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Abstract
A reliable material removal rate (MRR) prediction method significantly optimizes the grinding surface quality and improves 
the processing efficiency for robotic abrasive belt grinding. Using worn-belt image features to predict MRR is a direct and 
reliable method; however, this method is rarely reported at present. This paper proposes an MRR prediction method for 
Inconel 718 grinding based on the abrasive belt image analysis and categorical boosting (CatBoost) algorithm. During belt 
grinding, four wear types of abrasive belts, namely fracture, adhesion, rubbing wear, and fall-off, are identified and analyzed. 
Under various grinding parameters, the experimental MRR rapidly decreases at first, then in a gradual manner. For an effec-
tive evaluation of belt wear severity, cutting grain area ratio, color moments, and texture features are extracted from belt 
images. MRR and abrasive belt image features are strongly correlated after normalization. All image features are taken into 
account for MRR prediction model training. Verification experiments indicate that the predicted data is in good agreement 
with the experimental data. The maximum absolute error, mean absolute error, root mean square error, and determination 
coefficient of the MRR prediction model are 0.17 μm, 0.4 μm, 0.2 μm, and 99.42%, respectively, which are superior to those 
of other popular machine learning algorithms. In this study, we present a comprehensive understanding of the relationship 
between MRR and abrasive belt characteristics, as well as demonstrate the feasibility of accurately predicting MRR using 
the CatBoost algorithm.
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1 Introduction

As the final stage of machining, grinding is widely used to 
process free-form workpieces [1, 2], high-hardness superal-
loys in the aerospace industry [3], medical instruments[4], 
etc., and it plays a vital role in obtaining satisfied surface 

quality of materials [5]. Under the same grinding conditions, 
abrasive belt grinding commonly yields a higher material 
removal rate (MRR) and generates less grinding heat than 
wheel grinding. Therefore, abrasive belt grinding is more 
efficient than wheel grinding, and the ground materials are 
less susceptible to surface defects such as burns. To improve 
the efficiency of the abrasive belt grinding and the quality 
of the ground surface, automated robotic belt grinding is 
widely used due to its low cost, good controllability, pro-
grammability, and high efficiency [6]. A significant factor 
affecting the efficiency and quality of grinding is the MRR 
[7]. Actual MRR, however, is normally unknown due to the 
complexities of abrasive belt wear mechanisms, the variabil-
ity of grinding parameters, and the plastic deformation of the 
contact wheel [8, 9]. Therefore, a suitable method that can 
accurately evaluate or predict the MRR is of great essence.

There are several factors remarkably affecting the MRR 
of abrasive belt grinding, including belt speed, grinding 
force, feed speed, the severity of abrasive belt wear, the cur-
vature of the contact wheel, and the grain size of abrasive 
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belts. A number of studies used these factors to develop 
mathematical MRR models. Song et al. [10] established a 
material removal model based on the curvature radius of 
the convex surface. Ho et al. [11] analyzed the impact of 
grinding parameters on MRR and optimized the grinding 
parameters to improve MRR and quantify the impact of 
these parameters. Li et al. [12] investigated the influences 
of abrasive size, grinding force, belt speed, and feed speed 
on the MRR and surface roughness of 45 steel during belt 
grinding. Li et al. [13] developed an MRR prediction model 
based on single grain force for robotic belt grinding by stud-
ying the abrasive grain distribution and penetration depth. 
However, these studies did not take into account the wear of 
abrasive belts when establishing MRR models, which had 
a significant impact on the model’s reliability. In this study, 
the effect of belt wear on MRR was studied and discussed 
in detail, and the effect of belt wear was incorporated into 
the prediction model.

Owing to the complex wear mechanism of abrasive 
belts, it is difficult to obtain the magnitude of abrasive belt 
wear from a precise mathematical model [14]. Therefore, 
most studies used a combination of sensor technology and 
machine learning techniques to train classification models 
to identify the wear stages of abrasive belts. By monitoring 
sensor signals, such as force, vibration, and acoustic emis-
sion signals, Pandiyan et al. [15] developed a supported vec-
tor machine (SVM) and genetic algorithm-based classifica-
tion model to distinguish different wear stages of abrasive 
belts. Chen et al. [16] proposed an acoustic signal-based 
detection model to detect various periods of belt wear and 
to determine how much the belt grinding capacity remains, 
which utilized a random forest classifier as well as a multiple 
linear regression algorithm. Furthermore, taking advantage 
of the grinding force, vibration, sound, and acoustic emis-
sion signals, Qi et al. [17] established an abrasive belt stage 
identification model based on improved Mahalanobis dis-
tance and convolutional neural networks (CNN). However, 
they roughly predicted the MRR by merely judging the wear 
stages of the abrasive belt, ignoring the fact that MRR was 
not a constant within different wear stages. Instead of divid-
ing the belt wear into different stages, we studied the con-
tinuous process of belt wear and proposed a more reliable 
and accurate MRR prediction model.

