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Abstract
This study develops a new phenomenological constitutive model to capture the unique evolving cyclic elastoplastic behav-
iours of hexagonal close-packed (HCP) sheet metals. This new constitutive model is developed by adopting the concepts of 
multiple-yield surface approaches. Four phenomenological deformation modes, including Monotonic Compression (MC), 
Monotonic Tension (MT), Reverse Compression (RC), and Reverse Tension (RT), are considered to represent the hardening 
evolution of the materials, including the twining/untwining behaviours. Reference flow stress equations are introduced, and 
a Cazacu-Barlat 2004 (CB2004) type yield surface is employed to each deformation mode. In addition, the RT hardening 
parameters are defined as functions of plastic pre-strains to mitigate the interpolation error caused by parameter determination 
processes of existing models. For validation, the calculated stress–strain curves of AZ31B magnesium alloy are compared 
with experimental curves available from literature. Moreover, to show the accuracy of the proposed analytical model, the 
reproduced stress–strain curves are compared with those of an existing model—the modified homogeneous anisotropic 
hardening (HAH) model. The obtained results show that the new constitutive model can successfully reproduce experimental 
Tension–Compression-Tension (TCT) and Compression-Tension–Compression (CTC) stress–strain curves of HCP sheet 
metals with considerably less percentage errors.

Keywords  Hexagonal close-packed metals · Twining/untwining · Tension–compression asymmetry · Phenomenological 
constitutive model · Yield function · Hardening

1  Introduction

Over the last decade, attention on microscopic and mac-
roscopic behaviours of HCP metals has been paid increas-
ingly due to their unique features and industrial application 
growths. These metals have a wide range of applications in 
industry, including aerospace, automotive, electronics, etc. 
For example, magnesium alloys are the lightest structural 
components (about 1.71 g/cm3) with the HCP crystal struc-
ture and become increasingly crucial for automotive industry 
[1]. However, in sheet metal forming, due to their crystalline 
structure, the number of slip systems is limited, and conse-
quently, they exhibit poor formability [2].

Magnesium alloys show unique mechanical behaviours 
compared to conventional cubic crystalline metals such as 
aluminium alloys and steels [3]. Magnesium alloys’ material 
properties and mechanical behaviours can differ based on 
the loading path and initial texture. For example, Styczynski 
et al. [4] showed a strong basal texture can be induced to 
wrought magnesium alloys in a rolling process. For most 
HCP metals, these unique material behaviours include the 
tension–compression asymmetry or eccentricity in the initial 
yield points, which is usually called “strength differential 
(SD)” or “yield asymmetry.” Härtel et al. [5] reported that 
the compressive strength can be treated to be much lower 
than the tensile strength. Moreover, Lee et al. [3] study 
showed that the asymmetry can be observed in the subse-
quent plastic hardening, which is referred to as a “harden-
ing differential” or “flow asymmetry.” Hadadzadeh et al. [6] 
showed that the strong basal or nearly basal texture of cold-
rolled HCP metals is the main reason for the poor ductility 
and the strong tension–compression asymmetry.
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Due to the basal crystallographic texture of HCP metals, 
main deformation modes are restricted to either prismatic 
{101 ̅0} < 112 ̅0 > or basal {0001} < 112 ̅0 > slips along the 
basal direction < a > in-plane tension. Because the < a > type 
slips cannot cause any deformations along the c-axis, the 
tensile twining {101 ̅2} < 101 ̅1 > is activated and results in 
an extension along the c-axis [7]. Tensile twinning is the 
predominant deformation mechanism during the in-plane 
compression, which causes a strong tension–compression 
asymmetry in the plastic behaviour of the materials [8]. 
Although the critical resolved shear stresses (CRSS) for 
slip on the basal plane are remarkably lower than for the 
prismatic and pyramidal planes, basal slip cannot shorten 
or elongate the c-axis . Consequently, it cannot satisfy the 
von-Mises criterion of five independent slip systems for 
homogeneous deformations [9].

Previous studies were carried out to model the unu-
sual mechanical behaviours of magnesium alloys at room 
temperature. Usually, the constitutive relation was used to 
describe the plastic flow behaviours of materials. Generally, 
the constitutive models can be classified into two categories, 
including phenomenological and physically based models. 
Constitutive models based on crystal plasticity are classi-
fied as physically based models. In crystal plasticity, the 
constitutive equations are evaluated based on the deforma-
tion mechanisms of crystals, such as the slip mechanism of 
HCP metals. Because crystal plasticity is a theory for mate-
rials at a grain scale, a tremendous amount of calculation 
is necessary, and consequently, the practical application of 
this model is for FE-based numerical modelling. However, a 
large number of calculations at grain-scale of materials can 
be time-consuming and computationally insufficient.

Usually, the continuum plasticity is applied to phenom-
enological models. In the phenomenological continuum 
plasticity, the yield surface completes the plastic response of 
the material, which is the most critical constitutive equation. 
HCP metals, including magnesium alloys, have asymmetri-
cal yield surfaces due to their strong eccentricity in yield-
ing [8]. Several yield functions were proposed to model the 
anisotropy or the tension–compression asymmetry (TCA) 
of the materials. Cubic materials such as body-centred 
cubic (BCC) and face-centred cubic (FCC) metals show 
considerable anisotropy, while most do not exhibit tension– 
compression asymmetry. Several studies were performed on 
the cyclic behaviours of such metals. Shariati and Mehrabi 
[10] studied the low cycle fatigue life of CK45 steel and SS316  
stainless steel under strain-controlled loading. Moreover, 
they experimentally investigated the impact of mean strain 
and strain amplitude on fatigue life. Shariati and Mehrabi 
[11] performed an experimental study on ratcheting-fatigue 
interaction and ratcheting behaviour of Ck45 steels under 
stress-controlled uniaxial cyclic loading. Also, Shariati 
and Mehrabi [12] studied the influence of pre-fatigue on 

