
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-10335-8

ORIGINAL ARTICLE

A new lightweight deep neural network for surface scratch detection

Wei Li1 · Liangchi Zhang2,3,4 · Chuhan Wu1 · Zhenxiang Cui5 · Chao Niu5

Received: 7 July 2022 / Accepted: 15 October 2022 
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Abstract
This paper aims to develop a lightweight convolutional neural network, WearNet, to realise automatic scratch detection for 
components in contact sliding such as those in metal forming. To this end, a large surface scratch dataset obtained from 
cylinder-on-flat sliding tests was used to train the WearNet with appropriate training parameters such as learning rate, gradi-
ent algorithm and mini-batch size. A comprehensive investigation on the network response and decision mechanism was 
also conducted to show the capability of the developed WearNet. It was found that compared with the existing networks, 
WearNet can realise an excellent classification accuracy of 94.16% with a much smaller model size and faster detection 
speed. Besides, WearNet outperformed other state-of-the-art networks when a public image database was used for network 
evaluation. The application of WearNet in an embedded system further demonstrated such advantages in the detection of 
surface scratches in sheet metal forming processes.
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1 Introduction

In industrial production, the detection of workpiece surface 
defects is essential to ensure product quality [1]. For exam-
ple, in a metal forming process, surface scratch in contact 
sliding has been critical because it downgrades the surface 
quality of a workpiece and the service life of a tooling sys-
tem. However, this has been traditionally a manual process, 
which is very inefficient, inaccurate and unreliable [2]. 
Recent advances in artificial intelligence provide a promis-
ing approach to tackling tough engineering problems, such 

as fault detection [3], nonlinear system control [4, 5] and 
surface defect detection [6]. For instance, the image fea-
tures of surface defects can be learned by machine learning 
techniques such as the support vector machine (SVM) and 
the artificial neural network (ANN). The SVM algorithm 
has been utilised to analyse and classify surface defects on 
steel surfaces [7] and cutting tools [8]. Similar applications 
of the ANN algorithm have been noted for defect recogni-
tion in cold rolling [9] and colour-filter production [10]. For 
example, the performance of different neural networks for 
surface crack detection in fracture experiments was tested 
and compared [11]. However, the separated feature extrac-
tion and classification operations have significantly restricted 
the detection efficiency.

The CNN-based deep learning technology has demon-
strated its capability in image classification because it can 
automatically detect and extract high-level image features 
from the labelled image data [12]. Several CNN networks 
have been developed and applied to classify the image data, 
e.g. AlexNet [13], VGG-16 [14], GoogleNet [15] and Effi-
cientNet [16]. The applications of CNN networks for the 
detection of surface defects [17, 18], rolling bearing degra-
dation [19] and roll marks on hot-rolled steel plates/strips 
[20] were also noted. For example, an image detection model 
based on R-CNN network was proposed to identify the wear 
location and wear mechanism in tribological tests [21]. 
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Besides, different optimisation algorithms have been pro-
posed to train the CNN networks appropriately. For instance, 
an Adam optimiser with power-exponential learning rate was 
proposed to control the iteration direction and step size in 
order to tackle the problems of local minima and overshoot 
in network training [22]. Although the CNN networks have 
been widely used for image classification with high accuracy 
in recent studies, their large model sizes and complicated 
structures limit the classification speed and bring about high 
latency.

Therefore, lightweight CNN networks, e.g. SqueezeNet 
[23], MobileNet [24] and ShuffleNet [25], have been devel-
oped to decrease the network parameter number and model 
size without sacrificing the classification accuracy. For 
example, a new fire module was utilised in the SqueezeNet 
to considerably reduce the computation consumption and 
communication cost [23]. Therefore, it can be feasibly built 
in the hardware with limited memory, e.g. mobile devices, to 
complete the real-time object detection in automatic vision-
based systems [26]. However, a lightweight CNN network 
for detecting the surface scratch in contact sliding is yet 
unavailable.

