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Abstract
Undesired vibration is a common issue when dealing with manufacturing machines, especially when dealing with thin 
structures. To decrease the external disturbance sensitivity of such systems, represented for example by machine tool quill, 
the auxiliary cable structure is attached to the system. The auxiliary cable structure increases system damping and decreases 
undesired structure vibrations by the passive or active way, depending on the deployment and purpose. In this article, cables 
are attached to the end-effector to suppress undesired vibrations and related experimental stand is prepared. Experimental 
stand parameters are identified using least square method. The control strategy using pole placement is presented and its 
suitability is verified using external disturbance force. The frequency analysis shows the promising behaviour of controlled 
cable structure attached to the original system as well as the experimental results.

Keywords Flexible structure · Vibration suppression · Machine tool · Cable structure

1 Introduction

The motivation for solving the problem of thin, flexible 
structure vibration is related to the industrial needs. The 
achievable positioning accuracy of the end point under 
dynamic load is crucial for these structures. A typical exam-
ple of such structure is machine tool quill; it has a thin shape 
with limited stiffness. This problem can be solved using the 
auxiliary cable structures, which are not difficult to attach 
to the specific point of the flexible structure. The desired 
motion of whole system can be achieved by appropriate con-
trol actions at the cable structure.

For undesired vibration suppression, dampers are often 
used, either a passive damper tuned to a specific frequency 
[1, 2] or an active damper which is able to influence a wide 
band of frequencies. Publication [3] describes various options 
for dealing with vibration, such as semi-active vibration 

insulation or active vibration damper for machine tools. Work 
[4] deals with the design of a 3-degrees-of-freedom active 
vibration absorber for a robot arm. A special case of an active 
damper with delayed feedback, called delayed resonator, 
which is able to perfectly suppress vibration of the primary 
structure, has been studied extensively [5, 6], also with accel-
eration feedback [7] or combination of position, velocity, and 
acceleration feedback [8]. Suppression of multiple frequen-
cies is investigated in [9] and [10]. In [11, 12], the concept has 
been extended for planar vibration suppression. The under-
actuated mechanical systems’ residual vibration cancelation 
is investigated in [13, 14]. The papers show the wide range 
of vibration suppression methods, which often need signifi-
cant mechanical modification of the machine working point  
(TCP).

In manufacturing machines, the vibrations can be dealt 
with by modifying the work-piece holder [15], the tool 
holder [16, 17], or the tool itself [18]. In [19], a composite 
boring bar is developed to dampen vibrations of the tool and 
in [20] a variable stiffness vibration absorber is put inside 
the tool. The vibration can also be reduced by modifying 
the fixture, for example partly submerging the work-piece 
in magnetorheological fluid [21]. In [22], vibration of the 
work-piece holder is dampened using a magnetorheologi-
cal damper. However, using existing actuators with a new 
control strategy allows to suppress vibrations without adding 
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additional mass to any part of the machine [23]. Another 
solution is proposed in [24] combining input shaping with 
the addition of servo control for uncertainties and distur-
bances removing. In [25], the prediction of the position 
error is used to modify the input command of a dual-driving 
gantry-type machine to improve accuracy. In [26], a con-
trol strategy is designed to reduce vibrations of the tip of a 
long and flexible manipulator. These papers propose direct 
placement of additional actuators, change of materials, or 
complicated control strategies. Altogether these ways need 
fundamental changes of the machine structure or machine 
control concept.

Actuators in the form of piezoelectric patches have been 
used to reduce the vibration of flexible beams in [27] and 
[28] using a delay-feedback controller, and in [29] using  
a self-organizing map-based controller. Work [30] studies the  
dynamics of a cantilever stayed beam. The dynamic proper-
ties of a cable-beam system with cantilever beam and the 
wires connected to its tip have been explored with wires 
being perpendicular in [31] and parallel [32]. A flexible 
manipulator with two cables is studied in [33]. Publica-
tion [34] deals with vibration of a tapered cantilever beam 
with a wire connected to its tip. The wires, in combination 
with a control strategy, can be used to suppress vibrations of 
the beam, such as in [35]. To be able to transfer force through 
a cable, the dynamical properties of the cable must be also 
known and included in the control. The behaviour of a fibre 
has been modelled with respect to fibre mass, stiffness, and 
damping [36–39]. In [40], stiffness of cables with large strains 
has been studied. These papers deal with the cable properties, 
appropriate models, or control without machine tool context.