Rather than simply classifying the different wear stages 
of abrasive belts, the monitored sensor information was used 
directly to predict MRR in some recent studies. In general, 
abrasive belt grinding monitoring can be divided into two 
categories: (i) indirect and (ii) direct manners. Currently, 
most studies use indirect monitoring methods, and stud-
ies using direct monitoring methods are rare. The indirect 
monitoring methods focus mainly on the physical behaviors 
of belt grinding processes, including sound, vibration, and 
force, which are affected by different grinding parameters 

[18, 19]. For instance, Gao et al. [20] proposed an MRR pre-
diction model of robotic belt grinding based on the extreme 
gradient boosting (XGBoost) algorithm, taking sound sig-
nals as input. Wang et al. [21] predicted MRR with the light 
gradient boosting machine (LightGBM) algorithm by inte-
grating sound signals and grinding spark images, which are 
essentially indirect monitoring signals. Compared with indi-
rect monitoring methods, direct monitoring focuses on sig-
nals that are insensitive to grinding parameters and ambient 
conditions, such as the features of abrasive belt images. In 
this paper, utilizing the abrasive belt image features to pre-
dict MRR is thus more stable and reliable. In addition, the 
image features intuitively reflect the severity of the abrasive 
belt wear and are convenient for acquisition and analysis.

The algorithm used is another key factor affecting the 
accuracy of MRR prediction. With the development of 
computer science and technology, various machine learning 
regression algorithms have been proposed and used in MRR 
prediction, including SVM [15], CNN [22], XGBoost [20], 
LightGBM [23], categorical boosting (CatBoost), etc. In the 
gradient boosting algorithm family, XGBoost, LightGBM, 
and CatBoost are the most popular and effective algorithms. 
Compared with XGBoost and LightGBM, CatBoost always 
has a high accuracy and calculation speed in a large number 
of competitions and various datasets. In addition, it is an 
open-source gradient boosting library that leverages cate-
gorical features effectively and outperforms existing public 
gradient boosting implementations based on a set of publicly 
available datasets [24]. In this paper, we used the CatBoost 
algorithm to predict MRR, providing more reference data 
for future studies in related fields.

To address the deficiencies of the existing indirect moni-
toring methods, this study developed an in-process MRR 
prediction model for robotic belt grinding of Inconel 718 
based on abrasive belt images and the CatBoost algorithm. 
The rest of the paper is organized as follows. Section 2 
introduces the experimental setup and material. Section 3 
describes a detailed MRR prediction method involving the 
abrasive belt image feature extraction and prediction model 
establishment. The results are presented and discussed in 
Sect. 4. Finally, several conclusions are drawn in Sect. 5.

2  Experiments

2.1  Experimental setup

In this study, a robotic belt grinding system shown in Fig. 1 
was employed to perform belt grinding experiments. The 
system includes three subsystems, i.e., robot, belt, and 
monitoring systems. An ATI force sensor is installed at the 
end of the 6th axis of a robot (IRB6700-200/2.60, ABB) 
that is controlled by the robot control cabinet. The other 
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side of the ATI force sensor connects to an air jig that can 
clamp the workpiece to be ground. For free-form surface 
grinding, the constant-force control is realized by using 
the force sensor.

During the belt grinding process, the abrasive 
belt was monitored in real time by a complementary 
metal–oxide–semiconductor (CMOS) camera positioned 
laterally at a distance of 20 cm from the belt. An auxil-
iary light source was used to eliminate the interference of 
ambient light, and the captured belt images were processed 
on an industrial personal computer with a gigabit ether-
net card. With the camera application interface (API), the 
exposure time was set to 145 ms and the frame rate to 8 fps 
(detailed technical specifications in Table 1). To obtain the 
thickness removed by each grinding trial, a linear variable 
differential transformer (LVDT), which can convert the 
rectilinear motion of the mechanically coupled workpiece 
into the electrical signal (a precision of 5 μm), was placed 
adjacent to the belt wheel. The electrical signal used for 
removal thickness calculation was then transmitted to the 
industrial personal computer through an Embedded PC 
(Beckhoff CX5230).

2.2  Experimental material and process

The chemical compositions of Inconel 718 used in this study 
are listed in Table 2. The workpiece in this study is an Inconel 
718 cuboid piece with a size of 15 mm × 15 mm × 80 mm.