Recently, the embedded system has been used to deploy 
CNN networks to complete real-time recognition and 
detection tasks, e.g. vehicle plate recognition [27], fire 
detection [28], handwriting recognition [29] and action 
recognition [30, 31]. Normally, the embedded hardware 
has limited computation capacity and on-board memory; 
thus, lightweight CNN architectures are more feasible to 
be deployed in the embedded environment. For exam-
ple, an anamorphic depth lightweight CNN, Anam-Net 
[32], was proposed to segment anomalies in COVID-19 
chest CT images. Therefore, it is expected that deploying 
a lightweight CNN network for surface scratch detection 
in sheet metal forming will help to improve the level of 
automation and efficiency.

This paper aims to develop a lightweight CNN struc-
ture, called WearNet, for surface scratch detection in con-
tact sliding. A customised convolutional block will be 
developed to reduce the training parameter number and 
network layers as well as to simplify the network structure 
but retain classification accuracy. To train the WearNet, 
cylinder-on-flat sliding tests will be conducted to provide 
a large-scale surface scratch dataset. The network response 
and decision mechanism will be investigated to reveal the 
WearNet capability. The WearNet will then be compared 
with the existing advanced CNN structures to demonstrate 
its advantages in classification accuracy, model size and 
computation efficiency. In addition, the performance of the 
developed WearNet will be compared against other exist-
ing CNN networks based on a public image database, i.e. 
the NEU surface defect database [20]. Finally, a Linux-
based embedded system will be utilised as the deploying 

environment to further test the detection performance of 
WearNet.

2  Image database of surface scratches

2.1  Experimental setup for data collection

To develop a reliable CNN-based detection model, a 
large-scale surface scratch database is essential. To 
extend the database scale, cylinder-on-flat sliding tests 
(see Fig. 1) were conducted under a wide range of opera-
tion conditions listed in Table 1. The cylinder-on-flat 
sliding setup has been used to mimic the contact condi-
tions encountered in a metal forming process [33, 34]. 
To match industrial production conditions, two typical 
types of high-strength steel, DP980 and QP980, and 
DC53 tools with nitriding and vacuum heat treatment 
were selected as the pair of sliding contact. Both the one-
way and cyclic sliding tests were carried out to mimic 
practical sliding types. The ranges of testing parameters 

Fig. 1  Illustration of the experimental setup for data collection
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(tool radius, normal load, sliding speed, contact width) 
are listed in Table 1.

2.2  Image data processing

After each sliding test, the surface topography was measured 
by a digital microscope, OLYMPUS DSX 510. The measur-
ing size of each image is 750 × 750 µm. Both of the surface 
images of DP980 and QP980 workpieces were divided into 
five categories (see Fig. 2):

1. The surface images prior to contact sliding were labelled 
as intact surface.

2. After certain cycles in a sliding test, if material transfer 
was identified on the workpiece surface without obvious 
scratches, the measured surface images were denoted as 
material transfer.

3. The images with the maximum depth of scratching 
(hmax) below 2 µm, 2 < hmax < 4 µm and hmax > 4 µm were 
called as minor, mild and severe scratch, respectively.

The surface images, Fig. 2c–e, were identified based on 
the hmax. This is because hmax plays an important role in 
determining the severity of scratching damage [35, 36]. 
Overall, the database with a total of 10,500 surface images 

was identified by ten labels, as shown in Table 2. These 
images were randomly divided into training, validation and 
testing datasets with a ratio of 4:1:1 (7000:1750:1750). The 
image resolution was normalised to 227 × 227 prior to the 
training.

