, 31] consider the effect of interaction of eigenshapes on 
the cylinder and mutual indentation on stability in machining 
with circular inserts. Similarly, Yan [38] considers the effect 
of indentation on machining stability. Gerasimenko [17, 18] 
describes the workpiece using shell models and investigates 
the effect of gradual material removal on the evolution of 
eorkpiece compliance. The thin-walled workpiece deforma-
tion in radial direction in combination with damping due to 
rubbing between the tool flank and the machined workpiece 
surface was considered by Mehdi [25]).

Another group of authors focuses on the cutting process 
in relation to tool geometry. A frequent topic is the detailed 
calculation of forces at the tip radius [8, 21, 26, 34]; how-
ever, Eynian [15] considered the effect of changing the gir-
dling during vibration on the stability of the process. He 
demonstrated this consideration computationally in the case 
of a Colwell model parameterizing the geometry of the cut-
ting edge by the length of its chord and the chip area. One of 
the contributions of the paper we present is the representa-
tion of this effect in Montgomery’s [28] cutting force model 
based on the integration of the specific force along the cut-
ting edge. In contrast to Colwell’s model, this model is more 
versatile and is able to capture the variable local geometry 
of the cutting edge in the engagement.

Another phenomenon considered when modelling the 
interaction of structure and cutting process is the model-
ling of process damping. This damping is modelled in sev-
eral ways. One focuses on the damping associated with the 
contact between the tool back and the workpiece [1, 3, 7, 
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29]. This problem is fundamentally nonlinear and is not 
considered in this study as it would play a role in study-
ing the onset of chatter in tools that are only worn, where 
even small vibrations could result in contact between the 
tool back and the workpiece. The second approach, which 
complements or modifies the statically identified models, is 
an approach aiming at capturing the rapid harmonic change 
of the tool-workpiece interfacial position by identifying the 
cutting coefficients during forced tool vibration [14, 35]. 
Another approach, which is also used in this paper, follows 
the research of Das and Tobias [13], who showed that even 
static models can be used to model process damping by more 
accurately considering the geometry of the cut with respect 
to the instantaneous direction of the cutting speed includ-
ing vibration. This approach was applied, for example, by 
Molnar and Bachrathy [4, 27] to cylindrical milling. One of 
the main complications of this approach, which this paper 
aims to address, is the integration of damping contributions 
for geometrically complex cutting edges where the local face 
and blade inclination angles change gradually. A related 
issue is the correct representation of this geometry using 
practically available data from catalogues on the orientation 
of the tool in space, which has been addressed in a separate 
paper by, for example, Campocasso [8].

The article is structured as follows. In the first part, the 
problem of the force response of the cutting process to vibra-
tion is formulated considering chip regeneration, vibration-
dependent girding and process damping. In the second part, 
the coupling of the cutting process to the structure is formu-
lated leading to the formulation of the stability problem. In 
the third part, an experimental verification of the theory is 
carried out on the machining of a dimensional thin-walled 
cylindrical workpiece. This case study has shown interesting 
findings that can simplify the stability calculation on similar 
problems. It is well established that most of the structural 
damping comes from effects at the interfaces. In the case 
of workpieces with low structural damping, the interface 
between the tool and the workpiece in the cut can be the 
region where the vibration energy is dissipated dominantly. 
This has the advantage of eliminating the need to experimen-
tally identify damping, which is a major source of uncer-
tainty in the prediction of structural dynamics by the finite 
element method.

2 � Tool‑workpiece force interaction

In this section, a model of tool-workpiece interaction for a 
thin-walled cylinder during turning will be presented. The 
theory is based on Eynian [15] and Otto’s [32] approach, 
where the total force between tool and workpiece is con-
structed taking into account the effect of position distur-
bance (current and delayed by a revolution) and speed. 

From this total force, the Jacobian of the cutting force with 
respect to the deflection and deflection speed is obtained 
by linearization. The main difference to previous work 
is the application of the Eynian approach derived for 
the simple Colwell model to a force model based on the 
integration of the elementary contributions of the cutting 
force along the cutting edge. These force contributions are 
defined using empirical models of the cutting force per 
unit chip width, which is probably the most commonly 
used approach in machining stability analysis today. The 
basic idea of the approach is that the calculation of the 
cutting edge engagement takes into account not the nomi-
nal position of the tool relative to the workpiece, but the 
position including deviations from the nominal path. Simi-
larly, the model of the forces on the cutting edge element 
is calculated from empirical model of the local geometric 
parameters of the cutting process (rake angle, inclination 
angle). The parameters are defined relative to a coordinate 
system defined by physical parameters — the tangency 
of the cutting edge and the direction of its instantaneous 
velocity (including the relative vibration velocity of the 
tool and workpiece). This coordinate system is based on 
real quantities, not nominal quantities, and is therefore 
more physically justifiable. The force acting on the cutting 
edge element, which results from the empirical model, is 
also expressed relative to this coordinate system. Although 
it might appear that the vibrations are small and therefore 
negligible, this is not true, because what is important from 
the stability formulation viewpoint is not the magnitude 
of the force, but its change with the variation of the rela-
tive trajectory of the tool and workpiece, which can be 
formally expressed in the Jacobians of the cutting force, 
with respect to the displacement, the relative displacement 
per revolution, and the velocity of the displacement.