The abrasive belt used in this study is the 15-mm-wide 
Cubitron 984F with the abrasive grain of 36# produced 
by the Minnesota Mining and Manufacturing (3 M) Com-
pany. The 3 M belt assembled with conical-shaped alumina 
ceramic grains is very suitable for grinding Inconel 718 with 
high hardness due to its superior wear resistance and grind-
ing stability. The contact wheel of the belt consists of two 
parts, i.e., the inner one made of aluminum alloys and the 
outer one made of rubber. The belt specifications are given 
in Table 3.

Belt speed, grinding force, and feed speed should all 
be carefully controlled when belt grinding, as they have a 
significant impact on grinding efficiency and final product 
quality. In a trial, the workpiece is ground once from top to 
bottom.

Figure 2 shows the schematic diagram of a complete 
grinding trial, which consists of the initial idle stage, 

Fig. 1  The robotic belt grinding 
system used in this study

Table 1  Technical specifications of the COMS camera

Camera model Resolution Sensor type Sensor size Exposure time Frame rate Mono/Color Interface Exposure control

Basler 
acA4112-8gc

4096px × 3000px CMOS 14.1 mm × 10.3 mm  ≥ 30 μs 8 fps Color GigE Programmable 
via the camera 
API
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subsequent grinding stage, and final idle stage. Herein, vb 
is the belt speed controlled by a programmable logic con-
troller (PLC) cabinet, F is the grinding force between the 
workpiece and the abrasive belt, and vw is the feed speed 
preset in the robotic motion program. In the final idle stage 
of each trial, the CMOS camera takes 100–120 images to be 
processed at different belt locations to reduce errors caused 
by the random distribution of abrasive grains. Besides, at 
the final idle stage, the thickness change ∆d of the ground 
workpiece is measured at five different locations, and the 
reported data is the average value of multiple measurements.

The grinding tests were carried out at different belt 
speeds, grinding forces, and feed speeds, as seen in 
Table 4. These parameters are well within the range of 
suitable parameters for fine grinding in actual produc-
tion. For each experiment, a new abrasive belt was used 
to ensure an identical initial condition of grinding. The 
belt grinding would not cease until the ∆d at a certain trial 
was less than the ∆dfirst/8 (∆dfirst was the thickness change 
obtained at the first trial) because the belt was considered 
to be failed in this situation. To ensure good repeatability 
and reliability, all tests were repeated three times. The 
reported values were the average results of three inde-
pendent experiments. The standard deviation of MRR lay 
between 0.11 μm/s and 0.53 μm/s, which was 1–2 orders 
of magnitude smaller than the values of MRR.

3  Belt‑image‑based MRR prediction method

3.1  Belt image analysis and feature extraction

RGB images of the abrasive belt contain a great deal of 
color and texture information that varies with grinding 
time. The abrasive belt vibrates during belt grinding, and 
the belt’s installation position cannot be guaranteed to be 
identical for each trial. To obtain regions of interest (ROI) 
of the same size, the captured belt images must be pre-pro-
cessed before extracting useful image features. Figure 3a 
depicts the representative belt image after grinding for 
160 s. Filtering, morphological processing, binarization, 

and custom edge extraction algorithms are used to extract 
the edge of the abrasive belt, and the result is shown in 
Fig. 3b. The extracted edge is then fitted with a linear 
function to obtain a baseline (Fig. 3c) for image cropping. 
Based on the baselines of the original images, the images 
are finally cropped to a uniform size (Fig. 3d). After pre-
processing, the image feature extraction is performed to 
obtain the abrasive grain areal ratio (Cr), color moment, 
and texture information.

3.1.1  Abrasive grain areal ratio extraction

Figure 4a, b show the processed belt images after grinding 
for 160 s and 1440 s, respectively. It can be seen from the 
pre-processed images (Fig. 4a-1, b-1) that red is the primary 
tone. Extracting the blue channel will effectively remove the 
red tone information that may obscure other useful features 
of the image. The processed results are depicted in Fig. 4a-2, 
b-2. Obviously, there are a large number of bright spots in 
blue channel images, which are abrasive grain faces mainly 
induced by abrasive belt wear. Here, two thresholds are set to 
classify the abrasive grain faces in blue channel images. One 
depicts the brighter faces in the image, which are caused by the 
fracture and rubbing wear of grains (Fig. 4a-3, b-3); the other 
depicts the faces with a weaker brightness, which are primarily 
caused by rubbing wear of adhesive bond (Fig. 4a-4, b-4). In 
this study, the abrasive grain areal ratio Cr is defined as:

where r1 is the areal ratio of brighter grain faces in the ROI; 
r2 is the areal ratio of grain faces with weaker brightness in 
the ROI; and the empirical values of λ1 and λ2 are 0.7 and 
0.3, considering that the fracture and rubbing wear of grains 
are dominant in abrasive belt wear.