3  WearNet for surface scratch detection

3.1  Structure of WearNet

The existing advanced CNN networks were designed to clas-
sify the 1000 labels of ImageNet [37, 38] with a database 
of over 14 million images. For the surface scratch identifi-
cation in the current study, the image database was much 
smaller than ImageNet and fewer image labels were utilised. 
As such, a lightweight WearNet was developed based on a 
novel convolutional block to prevent overfitting, to effec-
tively minimise the network parameters and to reduce the 
model size. The architecture and specifications of WearNet 
are outlined as follows (see Table 3 and Fig. 3):

1. Convolutional layer: this plays an important role in 
extracting the image features from the input image data, 
which is achieved by the convolution kernel. The con-

Table 1  Conditions of the 
contact sliding experiments

No. Cylinder tool Workpiece Load
(N)

Speed
(mm/s)

Width
(mm)

Sliding

Material Surface Radius (mm)

1 DC53 Nitriding 8–12 DP980 20–40 2 1.5 Cyclic
2 DC53 Nitriding 8–12 DP980 20–40 3 1.2 One-way
3 DC53 Nitriding 8–12 QP980 20–40 3 1.2 One-way
4 DC53 VHT 8–12 QP980 20–40 3 1.2 One-way

Fig. 2  Surface scratch labels in the image database: a intact surface, b material transfer, c minor scratch, d mild scratch, e severe scratch 
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volution kernel is a square filter, which can scan the 
input image and output feature maps. The kernel sizes 
for conv-1 and conv-2 are 3 × 3 and 1 × 1, respectively. 
Each convolutional layer is followed by a ReLU activa-
tion function.

2. Max-pooling layer: The role of the pooling layer is to 
reduce the feature map size by downsampling. There 
are two common methods to conduct pooling: average 
pooling and max pooling. The max-pooling is more 
suitable for image feature processing as it preserves the 
maximum output in a rectangular region. Therefore, the 
max-pooling strategy was selected in this paper. Besides, 
the network conducts max pooling with a stride of 2 to 
ensure late downsampling.

3. Convolutional block: This block takes advantage of 
separable convolution and squeeze-expand operations, 
as shown in Fig. 4. It starts with a squeeze convolu-
tion layer with 1 × 1 filters, which helps to restrict the 
total number of input channels, n1, fed into the following 
expand module. The expand module consists of batch 
normalisation, separable convolution and expand convo-
lution using a 3 × 3 kernel. In the separable convolution, 
a channel-wise 3 × 3 spatial convolution is followed by 
a point-wise 1 × 1 convolution, which can bring about 
higher computation efficiency as fewer convolution 

operations will be conducted. In the concatenation layer, 
the channel number increases from n1 to 4 × n1. As such, 
the network parameters and model size are decreased 
significantly.

4. Dropout layer: The dropout layer is to avoid the overfit-
ting problem in the network training process [39]. The 
strategy is to deactivate some hidden layer nodes in the 
neural network and minimise their effects in the current 
training step. In this study, a dropout layer with a ratio 
of 0.5 was applied after max pool-3.

5. GAP layer: The global average pooling (GAP) layer is 
used to replace the fully connected layer in the tradi-
tional CNN networks. The GAP layer averages each fea-
ture map to enforce the correspondence between feature 
maps and image categories. There is no optimisation 
for the parameters, which further reduces the network 
parameters and minimises the overfitting problem.

In this study, the WearNet was developed by using the 
customised convolutional block. The network layers and 
parameters were effectively minimised to bring about a 
smaller mode size and higher classification speed. The com-
parison among the WearNet and other CNN networks was 
conducted on an embedded system to demonstrate the distin-
guished performance of the proposed WearNet for practical 
applications.

3.2  Training details

The WearNet was trained and evaluated by MATLAB on 
a PC with an Intel i5-10,600 (3.3 GHz and 16 GB RAM) 
and an NVIDIA RTX 3080 GPU (10 GB). Deep Learning 
Toolbox in MATLAB can provide a friendly framework 
for building network structures, setting training param-
eters and monitoring training processes. GPU comput-
ing was utilised in the network training to speed up the 
iteration. In general, there are three learning algorithms 
in the machine learning area, including supervised learn-
ing [40], unsupervised learning [41] and reinforcement 
learning [42]. In this paper, the supervised learning algo-
rithm was adopted and the dataset consisting of labelled 
images listed in Table 2 was used for network training. 
The selection of training parameters (e.g. learning rate, 
gradient algorithm and mini-batch size) is discussed in 
the following section.