At first the geometry of the cutting process is described. 
The cutting edge consists of a round part of radius � and a 
straight part with cutting edge setting angle �0 . The geom-
etry of the cutting edge and the contact is in Fig. 1. It should 
be noted that as the forces are calculated from local incre-
ments, the tool-workpiece contact must also be identified 
locally. It means that the local rake angle � and inclination 
angle � need to be calculated from orientation of the insert 
rake plane (defined technologically by side and end rake 
angled for the holder and insert combination) with respect to 
cutting edge and tool-workpiece relative velocity, as shown 
in the figure. The cylindrical workpiece is machined along 
its Z-axis as shown in Fig. 2 showing the simplified geom-
etry of the workpiece and detail on its contact with the cut-
ting insert. The contact is specified by the depth of cut ap 
and feed per revolution fe.

The force interaction on the tool-workpiece contact is 
based on empirical models of specific force per chip width 
and in detail described in the following section.
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2.1 � Specific cutting force model

The Montgomery and Altintas model [28] is based on integra-
tion of elementary forces acting on infinitesimal element of the 
cutting edge of width dw

(1)dFc = � (h, λ, α, v)dw

where � is an empirical model of specific force per unit chip 
width w dependent on the undeformed chip thickness h, the 
local rake angle � , the inclination angle � and the cutting 
velocity magnitude v. The components of the model force 
are related to tangential � , normal � and binormal (often also 
called axial) � local coordinate system basis vectors.

There is an issue of choice of the specific force model. 
Various models were considered from the comprehensive 
list of models that was summarized by Bachrathy [5]. In the 
current study the empirical model of specific force per unit 
chip width is assumed in a form

Experimentally identified coefficients for the presented case 
are in (30), Appendix A1. Example of the force behavior 
with respect to a few chosen parameters is shown in Fig. 3.

The reasons for the particular choice were the following. 
Firstly, the model can be easily identified by linear regres-
sion. Secondly, the model needs to be extrapolated to zero 
chip thickness on the round tool nose of the insert. The 
higher order polynomial models often lead to wrong and 
erroneous estimations when extrapolated.

The cutting force dependence on other parameters than 
undeformed chip thickness was more significant than 
expected. Although the studied case is rather extreme with 
respect to process damping, which plays unusually important 
role in the stability prediction, it casts some doubt on the 
often seen approach to sideline the process damping as a 
less important effect than the regeneration. It also highlights 
the issue of possible lack of accuracy of typical empirical 
cutting force models which often oversight other process 
parameters than undeformed chip thickness.

2.2 � Total cutting force and its gradient

The total (dynamic) cutting force acting on the contact is 
calculated as an integral along the cutting edge parametrized 
by s

where the integration limits s1, s2 are enter and exit angles 
for the cutting edge, see Fig. 2, � is a specific force per unit 
chip width, w is chip width. The engagement defining inte-
gral limits are determined by constraints following from tool 
and workpiece shape and requirement of positive chip thick-
ness. Generally, almost all parameters of the integral are 
affected by a variation of the tool-workpiece relative motion. 
The machining stability calculation requires linearization 
(gradients) of the dynamic cutting force with respect to small 

(2)
�(h, �, �, v) =�0(�, �, v) +�1(�, �, v)h +�2(�, �, v)h

2

�i(�, �, v) =�i0 +�i1� +�i2� +�i3�
2 +�i4v

(3)� = ∫
s2

s1

� � (h, �, �, v)
dw

ds
ds

Fig. 1   Local geometry and specific cutting force coordinate system 
on the cutting edge. The gray color gives an idea how the model com-
ponents are affected by workpiece vibration

Fig. 2   Scheme of the cutting edge in contact with workpiece and 
local coordinate system at the contact
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perturbation of the tool-workpiece trajectory parameters 
(actual and delayed displacement and vibration velocity) as 
described by Otto [32]. For practical reasons the gradients 
are expressed in the way used by Otto which linearizes the 
force with respect to relative displacement between two con-
secutive revolutions Δ(t) = u(t) − u(t − �).

Tool-workpiece displacement (including its history) 
affects

–	 the undeformed chip thickness via the regenerative effect
–	 the tool-workpiece engagement represented here by the 

integration limits.

The tool-workpiece relative velocity affects

–	 the transformation matrix � between global coordinate 
system and local coordinate system of the empirical force 
model on the cutting edge,

–	 local geometry (rake angle � and inclination angles � ) 
on the tool-workpiece contact, because the coordinate 
system of the specific cutting force is derived from 
actual cutting velocity, i.e., including vibration velocity 
( �0 + ẋ ), and the geometry is measured with respect to 
this coordinate system.

The elementary chip width is defined as a projection of the 
elementary cutting edge length into a plane perpendicular to 
the actual velocity, so generally it also depends on actual tool/
workpiece relative velocity, but it is not difficult to show that 
the effect is negligible unless the inclination angle is high.

Due to dominant compliance in the radial direction only 
the radial component is considered Fr = �r ⋅ � to simplify 
the calculations, but the approach can be applied in a simi-
lar way to geometrically more complicated case. The main 
obstacle is dominantly in the definition of the process geom-
etry parameters (tool-workpiece engagement, rake and incli-
nation angles) with respect to the dynamical perturbations 
rather than in the linearization itself.

