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Abstract
The manufacture of In Vitro Fertilization (IVF) needles is subject to the most stringent quality demands. This makes auto-
mated inspection challenging due to difficulty in reliably classifying conforming and non-conforming (defective) products 
due to factors including multidimensional variation of their tip geometry and the lack of an explicit quality standard. In 
addition, developing an IVF needle image dataset, which broadly contains the visual characteristics of qualified and defective 
products, is difficult without commissioning large and costly production runs. The most important original contribution of 
this work is a new solution to investigate and quantify the uncertainty in the quality standard of IVF needles by integrating 
inter-disciplinary techniques. This work utilizes a low-cost, virtual dataset of synthetic images, generated by the automated 
photo-realistic rendering of a three-dimensional (3D) parametric model to simulate manufacturing variation. Then, the 
unknown numerical (critical) quality thresholds are obtained by estimating the relationship between quality response and 
measurement predictors using an Ordinal Logistic Regression (OLR) algorithm on the synthetic images. The fitted models 
exhibited increased overall predictive accuracy of up to 11.02% than the machine learning models (available in MATLAB) 
and could provide objective guidance on classifying specific quality aspects of a product.

Keywords Automatic quality inspection · Manufacturing variation · Synthetic image generation · Uncertainty 
quantification · Ordinal logistic regression

1 Introduction

The advanced manufacturing of medical In Vitro Fertiliza-
tion (IVF) needles, even with a low manufacturing defect 
rate, requires an entirely manual inspection of every unit to 
remove all defects from production. Human visual inspec-
tion of production part quality is critically important to the 

manufacturing of safety-critical medical devices to maintain 
the most stringent quality standard. However, the manual 
inspection procedures are often time-consuming and costly 
compared to the products, and have inherent inconsistency 
due to person to person variation [1, 2]. With the emergence 
of Industry 4.0 and Smart Factories leading to the increas-
ing convergence of digital and physical worlds, the quality 
inspection procedure of IVF needles is also seeking auto-
mation development that can efficiently boost the manu-
facturing speed and quality [1, 3, 4]. However, many types 
of defects have not been characterized in modern manufac-
turing [1, 2], including the manufacturing of IVF needles. 
Thus, the bottleneck of this transformation process is the 
lack of a quantitative quality standard to explicitly guide 
the discrimination of qualified and defective products by 
machine.

Automated digital image-based techniques have been 
extensively applied in the food industry and the manufac-
turing of mass products due to the fast, cost-efficient, and 
objective quality inspection capability [5, 6]. For example, 
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image processing and computer vision techniques have been 
used in the quality inspection of wheat varieties, corn germ-
plasm, apple shape, nuts, meat, fish and pizza etc. [7–13]. 
Machine vision assisted quality inspection techniques 
have also been widely adopted in mass manufacturing of 
products. An industrial vision system was proposed using 
optical, photoelectric sensors and a web camera to auto-
matically determine the number of mayonnaise jars on a 
cardboard tray and whether they had lids or not [2]. Then, 
a 3D machine vision system was developed for a multilayer 
perceptron neural network to provide pattern classification 
of ten possible defects presented in percussion caps [14]. 
Template localization, edge extraction and distance meas-
urement were utilized in [15] in determining encapsulating 
quality of polyethylene terephthalate (PET) bottles. Other 
examples of mass product manufacturing that have adopted 
vision-based automation inspection techniques include pill 
packages, rail surfaces, laser welding surfaces, and Printed 
Circuit Boards (PCB) [16–19].

Compared with the development of automatic vision inspec-
tion techniques in food industry and mass product manufactur-
ing, the application of these techniques to IVF needle tips is 
very rare in the literature due to the challenge caused by metal-
lic reflections on small sized areas [14]. The medical IVF nee-
dle manufacturing industry deals with components that feature 
complex geometries with small feature sizes, requiring robust 
inspection systems to ensure stringent quality demands; a task 
which can be challenging for existing visual inspection systems 
[4, 14]. Safety lancets have a similar tip size to the studied IVF 
needles. A vision-based quality inspection system was devel-
oped for safety lancets [20]. However, the essential inspection 
parameters, tip size and needle shift value were predefined by 
an administrator. The vision system presented by [4] combined 
pattern matching and measurement tools provided by the vision 
software package Checkpoint to measure shapes and inspect 
medical syringe assemblies. The recently published vision 
system in [21] incorporated a photoelectric detector to collect 
laser signals reflected by knitting needles and used the ratio of 
adjacent signal peak-to-peak distances to detect fracture and 
bending of knitting needles. The examined defects occurred on 
the bodies of knitting needles. This size defect on the knitting 
needle bodies was clearly noticeable even with the naked eye, 
thus it posed no problem for image acquisition compared with 
the defects on IVF needle tips.

However, none of the work presented above, no matter 
whether it is in the food industry or modern manufacturing 
of mass products and small sized medical needles, stand-
ardized specification of conforming and non-conforming 
(defective) products [14, 20]. The critical threshold values 
were either estimated experimentally from images [2], or 
given by operators by the distance measurement procedure 
[15, 20]. To the best knowledge of the authors, the research 

on defect/quality standardization of IVF needle tips is also 
still missing from the literature so far.