An approach to studying the position accuracy and vibra-
tions of a high-frequency moving robot arm has been pro-
posed in [41]. In [42], vibrations of cable mechanisms and 
their properties in general have been studied and an optimal 
Fuzzy-PID control developed, focusing on optimizing set-
tling time, maximum control force, and energy consumption. 
In [43], an adaptive robust control is developed for cable-
driven parallel robots for trajectory tracking. The machine 
redundancy is investigated in [44] and control with sliding 
mode control is presented in [45]. Control of mechanical 
systems with particular cable application is shown in the 
papers.

The presented paper brings a new idea of the vibration 
suppression of production machine working point (TCP). 
Several types of machine tools with a large workspace suf-
fer from unwanted vibrations of long and heavy movable 
parts. These vibrations are very often composed mainly from 
bending vibration with first eigenfrequency of such parts and 
their additional suppression can improve material removal 
abilities and spindle power utilization in the whole work-
ing span. The novelty of concept is based on adding cables 
controlled by standard rotational drives, which create the 

auxiliary parallel structure and bring additional damping 
force near to the machine working point (TCP). According 
to the best knowledge of the authors, the investigation of the 
machine tools cable-based vibration suppression is so far 
very limited. Moreover, the cables can be easily reconfigured 
and the original workspace of machine is almost preserved. 
The simplified model of machine tool structure is used, the 
model is prepared, and the control law is established. The 
simulation experiment with state feedback is performed as 
well as experimental work.

This concept can help many types of machines with an 
upper gantry and a slim headstock box-in-box positioned 
structure, e.g. machines from the TAJMAC-ZPS portfolio. 
This approach leads to increased material removal capa-
bilities and the use of spindle power over the entire work-
ing range, or allows the design of the machine tool to be 
lightened.

The paper is organized as follows. In the first section, the 
motivation and literature survey is prepared, the second sec-
tion shows the experimental setup model with identification 
of all important parts, and the system is linearized. The third 
section is dedicated to the vibration damping analysis with 
two ways of drive control and also shows the simulation 
experiment of the resulting structure. The fourth section is 
dedicated to experimental results. The last section concludes 
the work.

Fig. 1  Experimental stand
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2  Experimental setup modelling

A physical model of experimental setup is derived in this 
section. To explore the concept of suppressing vibrations 
using additional cables, simple experimental demonstrator 
was prepared as shown in Fig. 1. The demonstrator is cre-
ated in order to include the main dynamic properties of the 
abovementioned machine tools with a large workspace and 
long heavy movable parts.

Based on the stand, a simplified simulation model was 
created; Fig. 2 shows model parameters and coordinates. The 
torques Mi are exerted by electric servo drives with inputs 
ui . The cart movement is prescribed as separate input, and 
the cable mass is neglected. A free body diagram method 
is chosen to assemble the equations of motion. Forces and 
torques acting on each body of the system and coordinates 
describing their movement are depicted in Fig. 3. Equations 
of motion resulting from Fig. 3 are

where coordinates �1 and �2 are electric servo drive rotor angu-
lar positions, coordinate xn is horizontal coordinate of the TCP, 
and x coordinate represents horizontal position of the cart.

Equations of motion (1) contain inertial forces, cable 
forces, elastic beam force, damping forces with damping 

(1)

I1�̈�1 = M1 − F1r1 − bM1�̇�1

I2�̈�2 = M2 + F2r2 − bM2�̇�2

mẍn = −F + F2 cos 𝛼2 − F1 cos 𝛼1

coefficients bM1 and bM2 , and cable angles �i . Forces F, F1 and  
F2 can be expressed as

Determination of cable extensions �i in Eq. (2) is based on 
Fig. 4. The left part of the picture depicts the derivation of 
angle �

1
 measured from the x axis, and the right part shows 

length of cable including segments wound on pulleys. Stiff-
ness of both cables is presumed to be the same and equals 
to kL , k1 = k2 = kL . Stiffness is in reciprocal proportion to 
the cable length as well as the cable dampings b1 and b2 , 
b1 = b2 = bL.