the fatigue behaviour of CK45 steel at room temperature. 
They recorded the fatigue life for various stress ratios and 
applied different mean stress models to predict the fatigue 
life. However, some cubic metals show considerable TCA 
in their plastic behaviours, which makes their plastic behav-
iour even more complicated. For example, Maeda et al. 
[13] showed that the DP980 steel sheets show considerable 
strength differential effect (SDE) under the in-plane uniax-
ial tension–compression test. Recently, Mehrabi et al. [14] 
proposed new analytical and numerical methods to model 
the tension–compression asymmetry in plastic behaviours 
of steels under bending. There are few continuum-based 
models reported in literature to consider the anisotropy and 
asymmetry of HCP metals. One of the noticeable and well-
known models is the Cazacu-Barlat family of yield surfaces 
developed since 2001, which can precisely model HCP met-
als’ asymmetry and anisotropy. Cazacu and Barlat [15] pro-
posed a generalisation of the invariants of the stress deviator 
and used this approach to extend Drucker’s isotropic yield 
criterion. Cazacu and Barlat [16] applied this model to study 
the anisotropic plastic response of aluminium alloys. More-
over, Cazacu and Barlat [17] modified the proposed yield 
function to consider the tension–compression asymmetry. 
They modified the isotropic Drucker yield function [18] by 
applying the second and third invariants of stresses into the 
yield function. Mehrabi and Yang [19] developed a novel 
analytical method based on the Cazacu-Barlat 2004 asym-
metric yield function and isotropic plastic hardening rule for 
modelling bending and springback behaviours of HCP met-
als. Furthermore, Mehrabi et al. [20] improved the Mehrabi 
and Yang [19] model by including the effects of the neutral 
surface shit and the variable elastic modulus into the model.

For the stress invariants-based yield criteria, not only 
the third stress invariant contributes the SD behaviours, but 
the first stress invariant can also play an essential role in 
such material behaviours. Cazacu et al. [21] developed a 
physically-based non-quadratic yield surface based on single 
and polycrystalline viscoplasticity to describe the material's 
anisotropy and initial yield asymmetry. In their research, the 
anisotropy was considered with the linear transformation 
of the deviatoric stress tensor, and the asymmetry param-
eter is controlled by the ratio of strength in tension and 
compression.

While the twining occurs under compression, the untwin-
ing happens under the subsequent tension. Lou et al. [22] 
showed that it initiates because of the contraction of the 
twined region without nucleation. Accurate modelling of 
twining/untwining behaviours is important since reverse 
loading usually occurs in sheet metal forming processes. 
Some phenomenological and physically-based models 
based on the continuum plasticity and crystal plasticity were 
presented to model magnesium alloys' twining/untwining 
behaviours. Although the proposed models can capture the 

1626 The International Journal of Advanced Manufacturing Technology (2022) 123:1625–1639



1 3

twining/untwining behaviours of the material, further study 
is needed to improve the application and accuracy of these 
models. The existing models based on crystal plasticity 
such as Zhang et al. [23] have some complexities, which 
limit their applications. In addition, the available phenom-
enological models have some drawbacks. Li et  al. [24] 
proposed a model based on von-Mises yield function and 
concepts of crystallographic models such as c-axis orienta-
tion of basal texture for each phenomenological deformation 
mode, which has the complexity of crystal plasticity con-
cepts. Some models were developed based on applying the  
multiple-yield surface method, for example, the Lee et al. [8]  
model. However, since the material parameters in their mod-
els are related to pre-strains, the lack of independent func-
tions to define these parameters as a function of compres-
sive pre-strains during untwining is troublesome. In some 
cases, interpolating data from multiple experimental tests 
are required to determine material parameters for different 
pre-strains, which can cause interpolation errors. A recent 
model based on the HAH hardening model was presented 
by Lee et al. [3] for AZ31B magnesium alloy sheets at room 
temperature. They modified the HAH hardening model to 
capture the plastic behaviours of magnesium alloys under 
non-proportional strain path changes with constant mate-
rial parameters. Overall, their model can reproduce the main 
characteristics of stress–strain curves. However, the repro-
ducibility of their model was only shown acceptable results 
for a limited range of pre-strains and their model provided a 
limited accuracy as well. Recently, Lee et al. [25] modified 
the Lee et al. [3] model for AZ31B magnesium alloy sheets 
at elevated temperatures, which inherits the same drawback 
as their previous model. Therefore, there is still a technical 
need to develop a new constitutive model for HCP metals, 
capturing their complex behaviours precisely under dynamic 
loading conditions.

In this research, a new elastoplastic constitutive model is 
developed to capture the twining/untwining behaviours of 
HCP sheet metals during TCT and CTC cyclic loading. The 
developed model is based on the concepts of multiple yield 
surface approaches and isotropic hardening rule. The hard-
ening response consists of four phenomenological modes, 
including monotonic compression (MC), monotonic tension 

(MT), reverse compression (RC), and reverse tension (RT), 
and a Cazacu-Barlat 2004 (CB2004) type yield surface is 
adopted for each phenomenological mode. Furthermore, a 
new parameter determination process is developed as the 
RT mode’s hardening material parameters are defined as 
compressive pre-strains functions. Not only this method can 
make the parameter determination process convenient and 
straightforward, but it can mitigate the interpolation error 
of existing models. As a case study to validate the proposed 
analytical model, material behaviours of AZ31B magne-
sium alloy under tension–compression-tension (TCT) and 
compression-tension–compression (CTC) loading paths are 
calculated and compared with experimental results available 
in literature [3]. Moreover, the calculated results obtained 
via using the developed model are compared with those from 
the recent modified HAH model [3]. It is demonstrated that 
the developed analytic constitutive model can accurately 
capture the evolving asymmetric hardening behaviours of 
the magnesium alloys. The significance of the current con-
stitutive model is that it can successfully model HCP sheet 
metal behaviours under cyclic loading with better accuracy 
in a more comprehensive pre-strain range compared to the 
existing models available in literature. Moreover, the harden-
ing material parameters during all three deformation modes 
can be defined as pre-strain functions. Therefore, in contrast 
to those existing models in literature, a systematic parameter 
determination process can be applied to determine hardening 
parameters, which can mitigate interpolation errors. Finally, 
the developed model can well capture elastoplastic behav-
iours of the materials within any range of pre-strains, which 
verifies its versatility.