Another challenge in studying the defect/quality standard 
of IVF needle tips from their visual features is the lack of 
image datasets [22]. Building image datasets requires docu-
menting and analysing the output of manufacturing produc-
tion runs to characterize the nature of defective products. 
However, in mature IVF needle manufacturing processes 
the defect rate is low [23]. Thus, in order to acquire suf-
ficient data for robust defect characterization, it requires a 
significant period and large production runs to construct a 
representative dataset covering all types of defects.

A potential way to address the issues of costly image data-
set acquisition in visual manufacturing quality inspection, 
is the use of low-cost synthesized virtual product images in 
place of comparatively expensive real-life product data. This 
can be achieved by generating virtual images from paramet-
ric 3D Computer-Aided Design (CAD) models which are 
typically developed during the design phase of the product. 
Previous research on digital image generation has studied 
how rendered images can be made to be more photo-realistic 
[24, 25]. However, generating a sufficiently large dataset of 
virtual images, which contain photo-realistically rendered 
part geometry variants of defective parts, remains a labour-
intensive task, while automating and standardizing this pro-
cess is largely an unsolved problem.

This work presents a novel method to quickly and accu-
rately estimate quantitative quality standards of IVF needle 
tips with minimum resources. The original contributions of 
this work include the proposed procedure to investigate the 
quality uncertainty, the identified explicit relationship of 
needle quality and its geometry information, an innovative 
approach to adopt the Ordinal Logistic Regression (OLR) 
algorithm, and a constructed image dataset of IVF needles. 
First and most importantly, the computational relationship 
between the predictive product quality and its geometric 
variables is represented by rigorous equations. During this 
process, the OLR technique was adopted to [26] model the 
grading of the generated image dataset into quality catego-
ries ‘pass’, ‘unsure’ and ‘fail’. By utilizing the value order 
characteristic of the algorithm, two mathematical equations 
were obtained, whose equality demonstrated the result valid-
ity. Finally, a large scale, synthesized, photo-realistic image 
dataset of both specification-conforming and defective 
products was generated from parametric 3D CAD models. 
Here, the virtual images were rendered to closely represent 
the real-life product geometry, material appearance, light-
ing, and environmental conditions. The significance of this 
work is twofold. First, advanced IVF needle manufacturing 
will benefit from the improved inspection speed of machine-
assisted visual examination, along with the detailed quanti-
tative insight, and standardization of quality thresholding. 
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On top of that, the constructed IVF needle image dataset 
demonstrates the capability of the proposed procedure as 
an economic and quick alternative to construct an image 
dataset of geometry-specified manufacturing products. This 
provides the foundation, particularly for advanced manu-
facturing (with low defect rate), to explore the potential of 
artificial intelligence technologies that ubiquitously rely on 
big datasets in image-based automatic quality inspection. 
The constructed synthetic image dataset and the rendering 
models from this work are made freely available online1.

2  Method

The virtual image database construction consists of two 
main parts: the CAD model construction, including photo-
realistic rendering using SolidWorks (SW) 2019–2020 Edu-
cation Edition, and the automated image generation process. 
Depending whether the product has or has not geometric 
distortion, the automated image generation process differs. 
As shown in Fig. 1, images of ideal products (the top green 
flow) and images of products with geometric distortion (the 
middle flow) were generated by creating animation and 
by integrating with modeFRONTIER (mF, a platform for 

process automation and multiple-objective optimization in 
engineering design), respectively.

The image generation platform, as shown by the light yel-
low box in Fig. 1 and detailed in Sect. 2.1, was constructed 
to generate images of products with geometric distortion. 
After creating the images of products with geometric vari-
ants, the statistical model-building technique OLR [26], 
specifically used for ordered categorical data, is applied to 
estimate the relationship between the needle tip quality and 
tip features based on a sub-group of the synthesized digital 
images (sequences 9–11 in Table 1), as shown by the blue 
module (estimating quality thresholds) in Fig. 1. The esti-
mated numerical quality thresholds were utilized as guid-
ance to automatically categorize the generated main image 
group for products with geometric distortions (sequences 
5–8 in Table 1).

2.1  Construction of image generation platform

The automatic image generation of needle tip variants is 
achieved by integrating the 3D CAD models created by SW 
with the multi-objective optimization platform mF via its 
SW Node. The geometric defective features are first created 
in 3D CAD models in SW, as shown in Fig. 1. The extent of 
defects is then controlled by manipulating the values of fea-
ture parameters, and product images of variant geometries 
can be generated for each parameter configuration. Then, 
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Fig. 1  Overall workflow, consisting of two main data flows: the top 
green flow outlines the image generation of ideal products (image 
sequences 1–4, details of image sequences as seen in Table 1), and the 
steps in light yellow box indicate the image creation of products with 
geometric distortion (image sequences 5–11). Based on the extent of 
the geometric distortion, image sequences 5–11 should be divided into 

images of products within/outside (i.e. defective products) the distor-
tion tolerance. Thus, the blue sub-module was built to estimate the 
quantitative quality thresholds using image sequences 9–11 by mod-
eling their Quality Control (QC) human inspection results, and the 
obtained quality thresholds were taken as feedback to guide the auto-
matic categorization of image sequences 5–8

1 https:// figsh are. com/s/ c618d c0c65 44c3c 3e39b
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the images are photo-realistically rendered on the 3D CAD 
models to as closely as possible represent the appearance of 
materials and environmental conditions. But this only allows 
one image to be created for a product with fixed geometry 
and fixed view perspective in SW.