3.1.2  Color moment extraction

In a digital image, the color is one of the most important 
attributes that directly reflect what information the image 
conveys. The color moment is an important aspect of color 
information, which has proven to be more robust and effec-
tive than the traditional histogram-based methods for con-
tent-based image retrieval [25]. Compared with the percep-
tually non-uniform RGB color space, the HSV color space 
conveys intuitive hue, saturation, and brightness of an image, 
which are of great importance for distinguishing the differ-
ences between abrasive belt images. Figure 5 shows different 

(1)Cr = �
1
⋅ r

1
+ �

2
⋅ r

2

(

�
1
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2
= 1

)

Table 2  Chemical compositions 
of Inconel 718

Elements C Cr Ni Mo Ti Nb Mn Si Co Fe

Content 0.05 18 52.5 2.96 0.9 5.15 0.25 0.22 0.66 Bal

Table 3  Specifications of the abrasive belt

Grain 
(mesh)

Form Grain Backing Coating Applications

36# Belt Zirconia Finished 
fabric

Phenolic 
resin

Heavy 
grinding
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components of color features of the abrasive belt in the HSV 
color space converted from the RGB color space.

According to Singh et al. [25], the calculation formulas 
for converting the RGB color space into the HSV color space 
are expressed as:

where H, S, and V represent the hue channel, saturation 
channel, and value (also brightness) channel, respectively; 
R, G, and B represent the red channel, green channel, and 

(2)H = cos
−1

1

2
[(R − G) + (R + B)]

√

(R − G)2 + (R − B)(G − B)

(3)S = 1 −
3[min(R,G,B)]

R + G + B

(4)V =
R + G + B

3

blue channel, respectively. In general, the first three color 
moments of an image, namely mean, standard deviation, and 
skewness, are most commonly used due to their good stabil-
ity. The calculation formulas are listed in Table 5.

In Table 5, N is the number of pixels in an image, and pij 
is the value of the jth pixel of an image at the ith color chan-
nel. Here, we choose the standard deviation of the hue chan-
nel (H_std), the value channel (V_std), and the mean and 
skewness of the saturation channel (represented by S_mean, 
and S_skew, respectively) as useful features for the abrasive 
belt wear assessment.

3.1.3  Texture extraction

The image texture analysis plays a key role in many areas 
including remote sensing [26], medical images [27], and 
auto driving [28]. The texture is defined as an attribute that 
describes how gray levels of pixels are arranged in a particu-
lar region of a digital image [29]. An effective and widely 
used method for analyzing image textures is the gray-level 
co-occurrence matrix (GLCM) analysis [30]. The GLCM 
provides detailed information on the gray direction, interval, 
change range, and speed of an image, but cannot describe 
the texture directly. To quantitatively describe the texture, 
the relevant statistical attributes based on GLCM need to be 
extracted. The calculation formulas of statistical attributes 
are summarized in Table 6.

In Table 6, the GLCM pd [i, j] is defined by first specify-
ing a displacement vector d = (dx, dy) and counting all pairs 
of pixels separated by d having gray levels i and j. In this 
study, vector d is defined as (1,1). The dimension of pd is 

Fig. 2  Schematic diagram of a complete grinding trial

Table 4  Different belt grinding parameters of experiments

Experiment 
no

Belt speed 
vb (m/s)

Grinding 
force F (N)

Feed speed 
vw (mm/s)

Grinding 
time (s)

Number 
of trials

1 4.58 40 5 32 60
2 5.49 30 5 32 45
3 5.49 40 5 32 59
4 5.49 40 8 30 48
5 5.49 50 5 32 55
6 6.41 40 5 32 40
7 5.49 40 2 40 36
8 7.33 40 5 32 45
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M × N (16 × 16), representing the number of gray levels in 
the image. In addition, Pd [i, j] with a value of 0–1 is cal-
culated by:

After normalization, the co-occurrence values of images 
with different sizes will remain on the same scale.

3.2  MRR prediction model

In order to accurately predict MRR, a model that incor-
porates all the abrasive belt-feature parameters men-
tioned above should be developed. A multi-parameter 
mathematical model is, however, difficult to establish 
due to the complex influence of multiple sets of abrasive 
belt feature parameters on the MRR. Fortunately, the 
CatBoost algorithm is an effective and feasible solution 
to address such a complex multi-parameter nonlinear 
problem. The flow chart for establishing the CatBoost 
algorithm-based MRR prediction model is shown in 
Fig.  6. The MRR and extracted image features were 

(5)Pd

�

i, j
�

=
Pd

�

i, j
�

∑M−1

i=0

∑N−1

j=0
Pd[i, d]

normalized in this study. The normalization formula is 
given as:

where xn is the normalized experimental data, x is the 
experimental data, xmax is the maximum experimental 
data, and xmin represents the minimum experimental  
data. Therefore, the MRR prediction model is fed the 
normalized Cr, normalized color moments, and nor-
malized texture features, and the output is the model- 
predicted MRR.