3.3  Evaluation protocol

The evaluations of deep neural networks are based on the 
following aspects:

Table 2  Image numbers of different surface image labels

Intact 
surface

Material 
transfer

Minor 
scratch

Mild 
scratch

Severe 
scratch

DP980 720 1320 1200 1800 660
QP980 660 1320 1200 900 720

Table 3  Specifications of the WearNet network

Layer Kernel size Input size Output 
channels

conv-1 3 × 3 227 × 227 × 3 32
max pool-1 3 × 3 113 × 113 32
conv-block-1 \ 56 × 56 128
conv-block-2 \ 56 × 56 128
max pool-2 3 × 3 56 × 56 128
conv-block-3 \ 28 × 28 256
conv-block-4 \ 28 × 28 256
max pool-3 3 × 3 28 × 28 256
dropout \ 14 × 14 256
conv-2 1 × 1 14 × 14 10
GAP \ 14 × 14 10
softmax \ 1 × 1 10
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1. Training time T: The training time is related with the 
network architecture, database scale and training plat-
form as well as the training parameters.

2. Classification accuracy p: The prediction result is con-
sidered accurate when the predicted category with the 
highest confidence is consistent with the ground truth. 
Thus, the classification accuracy (p) can be given by:

where Na and N refer to the numbers of accurately clas-
sified images and total images, respectively.

3. Recognition rate r: For a specific image class c, if Ma 
and M donate the numbers of images classified as class 
c correctly and the total image of class c, the recognition 
rate (r) of class c can be defined as

4. Classification time t: The classification time plays an 
essential role in evaluating the network performance, 
particularly for the industrial production involving fast 
recognition. In this study, the average classification time 

(1)p = Na∕N

(2)r = Ma∕M

(t) for each surface image was calculated for further 
analysis and comparison.

5. Model size: This determines the applicability of the 
WearNet in production. Typically, larger CNN architec-
tures require more transition bandwidth and communica-
tion costs.

Classification accuracy is one of the most important 
evaluation metrics, as it indicates the overall classification 
performance of a CNN network. However, the classifica-
tion accuracy alone can be misleading, if the numbers of 
surface images in individual classes are unequal. There-
fore, the recognition rate and confusion matrix are used to 
check the network performance on each image class and to 
figure out how the CNN network is confused when mak-
ing classification decisions. The training and classification 
time will play an important role when the computation 
efficiency of different networks is investigated. Besides, 
the model size should be taken into consideration when 
the CNN network is deployed in the embedded environ-
ment, as the on-board memory of an embedded device is 
usually limited.

Fig. 3  Architecture of the WearNet network
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4  Results and discussions

In training the WearNet, it is crucial to select appropriate 
training parameters. This should be done by considering 
the network structure, the surface image database and the 
computation resource available. In this section, the selec-
tion of the optimised training parameters for WearNet was 
explored. Then, the WearNet was investigated by focusing 
on the network response, layer activations and network deci-
sion mechanism. The comparison between the WearNet and 
other CNN networks was conducted by using the evaluation 
protocol in the last section.