As shown in Fig. 1, integrating 3D CAD models with 
the multidisciplinary optimization platform, mF, enabled the 

automatic generation of large numbers of virtual images of 
variant product geometry. As shown in Fig. 2, the design of 
experiment (DOE) sequence created an exploration space, 
within which the defective feature parameter configuration 
of the 3D CAD models was distributed. The DOE sequence 
covered wider values of the geometric defective parameters 
than anticipated in the real world.

The overall project workflow in mF consists of data flow 
and logic flow. The stream of data flow (vertical flow) includes 
input variables, output variables, design objectives and design 
constraints, as well as the application script with mathemati-
cal expressions for calculating the output results. The input 
parameters as shown in Fig. 2, serving as defective feature 
parameters in SW, are BendAngle ( � ) and TrimDis ( � ) (indi-
cating the needle defects tip bending degree and tip bending 
length respectively as shown in Fig. 3). This work focuses on 
geometric bent defects of needle tips, because the defect iden-
tification of bent needles is important for the application in that 
the IVF needles under study are thick gauge needles so sharp-
ness is critical to ensure the best outcomes for patients. Bend 
angle � is a common variable to evaluate the deformation of 
bevelled needle tips [27, 28]. The other defective feature vari-
able, bending length, � , is identified through quality control 
inspection in the production line, because the location where a 
tip bend starts affects the quality control inspection outcome as 
the closer to the tip end the weaker the bevel strength and the 
higher the chance for the needle tip to fail. These parameters 

Table 1  Overall information of each sub-group for the synthetic data-
set. Note: SWV stands for SolidWorks Visualize and PV for Pho-
toView 360 as photo-realistic rendering tools. Sequences 1–4: images 
of ideal products. Sequences 5–8: images of needles with tip defor-
mation. Sequences 9–11: images of needles with tip deformation and 
used for quality threshold estimation

No. Render tool � (degree) � (mm) View point No. of frames

1 SWV N/A N/A front 1008
2 SWV N/A N/A side 1061
3 SWV N/A N/A side 1230
4 SWV N/A N/A back 1619
5 PV [2, 60] [0.1, 1.5] front 2048
6 PV [2, 60] [0.1, 1.5] left 2048
7 PV [2, 60] [0.1, 1.5] right 2048
8 PV [2, 60] [0.1, 1.5] back 2048
9 PV [1, 30] [0.1, 3.0] side 264
10 PV [2, 12] [0.3, 1.8] side 256
11 PV [2, 12] [0.1, 1.8] side 144

Fig. 2  Overall project workflow in modeFRONTIER (mF), detailing 
the ‘Integrating with mF’ step in the light yellow box in Fig. 1. The 
two defective feature parameters BendAngle ( � ) and TrimDis ( � ) in 
SolidWorks, which define and describe the needle tip bending, are the 
input variables of mF. Then the output variable I was computed from 
bend angle � and constraint by Eq.  1. All the design configurations 

as scheduled in the Design of Experiment (DOE) Sequence were 
assigned to the two geometric feature parameters BendAngle and 
TrimDis. The CAD model geometry automatically updates for each 
assignment to the feature parameters and rebuilds in the SolidWorks 
Node within mF. At the same time images of the CAD model related 
to each design were taken
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are selected from the SW Equations, linking with mF input 
variables, and then computed by mathematical expressions 
written in the Calculator Node script in mF. The calculated 
results are the mF output variables (the variable I in the exam-
ple as shown in Fig. 2). Although calculating a quantitative 
objective (usually used for guiding and optimizing part design 
within mF) is not one of the aims of this image generation 
procedure, an optimization objective is preferred when using 
mF. Thus a pseudo-objective, as shown in Eq. 1, was created 
in the application script. Because the bend angle created by 
the Flex feature in SW cannot equal zero, � ≠ 0 is the design 
constraint, which also satisfies the constraint of Eq. 1 whose 
denominator cannot be zero.

After choosing the input variables, their initial values in 
the 3D CAD models should be updated from SW to ensure 
that they are within their value ranges for each running of 
the program. Otherwise, a portion of the input parameter 
configurations will cause errors in the design space, due 
to the initial values being out of the range of the input 
variable.

The logic flow is a sequence of logic events in mF that 
enables it to solve a defined optimization problem in the 

(1)min I =
1

�
2

aforementioned data flow. A typical optimization process 
objective is to find one optimum set of parameters which 
lead to the desired output. However, in our example, digi-
tal images are required from all parameter configuration 
points, and therefore the logic flow is slightly different. 
As shown in Fig. 2, the logic flow (horizontal flow) starts 
from the DOE sequence Scheduler node, then connects 
with the Calculator node (Compute here) followed by the 
red SW Node (to integrate the 3D CAD model) and fin-
ishes with the logic end node (Exit).