3.2.1  CatBoost algorithm

Figure 7 depicts the structure of the CatBoost algorithm 
for MRR prediction model establishment. The strength of 
CatBoost lies in two noteworthy algorithmic advances: (i) 
application of ordered boosting and (ii) a method for dealing 
with categorical features [31]. CatBoost uses ordered boost-
ing along with ordered target statistics that are based on the 
ordering principle to eliminate target leakage and prediction 
shift problems caused by differences in the distribution of 

(6)xn =
x − x

min

x
max

− x
min

Fig. 3  a Representative belt 
image, b part of the extracted 
edge, c part of the baseline, and 
d image of a uniform size

Fig. 4  Image processing of 
the images after grinding for 
a 160 s and b 1440 s, includ-
ing cropped images (a-1, b-1), 
images of the blue channel (a-2, 
b-2), and extracted bright spots 
(a-3, b-3, a-4, b-4)
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train and test datasets. In addition, one-hot encoding is used 
for features with fewer categories, and the maximum number 
of categories for one-hot encoding is controlled by using the 
one_hot_max_size parameter.

3.2.2  Model training

As introduced in Sect. 2.2, eight experiments with different 
grinding parameters were performed to obtain the MRR and 
the abrasive belt images used for image feature extraction. 
The model was trained based on the CatBoost algorithm 
using the data of experiment no. 1–6, and prediction accu-
racy was determined using the data of experiment no. 7–8. 
The inputs consisted of ten different normalized parameters 
that described abrasive belt images from various perspec-
tives, and the output was the model-predicted MRR.

In order to determine the optimal hyperparameters of the 
established MRR prediction model, grid search was employed 
as a tuning technique. The determination coefficient (R2) is 
shown in Fig. 8 as a function of n_estimator and learning_rate. 
The top R2 is acquired when the n_estimator is 196, and the 
learning_rate is 0.07. In this way, depth and max_leaves are also 
determined, and these hyperparameters are listed in Table 7.

4  Results and discussion

4.1  Experimental MRR and abrasive belt wear

In order to understand the trend of MRR over time under 
different grinding parameters, experimental MRRs are 

presented. Furthermore, the abrasive belt morphology at 
various grinding stages is observed and analyzed by using 
a scanning electron microscope (SEM, TESCAN, MIRA3).

4.1.1  Experimental MRR

Figure 9 depicts the change of the MRR over time at dif-
ferent grinding parameters, and the MRR data correspond 
to experiment no. 1–6 in Table 4. The thickness evaluation 
method, which measures the thickness change of the work-
piece over time, is used for the MRR calculation in this 
study. This method directly reflects the grinding ability of 
abrasive belts in real time. The MRR is calculated by:

where ∆d is the thickness change of the workpiece and ∆t 
is the duration time. It is reasonable that the MRR gradu-
ally decreases with prolonging the grinding time, as seen 
in Fig. 9. At the same belt speed and feed speed, the MRR 
curves corresponding to the grinding forces 50 N, 40 N, and 
30 N are located in the uppermost, middle, and lowermost 
parts of the figure, respectively, implying that the grind-
ing force has a dramatic impact on MRR. Moreover, MRR 
increases as the belt speed increases when the grinding force 
and feed rate remain constant. Nevertheless, it is difficult to 
determine whether MRR is dependent on feed speed, pos-
sibly because feed speed has a smaller impact on MRR than 
belt speed and grinding force.

The grinding parameter and grinding time-dependent 
MRR can be understood from the model proposed by 
Hammann et al. [32].

where CA is the grinding process constant; kA is the resist-
ance factor between the belt and the workpiece; kt is a vari-
able quantity and can evaluate the wear of the abrasive belts; 
Lw is the contact width; and Fn , vb , and vw are the grind-
ing force, belt speed, and feed speed, respectively. Figure 9 

(7)MRR =
Δd

Δt

(8)MRR = CA ⋅ kA ⋅ kt ⋅
Fnvb

vwLw

Fig. 5  a Cropped RGB image of 
the abrasive belt, b hue channel 
image, c saturation channel 
image, and d value channel 
image