The dependence of the scalar parameters ( s1, s2, h, �, � ) 
and the transformation matrix � on tool-workpiece relative 
motion will be calculated in the following paragraphs. It will 
be shown in the next part that the lower integration limit s1 
and the chip thickness h depend on the relative position of 
the tool and workpiece after one spindle revolution period 
Δ = u(t) − u(t − �) and the upper limit s2 depends on instan-
taneous relative position of the tool and workpiece u(t).

2.2.1 � Vibration‑dependent undeformed chip thickness

First of all, the most usual source of instability is the unde-
formed chip thickness regeneration. The formula for the 

Fig. 3   Example of the experimentally identified cutting force model 
and its dependence on the rake angle, the inclination angle and the 
chip thickness
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dynamic chip thickness in the case of considered tool geom-
etry is a standard one (e.g., [15])

where �(s) depends on the cutting edge parameter s as 
follows

The parameters are shown in Fig. 2.

2.2.2 � Vibration‑dependent tool engagement

The second effect treated here is the dependence of the tool-
workpiece engagement on the tool-workpiece displacement, 
which is in the formula 3 represented by the integration lim-
its. These are rarely considered in dynamic interaction mod-
els. Their effect on stability is calculated from conditions 
on cutting edge engagement. The condition that determines 
engagement on the tool tip is zero chip thickness. The upper 
limit is based on the intersection of the cutting edge and the 
outer surface of the workpiece. The limits may be approxi-
mated for small displacement as

For the tool engagement scheme see Figs. 2 and 5 and the 
derivation of the both formulas is in Appendix A2. Figure 5 
shows schematically how the displacement in the actual 
and previous groove affects the cutting edge engagement. 
The change in cutting force with the change in the relative 
position of the tool and workpiece (including the history 
of the path) is important for stability. The greatest effect 
on the change in force is the change in blade length in the 
engagement at point s1 (red dashed curve). Since the chip 
thickness is close to zero around this point, the change in 
force will only occur for the non-zero edge component of 
the force given by the coefficients �0 . As can be seen from 
the formulae, the smaller the displacement and the larger 
the tool radius, the greater the extension of the cutting edge 
in the engagement at the same relative deflection (u-ut). 
Around the s2 limit, the chip thickness is non-zero, but typi-
cally this term is negligible (see factor As in comparison to 
Ar in Table 2) and, moreover, is proportional only to the 
actual workpiece displacement u and not to the regenerative 

(4)h = fe sin �(s) + Δ cos �(s)

(5)𝜅(s) =

{
s ap ≤ 𝜌(1 − cos 𝜅0),

𝜅0 ap > 𝜌(1 − cos 𝜅0).

(6)s1 ≈ − arctan
u(t) − u(t − �)

fe

(7)s2 ≈

⎧⎪⎨⎪⎩

arccos
�
1 −

ap−u

𝜌

�
ap ≤ 𝜌(1 − cos 𝜅0)

𝜅 + arctan
�

ap+u−𝜌(1−cos 𝜅))

𝜌 sin 𝜅

�
ap > 𝜌(1 − cos 𝜅0)

workpiece displacement (u − u�) which is behind the feed-
back that destabilizes the cutting process.

2.2.3 � Vibration‑dependent transformation matrix and tool 
geometry

The matrix � that determines relation between global coor-
dinate system and local coordinate system n the cutting edge 
is affected by vibration velocity. The geometric parameters 
of the process (rake and inclination angles) are dependent on 
the coordinate system so they are also affected by vibration 
velocity (Fig. 4).

The basis vectors of the local coordinate system on the cut-
ting edge are tangential t — determined by local velocity of 
the cutting edge element v , normal n defined by normal to 
surface generated by moving cutting edge, i.e., normal to both 
actual velocity and tangent to the curve � describing the cutting 
edge, and their orthogonal complement — binormal vector b . 
The transformation matrix between local a global coordinate 
system is composed of the basis vectors, so we have

(8)� =
�

‖�‖

(9)� =
� × ��

‖v × ��‖

(10)� = � × �

Fig. 4   Sketch of the cutting edge parameter limits depending on the 
relative tool-workpiece vibration
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The difference with the conventional approach is that here 
we consider both the nominal tool to workpiece velocity v0 
and its change related to the relative deformation rate Δ� of 
the tool and workpiece, see Fig. 1. The local basis vectors 
can be formally split to nominal local basis �0, n0, b0 based 
on the nominal cutting velocity v0 and its perturbation. The 
transformation matrix is

In the studied case the nominal velocity is dominantly in cir-
cumferential direction, velocity perturbation due to cylinder 
vibration is dominantly in radial direction and the curve �(s) 
describing the cutting edge are

Due to dominant compliance in radial direction, the depend-
ence of the transformation matrix can be reduced to its pro-
jection to radial direction. The transformation from model 
coordinate system to the radial direction can therefore be 
defined as

Tool geometry on a tool-workpiece contact is described 
by an inclination angle and (normal) rake angle, which are 
related to a coordinate system determined by actual velocity 

(11)� =
[
t n b

]
.