2 � Development of the new constitutive 
model for HCP sheet metals

2.1 � Modelling approach

In this study, phenomenological deformation modes of 
MC, MT, RC, and RT are defined to model evolving plas-
tic behaviours of HCP sheet metals under cyclic loadings. 
Figure 1 shows the MT and MC modes including the initial 

Fig. 1   Schematic flow stress 
curves for the four deformation 
modes of monotonic compres-
sion (MC), monotonic tension 
(MT), reverse compression 
(RC), and reverse tension (RT) 
under a TCT and b CTC load-
ing paths S
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tension and compression of the TCT and CTC curves, 
respectively. In addition, the RC mode consists of the reverse 
compression following tension, while the RT mode refers to 
the reverse tension following compression of the TCT and 
CTC curves. Young’s moduli in MC and RT modes are con-
sidered differently, which aligns with experimental observa-
tions from literature, for example, experimental observations 
from Lou et al. [22].

Four CB2004 type yield surfaces are assigned to the 
deformation modes to develop the constitutive equations 
based on magnesium alloys’ twining/untwining behaviour. 
Each yield surface is only active when its deformation mode 
is activated. A general reference fellow stress equation is 
introduced and developed in Sect. 2.4, representing the yield 
surfaces' hardening evolution at each deformation mode.

To indicate the direction of loading, an indicator func-
tion can be defined by summing the in-plane principal strain 
increments, d�1 and d�2 as

where sgn represent the sign function. By assuming that 
the sheet metals are at least under a nonzero in-plane 
normal stress during deformation, the indicator function 
gives the value of 1 for d�1 + d�2 ≥ 0 (tension) and 0 for 
d𝜀1 + d𝜀2 < 0 (compression). Similar approaches to indicate 
the loading directions were also adopted by several studies in 
literature. For example see the Lee et al. [25] model.

Moreover, to detect the reverse loading state, especially 
for numerical implementation purposes, a reverse loading 
criterion is adopted from literature [26]. As illustrated in 
Fig. 2, this criterion is defined using on the relative angle 
between two stresses, θrel representing the previous, dold 
and the current loading directions, dnew. In addition, θref is 
a prescribed reference angle with a typical value of π/2. For 

(1)w = sgn
(
1 + sgn

(
d�1 + d�2

))

reverse loading to happen θrel > θref, the relative angle can 
be defined as

In Eq. (2), �(m) and �(m+1) are stress tensors of the previ-
ous and current time steps, respectively.

2.2 � Constitutive equations

In order to model the asymmetric evolution of hardening 
responses of magnesium alloys, including untwining behav-
iours in reverse tension, a general constitutive equation is 
proposed as

In Eq. (3), f (�) is the yield function, �yt and �yut are the 
initial tensile and untwining yield stresses, and RMC

iso
 , RMT

iso
 

and RRT
iso

 are isotropic hardening functions in MC, MT and 
RT modes, respectively. Also, �c is a material parameter, 
and cn

0
 is the initial strength difference parameter of CB2004 

yield criterion in the current mode and GRT and GRC are 
the initial conditions of isotropic hardening functions in RT 
and RC modes, respectively. The initial yield surface’s size 
of the active mode equals the previous yield surface’s size, 
which is updated using the initial conditions. In other words, 
the initial size can be determined using accumulated plastic 
strains in the previous mode. However, the yield surface 
expansion at the active mode is controlled by its local equiv-
alent accumulated plastic strains. Moreover, v is an indicator 
function, indicating the untwining deformation during the 
RT mode and can be expressed as

where �MC
0,un

=
�yt

�ct
 , σct is the initial compressive yield stresses, 

and �n
eq

 and �n−1
eq

 are the current and previous modes’ local 
equivalent accumulated plastic strains, respectively.

2.2.1 � Modified yield function

The isotropic CB2004 yield function can be expressed as

where τy is the yield stress in pure shear, c is the strength dif-
ference parameter, J2 and J3 are the second and third invari-
ants of the stress deviator tensor, respectively. The material 

(2)�rel = cos−1
⎛
⎜⎜⎝
�(m)

����(m)
���
∶

�(m+1)

����(m+1)
���

⎞
⎟⎟⎠
= cos−1

�
dold.dnew

�

(3)
f (�) = v�yt + w

(
RMT
iso

+ (1 − v)
(
�yut + RRT

iso

)
+ GRT

)

+ (1 − w)
((
1 − �cc

n
0

)
RMC
iso

+ GRC
)

(4)v = sgn
(
1 + sgn

(
w
(
�n
eq
− �MC

0,un
�n−1
eq

)))

(5)f =
(
J2

3

2 − cJ3

) 1

3

= �y

Fig. 2   The reverse loading criterion
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parameter c applies the TCA effect on the yield function. 
The yield function in Eq. (5) can be rewritten as