Table 5  Color moment calculation formulas of abrasive belts

Features Calculation formulas

Mean Ei =
∑N

j=1

�

1

N
pij

�

Standard deviation
�i =

�

1

N

∑N

j=1

�

pij − Ei

�2

Skewness
si =

3

�

1

N

∑N

j=1

�

pij − Ei

�3
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Table 6  Texture feature calculation formulas of the abrasive belt

Features Calculation formulas Application

Angular second moment ASM =
∑M−1

i=0

∑N−1

j=0
Pd

�

i, j
�2 Measurement of uniformity of gray distribution

Entropy Ent =
∑M−1

i=0

∑N−1

j=0
Pd

�

i, j
�

lnPd

�

i, j
� Measurement of information content

Contrast Con =
∑M−1

i=0

∑N−1

j=0
(i − j)2Pd

�

i, j
� Measurement of local variations

Correlation
Cor =

∑M−1

i=0

∑N−1

j=0 [ijPd[i,j]]−�i�j

�i�j

�i =
∑

iPd

�

i, j
�

�
2

i
=
∑

i2Pd

�

i, j
�

− �
2

i

Measurement of image linearity

Homogeneity
Hom =

∑M−1

i=0

∑N−1

j=0

Pd[i,j]

1+�i−j�

Measurement of local change of the texture

Fig. 6  The framework of MRR 
prediction model establishment
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clearly illustrates the relationship between MRR and grind-
ing parameters in Eq. 8. In view of the fact that CA , kA , Lw , 
Fn , vb , and vw are constant during abrasive belt grinding, 
the change of the quantity kt leads to the decrease of the 

MRR. Thus, realizing the MRR prediction relies mainly on 
the accurate evaluation of the abrasive belt wear.

Figure 10 shows the thickness change ∆d of the work-
piece before and after each grinding cycle at five different 

Fig. 7  Structure of the CatBoost 
algorithm

Fig. 8  Determination coefficient 
(R2) as a function of n_estima-
tor and learning_rate
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locations 1, 2, 3, 4, and 5, and the grinding parameters are 
5.49 m/s belt speed, 50 N grinding force, and 5 mm/s feed 
speed. The sample actually has a flat ground surface with a 
standard deviation of less than 6 μm for ∆d determination.

In this study, the surface roughness of ground samples 
was less than 3.5 μm. The surface roughness was measured 
by a roughness tester (SJ-410, Mitutoyo, Kawasaki, Japan) 
and the measuring direction was perpendicular to the grind-
ing direction.

4.1.2  Abrasive belt wear behavior

According to SEM images in Fig. 11a–f, four belt wear types 
can be observed, namely fracture, adhesion, rubbing wear, 
and fall-off. Owing to the excessive tangential forces during 
belt grinding, abrasive grains tend to break off in the mid-
dle, leaving a smooth, flat fracture surface that may be lower 
than the adhesive bond around abrasive grains (Fig. 11b). 
During belt grinding, adhesion occurs when the workpiece 
material adheres to abrasive grains. The adhesion layer was 
examined by an energy-dispersive X-ray spectrometer (EDS, 
Oxford, Aztec, X-MaxN8), as seen in Fig. 11c. The major 
elements of Inconel 718 (Ni, Fe, and Cr) were detected at 
point P. Moreover, rubbing wear (Fig. 11e) is a very com-
mon occurrence in belt grinding, including grain rubbing 
wear and adhesive bond rubbing wear. Fall-off occurs when 

abrasive grains completely fall off the abrasive belt, leaving 
a pit behind, as seen in Fig. 11f.

During belt grinding, the abrasive belt morphology 
changes significantly. Figure 12a–d show the abrasive belt 
images captured before and after belt grinding for 160 s, 
600 s, and 1440 s. Specifically, The labels (1)–(4) in Fig. 12 
represent fracture, adhesion, rubbing wear, and fall-off of 
abrasive belts, respectively. A few grain fractures can be 
observed on the brand-new abrasive belt (Fig. 12a). As 
abrasive belts are always folded tightly during transport, 
the abrasive grains rub against each other and eventually 
fracture. In the initial period of belt grinding, the high-
protrusion abrasive grains first contact the workpiece and 
remove the material as discontinuous chips under the effect 
of plowing, leading to a very high MRR. However, the MRR 
decreases dramatically (the initial stage of curves in Fig. 9) 
because these protruding abrasive grains with strong pen-
etration ability withstand the excessive tangential force, 
leading to a large number of fractures. After fracture, the 
abrasive grain edges remain sharp and maintain a moder-
ate grinding ability. After the dramatic decrease, the MRR 
should have increased or remained constant due to the 
growing number of lower protruding abrasive grains and 
the newly re-sharpened abrasive grains resulting from the 
fracture. However, the MRR smoothly declines in Fig. 9. 
This is because other types of grain wear are gradually 
dominant, as seen in Fig. 12b–d. Since a great deal of heat 
is generated during belt grinding, the temperature of the 
workpiece surface increases rapidly, and the hardness of 
the workpiece decreases as a consequence [33]. Therefore, 
the workpiece debris easily adheres to abrasive grains and 
covers the abrasive grain edges, thereby reducing the grind-
ing performance of these abrasive grains. Additionally, due 