(12)v0 = v0e�

(13)Δv = u̇er

(14)�(s) = � sin s er + � cos s ez.

(15)eT
r
� =

(
u̇

v0
, cos s, sin s

)

(including velocity of the vibrations), see Figs. 1 and 5. The 
normal rake angle is an angle between normal vector n , 
which defines the machined surface normal, and the plane 
defining the rake face.

Similarly the inclination angle is defined as an angle 
between the cutting edge and vector b.

The chip width w is defined as

After describing the dynamic behavior of the cutting force 
parameters the cutting force gradients can be calculated in 
order to obtain the linearized dynamical cutting force which 
is crucial for the following stability analysis.

2.3 � Cutting process stiffness and damping

The previous formulas presented the dependence of the cut-
ting force on the parameters which allowed the cutting force 
linearization. The following formula summarizes the cutting 
force dependence on the displacement and actual velocity 
variations

(16)𝛼n(s) = 𝜆0 cos𝜑 + 𝛼0 sin𝜑 −
u̇

v0
cos s

(17)𝜆(s) = 𝜆0 sin s + 𝛼0 cos s +
u̇

v0
sin s

(18)
𝜕w

𝜕s
=

{
𝜌 s ≤ 𝜅0

𝜌

cos2(s−𝜅0)
s > 𝜅0

Fig. 5   Global coordinate system 
of the workpiece and local 
coordinate system on the cutting 
edge. GAMO is orthogonal rake 
angle and LAMS inclination 
angle of the cutting insert which 
are used for local rake and 
inclination angle determination, 
as shown in the detail. The local 
basis vectors t, n, b are defined 
by actual tool-workpiece veloc-
ity, i.e., including velocity of 
workpiece vibrations
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The linearization of the previous expression for dynamic 
cutting force with respect to the perturbations u,Δ, u̇ can be 
formally written

where the unperturbed force and respective gradients are 
denoted

The gradient Ar with respect to relative displacement 
between two consecutive revolutions (often also called a 
directional matrix) can be physically interpreted as a regen-
erative process stiffness, and cutting force gradient with 
respect to the actual velocity is interpreted as a process 
damping.

Most of the derivatives are straightforward except for the 
calculation of the derivatives related to the displacement-
dependent integration limits. However, the Leibniz integral 
formula overcomes the problem for most of the specific force 
models. The derivative of the integral splits it into term that 
is based on derivative of an integrand and terms containing 
derivatives of the integral limits. The formula and resulting 
terms related to displacement-dependent engagement are in 
Appendix A2.

The exception from the usual models is the Kienzle model 
due to the non-existent derivative at zero undeformed chip 
thickness h(s0) = 0 . Solution to the problem will be briefly 
discussed in the section below.

The calculated process stiffness of process parameters 
described in the case study below is shown in Fig. 6. The 
surface plots demonstrate the dependence on various pro-
cess parameters. There is near linear increase of the stiffness 
with the nose radius for given feed and depth of cut, sharp 
increase of stiffness near zero feed, and insensitivity of the 
stiffness to the depth of cut once the depth of cut is higher 
than tool nose radius.

(19)Fr(u,Δ, u̇) =

s2(u)

∫
s1(Δ)

�r ⋅ �(u̇) � (h(Δ), 𝜆(u̇), 𝛼(u̇))
dw

ds
ds .

(20)Fr(u,Δ, u̇) ≈ Fr0 − ArΔ − Asu − Adu̇

(21)Fr0 = Fr|u≡0

(22)Ar = −
�Fr

�Δ

||||u≡0

(23)As = −
�Fr

�u

||||u≡0

(24)Ad = −
𝜕Fr

𝜕u̇

||||u≡0

The process damping dependence on the parameters is 
shown in Fig. 7. Both depth of cut and feed increase the damp-
ing. This can be explained by the friction force acting on the 
rake face, which is projected into the radial direction when 
the workpiece is vibrating. The nose radius on the other hand 
affects the damping only marginally.

3 � Dynamics of tool‑workpiece interaction

The section is focused on formulation of workpiece dynamics 
loaded by the dynamic cutting force. The effect of material 
removal will be considered only stepwise — slow change of 
dynamic properties due to material removal during one test 
is neglected.

The dynamic behavior of the system under a dynamic load 
acting on the workpiece is mathematically described in the 
time domain by a set of delay differential equations originating 
from FE discretization of the workpiece. This leads to

where y is a 3n × 1 vector of displacements at workpiece 
nodes (n is number of nodes). � is a mass matrix, � is a 

(25)�ÿ + �ẏ +�� = PF(t,�Ty,�T ẏ,�Ty𝜏 , )

Fig. 6   Process stiffness dependence on feed, depth of cut and insert 
nose radius
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damping matrix and � is a stiffness matrix, � is 3 × 1 cut-
ting force vector. � is a 3n × 3 matrix of 3 × 3 zero matrices 
and 3 × 3 identity matrix which specify nodal position of the 
force load on the workpiece. To simplify the problem, we 
apply the modal reduction � = �� , which leads to

where � is a diagonal matrix of angular eigenfrequencies 
and � are corresponding mass/normalized eigenvectors of 
the workpiece (contain values of all workpiece DOFs at all 
nodes). The general solution � can be divided into static 
part �s , which is not important for stability analysis as it 
affects depth of cut only negligibly, and dynamic part �d 
which affects the system feedback. Since it is excited at one 
point in the grid and also depends on the deflection at the 
same point, it is not necessary to work with the whole matrix 