Also, for c ∈
�
−3

√
3

2
, 3

√
3

4

�
 , the yield surface is convex 

[17]. While the asymmetric isotropic yield surface can 
represent individual yield surfaces for fixed accumulated 
plastic deformation levels, it cannot account for the con-
tinuous evolving TCA caused by the texture evolution dur-
ing twinning deformation. To take this effect into account, 
the parameter c is defined as a function of local equivalent 
accumulated plastic strain and can be defined as

In Eq.  (7), s is a function of local equivalent accu-
mulated plastic strain in the previous mode and can be 
expressed as

Hill [27] showed that the local equivalent accumulated 
plastic strain associated with the asymmetric isotropic 
yield function by applying the plastic work-equivalence 
principle. In this study, the tensor components of Cauchy 
stress is denoted collectively by the (3 × 3) matrix σij or by 
the (9 × 1) column σ. Similarly, the strain tensor compo-
nents are denoted by εij or ε. Based on this principle and 
considering any f (σ) can be made homogenous of degree 
one with respect to positive multipliers, the following 
expression can be written

where the symmetric tensor β denotes a generic outward 
normal to the yield surface at a yield point. Then, by con-
sidering a unique β, it can be defined as

By applying the associated flow rule and considering 
equivalent plastic strain increment as the plastic multiplier, 
the plastic strain can be defined as

Note that, under the uniaxial loading condition, β is 
reduced to a scaler. More details can be found in Mehrabi 

(6)(
27

3
√
3 − 2c

)
1∕3

(J2
3

2 − cJ3)

1∕3

= �yt

(7)

c
�
�n
eq

�
= (1 − s)

3
√
3

��
�MC
0,un

�
�cR

MC
iso

+ �yt
��3

−
�
RMC
iso

+ �yt
�3�

2

��
�MC
0,un

�
�cR

MC
iso

+ �yt
��3

+
�
RMC
iso

+ �yt
�3�

(8)s = sgn
(
�n−1
eq

)

(9)�� = f (�) = �yt

(10)� =
�

��
f (�)

(11)� = �n
eq
�

et al. [20]. In this study, β refers to the first tensor com-
ponent β11.

2.3 � Phenomenological deformation modes

In this section, isotropic hardening responses in each defor-
mation mode are presented. For this purpose, based on the 
hardening law proposed for each mode, a reference flow stress 
equation is given. The hardening laws in each deformation 
mode control the expansion of their yield surfaces based on 
the local equivalent accumulated plastic strain.

2.3.1 � MC mode

The MC mode is active when the monotonic compressive 
loading is applied. Accordingly, the MC yield surface is active 
during this deformation mode. In this mode, according to Eqs. 
(1) and (4), w = 0 and v = 1 and the reference flow stress equa-
tion considering the initial condition of GRC = 0 can be writ-
ten as

where, RMC
iso

 is the isotropic hardening in monotonic com-
pression and can be defined with a Boltzmann sigmoidal-
type function as

In Eq. (13), KMC, MMC and NMC are material parameters, 
respectively, which can be obtained from monotonic compres-
sive experimental test data. Also, �n

0
 and �MC

0
 are the initial � in 

current and MC modes and �MC can be determined by apply-
ing the initial condition of RMC

iso
(0) = 0 . Moreover, according 

to Eq. (8), s = 0 and the strength difference parameter c is a 
function of local equivalent accumulated plastic strain in the 
current mode.

2.3.2 � MT mode

Monotonic tension deformation mode and its yield surface 
are active when monotonic tensile loading is applied. During 
this mode, according to Eqs. (1) and (4), w = v = 1. Therefore, 
the general reference flow stress equation with no plastic pre-
strains can be written as

(12)f (�) = �yt +
(
1 − �cc

n
0

)
RMC
iso

(13)RMC
iso

�
�n
eq

�
=

�n
0

�MC
0

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

KMC − �yc

1 + exp

⎛⎜⎜⎝

MMC−
�n
0

�MC
0

�n
eq

NMC

⎞
⎟⎟⎠

+ �MC

⎞⎟⎟⎟⎟⎟⎟⎟⎠

(14)f (�) = �yt + RMT
iso
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where RMT
iso

 is the isotropic hardening in monotonic tension 
and it can be expressed with a Voce-type hardening rule as

In Eq. (15), KMT and NMT are material parameters, which 
can be obtained by curve fitting of monotonic tensile test 
data. Similar to the MC mode, parameter c is a function of 
local equivalent accumulated plastic strain in the current 
mode.

2.3.3 � RC mode

This mode refers to the reverse compression following the 
previous tension. In this mode, the RC yield surface is the 
only active yield surface, and according to Eqs. (1) and (4), 
w = 0, and v = 1. From Eq. (3), the general reference flow 
for the RC yield surface by considering a non-zero initial 
condition ( GRC ≠ 0 ) can be written as

The RC modes’ initial condition, with the initial value of 
v0 = 1 can be defined as

where subscripts n and n-1 denote the current and the previ-
ous modes, respectively, and β0 can be found from the ini-
tial yield surface ( �n

eq
= 0 ). Moreover, according to Eq. (8), 

s = 1 and consequently the yield criterion strength difference 
parameter is zero (c = 0).