DOE is a systematic method to choose variables for mul-
tiple parameters that varies in a series of experiments with 
the purpose to gain the maximum knowledge of the studied 
model, while expending the minimum time and costs for 
computation [29]. The Sobol sequence, incremental space 
filler and factorial algorithms [30–32] are applied to gener-
ate the sequence of different design configurations, which 
makes up the design space in this work. Each assignment 
to the parameters of the model is estimated by evaluating 
the created DOE sequences. The model geometry automati-
cally updates and rebuilds in SW while mF modifies the 
input values. Because mF enables saving the SW docu-
ments with modifications related to each design, images 
of needle tips were taken from top, left/right side and back 
perspective views from SW 3D models and stored for every 
geometry design.

Fig. 3  Close examination of 
tip bend simulated by the Flex 
feature. FlexAngle and TrimDis 
are the two default parameters 
of the Flex feature to directly 
control the bend degree from 
the needle main axis and the 
start of the bend from the tip 
end. FlexAngle is set to be an 
equation-driven variable, whose 
value is equal to the independ-
ent reference variable, BendAn-
gle for easy data accessibility 
and direct data manipulation via 
SW Equations
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2.2  Images of defective products

As shown in Fig. 1 the first step to generate images of defec-
tive products is creating a 3D CAD model, including creat-
ing a tip bending feature in the CAD model described by 
tip bend angle and bend length. The images of defective 
products are then photo-realistically rendered in SW Pho-
toView 360.

2.2.1  Modeling defects

A 3D CAD model of ideal IVF needle geometry is first con-
structed in SW, with the Bending applied using the Flex 
feature to simulate the tip bending defect type as shown in 
Fig. 3. The FlexAngle parameter defines the range between 
which the object will be affected by the bending feature, 
which is one essential aspect to control the shape of the 
resulting bend. The actual bending angle parameter is set to 
be equation-driven, whose value is equal to a newly created 
independent reference variable named BendAngle ( � ) (ini-
tially valued 40◦ as shown in Fig. 3). The positive or nega-
tive sign of the assigned value controls the needle tip bend 
direction. Similarly, the bend length TrimDis ( � ), is also set 
to be equation-driven.

2.2.2  Visual realistic rendering in SW

The 3D model was rendered to obtain high quality images 
(Fig. 4c). Firstly, materials were applied to the 3D model to 
simulate their appearance. Then PhotoView 360, a SW add-
in, was utilized to incorporate realistic material appearance, 
illumination lighting (primary lighting and multi-directional 
lighting) and environmental scene with virtual camera per-
spective view.

The appearance of the inside and outside of the needle 
cannula (due to the surface finish) is different, so satin fin-
ish stainless steel and cast stainless steel were the applied 
material appearances to the needle body and inside surface, 
respectively, which closely resemble their actual visual 

appearance. Small size cylindrical mapping with 180◦ ori-
entation was applied to the inside surface of the cannula to 
simulate the wavy pattern texture and the vertical pattern 
direction.

2.3  Images of qualified products

Synthesized images of qualified products consist of two 
groups, as shown in Fig. 1. One group contains the virtual 
images generated using the same process described for the 
defective products, but with defects insignificant in scale 
and within pre-determined distortion tolerance limits. The 
second group of images simulates the ideal manufacturing 
results, where all geometry features are identical to the 3D 
CAD models without any geometric distortion.

2.3.1  Images of products within distortion tolerance

The essential step to collect this group of synthesized 
images for qualified manufacturing products is to estimate 
the proper quantitative tolerance thresholds, including the 
tip bending limits, as indicated by the BendAngle ( � ) and 
TrimDis ( � ) parameters in Fig. 3. Details on the method used 
for quality threshold estimation are presented in Sect. 2.4. 
Many more images were generated across the defined toler-
ance ranges.

2.3.2  Images of ideal products

The image group of ideal products having theoretical geom-
etry was rendered and generated via animations in SW Visu-
alize using the 3D CAD models, as shown in Fig. 1. Without 
geometric parameters, it is not feasible to create this group 
of images using mF.

However, SW Visualize provides an approach to automat-
ically generate images for 3D models with fixed geometry 
by creating animations. In addition to its rendering capabili-
ties with design-oriented features for generating compelling, 
highly realistic images, SW Visualize has more advanced 
features and control over material appearances. For exam-
ple, sandblasted steel instead of satin finish stainless steel 

Fig. 4  a Image of a IVF needle 
taken by an optical microscope; 
b Digitally generated image 
example with tip bending defect 
from its 3D CAD model without 
rendering; c Generated image 
of a qualified needle tip with 
photo-realistic rendering
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is used to simulate the needle body appearance, which viv-
idly displays the actual appearance of the cannula outside 
the surface and cutting bevel (as shown in Fig. 5f and g). 
Additionally, several animations can be stacked on top of 
each other to cover more comprehensive environmental con-
ditions, including rotating the view perspective, adjusting 
illumination, trucking or dollying into/out of the point of 
view, and adjusting the virtual camera locations.

2.4  Statistically estimating quality thresholds

The response outcome, needle tip quality, has three ordered 
categories, containing images of either: qualified needle tips 
(‘pass’), defective needle tips (‘fail’), or needle tips whose 
qualities are between the two (‘unsure’); therefore OLR (also 
called ordered logit model or proportional odds model [33]) 
was used to model the mathematical relationship between 
the ordinal quality response and the predictors (defective 
feature parameters bend angle � and bend length � of nee-
dle tips). OLR is a competitive Statistical Regression (SR) 
algorithm for model-building in classification and prediction 
tasks [26]. This technique has been widely used in many 
industrial applications over the last three-to-four decades 
[34–37]. Compared to machine learning models, OLR does 
not require such a large number of sample images. The OLR 
analysis is conducted in the statistical software Minitab [38].