(26)
𝐪̈ + 2�𝛀𝐲̇ +𝛀2𝐲

= 𝚿T𝐏𝐅(t,𝐏T𝚿𝐪,𝐏T𝚿𝐪̇,𝐏T𝚿𝐪𝜏)

of eigenvectors. This is represented by the matrix � . It is 
therefore sufficient to select the column of the matrix cor-
responding to the position of contact between the tool and 
the workpiece. In addition, we select only the radial DOF 
from this column, since the workpiece is dominantly compli-
ant in this direction. In this respect, we follow the stability 
analysis of flexible workpiece turning described in a paper 
by Stepan [36]. The column vector � denotes radial DOF 
of eigenvectors at node with Z-coordinate corresponding to 
tool-workpiece contact. Circumferential position of the node 
is not important due to mode-degeneracy described in the 
section 4.1.

After application of the force gradients (see Eq. 22) and 
transformation to Laplace domain we get

Fig. 7   Process damping dependence on feed, depth of cut and insert 
nose radius

Fig. 8   Dependence of the characteristic exponent for a given work-
piece dynamics on process stiffness and damping. The red surface 
corresponds to positive exponent which signalizes unstable machin-
ing

Table 1   Modal properties of the workpiece identified by modal test-
ing

mode No. frequency (Hz) modal damping 
(%)

1 334.4 0.04
2 336.4 0.03
3 346.1 0.02
4 378.6 0.01
5 458.4 0.01
6 558.0 0.01
7 690.0 0.01
8 832.1 0.02
9 981.1 0.02
10 989.4 0.01
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where � is a Laplace transform of a vector of displacements 
in modal coordinates. The formula is typical problem for 
machining stability with process damping. When the lobe 
diagrams are investigated the constraint of zero real part 
of the Laplace parameter � = �c + i�c . The real part �c of 
the parameter called the characteristic exponent determines 
whether and how fast the vibration grow. This parameter 
is used in the experimental validation below to distinguish 
between stable and unstable machining.

This generalized eigenvalue problem is transformed into 
numerically more convenient form and solved by Newton-
based method developed by Harrar [19] for eigenvalues � 
and eigenvectors �

Short description of the method is in Appendix A4. This 
dependence of the predicted characteristic exponents on 
the process stiffness and damping based on the workpiece 
model presented in the case study is in Fig. 8. The graph 
shows in detail expected behavior that in order to have sta-
ble machining high process damping and low process stiff-
ness is desired. However, how to achieve low process stiff-
ness and high damping is more complex problem. As was 
shown in the previous section in Figs. 6 and 7 the stiffness 
and damping depend on process geometry and technologi-
cal parameters in a complex way so the goal is not easy to 
be achieved.

(27)
(�2� + 2��� +�2)�(�) =

−
(
Ar(1 − exp(−��)) + As + �Ad

)
��T�(�)

(28)

(
0 −�

� + (Ar + As)�
−1��T 2��� + Ad�

−1��T

)
� =

(
�� 0

−Ar exp(−��))�
−1��T ��

)
�

Fig. 9   The photo (a) shows range of the machining experiment on 
the workpiece bounded by dashed red lines and Z parameter defining 
position of the test relatively to the upper edge of the workpiece. The 
second photo (b) shows a detail of the machined surface (b)

Fig. 10   The experimental setup. 
(a) The first machining test, (b) 
the vibrometer with detail of 
accelerometer and laser spot 
during experimental modal 
analysis of the workpiece
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Fig. 11   The inserts with differ-
ent tool nose radii: (a) 0.4 mm 
— insert DNMG 15 06 04-MF 
2015, (b) 0.8 mm — insert 
DNMG 15 06 08R-K 4325, (c) 
1.6 mm — insert CNMG 19 06 
16-QM 4325

Table 2   Measured and theoretical data

meas. No. Z � (mm) fe (mm) v (m.min−1) ap (mm) experiment �c theor. Ar (N.mm−1) As (N.mm−1) Ad (N.s.m−1)