2.3.4 � RT mode

The RT deformation mode and its yield surface are active 
during the reverse tension following the previous compres-
sion. During this deformation mode, w = 1 and parameter v 
can be 0 or 1 depending on the local equivalent accumulated 
plastic strain. Hence, the general reference flow stress equa-
tion can be expressed as

The RT modes’ yield surface’s size updates with the ini-
tial condition GRT , which can be expressed as

(15)RMT
iso

(
�n
eq

)
= KMT

[
1 − exp

(
−NMT�n

eq

)]

(16)f (�) = �yt +
(
1 − �cc

n
0

)
RMC
iso

+ GRC

(17)

GRC = −�t
�n
0

�MC
0

RMT
iso

(
�n−1
eq

)
+
(
1 − vn−1

)(
�yt − �yut − RRT

iso

(
�n−1
eq

))

+(
1

�MC
0,un

−
1

�n
0,un

)�yt

(18)f (�) = v�yt + RMT
iso

+ (1 − v)
(
�yut + RRT

iso

)
+ GRT

(19)

GRT =
((
1 − �cc

MC
0

)
−
(
1 − �cc

n−1
0

))
RMC
iso

(
�n−1
eq

)
− (

1

�MC
0,un

−
1

�n−1
0,un

)�yt

where c0
0
= cMC

0
 is the initial value. Moreover, similar to the 

RC mode, according to Eq. (8), s = 1 and, consequently, the 
yield criterion strength difference parameter is zero (c = 0). 
According to Eq. (18), the RT mode’s isotropic hardening 
function RRT

iso
 , can be active in this mode, which represents 

the hardening response of the material associated with 
untwining deformation. Note that the deformation mecha-
nisms for magnesium alloys can be not as simple as pure 
twining/untwining or slip. However, for simplicity, the four 
phenomenological deformation modes were assumed with 
the dominant deformation mechanisms during the plastic 
evolution of magnesium alloys. The twining deformation 
mechanism is predominant during the in-plane compres-
sion of magnesium alloy sheets and exhausts with continu-
ous compression. Abrupt grain reorientation, creation and 
disappearance of twining boundaries lead to the initiation 
of slip mechanism again, and consequently, the flow stress 
rises. Due to the untwining, the reoriented crystals rotate 
back to their original orientations during the subsequent in-
plane tension, and the basal texture appears again. Since 
the untwining does not need twin nucleation, the untwining 
stress is initially less than the twinning stress. However, the 
disappearance of existing twins exhausts untwining defor-
mation, and consequently, the slip deformation mechanism 
becomes dominant, which leads to higher stress and results 
in an inflected sigmoidal curve. In fact, untwining eliminates 
the original twins by producing the reverse of the previous 
strain caused in twinning deformation [22]. In the current 
model, the amount of the equivalent plastic strain, which 
takes untwining to be exhausted, is assumed to be a fraction 
of the compressive equivalent pre-strain.

Figure 3 shows the schematic CT stress–strain curve 
and its critical points in the RT mode. For the range of �RT

eq,1
 

Fig. 3   Critical points on the stress–strain curve during RT mode
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to �RT
eq,3

 the untwining deformation is happening and v = 0. 
At P1, �RT

eq,1
= �yut + GRT , where �yut is the initial untwining 

yield stress and �RT
eq,1

= �yut is its corresponding strain. 
Moreover, the at P2, �RT

eq,2
= �yuth + GRT , where �yuth is the 

stress, which the strain is halfway between the untwining 
yield strain �RT

eq,1
 , and the strain at the upper plateau region 

�RT
eq,3

 . At P3, untwining exhausts and the slip-dominant 
deformation initiates. From this point onward v = 1, how-
ever, at this point the reference fellow stress in Eq. (18) 
should be valid for both values of v = 1 and 0. Therefore, 
the RT mode’s hardening function at this point can be 
expressed as

As shown in this figure, �MC
eq

 is the equivalent pre-strain 
or the local equivalent plastic strain in the MC mode, and 
�yuth is a material parameter, which can be determined 
from a CT uniaxial test.

A modified Boltzmann sigmoid–Voce function is pro-
posed for the isotropic hardening response of the material 
in the RT mode as

In Eq. (21), the first and second terms represent a mod-
ified Boltzmann sigmoid and an exponential Voce type 
hardening function, respectively. Moreover, in this equa-
tion, A is a function of the local equivalent accumulated 
plastic strain, which can be defined as

In the abovementioned equations, KRT  , NRT  , MRT  and 
LRT are hardening parameters, which are functions of the 
equivalent pre-strain. The parameter determination proce-
dure is fully explained in the next section.

(20)RRT
iso

(
�RT
eq,3

)
= �yt − �yut

(21)

RRT
iso

(
�n
eq

)
=

A

1 + NRT .exp
(
−MRT�n

eq

) + KMT
[
1 − exp

(
−LRT�n

eq

)]

(22)A
(
�n
eq

)
= KRT

[
1 − exp

(
−�n

eq

)]

2.4 � Determination of material parameters in the RT 
mode

In this section, the material parameter determination pro-
cess in RT mode is explained. According to Fig. 3, A is 
defined as the stress difference between the top and bottom 
regions of the RT curve A = �RT

eq,3
− �RT

eq,1
 . Moreover, as 

mentioned in the previous section, stress at P3 can be 
found from the RT mode’s reference flow stress with v = 1. 
Therefore, by applying reference flow stress and Eq. (22), 
the hardening parameter KRT can be expressed as

Hardening parameter NRT is defined as a function of slope 
ratio of uniaxial compressive and tensile hardening curves 
at the compressive plastic pre-strain and can be expressed as

where |.| denotes absolute value. Parameters MRT and LRT in 
Eq. (21) can be determined by considering the critical points 
on the RT hardening curve, as shown in Fig. 3. At P1, the local 
equivalent accumulated plastic strain is zero, and the first prin-
cipal stress equals the initial RT yield surface size. The local 
equivalent accumulated plastic strain at P2 is 
�RT
eq2

= �MC
0,un

�MC
eq

∕2 . Therefore, by substituting the hardening 
equations (Eqs. (15) and (21)) into Eq. (18) and considering 
the stress at P2, �RT

eq,2
 the following relationship can be written

By manipulating the abovementioned equation and rear-
range it for parameter LRT , it can be written as

(23)KRT =
KMT

[
1 − exp

(
−NMT�MC

eq

)]
+ �yt − �yut

1 − exp
(
−�MC

eq

)

(24)NRT = 1000 ×

||||||

(
�RMC

iso
∕��1

)