4.1  Selection of training parameters

The effects of different training parameters, e.g. learning 
rate, gradient algorithm and mini-batch size, were inves-
tigated in this paper, as they were reported to have a con-
siderable influence on the training results in the literature 
[43, 44]. In the training experiments, it was found that the 
validation accuracy usually reached a stable stage after 
around 150 training epochs. Therefore, a series of network 
training experiments were conducted with the maximum 

epoch number of 200. The epoch refers to the entire image 
database being fully trained once. The mini-batch size (Nb) 
refers to the number of image data used for networking train-
ing in a single iteration. Generally, the network parameters 
are trained and updated by a greater number of times for a 
higher epoch number. With a given training database size D, 
the number Ni of total iterations can be given by

1. Learning rate: The learning rate determines the con-
verging speed of iteration. In the network training, it 
is essential to find an optimal value of learning rate to 
achieve a reasonable balance between the training speed 
and validation accuracy. Different learning rates, rang-
ing from 0.001 to 0.00001, were tested and compared, as 
shown in Fig. 5. Besides, a piecewise learning rate from 
0.001 to 0.0001 was also utilised in the training experi-
ments. The descent algorithm and mini-batch size were 
set as stochastic gradient descent method (SGDM) and 
16, respectively. According to the training results, it is 
concluded that a larger learning rate enables the model 
to learn faster but brings with it a risk of sub-optimal 

(3)Ni = (D∕Nb) × 200

Fig. 4  Illustration of a custom-
ised convolutional block in the 
WearNet structure
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results. When the learning rate becomes smaller, the con-
vergence speed becomes lower in the initial stage, and it 
takes a longer time to reach the stable stage. In particular, 
if the learning rate is too small (e.g. 0.00001), the final 
validation accuracy is relatively lower after 200 training 
epochs. Therefore, the piecewise learning rate from 0.001 
to 0.0001, which combines the helpful characteristics of 
the larger and smaller learning rates, can bring about a 
fast convergence in the beginning and ensure a high vali-
dation accuracy in the final stage. Figure 5 also presents 
the average training time for single epoch, indicating that 
the influence of learning rate variations on training time 
is negligible.

2. Gradient algorithm: The gradient descent algorithm is 
used in the training of deep neural networks [45, 46]. 
This section compares the training performance of two 
typical gradient algorithms, SGDM and Adam, and 
selects the appropriate algorithm by considering the 
convergence speed, computation efficiency and gener-
alisation ability. Compared with the traditional gradient 
descent algorithms, SGDM computes the gradient of the 
loss function only by a small random subset, instead 
of the whole dataset, and performs a parameter update, 
which can help to improve the computation efficiency. 
The Adam algorithm utilises squared gradients to scale 
the learning rate and takes advantage of momentum by 

the moving average of gradient. Figure 6 presents the 
training process of the two algorithms with the batch 
size and learning rate fixed at 16 and piecewise, respec-
tively.

Because of the random gradient computation, the SGDM 
usually has a lower convergence speed in the beginning and 
reaches its stable stage after a higher number of iterations 
compared with the Adam algorithm. However, the former 
consumes less training cost and leads to a higher valida-
tion accuracy than the latter. This is because more frequent 
updates are conducted for SDGM. Hence, there are more 
chances to jump out of a local minimal and search for bet-
ter solutions. Hence, the SGDM algorithm was adopted in 
this study.

3. Mini-batch size: In training the CNN networks, the scale 
of image database is usually very large. The computa-
tional cost will be unaffordable if the whole database is 
swept in each iteration. Hence, a proper selection of a 
mini-batch size is important to reduce the training cost 
and refine classification performance [47]. By using the 
SGDM and piecewise learning, Fig. 7 demonstrates how 
the mini-batch size affects the training cost and validation 
accuracy. In general, the influence of batch size variations 
is more significant at the beginning of network training. 

Fig. 5  Iteration process of networking training with different learning rates
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It is noted that a smaller batch size usually brings about 
a faster convergence speed because the network param-
eters are updated more frequently within each epoch. 
Meanwhile, more iteration steps related to a smaller size 
also bring about more training time. However, overfitting 
should be taken into consideration if the batch size is too 

small. It is also found that a larger batch size may lead to 
poorer generalisation ability. For example, as shown in 
Fig. 7, the validation accuracy drops gradually when the 
batch size increases from 16 to 64. With considering the 
balance between the training cost and validation accuracy 
listed in Fig. 7, the mini-batch size will be fixed at 16.