Extension of cables (longitudinal deformation) equals to 
difference of actual cable length (including small cable seg-
ments on the pulleys, see Fig. 4 right) and initial length of 
the cable:

Symbols L10 , L20 and �10 , �20 in Eq. (3) correspond to initial 
cable lengths and cable angles, respectively. Actual lengths 
and angles of the cables can be derived from Fig. 4 as

(2)

F1 =
k1

L1
𝜉1 +

b1

L1
�̇�1

F2 =
k2

L2
𝜉2 +

b2

L2
�̇�2

F = k(xn − x) + b(ẋn − ẋ)

(3)
�1 = L1 − L10 + (r − r1)(�1 − �10) + �1r1

�2 = L2 − L20 + (r − r2)(�2 − �20) − �2r2

1

2

1

2

2, 2, 2

,

21

1, 1, 1

1 2

Δ 1 Δ 2

1
2

n

Fig. 2  Mechanical model of the experimental stand
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with the only time-dependent variable xn , the rest of the 
parameters are constants of the structure design. Radii r1 
and r2 are first and second motor cable pulleys, and r is the 
radius of beam tip cable pulley, where the cables are fixed. 
The beam deformation is assumed to be small; therefore, the 
beam tip coordinate yn does not change its value.

Cable extension velocities �̇�1 and �̇�2 used in Eq. (2) are 
time derivative of Eq. (3) and particular members of Eq. (4):

(4)

L1 =

√
(xn + Δx1)

2
+ (yn − y1)

2
− (r1 − r)2

L2 =

√
(Δx2 − xn)

2
+ (yn − y2)

2
− (r2 − r)2

�1 = � + � = arctan

(
yn − y1

xn + Δx1

)
+ arctan

(
r1 − r

L1

)

�2 = arctan

(
yn − y2

Δx2 − xn

)
+ arctan

(
r2 − r

L2

)

The electromagnetic field in the BLDC drives produce the 
rotor torques M1 and M2 . The torque is modelled as propor-
tional to the stator armature current:

with the current constants kt1 and kt2 of the first and second motor.
The moments of inertia I1 and I2 , the equivalent beam 

mass m, damping coefficients bM1 and bM2 from the equations 
of motion in Eq. (1), stiffnesses k and kL , damping coeffi-
cients b and bL from the forces in Eq. (2), and parameters kt1 
and kt2 from (6) are subject of identification process while 
being unknown.

2.1  System parameters identification

Model parameters are assessed in this sub-section. The 
important property of all parameters lies in the linear-
ity. They create a system of linear equations (mostly time 
dependent). Due to the measurement of other system param-
eters than just inputs and output, the identification process is 
separated into three parts: beam identification, cable proper-
ties identification, and drive 1, drive 2 identification.

The beam properties are obtained from the measurement 
of initially deflected beam. An accelerometer is placed at the 
end point of the beam and free oscillations are performed 
due to the initial beam deflection. The measurement is per-
formed by an accelerometer and oscilloscope. For the cable 

(5)
�̇�1 = L̇1 + (r − r1)�̇�1 + �̇�1r1

�̇�2 = L̇2 + (r − r2)�̇�2 − �̇�2r2

(6)
M1 = kt1i1

M2 = kt2i2

1
2

1

21, 1
2, 2

,

1

1

2

2

1 2

1
2

n

Fig. 3  Free body diagram
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Fig. 4  Derivation of cable angle (left) and cable length (right)
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and electric drives with drive controller part identification 
is performed following experiment. The sweep cosine signal 
is an input at first drive and constant pre-load is applied at 
the second drive. The similar experiment is performed with 
constant pre-load at first drive and sweep cosine signal at 
the second drive. The excitation frequency range is from 
the 0.5 up to 30Hz, which is a reasonable range for expected 
machine tool movement excitation. The horizontal posi-
tion of the beam end-point and cart position is measured by 
laser-tracker, and the drive angular positions are measured 
by drive internal measurement sensors.