�MC
0,un

(
�RMT

iso
∕��1

)
||||||�1=�MC

0,un
�C
eq

(25)

�yuth = �yut + KMT
[
1 − exp

(
−NMT�RT

eq,2

)]
+

A
(
�RT
eq,2

)

1 + NRTexp
(
−MRT�RT

eq,2

)

+KMT
[
1 − exp

(
−LRT�RT

eq,2

)]

(26)LRT = −
1

�RT
eq,2

ln

⎡⎢⎢⎢⎣
1 −

1

KMT

⎡⎢⎢⎢⎣
�yuth − �yut − KMT

�
1 − exp

�
−NMT�RT
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��
−

A
�
�RT
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�

1 + NRTexp
�
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�
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By applying the parameter LRT from Eq. (26) into Eq. (20) 
and considering �RT

eq,3
∕�RT

eq,2
= 2, the following relationship 

can be obtained

Equation (27) is a nonlinear equation with two real roots 
for MRT  , which can be found by applying the bisection 
method via programming a simple MATLAB code. By solv-
ing Eq. (27) and using Eq. (26), two sets of parameters with 
the following relationship can be found

where subscripts 1 and 2 denote the first and second roots, 
respectively. Two curves based on the two sets of parameters 
are illustrated in Fig. 3. As it can be found, Curve 1, which 
is related to the first roots, can successfully reproduce the 
shape of the hardening response in the RT mode.

2.5 � Parametric study

This section performs a parametric study to evaluate the 
effect and sensitivity of hardening parameters during reverse 
tensile loading. For this purpose, a CT curve based on the 
model material AZ31B magnesium alloy [3] with a pre-
strain of − 0.06 was considered as a baseline, as shown in 
Fig. 4. The hardening parameters used for the baseline are 
listed in Table 1.

Figure 5 shows the effects of the hardening parameters on 
the shape of the CT curve. As shown in Fig. 5a, parameter KRT 
controls the top plateau region of the reverse tensile curves. 
This parameter controls the stress difference between P2 and 
P3 by shifting the top region. That is to say, lower values of 
this parameter result in lower values of the stress for the top 
region. The effects of parameter LRT are shown in Fig. 5b. This 
parameter controls the hardening rate of the curve through 
the entire untwining deformation. By applying higher values 
of this parameter, the rate of the curve increases. Finally, the 
effects of parameters NRT and MRT are depicted in Fig. 5c, d, 
respectively. These two parameters control the hardening rate 
between P2 and P3. As it can be found, higher values of NRT 
slightly decreases the hardening rate, while higher values of 

(27)
A
�
�RT
eq,3

�

1 + NRTexp
�
−MRT�RT

eq,3

� − KMT

⎡
⎢⎢⎢⎣
1 −

1

KMT

⎡
⎢⎢⎢⎣
�yuth − �yut − KMT

�
1 − exp

�
−NMT�RT

eq,2

��
−

A
�
�RT
eq,2

�

1 + NRTexp
�
−MRT�RT

eq,2

�
⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

2

= �yt − �yut − KMT

(28)L
RT

1
> L

RT

2
and M

RT

1
< M

RT

2

MRT significantly increases the hardening rate. It is worth men-
tioning that the parameter MRT has the most influence on the 
reverse tensile curve than the other parameters.

2.6 � Elastic deformation behaviours

To the best of the authors’ knowledge, no clear practical 
method to date was developed to model the evolving elastic 
deformations of magnesium alloys during cyclic TCT and 
CTC loadings. In the current model, the chord method, which 
was discussed thoroughly in Mehrabi et al. [20], was applied 
to take the variation of elastic modulus with plastic strain into 
account for the MT and MC modes. However, as shown in 
Fig. 1, the elastic modulus in the RT mode ( ERT

eff
 ) is different 

from the elastic modulus in the MC mode ( EMC
eff

 ). In this sec-
tion, a new analytical model is developed to capture the elas-
tic behaviours of magnesium alloys in the RT mode. A non-
linear equation can define the elastic modulus as

where aRT
E

 , bRT
E

 and cRT
E

 are material constants. In the pro-
posed model, the maximum value of elastic modulus in RT 
mode is assumed to be equal to the saturated elastic modulus 
in monotonic compression EMC

a
 . In fact, the above equation 

is only valid for strains between 0 and the corresponding 
equivalent strain of saturated elastic modulus �MC

eq a
 , and for 

higher strains, the effective elastic modulus is EMC
a

 . By 
applying the mentioned boundary condition and considering 
the initial condition of ERT

eff
(0) = E0 and one arbitrary data 

point 
(
�n
eq

∗,E∗
)
 from experimental data into Eq. (29), the 

parameter cRT
E

 can be expressed as

By applying cERT and aERT into Eq. (29), the parameter bERT 
can be defined by solving the following equation:

Equation (31) is a nonlinear equation, which can be also 
solved using the bisection method. The elastic material 

(29)ERT
eff

= aRT
E
.exp

(
bRT
E
.�n

eq

)
+ cRT

E
.�n

eq

2

(30)cRT
E

=
E∗ − E0.exp

(
bRT
E
.�n

eq
∗
)

�n
eq

∗2

(31)

EMC
a

= E0.exp
(
bRT
E
.�MC

eq a

)
+

E∗ − E0.exp
(
bRT
E
.�n

eq
∗
)

�n
eq

∗2
.�MC

eq a

2

Table 1   RT mode hardening material for the reference material

Material KRT NRT MRT LRT

AZ31B [3] 4235.7 3409.4 173 -8.1
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parameters for monotonic and reverse loadings of AZ31B 
magnesium alloy [3] are listed in Table 2. In this table, EMT

a
 

denotes the saturated elastic modulus in monotonic tension. 