Fig. 6  Iteration process of networking training with different gradient algorithms

Fig. 7  Iteration process of networking training with different mini-batch sizes
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4.2  Examination of developed WearNet

With the above selected parameters, the WearNet for sur-
face scratch detection was trained. The network responses, 
layer activations and decision mechanism of the WearNet 
are as follows:

1. Network responses: To examine the WearNet responses, 
a t-distributed stochastic neighbour embedding (t-SNE) 
function [48] was used in the study. Three hundred sur-
face images with six different labels, as listed in Table 4, 
were used to investigate the responses of different lay-
ers, i.e. maxpool-1, conv-2 and softmax, in the WearNet. 
Figure 8 illustrates the t-SNE plots for three different 
layers where the six colours of these solid dots refer 
to the six image labels. For the maxpool-1 layer, the 

labels were not correctly grouped because only low-
level features, e.g. colours and edges, were operated 
in such an early layer. The conv-2 layer can refine the 
cluster of these labels to some extent, but the accuracy 
was not satisfactory. For the softmax layer, the t-SNE 
plotting demonstrates that an appropriate classification 
of these different labels was achieved as the network 
went deeper, which validated the high accuracy of the 
developed WearNet.

2. Examination of layer activations: The layer activations 
play an important role in training the WearNet. To check 
which features the network has learned and whether the 
representative features have been correctly detected 
and preserved, it is necessary to visualise and examine 
the activation maps within different layers, i.e. conv-
1, squeeze layer in conv-block-2 and conv-2. A testing 
image, QP980 surface with severe scratch, was fed into 
the trained WearNet.

There are 32 channels in the first convolution layer (conv-
1). The 32 image features corresponding to the 32 channels 
are shown in Fig. 9a. Similarly, Fig. 9b, c present the feature 

Table 4  Surface scratch images used for t-SNE plotting

Intact surface Material 
transfer

Severe scratch

QP980 50 50 50
DP980 50 50 50

Fig. 8  t-SNE plotting for different layers in WearNet: maxpool-1, conv-2 and softmax 
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(a) conv-1 layer with 32 channels

(b) squeeze layer in conv-block-2 with 32 channels

(c) conv-2 layer with 10 channels

Fig. 9  Feature maps from three different layers
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maps of the squeeze layer in the conv-block-2 and the last 
convolution layer (conv-2). The numbers of channels of the 
squeeze layer and conv-2 layer are 32 and 10, respectively. 
Figure 10 illustrates the image features with the largest acti-
vations in the three layers. Clearly, the discriminative fea-
tures for characterising the severe scratch were extracted 
step by step as the neural network went deeper. For example, 
the deep and long ploughings were typical features for severe 
scratching images (Fig. 10).

3. Decision mechanism: To figure out how the WearNet 
makes a reliable classification decision, the gradient-
weighted class activation mapping, Grad-CAM [49], 
technique was employed. It utilises the gradient of the 
final classification scores associated with the convolu-
tional features to determine the most influential part of 
a tested image for the classification. Figure 11 illustrates 
the Grad-CAM map for a test image from the class of 
QP980-severe scratch. The regime with the blue refers 

(a) conv-1 layer      (b) squeeze layer in conv-block-2 (c) conv-2 layer

Fig. 10  Image features with the largest activations in three different layers

Fig. 11  Grad-CAM gradient map for a test image (QP980-severe scratch)
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to a low influence while the regime with the red denotes 
a high effect. In general, a larger gradient corresponds 
to the red zone on which the final score most relies. It 
should be noted that the red rectangle zone also refers 
to the area with a deep and long scratch, which has the 
greatest impact on classifying the test image as severe 
scratch.