Table 7  Part of 
hyperparameters of CatBoost

Hyperparameters Value

n_estimator (iterations) 196
learning_rate 0.07
Depth 6
max_leaves 64

Fig. 9  MRR as a function of grinding time under different grinding 
parameters

Fig. 10  Thickness change of the workpiece before and after each 
grinding cycle at 5 different locations
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to the grain rubbing wear, the material is barely removed 
when these blunt abrasive grains slide across the surface. It 
is the rubbing wear of the adhesive bond that causes the low 
adhesion strength of the resin bond. Besides, some of the 
abrasive grains, whose tips are lower than the surrounding 
adhesive bond after the fracture, are useless for grinding. 
Consequently, MRR shows a slight and smooth decline after 
the rapid decrease in the initial period, which is in line with 
the curves in Fig. 9.

4.2  Relationship between belt image features 
and MRR

Cr as a function of grinding time under different grinding 
parameters is presented in Fig. 13. The Cr shows an opposite 
trend to the MRR, indicating that the Cr is positively cor-
related with the abrasive belt wear.

Figure 14 depicts four color moments as functions of 
grinding time in experiment no. 1–6. It can be seen from 
Fig.  14a–d that the H_std and S_mean are negatively 
related to the abrasive belt wear, while the S_skew and 
V_std display the opposite trend.

Figure 15 shows the features extracted from the image 
texture as functions of grinding time in experiment no.1–6. 

As seen from Fig. 15, the Ent and Con are negatively 
related to the abrasive belt wear, while it is opposite for 
the ASM, Cor, and Hom.

As can be seen from Figs. 9, 13, 14 and 15, both the 
MRR and extracted image features change monotonically 
with grinding time, showing a similar trend under different 
grinding parameters. The MRR and the extracted image 
features are on the same scale after normalization.

Three scatter diagrams (Fig. 16a–c) are constructed 
using normalized feature parameters as abscissas and nor-
malized MRRs as ordinates in order to illustrate the cor-
relation between normalized MRRs and extracted image 
features. The abrasive grain areal ratio is Cr , and the color 
moments and texture features are represented by H_std 
and Hom. Each figure contains all data from experiment 
no.1–6. It can be seen from Fig. 16 that the normalized 
H_std and Hom positively correlate with the normalized 
MRR, whereas the normalized Cr negatively correlates 
with the normalized MRR. Specifically, as the normalized 
Cr approaches 1, the experimental MRR is close to 0, indi-
cating failure of the abrasive belt (Fig. 16a). Meanwhile, 
the dependence of normalized MRR on normalized H_std 
or Hom is almost linear, although some data of the Hom 
somewhat diverge (Fig. 16b, c).

Fig. 11  SEM images of different belt wear styles
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4.3  MRR prediction

4.3.1  Accuracy assessment

To assess the accuracy of the MRR prediction, four classic 
performance indices have been employed, and the relevant 
calculation formulas are depicted in Table 8.

In Table 8, n is the data size; yi and xi are the predicted 
and true values of the ith sample. To assess the magnitude 

of deviation between the predicted and experimental 
MRR, the indices maximum absolute error (MaAE), 
mean absolute error (MAE), and root mean square error 
(RMSE) are used. The R2 refers to how well the regres-
sion model fits the experimental data. In this study, the 
MaAE, MAE, RMSE, and R2 of the CatBoost algorithm-
based MRR prediction model were 0.17 μm, 0.4 μm, 0.2 
μm, and 99.42%, respectively. Figure 17 compares the 
experimental MRR data of experiment no.7–8 and denor-
malized model-predicted data. The denormalized model-
predicted MRR is calculated by:

where  MRRd is the denormalized model-predicted MRR; 
the  MRRt is the MRR acquired when the grinding ter-
minates; the  MRRp is the predicted MRR from the pre-
diction model; and the  MRRi is the MRR acquired from 
the initial experimental trial. In these two sets of veri-
fication experiments, the deviation between the model-
predicted and experimental values lay between 0.05 and 
0.39 μm/s, which were 1–2 orders of magnitude smaller 
than the values of MRR. It can be seen from Fig. 17 that 
the model-predicted data and the experimental data for 
experiment no. 7–8 are in good agreement. The reli-
ability of the prediction model can be determined by 
this result.