Except for E∗ and �n
eq

∗ , all chord method’s parameters are 
discussed in Mehrabi et al. [20].

Fig. 4   The reference CT curve 
represents the baseline for para-
metric study
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Fig. 5   Effects of RT hardening parameters on CT curves: a KRT , b LRT , c NRT and d MRT
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Based on Eqs. (29)–(31) and using the material parameters 
listed in Table 2, the variations of elastic modulus in the RT 
mode versus compressive plastic pre-strain can be shown in 
Fig. 6. As it is shown, the proposed model can successfully 
capture the elastic behaviours of AZ31B magnesium alloy dur-
ing reverse loading.

3 � Results and discussion

In this section, material behaviours of the model material, 
AZ31B magnesium alloys during TCT and CTC load-
ings, are calculated based on the developed model, and the 
extracted results are compared with those experimental data 
from literature. Note that the current model is capable of 
representing HCP metals' twining/untwining and its continu-
ous evolving asymmetry under cyclic loading. According to 
Yoon et al. [28], the dominant factor in the plastic behaviour 
of magnesium alloy sheets is the initial asymmetry in ten-
sion and compression. Hence, considering the aim of this 
study, the effects of initial anisotropy of the material were 
neglected.

3.1 � Yield surface prediction

Figure 7 shows the yield surface evolution during MC and 
MT modes for eleven fixed levels of the local equivalent 
plastic strains ( �n

eq
= 0, 0.01, 0.02,… , 0.1 ). The loading dur-

ing MT and MC modes occurs within the third and first 
stress quadrants and are shown with solid lines in Fig. 7a, 

b, respectively. As it can be seen, the developed model with 
the modified CB2004 yield criterion can successfully cap-
ture the continuous evolving TCA of the material’s plastic 
response due to the induced twining-slip texture change. The 
modelled plastic responses for AZ31B magnesium alloy dur-
ing the MC and MT loadings algin with the experimental 
observations from Muhammad et al. [29] and theoretical 
results provided in Lee et al. [3]’s study.

Figure 8 shows the yield surface evolution during the 
RC mode with different tensile equivalent pre-strains of 
�MT
eq

= 0.016and0.036 . In the present model, the loading 
during the RC mode occurs within the third stress quadrant, 
which is shown by solid lines. The yield loci are plotted 
for eleven fixed levels of the local equivalent plastic strains 
( �n

eq
= 0, 0.01, 0.02,… , 0.1).

Figure 9 shows the yield surface evolution during the 
RT mode with different compressive equivalent pre-strains 
of �MC

eq
= 0.0125and0.0264 , respectively. The loading dur-

ing the RT mode occurs within the first stress quadrant, 
which is shown by solid lines. The yield loci are plotted 
for eleven fixed levels of the local equivalent plastic strains 
( �n

eq
= 0, 0.01, 0.02,… , 0.1).

The modelled plastic responses for AZ31B magnesium 
alloy during the RC and RT loadings show a similar trend 
as the experimental results provided in the literature by 
Muhammad et al. [29]. These yield loci can be further cali-
brated by the experimental results via applying anisotropy 
coefficients into the yield criterion, which will be considered 
for future studies.

3.2 � Analytical results for cyclic behaviours 
of magnesium alloys

Additional to those RT mode hardening and elastic mate-
rial parameters listed in Tables 1 and 2, and the rest of the 
plastic material parameters for the AZ31B magnesium alloy, 
including the hardening parameters during the MC and MT 
modes, are listed in Table 3. Superscripts T and C denote 
tension and compression modes, respectively.

The experimental stress–strain curves are compared with 
analytical results based on the new and modified HAH mod-
els in Fig. 10. To determine the accuracy of the proposed 
model, for each case, the normalised root mean square error 
(NRMSE) of the two models are calculated and listed in 
Table 4. Moreover, number of check points and experimental 
repetitions for each curve is listed in this table. In this study, 
the NRMSE is defined as

Table 2   Elastic material 
parameters

Material E0 (GPa) Ea
MT (Gpa) Ea

MC (Gpa) E* (Gpa) �n
eq

∗

�MC
eq a

ξT ξC

AZ31B [3] 45 32.6 30 14 0.018 0.076 756.9 69.6
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Fig. 6   Comparison of predicted and experimental elastic modulus in RT 
mode for AZ31B (experimental results are extracted from literature [3]
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Table 3   Plastic deformation 
material parameters for the 
proposed model

Material �yt �yc �yut �yuth KMT NMT KMC MMC NMC �c �t

AZ31B [3] 180 125 53 102 133.7 31.1 500 5.122 × 10−2 8.405 × 10−3 0.579 0.712
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Fig. 10   Measured and predicted CTC and TCT curves for AZ31B with (a) C2T2C6, (b) C4T4C6, (c) T2C2T4, and (d) T4C4T6 loading paths, in 
which measured data is reproduced from Lee et al. [3]

Table 4   Normalised root 
mean squared error for AZ31B 
magnesium alloy with different 
loading paths (experimental 
data is extracted from literature 
[3]

Loading path NRMSE (%) Number of check 
points

Number of 
experimental 
repetitionsCurrent model Lee et al. [3] 

model

C2T2C6 14.38 22.56 80 At least 5
C4T4C6 14.25 16.14 120 At least 5
T2C2T6 10.23 16.58 90 At least 5
T4C4T6 9.28 10.27 138 At least 5
Ave. NRMSE (%) 12.03 16.38
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where RMSE and SD are root mean squared error and stand-
ard deviation, respectively, and can be defined as

where �i is the measured stress from experimental results 
for the ith point, �̂i is the predicted stress for the ith point, 𝜎̃ 
is the mean value of the measured stress from experiments, 
and n is the number of points or sample size, respectively.