4.3  Comparison with other CNN networks

A series of classification experiments were conducted 
to compare the performance of the WearNet with other 
state-of-the-art networks when the training conditions, 
i.e. image dataset (see Table 2), training platform and 
parameter settings, were identical. Table 5 compares 
the network performance in terms of training time, 
validation and testing accuracy. Here, the training time 

refers to the average iteration time for a single epoch. 
It can be found that the validation and test accuracy 
of WearNet outperform the others while the minimum 
training time is consumed. Figure 12 presents the evolu-
tion of validation accuracy during the network training, 
in which WearNet has the highest value throughout the 

Table 5  Comparison in the network performance

Training time Validation 
accuracy

Test accuracy

AlexNet 0.75 min 0.9041 0.8926
EfficientNet 6.37 min 0.8833 0.8777
MobileNet 3.68 min 0.8998 0.8869
SqueezeNet 1.27 min 0.9233 0.9177
WearNet 0.52 min 0.9416 0.9297

Fig. 12  Training process of WearNet and other state-of-the-art networks

Table 6  Comparison in recognition rates of individual image labels

No. Workpiece Label AlexNet MobileNet SqueezeNet WearNet

1 DP980 Intact 
surface

0.95 0.98 0.99 0.99

2 Material 
transfer

0.99 0.99 0.99 0.99

3 Minor 
scratch

0.95 0.94 0.97 0.98

4 Mild 
scratch

0.93 0.88 0.94 0.94

5 Severe 
scratch

0.65 0.73 0.76 0.83

6 QP980 Intact 
surface

0.99 0.99 0.99 1.00

7 Material 
transfer

0.87 0.87 0.87 0.90

8 Minor 
scratch

0.82 0.79 0.83 0.85

9 Mild 
scratch

0.78 0.78 0.87 0.86

10 Severe 
scratch

0.91 0.93 0.93 0.96

2010 The International Journal of Advanced Manufacturing Technology (2022) 123:1999–2015



1 3

Fig. 13  Confusion matrices for 
AlexNet and WearNet 
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whole training process. Furthermore, Table 6 presents 
the recognition rates of individual image labels when 
different CNN networks are tested. In general, the rec-
ognition rates of most image labels are over 85%. When 
it comes to the labels DP980-severe scratch and QP980-
mild scratch, the WearNet is still able to provide reliable 
classification results, while the recognition rates related 
to other networks drop significantly, especially AlexNet. 
Therefore, Fig.  13 shows the confusion matrices for 
AlexNet and WearNet, which can help to figure out how 
two CNN networks are confused when making classi-
fication decisions. It can be found that for the scratch 
images with the label of DP980-severe scratch, AlexNet 
is able to classify them with a recognition rate of only 
65%, while around 7% and 26% are incorrectly classi-
fied as DP980-minor scratch and DP980-mild scratch, 
respectively. However, when the WearNet is employed, 
the classification error can be reduced significantly, as 
shown in Fig. 13b.

Table 7 compares the complexity of WearNet and other 
CNN networks in terms of layer number, parameter quan-
tity, model size and classification time. It is found that the 

model size is closely related to the quantity of network 
parameters, while the number of network layers has a con-
siderable impact on its classification time. As shown in 
Table 7, the structure of WearNet is simpler than that of its 
convolutional counterparts, which brings about the small-
est model size and fastest classification speed. However, 
the WearNet still has excellent classification performance, 
which should be attributed to its well-designed lightweight 
architecture. In conclusion, the WearNet proposed in this 
study has shown its advantages in computational efficiency 
and model size, as well as in its excellent classification 
performance.