M1 -67 0.4 0.05 80 1.5 unstable -0.05 244 5 118
M2 -69 0.4 0.15 80 1.5 stable -0.62 185 14 284
M3 -72 0.4 0.30 80 1.5 stable -1.14 131 28 488
M4 -78 0.4 0.05 180 1.5 unstable 0.23 244 5 52
M5 -80 0.4 0.15 180 1.5 unstable -0.18 185 16 126
M6 -82 0.4 0.30 180 1.5 indeterminate -0.63 131 31 217
M7 -85 0.8 0.05 80 1.5 unstable 0.25 488 5 120
M8 -91 0.8 0.15 80 1.5 stable -0.30 370 14 285
M9 -93 0.8 0.30 80 1.5 stable -0.77 261 28 493
M10 -96 0.8 0.05 180 1.5 unstable 0.49 488 5 53
M11 -102 0.8 0.15 180 1.5 unstable 0.05 370 16 127
M12 -104 0.8 0.30 180 1.5 stable -0.31 261 31 219
M13 -107 1.6 0.05 80 1.5 unstable 0.56 976 1 124
M14 -113 1.6 0.15 80 1.5 unstable 0.09 741 6 286
M15 -115 1.6 0.30 80 1.5 stable -0.40 522 13 496
M16 -118 1.6 0.05 180 1.5 unstable 0.77 976 0 55
M17 -124 1.6 0.15 180 1.5 unstable 0.44 741 8 127
M18 -126 1.6 0.30 180 1.5 unstable 0.03 522 20 220
M19 -129 1.6 0.05 80 0.5 unstable 0.71 852 43 47
M20 -135 1.6 0.15 80 0.5 unstable 0.49 658 82 100
M21 -137 1.6 0.30 80 0.5 unstable 0.13 502 139 170
M22 -140 1.6 0.05 180 0.5 unstable 0.81 852 66 21
M23 -146 1.6 0.15 180 0.5 unstable 0.71 658 82 44
M24 -148 1.6 0.30 180 0.5 unstable 0.42 502 106 75
M25 -151 0.8 0.05 80 0.5 unstable 0.51 479 18 43
M26 -157 0.8 0.15 80 0.5 unstable 0.13 365 34 96
M27 -159 0.8 0.30 80 0.5 limit -0.17 261 58 163
M28 -162 0.8 0.05 180 0.5 unstable 0.62 479 26 19
M29 -168 0.8 0.15 180 0.5 unstable 0.31 365 29 43
M30 -170 0.8 0.30 180 0.5 unstable 0.15 261 34 73
M31 -173 0.4 0.05 80 0.5 unstable 0.29 244 5 41
M32 -179 0.4 0.15 80 0.5 stable -0.05 185 14 95
M33 -181 0.4 0.30 80 0.5 indeterminate -0.45 131 28 158
M34 -184 0.4 0.05 180 0.5 unstable 0.42 244 5 18
M35 -190 0.4 0.15 180 0.5 stable 0.22 185 16 42
M36 -195 0.4 0.30 180 0.5 indeterminate -0.06 131 31 70
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4 � Experimental validation

Validation of the theory described above is done on BASIC-
TURN 2000 C2 by TOSHULIN. Effect of various techno-
logical parameters on machining process stability was tested 
with aim to validate the presented approach to process stiff-
ness and damping calculation.

The machined workpiece is a thin-walled cylinder of 
height 767 mm, outer diameter 1210 mm and wall thick-
ness 15 mm made of structural steel C45. The operation 
was vertical turning, see scheme Fig. 2. 

Experimental modal analysis of the workpiece was 
done before the tests and repeated after each ca 20 mm 
z-direction shift of the tool-workpiece contact. The aim 
of these measurements was to determine the initial work-
piece compliance and its change due to material removal. 
A uni-axial accelerometer Bruel& Kjaer 4517 and a modal 
hammer Bruel& Kjaer 8206-003 were used for this pur-
pose. The experimental setup and area of machining on 
the workpiece are shown in Figs. 9, 10. Three inserts with 
different radii (0.4 mm, 0.8 mm, 1.6 mm) of the nose were 
used, see Fig. 11.

The identified eigenfrequencies and modal damping 
values are in Table 1. Notice the low values of modal 
damping.

The vibration of the workpiece during 36 machining 
tests was measured by a Doppler laser vibrometer placed 
in front of the workpiece (at a distance of 3.8 m from the 
workpiece). The vibrometer measured oscillation speed 
of the top of the workpiece in the Y direction both for 
workpiece dynamic compliance measurement and during 
turning tests. If chatter occurred, control system integrated 
spindle speed variation was turned on and machining was 
stabilized. This action ensured the following test was not 
affected by a force variation due to chatter marks.

The machining tests were done in a range from ca 70 mm 
to 200 mm from the upper edge of the cylinder. The distance 
from the upper edge, process parameters and tool geometries 
of the tests are in Table 2.

4.1 � Workpiece simulation model

Based on the drawing documentation a FE was created using 
SW Ansys. The model consists of Solid-Shell type elements, 
which are suitable for modelling thin-walled structures. The 
model has about 4.106 degrees of freedom (Fig. 12a). Cross-
section of the workpiece is in Fig. 12b. The effect of mate-
rial removal is modelled via thin shell layer. The boundary 
conditions reflect the four supports and four jaws fixing the 

Fig. 12   FE mesh (a) and work-
piece cross-section (b)

Fig. 13   A scheme FE boundary conditions of the clamped supported 
workpiece (a view from below)
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workpiece, see photo in Fig. 9a and scheme in Fig. 13. A vec-
tor of eigenvalues and matrix of eigenvectors was obtained 
by modal analysis of the FE model. The model was supple-
mented by experimentally identified modal damping values 
and frequency response functions (FRFs) were generated for 
comparison with the experimentally identified FRFs.