2.1.1  Beam properties

The beam fixed to the cart is modelled as a cantilever and it 
dominantly vibrates at its first eigenmode. The identification 
of k, b, and m is based on analytical solution of beam deflec-
tion and experimental data.

The experiment on Fig. 5 shows unforced beam oscil-
lations measured by an accelerometer. On the left part of 
the figure, two beam oscillation periods are measured and 
damped system eigenfrequency is obtained in Eq. (7).

Damping ratio is obtained from Fig. 5 right part. The mean 
accelerometer output signal value is Signalmean = 4.42mV  , 
the peak value at the oscillation beginning is 
Signal1 = 608mV  , and the oscillation amplitude after 
Δtsig = 6.28s is Signal2 = 88mV  . Logarithmic decrement 
� is natural logarithm of magnitudes ratio:

(7)
Δt = 0.185 s

fbeamd
=

2

Δt
= 10.8108 Hz

(8)
� = ln

Signal1 − Signalmean

Signal2 − Signalmean
= 1.977

� = 2�fbeamd
Δtsig�

with � used in the damping ratio � evaluation:

Using damped system eigenfrequency in Eq. (7) and damp-
ing ratio in Eq. (9), the undamped beam eigenfrequency 
(further just eigenfrequency) is obtained:

Damping ratio and eigenfrequency are not sufficient to 
obtain k, b, and m parameters of the reduced beam model. 
The equation of fixed beam horizontal deflection allows us 
to calculate beam horizontal stiffness at beam reduced mass 
position. Beam length L = 0.95m , material young modu-
lus E = 70 ⋅ 109Pa , and cross-section quadratic moment 
J = 1.88 ⋅ 10−8m4 are required inputs for beam stiffness 
calculation:

Then using homogeneous part comparison of the third equation 
of motion from Eq. (1) with substituted force F from Eq. (2)

beam equivalent mass m and beam damping b are derived:

(9)

� =
�

2�fbeamd
Δtsig

� =
�√

�2 + 1

= 4.635 ⋅ 10−3

(10)fbeam =
fbeamd√
1 − �2

= 10.8109 Hz

(11)k =
3EJ

L3
= 4604.75

N

m

(12)
ẍn+

b

m
ẋn+

k

m
xn = Rhs

ẍn+ 2𝜁 (2𝜋fbeam)ẋn+ (2𝜋fbeam)
2xn = Rhs

(13)
m =

k

(2�fbeam)
2
= 0.998 kg

b = 2� (2�fbeam)m = 0.63
Ns

m

Fig. 5  Identification of beam 
parameters
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2.1.2  Cable properties

The cable used at experimental stand at Fig. 1 is a light-
weight wound metallic cable characterized by its stiffness 
kL and damping bL . The cable is the same on both sides of 
the experimental setup. The cable properties identification 
is based on the experimental measurement. Sweep cosine 
function is introduced at drives with prestress preventing the 
cable unloading. The inputs (angular positions �1 and �2 ) 
and the horizontal position of beam TCP point xn as well as 
cart position x are recorded.

The equation of motion, taken into account for the iden-
tification analysis, is the third one of the set of Eq. (1). Intro-
ducing the forces Eq. (2) into this particular equation, it is 
obtained:

where unknown parameters kL and bL are in linear combi-
nation. Other parameters and terms are known or could be 
derived from the measured data and its numeric time deriva-
tive. Numeric time derivative is amended with non-causal 
zero-phase low pass data filtering.

Data acquisition and further processing keeps the meas-
urement sampling frequency fs = 1kHz . The Eq. (14) is 
expanded in time and the following matrices are created:

with Δt = 1

fs
 and n + 1 measured points. The overall set cre-

ated from the measurement data has unknown parameters 
formed in the vector:

(14)

mẍn + b
(
ẋn − ẋ

)
+ k

(
xn − x

)
=

= kL

(
𝜉2

L2
cos 𝛼2 −

𝜉1

L1
cos 𝛼1

)
+ bL

(
�̇�2

L2
cos 𝛼2 −

�̇�1

L1
cos 𝛼1

)

(15)

� =

⎡⎢⎢⎢⎣

mẍn(0) + b
�
ẋn(0) − ẋ(0)

�
+ k

�
xn(0) − x(0)