4.4  Classification performance on a public dataset

To comprehensively demonstrate the effectiveness of 
WearNet, its performance is investigated based on the 
NEU surface defect dataset. This dataset collects six kinds 
of typical surface defects on hot-rolled steel strips (see 
Fig. 14), i.e. rolled-in scale, patches, crazing, pitted sur-
face, inclusion and scratches, with a set of 300 labelled 
images for each type. The surface defect images in the 
database are greyscale and will be converted into RGB 
images before being used for network training. All the 
images were randomly divided into training, validation 
and testing datasets with a ratio of 4:1:1 (1200:300:300). 
A smaller training epoch (100) was adopted due to the 
smaller size of the image database, while other training 
parameters were identical to those in the last section. 
Table 8 presents the classification performance of four dif-
ferent CNN networks. All the four networks achieved high 
validation and test accuracy (over 98%), but the WearNet 

Table 7  Comparison in the 
complexity of different CNN 
networks

Layer number Parameter quantity Model size Classification time

AlexNet 25 61.0 M 201 MB 1.36 ms
EfficientNet 290 5.31 M 18.4 MB 4.80 ms
MobileNet 154 3.50 M 8.19 MB 2.80 ms
SqueezeNet 68 1.24 M 2.59 MB 0.65 ms
WearNet 48 0.16 M 0.54 MB 0.58 ms

Fig. 14  Surface defects of hot-rolled steel strips in the NEU database

Table 8  Classification performance on NEU surface defect database

Training
time

Validation
accuracy

Test
accuracy

Classification
time

AlexNet 0.11 min 0.9980 0.9947 7.45 ms
MobileNet 0.73 min 0.9833 0.9767 7.63 ms
SqueezeNet 0.13 min 0.9833 0.9800 3.97 ms
WearNet 0.12 min 0.9987 0.9967 3.62 ms
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outperformed others in terms of training time and clas-
sification speed.

5  Deployment of CNN networks

Currently, embedded systems are widely used in the indus-
try due to their advantages in high efficiency, good afford-
ability, continuous production and low energy consump-
tion. In this study, a Linux-based embedded system, in 
which Raspberry Pi 4B works as the core hardware (see 
Fig. 15), was used to further demonstrate the application 
of CNN networks. In this section, 600 surface images 
selected from the testing dataset were used in the surface 
defection test.

Table 9 compares the classification of surface scratch 
in the embedded system with four different CNN struc-
tures. The folder size refers to the total size of whole 
configuration files, which enables the embedded sys-
tem to run detection programmes independently. In the 
embedded environment, the folder size and classification 
time of the WearNet were significantly lower than others, 
while its testing accuracy was still the highest. Hence, it 
is expected that WearNet will have promising prospects 
in industrial production.

6  Conclusions

In this study, a lightweight CNN structure, called WearNet, 
has been developed based on the well-designed convolu-
tional block. The WearNet is designed for surface scratch 
detection in contact sliding, and the surface scratch images 
in the database are collected from cylinder-on-flat tribo-
logical tests. A detailed investigation on the parameter 
selection for network training and examinations on the 
network response and decision mechanism have been car-
ried out. The performance comparison between the Wear-
Net and other commonly used CNN networks has been 
conducted by using different databases. The main contri-
butions of this paper are summarised as follows:

1. The developed lightweight WearNet has minimised net-
work layers and parameters, with distinguished advan-
tages in model size and classification speed, while guar-
anteeing high classification accuracy and recognition 
rate.

2. Training parameter variations have a significant influ-
ence on the network training process. The selected com-
bination of training parameters manages to achieve a 
good balance between computation consumption and 
network performance.

3. The developed WearNet is able to extract and learn dis-
criminative features for surface scratch classification 
step by step. The examination results demonstrate the 
excellent capability of WearNet to correctly classify dif-
ferent scratch images with appropriate labels.

4. The application of WearNet in an embedded system 
shows that WearNet has promising application prospects 
in production.

Fig. 15  Illustration of an 
embedded system

Table 9  Comparison of network performance in embedded system

Test accuracy Classification time Folder size

AlexNet 0.8962 308 ms 419 MB
MobileNet 0.9029 554 ms 17.5 MB
SqueezeNet 0.9170 272 ms 6.35 MB
WearNet 0.9274 225 ms 1.24 MB
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