The modal damping of the FE model was tuned using 
measured FRFs at the state before machining, see compari-
son at position M01 in Fig. 16. The dominant shapes can 
be seen in Fig. 14. Most of the shown eigenshapes belong 
to degenerate eigenfrequencies (or more precisely there are 
couples of modes with frequency difference below 1 Hz) due 

Fig. 14   Comparison of FEM 
simulated and measured FRF 
at the first machining position. 
Due to workpiece symmetry 
there are degenerate modes 
— there are couples of nearly 
identical eigenfrequencies and 
corresponding eigenshapes

Fig. 15   Example of (almost) 
degenerate modes: due to the 
symmetry of the workpiece, the 
set of eigenfrequencies contains 
pairs of very close eigenfre-
quencies. The actual shapes 
corresponding to these frequen-
cies are very similar — similar 
shape but rotated, see (a), (b) for 
eigenfrequencies at ca 350 Hz 
and (a), (b) for ca 681 Hz
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to workpiece axial symmetry, see 15. This degeneracy math-
ematically justifies naive expectation that direct FRFs in 
radial direction are practically the same around the circum-
ference no matter where the modal testing is done (Fig. 16).

4.2 � Machining stability experimental testing

The comparison of the experimentally identified stability 
and theoretically predicted one is in Table 2. The variable Z 
denotes axial distance of the machining test starting position 
from the upper edge of the workpiece. As amount of param-
eters considered in the analysis complicates graphically 
simple comparison of measured and calculated stability, the 
measured test stability is presented in Fig. 17 with respect to 
theoretically predicted process stiffness and damping. Sta-
bility limit based on dynamical properties of the workpiece 
in the middle of the experiment is presented as a reference. 
The figure gives idea how the process damping and stiff-
ness affect the machining stability. The workpiece vibration 
measurements M1-M36 are presented in Fig. 18.

The cutting process described is not typical in the degree 
to which process damping is significantly more important 
than structural damping, but it does show that it should be 
considered in stability formulation and that it can be used in 
some types of machining to significantly improve machining 
efficiency or to simplify process stability modelling.

Both experiment and theory show that low nose radius 
and high feed lead to more stable conditions (see Tab. 2) but 
these conditions are not suitable due to higher surface rough-
ness — the average surface roughness is given by Ra =

f 2
e

24�
 . 

The formula shows that roughness is more sensitive to feed 
than to radius and hence for given surface roughness it is 
preferable to use higher feed than lower radius. It is prefer-
able to increase damping by using as low cutting speed as 
other technological constraints allow and as high depth of 
cut as possible. In the studied process, it follows from the 
formulas that if the depth of cut is higher than the tool nose 
radius, any further increase of the depth of cut stabilizes the 
process — the source of the destabilizing process stiffness 
is only at the insert nose but increase of the engagement of 
the straight part of the insert contributes to process 
damping.

One of the practical results is a demonstration of insignifi-
cance of modal damping for stability in the studied process. 
Due to the very low values of the modal damping the process 
damping plays crucial role in the machining stability.

The dominance of process damping over structural damp-
ing when machining thin-walled parts by a suitable cutting 
process can be advantageously used to predict the limits of 
machining stability. It is then sufficient to know the struc-
tural eigenfrequencies and undamped eigenvectors of the 
part, which are easily obtained using a standard FEM model.

5 � Conclusion

The paper presents a detailed approach to the stability cal-
culation in longitudinal turning of thin-walled workpieces 
for a method of calculating the force interaction of the cut-
ting process based on the integration of the specific cut-
ting force along the cutting edge, which allows to take into 
account the local behavior of the cutting geometry along the 
cutting edge. The novelty of the approach lies in two main 

Fig. 16   Comparison of measured and FEA simulated FRF of the 
workpiece before the machining 10 mm below the upper edge of the 
cylinder

Fig. 17   Comparison of predicted and measured characteristic expo-
nent (stability) as a function of predicted process stiffness and damp-
ing. The green field denotes theoretical stable and orange unstable 
conditions based on dynamical properties identified in the middle of 
the material removal during the experiment. The position of measure-
ment points in the parametric space is also based on the model. The 
color of the points denotes experimentally identified stability red-
unstable, green-stable
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points. Firstly, the effect of the change in tool-workpiece 
engagement due to vibration on the stiffness of the process 
was derived for cutting edge integration-based cutting force 
model. This effect was described by Eynian using a coarser 
Colwell model, but without the possibility of generaliza-
tion to other models. Secondly, the process damping with 
respect to the orientation of cutting forces and the change 
in cutting geometry at the cutting edge due to the instanta-
neous mutual velocity of tool and workpiece at the cutting 
point was derived for the cutting force model. This approach 
allowed to determine the dependence of process stiffness 
and process damping on process parameters such as cutting 
speed, tool tip radius, feed and depth of cut. This, combined 
with a model of the workpiece dynamics, leads to the predic-
tion of stable conditions.

An important observation arising from the application of 
the process model is that for a longitudinal workpiece finishing 
operation with low structural damping, process damping plays 
crucial role. In such a case, the dynamic behavior of the process-
loaded workpiece can be reliably modelled using an undamped 
FE model without the need to perform time-consuming experi-
mental modal analysis to obtain workpiece damping values. 
The proposed model and approach for stability assessment in 
thin-walled parts machining using process stiffness and damp-
ing was successfully validated on the case of vertical turning. A 
good agreement between the experimentally determined process 
states (stable/unstable) and the prediction using the developed 
model was shown. This makes the model very well suited for 
reliable design control and optimization of chatter-free cutting 
condition design using undamped FEA part models.