The batch of 264 images (sequence 9 in Table 1) cover-
ing wide ranges of values of bend angle � and length � are 
firstly used to estimate the possible threshold ranges. Then 
another two image batches (sequences 10 and 11 in Table 1) 
are further generated around the narrowed threshold ranges 

to increase the density of the data points near this area. There 
are 664 images in the three batches, whose orders have been 
randomized prior to human QC. These images have been 
manually classified into the three categories (‘Pass,’ ‘Fail,’ 
and ‘Unsure’) by a subject matter expert. The needle tips in 
the images are visually examined at a pre-determined scale 
(replicating that of a 15× Optical Microscope) to determine 
whether there is any damage to the tip (or at least any damage 
which is visible at this pre-determined scale). The acceptance 
criteria used to qualify the needles is based on the manufactur-
er’s Standard Operating Procedure; however, in this instance, 
a third category (‘Unsure’) is used to estimate and account for 
inherent process variability (including differences between 
the operators or inspection equipment). Consequently, by 
structuring the discretization of the model to contain three 
categories (with two critical thresholds), we improve insight 
and control of the model. In a medical device manufacturing 
application, these might translate practically to the following 
classification labels: ‘Definitely Pass’, ‘Definitely Fail’, and 
‘Further Human QC Required.’ The QC results of the 664 
images are used to determine the threshold ranges according 
to the bend angle � and bend length � variables.

2.4.1  Ordinal logistic regression

OLR works with the cumulative response probabilities [34]:

(2)�1 = �1, �2 = �1 + �2, ..., �k ≡ 1

(3)�j = pr(Y ≤ j) = �1 + �2 + ... + �j

Fig. 5  Examples of the generated virtual images dataset. Images (a)–
(d) are examples of needles with variant tip bending selected from 
image sequences 5–8 of Table  1, while images (e)–(h) of needles 

with ideal geometry (selected from image sequences 1–4 of Table 1) 
and so bend parameters are not applicable
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where �1, ...,�k are the category or possible event probabili-
ties, and k is the number of possible events. There are three 
possible event categories, so k = 3 here. Note that the cat-
egories are ordered, Y is the event combination up to the jth 
event. Thus, �j = pr(Y ≤ j) is the cumulative probability of 
up to and including jth event.

In particular, the logistic link function (as shown in 
Eq. 4) for cumulative probabilities has been found to have 
better properties than categorical probabilities for ordered 
categorical data, including permutation invariance (i.e. 
the fitted model is invariant under a reversal of category 
order) and constant difference [26]. Also, the logistic link 
function has the most natural interpretation of the esti-
mated parameters compared to normal or Gompertz dis-
tribution [26, 39].

where X is the covariate vector, consisting of bend angle 
� and bend length � of a needle tip; �j and vector � are the 
parameters of the model and determined by datasets. Con-
sidering Eq. 3 and applying exponentiation for both sides of 
Eq. 4, we get Eq. 5:

According to the order arrangement characteristic, there 
are two ways to calculate the probability equation of the 
interested response event (i.e. defective needle tips). If the 
response is ordered as ‘pass’, ‘unsure’, and ‘fail’:

the ‘pass’ probability is

and the cumulative probability of ‘pass’ and ‘unsure’ is

Thus, the ‘fail’ probability is given by

The other method of calculating the ‘fail’ probability is 
implemented in this work by arranging the response order as 
‘fail’, ‘unsure’, and ‘pass’ due to the permutation invariance 
property of the proportional logistic function. Then the ‘fail’ 
probability is obtained directly from Eq. 6. Here when j = 1 
under the reversal of categorical order, the event it represents 
is ‘fail’ instead of ‘pass’.

This work implements both the models annotated 
by Eqs. 8 and 6 to estimate the relationship between the 

(4)ln(
�j(X)

1 − �j(X)
) = �j + �T

X, j = 1, 2, ..., k − 1

(5)pr(Y ≤ j) = �j = 1 −
1

1 + e�j+�
T
X
, j = 1, 2, ..., k − 1

(6)�j = pr(Y ≤ j) = �j = 1 −
1

1 + e�j+�
T
X
, j = 1

(7)pr(Y ≤ j) = �j = 1 −
1

1 + e�j+�
T
X
, j = 2

(8)1 − pr(Y ≤ j) =
1

1 + e�j+�
T
X
, j = 2

predictors and the quality fail probability. We should obtain 
the identical fitting results from both models (represented 
by different mathematical equations), if the above statistical 
process is correct.

2.4.2  Correlation test

To predict the response variable, both models are formulated 
in terms of their two predictors, bend angle and bend length. 
It is necessary to examine the severity of their correlation 
(also known as multicollinearity [33, 40]). The correlation 
value r, as shown in Eq. 9 and calculated using Pearson 
product moment method [38, 41, 42] is 0.157 with 95% con-
fidence interval (0.082, 0.231), and the � value is less than 
0.005, which is much less than the required significance 
level of 0.05. Thus, there is sufficient evidence to say there 
is not a strong linear relationship between the two predictor 
variables.

where X̄ and Ȳ  are the means of the two predictor variables, 
bend angle and bend length, and SX and SY are the standard 
deviations of the two variables.