Thus, if the initial and terminated MRR as well as 
images of a brand-new abrasive belt and a failed abrasive 

(9)MRRd = MRRt +MRRp ⋅

(

MRRi −MRRt

)

Fig. 12  Abrasive belt images 
after grinding for a 0 s, b 
160 s, c 600 s, and d 1440 s. 
The labels (1), (2), (3), and (4) 
represent fracture, adhesion, 
rubbing wear, and fall-off of 
abrasive belts, respectively

Fig. 13  Cr as a function of time under different grinding parameters
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belt are acquired in actual use, then the MRR of the 
brand-new abrasive belt in the grinding process can be 
predicted based on the MRR prediction model and Eq. 9. 
Specifically, the initial MRR and the images of a brand-
new abrasive belt can be directly acquired at the first 
grinding trial under given grinding parameters, and the 
terminated MRR and the corresponding images can be 
obtained by grinding a failed abrasive belt. The termi-
nated MRR and the images are valid and acceptable as 
long as the MRR acquired by a certain grinding trial is 

slightly less than one-eighth of that obtained by the first 
grinding trial. Otherwise, the grinding process will con-
tinue until the MRR meets the requirements. The main 
disadvantage of this model is that the necessary condi-
tion for the model to be able to predict is that the initial 
and terminated MRR and abrasive belt images need to 
be obtained in advance. Therefore, the follow-up work 
is to build a grinding database, which stores the initial 
and terminated MRR and abrasive belt images under dif-
ferent grinding parameters and abrasive belt parameters.

Fig. 14  a H_std, b S_mean, c S_skew, and d V_std as functions of time under different grinding parameters
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4.3.2  Comparison of different algorithms

To demonstrate the superiority of the CatBoost algorithm 
we used, most mainstream machine learning algorithms, 
including XGBoost, LightGBM, LinearRegression, SVM, 
Neural Network, and Random Forest, were used to train 
the MRR prediction model for comparison. Their train-
ing datasets and test datasets were identical to those used 

in the CatBoost algorithm. The gray histogram in Fig. 18 
shows the R2 of these machining learning algorithms, 
and the CatBoost provides the best fit to the experimental 
data. According to the rest of the histograms in Fig. 18, 
the CatBoost algorithm has the lowest MaAE, MAE, and 
RMSE values. Thus, the CatBoost algorithm exhibits a 
higher predictive reliability and a lower error rate than 
other algorithms.

Fig. 15  a ASM, b Ent, c Con, d Cor, and e Hom as functions of time under different grinding parameters

Fig. 16  Relationship between normalized MRR and a normalized Cr, b normalized H_std, and c normalized Hom
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5  Conclusions

This paper developed an MRR prediction model for 
robotic belt grinding of Inconel 718 based on abrasive 
belt images and the CatBoost algorithm, which had been 

validated with the experimental data. Based on the rel-
evant analyses and results, the following conclusions can 
be drawn:

(1) Grinding force and belt speed have a great impact on 
the MRR, leading to quite different MRR curves under 
various grinding parameters. As a result of the same 
wear styles during belt grinding, the trends of MRR 
curves are similar, with a rapid decrease at first, fol-
lowed by a gradual and smooth decline.

(2) The abrasive grain areal ratio Cr, color moments, and 
texture information of abrasive belt images are success-
fully extracted. They provide a good assessment of belt 
wear and demonstrate a strong correlation with MRR 
after normalization.

(3) An MRR prediction model based on the abrasive belt 
image features and CatBoost algorithm is established. 
The MaAE, MAE, RMSE, and R2 of the prediction 
model are 0.17 μm, 0.4 μm, 0.2 μm, and 99.42%, 
respectively. Compared with other prediction mod-
els, the established model is more reliable. In practi-
cal applications, if the initial and terminated MRRs, 
as well as images from a new and failed abrasive 
belt, are acquired, the MRR prediction model can be 
applied.

In spite of its good prediction result, the proposed 
method is a data-driven approach, and the prediction accu-
racy depends greatly on the quality and volume of the 
experimental data used. In the future, we will explore the 
physical meaning behind the relationship between grain 
wear mechanisms, belt image features, and MRR.
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Table 8  Calculation formulas of performance indices

Performance indices Calculation formula
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{
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|

|

}
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∑n

i=1�
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n

Root mean square error (RMSE)
RMSE =

�

∑n
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2

n

Coefficient of determination (R2)
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∑n

i=1(yi−xi)
2

∑n

i=1(yi−y)
2

y =
∑n

i=1
yi

n

Fig. 17  Comparison of the experimental and predicted MRR data for 
experiment no.7–8

Fig. 18  Comparison of prediction results of different algorithms
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