Fig. 18   Measured vibration 
velocity. Each graph title refers 
to the measurements listed in 
Table 2 and Fig. 16
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Appendix

The appendix contains a more detailed description of the cal-
culations and additional information on the force models.

A1. Specific force model

The specific force model was built on measurements with dif-
ferent undeformed chip thickness ( 0.05 mm, 0.1 mm, 0.15 
mm, 0.3 mm) cutting speed (80 m.min−1,130 m.min−1 , 180 
m.min−1 ) rake angles (0◦ , 4 ◦,8◦ ) and inclination angles (0◦ , 
25◦,45◦ ). Linear regression was used to fit measured data on 
turning with model (2). The identified specific cutting force 
model per chip width is given by the following formula

where the dimensions are for simplicity omitted. The dimen-
sion of specific force per chip width is Nmm−1 , both input 
angles � and � need to be in radians, cutting velocity v in 
ms−1 , undeformed chip thickness in mm.

A2. Integral limits for cutting force calculation

The calculation of the integral limits is based on conditions 
on engagement which state that the chip thickness must be 
positive and distance of the cutting edge element from the 
tool tip must be lower than the depth of cut, i.e., the lower 
limit condition is

which has the following solution

It is assumed that only the previous grove created by the 
circular tool tip is intersected by the cutting edge in actual 
position as the vibrations are assumed to be infinitesimally 
small.

In the calculation of the upper limit two cases must be dis-
tinguished due to piecewise character of the cutting edge

(29)

ft = 17 − 20� + 11�2 + 3(v − 2)+

+ h(2230 − 1710� + 70�2 + 20(v − 2))+

+ h2(−1370 + 1960� − 190�2 − 410(v − 2))

(30)

fn = 11 − 23� + 14�2 + 9(v − 2)+

+ h(1540 − 3230� − 850�2 + 60(v − 2))+

+ h2(−2200 + 4330� + 1010�2 − 790(v − 2))

(31)
fb = h�(+1070 − 870� + 20(v − 2))+

+ h2�(−170 − 180� + 110(v − 2))

(32)0 = fe sin s1 + (u(t) − u(t − �)) cos s1

(33)s1 = − arctan
u(t) − u(t − �)

fe

The first integration limit is inversely proportional to feed, 
which is a small quantity and thus this may have significant 
effect on stability. On the other hand it is not difficult to see 
that the effect of the second limit is negligible in comparison 
to other terms unless ap ≪ 𝜌 when

The effect of the displacement-dependent integral limits on 
process stiffness (cutting force gradient with respect to dis-
placement) is calculated using Leibniz integral rule.

A3. Linearization coefficients

The terms resulting from the linearization are as follows

where the zero index denotes parameters without the pertur-
bation of the tool-workpiece relative position and velocity, 
i.e., Δ = 0, u = 0, u̇ = 0

(34)
ap + u = �(1 − cos s2)

if ap ≤ �(1 − cos �0)

(35)
ap + u = 𝜌(1 − cos 𝜅0) + 𝜌 sin 𝜅0 tan(s2 − 𝜅0)

if ap > 𝜌(1 − cos 𝜅0)

(36)

s2 =

⎧
⎪⎨⎪⎩

arccos
�
1 −

ap−u

𝜌

�
ap ≤ 𝜌(1 − cos 𝜅0)

𝜅 + arctan
�

ap+u−𝜌(1−cos 𝜅))

𝜌 sin 𝜅

�
ap > 𝜌(1 − cos 𝜅0)

(37)s2 ≈

�
2ap

�
+

u√
2�ap

(38)

Fr0 = ∫
s20

s10

�r ⋅ �(s) � (s)
dw

ds
ds

Ar = ∫
s20

s10

�r ⋅ �(s)
𝜕�

𝜕h

𝜕h

𝜕Δ

dw

ds
ds−

− �r ⋅ �(s10) � (s10)
dw

ds
(s10)

𝜕s1

𝜕Δ

As = �r ⋅ �(s20) � (s20)
dw

ds
(s20)

𝜕s2

𝜕u

Ad = ∫
s20

s10

𝜕(�r ⋅ �(s))

𝜕u̇

𝜕� (s)

𝜕h

𝜕h(s)

𝜕Δ

dw

ds
(s) ds+

+ ∫
s20

s10

�r ⋅ �(s)
𝜕� (s)

𝜕𝛼

𝜕𝛼(s)

𝜕u̇

dw

ds
(s) ds+

+ ∫
s20

s10

�r ⋅ �(s)
𝜕� (s)

𝜕𝜆

𝜕𝜆(s)

𝜕u̇

dw

ds
(s) ds,
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A4. Newton‑based method for GEVP

In the Newton-based approach, the generalized eigenvalue 
problem �(�)�(�) is replaced by more general problem

As � approaches an eigenvalue, �(�) becomes singular and 
the scaling condition (39) can be satisfied only if �(�) → 0 
as � approaches an eigenvalue. The vectors �∗ and � are cho-
sen adaptively, the matrix � on the right side � = −

d�

d�
 . The 

Newton-based iteration is based on the following formulas

which are applied until the norm ||�(�)�(�)|| is smaller than 
given threshold.
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