3  Results and discussion

3.1  Generated needle tip image dataset

Table 1 briefly summarizes the overall information of the 
synthesized needle tip image dataset. A total of 13, 774 
images were generated. Sequences 1–4 are images of ideal 
needles without tip deformation, so both bend angle and bend 
length are zero. Undoubtedly, these four image sequences 
belong to the ‘pass’ quality category. While sequences 5–8 
accommodate images from the three possible quality catego-
ries based on their tip bending values. Thus, the sub-group 
of 664 frames, sequences 9–11, were taken to estimate the 
numerical quality threshold of needle tips and the estimated 
quality threshold is then used to categorize sequences 5–8, 
also as shown in Fig. 1.

Figure 5a–h show some image samples rendered by Pho-
toView 360 ((a)–(d)) and SW Visualize ((e)–(h)) from the 
created dataset. Both groups of images are taken from vari-
ant environmental lighting, perspective views, orientations, 
and distance from the virtual lenses. All the rendered images 
manifest in photo-realistic appearance compared with the 3D 
model without rendering as shown in Fig. 4b. It can also be 
seen that images in group Fig. 5e–h display higher photo-
realism with more accurate rendering display and lighting 

(9)r =

∑

(X − X̄)(Y − Ȳ)

(n − 1)SXSY
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reflection. The outside surfaces of the cannula using the 
sandblasted steel appearance, as shown in group Fig. 5e–h, 
show an improved visual appearance when compared to 
group Fig. 5a–d.

3.2  Statistical analysis on the threshold of needle 
tip quality

One of the important contributions of this work was estimat-
ing the numerical thresholds of two critical defective feature 
parameters. The estimated thresholds are also directly used 
in the automated categorization of image sequences into 
their quality classes to make the presented virtual image 
generation procedure scalable.

3.2.1  Initial visualization of the quality results

The 664 frames of images (sequences 9–11) used for esti-
mating the numerical threshold of needle tips consist of 
three sequences and Fig. 6 displays the quality control 
results of these needle tip images. The 1st batch of 264 
images (sequence 9) covers a broad range of the predictor 
variables � and � , as shown in Fig. 6a, to investigate the 

threshold area. The mixture of green, yellow and red dots 
as shown in Fig. 6a are the identified threshold ranges. To 
increase the accuracy of the estimated quality threshold, 
another two batches of images (sequences 10 and 11) were 
generated around the identified threshold ranges. Fig-
ure 6b and c show the quality control results of these two 
sequences of images and Fig. 6d summarizes the quality 
control results using all the three sequences of the images.

The visualization of the initial result in Fig. 6 illustrates 
the consistency of needle tip quality along the predictor 
variables � and � . Also, the bend angle � affects the quality 
determination of a needle tip more than the bend length �.

3.2.2  Ordinal logistic regression results

Tables 2 and 3 summarize the results of the OLR analysis 
using Eqs. 8 and 6, including the estimated coefficients, 
the standard errors of the coefficients, Z-values, P-values, 
as well as the odds ratios and their 95% confidence inter-
vals. These two tables also provide the results of good-
ness-of-fit tests to measure the adequacy of the regression 
models.

Fig. 6  Visualization of the 
quality control results using 
image sequences 9–11 as shown 
in Table 1 and Fig. 1. Green, 
yellow and red dots annotate 
‘pass’, ‘unsure’ and ‘fail’ quality 
results, respectively. a Quality 
results covering broad ranges of 
predictor variables � and � ; b 
and c Quality results for covari-
ate values near the narrowed 
threshold area; d Summarized 
quality results of the three 
image sequences on one figure
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From Table 2 the estimated parameters for Eq. 8 are 
�1 = −6.76 , �2 = −4.63 and �T = [46.4, 1.22] . Thus, the 
computed ‘fail’ probability using Eq. 8 is

where j = 2 , and � and � stand for bend angle in radians and 
bend length in mm. Bend angle was transformed to radi-
ans to keep the same degree of magnitude/range with bend 
length (feature scaling) for more accurate model building.

The calculated coefficient of 46.4 for bend angle � is the 
estimated change in the logit of the ‘fail’ probability when 
bend angle changes by one unit, with the covariant bend 
length � held constant. The estimated positive coefficient of 
bend angle � indicates that as the bend angle increases, the 
‘fail’ probability also increases. The positive bend length � 
coefficient indicates its similar effect on the needle quality, 
although with less severity. These conclusions are consist-
ent with the experiences obtained in practice. The less than 
0.0005 p-values for both bend angle ( z = 15.0, p < 0.0005 ) 
and bend length ( z = 5.21, p < 0.0005 ) indicate that there 
is sufficient evidence that both predictors have non-zero 
values at 0.0005 significance level. Thus, both bend angle 
� and bend length � have an effect on determination of 
needle tip quality.