�
mẍn(Δt) + b

�
ẋn(Δt) − ẋ(Δt)

�
+ k

�
xn(Δt) − x(Δt)

�
⋮

mẍn(nΔt) + b
�
ẋn(nΔt) − ẋ(nΔt)

�
+ k

�
xn(nΔt) − x(nΔt)

�

⎤⎥⎥⎥⎦

(16)

�1 =

⎡
⎢⎢⎢⎢⎢⎣

𝜉2(0)

L2(0)
cos 𝛼2(0) −

𝜉1(0)

L1(0)
cos 𝛼1(0)

𝜉2(Δt)

L2(Δt)
cos 𝛼2(Δt) −

𝜉1(Δt)

L1(Δt)
cos 𝛼1(Δt)

⋮
𝜉2(nΔt)

L2(nΔt)
cos 𝛼2(nΔt) −

𝜉1(nΔt)

L1(nΔt)
cos 𝛼1(nΔt)

⎤⎥⎥⎥⎥⎥⎦

�2 =

⎡⎢⎢⎢⎢⎢⎣

�̇�2(0)

L2(0)
cos 𝛼2(0) −

�̇�1(0)

L1(0)
cos 𝛼1(0)

�̇�2(Δt)

L2(Δt)
cos 𝛼2(Δt) −

�̇�1(Δt)

L1(Δt)
cos 𝛼1(Δt)

⋮

�̇�2(nΔt)

L2(nΔt)
cos 𝛼2(nΔt) −

�̇�1(nΔt)

L1(nΔt)
cos 𝛼1(nΔt)

⎤⎥⎥⎥⎥⎥⎦

(17)� =
[
�1 �2

] [kL
bL

]

Unknowns kL and bL cannot be evaluated directly (number of 
measurement points is significantly higher than number of 
unknowns), but they are obtained using least square method 
leading to pseudo inversion assembly.

Resulting stiffness kL = 16432
Nm

m
 and damping bL = 131

Nms

m
 

are verified in the simulation experiment, where the Eq. (14) 
has angles �1 , �2 and cart position x as inputs. Comparisons 
of simulated beam position with experimental beam posi-
tion measurement are at Figs. 6 and 7. The figures show the 
time behaviour of beam TCP position ( xn ): the experimental 
data, simulation data, and their difference as absolute error. 
Figure 6 presents data based on the engine 1 excitation, and 
Fig. 7 presents the data from engine 2 excitation. System 
drift at low frequencies (less than 0.3Hz) is subtracted.

The comparison of model simulation and experimental 
behaviour in frequency domain is in Fig. 8. The frequency 
content is similar, the magnitudes slightly differs.

2.1.3  Electric drives properties

The identification of electric drives parameters is based on 
the similar experiment as in Sect. 2.1.2. Drive mechanical 
parameters are according to Fig. 2 rotor moments of inertia 
I1 , I2 , bearing damping bM1 , bM2 and current constants kt1 , kt2 
from Eq. (6). The inputs (winding currents i1 and i2 ), rotor 
angular positions �1 , �2 and the horizontal position of beam 
TCP point xn are recorded.

The equations of motion, taken into account for the  
identification analysis, are the first and the second of the set of 
Eq. (1). Introducing the forces in Eq. (2) and electromag-
netic moments in Eq. (6) into those particular equations, it is  
obtained:

where unknown parameters kt1,2 , I1,2 and bM1,2 are in lin-
ear combination. Other parameters and terms are known or 
could be derived from the measured data and its numeric 
time derivative. Numeric time derivative is amended with 
non-causal zero-phase low pass data filtering as in the previ-
ous case.