The model responses to CTC and TCT loading paths of 
AZ31B with different pre-strain values are shown in Fig. 10. 
In this figure, the numbers in front of T or C show the pre-
strain in each loading direction, i.e., T2C2T6 in Fig. 10a 
means pre-strains of 2% in both tension and reverse com-
pression and pre-strain of 6% in the final tension. As it can 
be seen, the proposed elastic–plastic material model can 
successfully reproduce the experimental cyclic stress–strain 
curves under different loading paths.

For the current model, most of the discrepancies between 
calculated and experimental results are at the upper plateau 
region of the RT curves. These discrepancies are primar-
ily due to the abrupt transition between untwining and slip 
dominant deformations. However, the results based on 
the Lee et al. [3] model show discrepancies in the elastic 
regions, reverse-compression under CTC loading path and 
the upper plateau region of the reverse tensile curves. In 
order to investigate the accuracy of the models, NRMSEs 
of the reproduced stress–strain curves with different loading 
paths are calculated and listed in Table 4 for the two models. 
Based on the given data in Table 4, the current model has 
less percentage error than the Lee et al. [3] model under all 
loading paths. Compared to the Lee et al. [3] model, the 
application of the developed model results in a significant 
error reduction of 8.18% for the C2T2C6 loading path. Fur-
thermore, applying the new model (with an average NRMSE 
of 12.03%) results in a 4.35% less average error than the 
Lee et al. [3] model (with an average NRMSE of 16.38%). 
It is worth mentioning that the highest and lowest errors for 
both models belong to C2T2C6 and T4C4T6 loading paths, 
respectively.

While the prediction accuracy of the developed model for 
paths with higher pre-strain values (C4T4C6 and T4C4T6) 
may be a little limited, the prediction accuracy of those with 
lower pre-strains (C2T2C6 and T2C2T6) are much high. 
This clearly shows that the developed model can have a high 
accuracy at a more comprehensive pre-strain range, which 

(32)NRMSE =
RMSE

SD

(33)RMSE =

�∑n

i=1

�
σi − σ̂i

�2
n

(34)SD =

√
1

n − 1

∑n

i=1

(
𝜎i − 𝜎̃

)2

significantly enhances the accuracy and versatility of the 
model in general. The high prediction accuracy of the model 
in any pre-strain range is achieved with the application of 
variable RT hardening coefficients and yield function param-
eter c, which are defined as functions of plastic pre-strains. 
Thus, the developed model shows excellent accuracy with an 
average error of approximately 12%, which is a significant 
improvement compared to the existing models in literature.

4 � Concluding remarks

In this research, based on the concepts of multiple yield 
surface approaches and isotropic hardening, a new phe-
nomenological elastoplastic model has been developed to 
capture twining/untwining behaviours of HCP metals under 
TCT and CTC cyclic loadings. This proposed constitutive 
model can be used to describe their elastoplastic behaviours 
by assigning a CB2004 type yield surface to four phenom-
enological deformation modes, including monotonic com-
pression (MC), monotonic tension (MT), reverse compres-
sion (RC), and reverse tension (RT). In addition, the RT 
hardening parameters are defined as the functions of plastic 
pre-strains to mitigate interpolation errors caused by param-
eter determination processes of those existing models. In the 
showcase study, the proposed continuum-based constitutive 
model is able to capture the asymmetric hardening response 
of AZ31B magnesium alloy in monotonic and reverse load-
ing paths. In addition, the results have been validated via 
comparing them with experimental and calculated results in 
literature—the modified homogeneous anisotropic harden-
ing (HAH) model. The obtained results show that the new 
constitutive model can successfully reproduce experimen-
tal tension–compression-tension (TCT) and compression- 
tension–compression (CTC) stress–strain curves of HCP 
sheet metals with considerably less percentage errors.

Based on the obtained analytical results, the following 
conclusions can be drawn:

•	 The proposed model can successfully capture the main 
characteristics of the stress–strain curves of AZ31B mag-
nesium alloy in TCT and CTC loading paths.

•	 The new material parameter identification method defines 
the hardening material parameters as functions of equiva-
lent pre-strain. This straightforward parameter identifica-
tion process leads to excellent reproduction accuracy of 
the model, which can make this model a powerful tool in 
sheet metal forming simulations. Due to the high accu-
racy of the developed model in predicting the material 
behaviours at any pre-strain range, it can have a great 
application in FEA studies of sheet metal forming, espe-
cially the bending process such as, pure bending, bending 
under tension, deep draw bending, etc.
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•	 Compared to the recent modified HAH model of Lee 
et al. [3], the new constitutive model can reproduce the 
stress–strain curves of AZ31B magnesium alloys with 
more accuracy. Not only the fitting errors (NRMSE) 
of the new model for all the loading paths are less than 
those of the modified HAH model, but also the average 
fitting error (average NRMSE) of the new model is 4.35% 
less than that of the modified HAH model.

•	 The modified CB2004 yield criterion and the defined 
hardening rules can successfully capture the continuous 
evolving TCA caused by the texture evolution during 
twinning deformation in the MC and MT modes. More-
over, the yield loci for the four loading modes show an 
acceptable trend for the plastic behaviours of HCP met-
als.

•	 The proposed elastic model can well capture the elastic 
behaviour of the material in monotonic unloading and 
reverse loadings.

As for the future work to improve the current model, 
firstly, by applying the general anisotropic form of CB2004 
yield surface in the constitutive model, the anisotropic 
effects can be included to improve the current model fur-
ther. Secondly, as mentioned earlier, most of the discrepan-
cies between calculated and experimental results are at the 
upper plateau region of the RT curves since the untwining 
to slip deformation transition happens abruptly. Therefore, it 
can be further developed to improve the accuracy, explicitly 
focusing on these abrupt transitions.
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