Goodness-of-fit tests were conducted to assess the ade-
quacy of the estimated model to the data. If the estimated 
model does not fit the data well, then the classification 
and prediction results using the model can be misleading. 
The higher the Chi-Square value the more adequate of 
the model to the data. The null hypothesis of the Good-
ness-of-fit test is the model is not a good fit, so a higher 
p-value indicates there is insufficient evidence to support 
the null hypothesis. Thus, the high p-values (1.000) from 

(10)1 − pr(Y ≤ j) =
1

1 + e−4.63+46.4∗�+1.22∗�

both Chi-Square Pearson and Deviance statistics meth-
ods [43–45] illustrate that there is insufficient evidence 
to claim that the model does not fit the data adequately.

Table 3 shows the regression results using Eq. 6 and the 
results of goodness-of-fit tests to the regression relationship. 
The calculated ‘fail’ probability using this equation is

where j = 1 , and � and � stand for bend angle in radians and 
bend length in mm. Because this group of estimated param-
eters is obtained by rearranging the category orders, based 
on the same data samples, the calculated parameters are 
the negative values of Table 2. For example, the estimated 
negative coefficient of bend angle � and an odds ratio that 
is smaller than 0.0005 (shown as 0.00 in the table) indicate 
greater bend angles of needles are associated with a smaller 
probability of the non-fail quality acceptance criteria, which 
results in an increased probability to fail the needle quality. 
Also, the much higher coefficient of bend angle � than bend 
length � indicates the greater effect of bend angle than bend 
length on needle tip quality.

As shown in Sect. 2.4.1, if the statistical process is cor-
rect, the two estimated models of Eqs. 10 and 11 should be 
identical. Thus, the calculated ‘fail’ probabilities from these 
two equations are shown in Fig. 7a and b for comparison. 
The models are simplified by dropping the small-valued 
term of bend length to display the results graphically. It can 
be seen that the estimated models represent the same rela-
tionship between the quality response and the covariates of 
bend angle � and bend length �.

We are interested in the ‘fail’ response event of a nee-
dle tip quality in the manufacturing process. Thus, Fig. 8 
presents the final estimated model of the ‘fail’ probability 

(11)�j = 1 −
1

1 + e4.63−46.4∗�−1.22∗�

Table 2  Results of ordinal 
logistic regression using Eq. 8

Predictor Coef SE(Coef) Z P Odds Ratio 95% CI Goodness-of-fit tests

�
1

−6.76 0.510 −13.3 < 0.0005 Method Chi-Square P
�
2

−4.63 0.447 −10.4 < 0.0005 Pearson 938 1.00
� 46.4 3.10 15.0 < 0.0005 1.48 × 1020 [3.37 × 1017 

6.47 × 1022]
Deviance 739 1.00

� 1.22 0.234 5.21 < 0.0005 3.39 [2.14 5.36]

Table 3  Results of ordinal 
logistic regression using Eq. 6

Predictor Coef SE(Coef) Z P Odds Ratio 95% CI Goodness-of-fit tests

�
1

4.63 0.447 10.4 < 0.0005 Method Chi-Square P
�
2

6.76 0.510 13.3 < 0.0005 Pearson 938 1.00
� −46.4 3.10 −15.0 < 0.0005 0.00 [0.00 0.00] Deviance 739 1.00
� −1.22 0.234 −5.21 < 0.0005 0.30 [0.19 0.47]
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of the needle tips based on the values of tip bend angle � 
and bend length � in a 2D contour plot. As shown in Fig. 8 
the contour is not linear, because for bend length � > 2 mm 
and bend angle 𝛼 > 5deg it is more likely to fail (because 
the defect is more apparent to the eye/brain), but for bend 
length � > 2 mm, 𝛼 < 5deg, it is more likely to pass because 
of the increased cross sectional area of the bevel. When the 
bend angle and bend length of a needle tip is known (e.g. by 
measuring the relative image pixels of a needle tip), its qual-
ity can be easily predicted or retrieved using the figure. The 
estimated ‘fail’ probability as shown in Fig. 8 also provides 
further insight into different confidence acceptance levels to 
the decision-making process.

3.2.3  Comparison with machine learning models

The images in sequences 9–11 in Table 1 that are used to 
estimate the numerical threshold of needle tip quality have 

been also trained and tested using machine learning mod-
els. The selected results from the automated classifiers 
[46–49] in MATLAB with the top four predictive accuracy 
are tabulated into Table 4. The machine learning models 
are validated using 5-fold cross validation during training 
to protect against overfitting based on 80% of the image 
batches. The predictive accuracy of the fitted models is fur-
ther examined by the withheld 20% images (132 frames). 
Due to the small size of the sub-group images, the fitted 
models (with the highest predictive accuracy in validation 
data and median value, 87.50% and 80.45% respectively) 
obtained by machine learning techniques did not outperform 
the OLR model. The Friedman test [50] was conducted on 
the classification accuracy of compared algorithms to deter-
mine whether any of the differences between the population 
medians were statistically significant. The results were tabu-
lated in Table 4. The small p-value 0.003 (less than the usual 
significance level 0.05) indicates that there is enough evi-
dence to reject the null hypothesis that all treatment effects 
are zero. Thus, it can be concluded that not all the population 
medians are equal.

To further examine which algorithm provided a statisti-
cally different median value, the post hoc Nemenyi test [51] 
was run following the Friedman test. As shown in Table 5, 
the p-value of the comparison pair, Optimized SVM and the 
proposed method, is 0.003, which is less than a significance 
level 0.05. The proposed algorithm exhibited increased 
median predictive accuracy of 11.02% greater than the opti-
mized SVM. In addition, the sum of ranks of the proposed 
algorithm, shown in Table 4, is the highest among the meth-
ods, illustrating that the proposed algorithm is statistically 
different and has a higher classification accuracy.

Furthermore, the fitted OLR model provided the numeri-
cal threshold for each predictor of needle tips, while the 
trained machine learning models cannot output such detailed 
criteria information. By adjusting the numerical thresholds 
according to the resulted fail probability, the false-positive 
occurrences can be avoided. Thus, the fitted OLR models 
satisfy the requirement to numerically estimate the quality 
thresholds of needle tips.

3.3  Manufacturing experiment

This section presents the discrimination of qualified and 
(bending) defective IVF real-life needles using image pro-
cessing techniques. We developed a new vision system, 
consisting of a Blackfly USB3 colour camera mounted on 
top of a TechSpec PlatinumTL 0.9X telecentric lens. Illu-
mination was especially designed in top and back lights 
for sufficient projection into the camera and the creation 
of sharp needle contour. The top CCS dome white light 
was controlled by a CCS 46W digital power. In addition, 

Fig. 7  Fitted lines of the simplified models: a from Eq. 11 and b from 
Eq. 10 for the ‘fail’ probability of needle tip quality
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a 0.312-inch LED spot white light guided by a TechSpec 
telecentric illuminator lens was set up underneath needles 
to create a telecentric backlight. The telecentric lens, tel-
ecentric illuminator and dome light were held by univer-
sal stands so that their heights could be smoothly adjusted 
vertically.

A steel base plate was devised and machined to support 
needles and locate them in a predefined position. When 
taking images of real-life needles in this dataset, a single 
needle was placed at a time using one particular groove. 
Three images from the top, side and back perspective were 
taken for one needle tip. There were 40 good needle sam-
ples and 35 defective samples with tip bending tested, 225 
images in total.

Five virtual images with variant bending degrees were 
selected as template candidates. Tip areas of the side view were 

cropped as the final templates. First, images of real-life needles 
were converted into grey-level images from (Red Green Blue) 
RGB colour images. Then the image edge features were cal-
culated using horizontal and vertical intensity gradients. The 
purpose to detect image edges was to eliminate the effect of 
ambient lighting and only consider geometry shape and texture 
features. At the same time, five templates were also processed 
according to the same procedure. The final step calculated the 
correlation coefficients between the templates and the real-life 
images using the normalized cross-correlation method [52]. 
The highest value of the five templates indicated the closest 
similarity to that template, whose bending parameters deter-
mined the quality of the examined real-life needles. 36/40 good 
samples and 33/35 defective samples were correctly classified, 
the results of the preliminary experiment showed an overall 
accuracy of 92%.

Fig. 8  Contour plot of ‘fail’ 
probability vs. bend angle � 
and bend length � , estimated 
from image sequences 9–11 
of Table 1. The estimated 
mathematical relationship of 
needle tip quality with the 
measurement predictors, bend 
angle and bend length, could be 
utilized as a numerical guide for 
automatic image-based quality 
inspection. It was also utilized 
for automatic (generated) image 
categorization in this work

Table 4  Friedman test on the 
classification accuracy by 
the proposed and machine 
learning models, where 
Q-SVM, MG-SVM, O-SVM 
and DT stand for Quadratic 
SVM, Medium Gaussian SVM, 
Optimized SVM and Decision 
Tree, respectively

Iteration Q-SVM [46] MG-SVM [47] O-SVM [48] DT [49] Proposed

1 79.25 71.70 70.75 74.06 81.60
2 76.17 78.04 77.57 73.83 81.31
3 84.11 84.11 75.23 78.04 88.79
4 76.89 74.06 68.40 69.81 81.60
5 82.55 78.77 75.94 81.60 82.55
Validation 83.33 87.50 68.56 81.82 82.58
Median 80.45 78.98 72.85 75.93 83.87
Sum of ranks 22 19.5 8.0 13 27.5
Friedman test chi − square = 15.831, df = 4, p-value = 0.0033
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4  Conclusion

This work provides a novel approach to estimate the quanti-
tative standard of medical IVF needles to address the qual-
ity uncertainty problem in manufacturing. The absence of 
standardized quality criteria and the low defective product 
rate hamper the application of machine-assisted automa-
tion techniques to product quality control inspection in the 
advanced medical manufacturing. Another contribution of 
this work is the proposed procedure to automatically gener-
ate a large scale synthetic image dataset of qualified and 
defective products based on 3D CAD models, with anti-
aliasing (by fully defined defective parameters) and mini-
mal time and resource effort. In addition, the computer-
generated images are rendered to a level that is industrially 
representative and photo-realistic, fully simulating the 
complex material appearance, illumination, reflection and 
environmental conditions. Overall, the quantitative quality 
criteria are estimated and obtained via OLR analysis on 
the constructed synthetic image dataset. In future work, 
deep/machine learning algorithms can be primitively evalu-
ated for their capability to classify qualified and defective 
needle tips using this computer-generated image dataset. 
If a model performs well on this image dataset, it can be 
shortlisted in classifying real-life needles. In addition, a 
machine vision system will be developed to detect more 
types of defects on real-life IVF needle images.
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