Data acquisition and further processing keeps the meas-
urement sampling frequency fs = 1kHz . The Eq. (19) are 
expanded in the measurement time and following matrices 
are created:

(18)
[
kL
bL

]
=

([
�1 �2

]T [
�1 �2

])−1 [
�1 �2

]T
�

(19)

(
kL

L1
𝜉1 +

bL

L1
�̇�1

)
r1 = kt1i1 − I1�̈�1 − bM1�̇�1

−

(
kL

L2
𝜉2 +

bL

L2
�̇�2

)
r2 = kt2i2 − I2�̈�2 − bM2�̇�2
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Fig. 6  Verification of identified model: cable parameters, motor 1 excitation
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Fig. 7  Verification of identified model: cable parameters, motor 2 excitation
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with Δt = 1

fs
 and n + 1 measured points, as in the previous 

case. Unknown parameters are placed into the vector:

(20)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�
kL

𝜉1(0)

L1(0)
+ bL

�̇�1(0)

L1(0)

�
r1

⋮�
kL

𝜉1(nΔt)

L1(nΔt)
+ bL

�̇�1(nΔt)

L1(nΔt)

�
r1

−

�
kL

𝜉2(0)

L2(0)
+ bL

�̇�2(0)

L2(0)

�
r2

⋮

−

�
kL

𝜉2(nΔt)

L2(nΔt)
+ bL

�̇�2(nΔt)

L2(nΔt)

�
r2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

� =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

i1(0) − �̈�1(0) − �̇�1(0) 0 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

i1(nΔt) − �̈�1(nΔt) − �̇�1(nΔt) 0 0 0

0 0 0 i2(0) − �̈�2(0) − �̇�2(0)

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 i2(nΔt) − �̈�2(nΔt) − �̇�2(nΔt)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Vector of unknowns is solved using least squares method 
leading to pseudo inversion assembly.

Resulting moments of inertia I1 = 7.98 ⋅ 10−4kgm2 , I
2
= 8.74⋅

10−4kgm2 , current constants kt1 = 0.15
Nm

A
 , kt2 = 0.2

Nm

A
 , and 

(22)� = �

⎡⎢⎢⎢⎢⎢⎢⎣

kt1
I1
bM1

kt2
I2
bM2

⎤⎥⎥⎥⎥⎥⎥⎦

(23)

⎡⎢⎢⎢⎢⎢⎢⎣

kt1
I1
bM1

kt2
I2
bM2

⎤⎥⎥⎥⎥⎥⎥⎦

=
�
�
T
�
�−1

�
T
�

Fig. 8  Verification of identi-
fied model: cable parameters, 
frequency analysis
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dampings bM1 = 0.035Nms , bM2 = 0.005Nms are verified in  
the simulation experiment, where the Eq. (19) has currents i1 , 
i2 and beam TCP position xn as inputs. Comparisons of simu-
lated rotor angular positions with measurement are at Figs. 9  
and 10. Behaviour of motor 1 is at Fig. 9, and behaviour 
of motor 2 is at Fig. 10. The graphs show the experimental 

(measured) data, then simulated data and their difference 
as absolute error. System drift at low frequencies (less than 
0.3Hz) is subtracted.

The comparison in frequency domain is at Fig. 11. Left 
part shows behaviour of the first motor, right part shows the 
behaviour of the second motor.
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Fig. 9  Verification of identified model: motor parameters, motor 1 excitation
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2.2  System linearization

The set of Eq. (1) is linearized at the particular equilibrium 
operating point. The only nonlinear terms are in Eq. (4), the 
length L1 and L2 depend on variable xn , and the same is for 

angles �1 and �2 . Horizontal displacement xn is projected into 
the L1 and L2 directions as follows:

(24)
L1 − L10 = xn cos �1

L2 − L20 = −xn cos �2
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Fig. 10  Verification of identified model: motor parameters, motor 2 excitation

3779The International Journal of Advanced Manufacturing Technology (2022) 122:3769–3787



1 3

Fig. 11  Verification of identi-
fied model: motor parameters, 
frequency analysis
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while change in �1 and �2 due to the small xn is neglected. 
Cable longitudinal deformation in Eq. (3) is further 
simplified:

The linearized system of eigen equations of motion is 
following:

with inputs i1 , i2 and cart coordinate x (with its time deriva-
tive ẋ).

(25)
�1 = xn cos �1 + �1r1

�2 = −xn cos �2 − �2r2

(26)

I1�̈�1 = i1kt1 −
k
L
r1

L1

(
x
n
cos 𝛼1 + 𝜑1r1

)
−

b
L
r1

L1

(
ẋ
n
cos 𝛼1 + �̇�1r1

)
− b

M1�̇�1

I2�̈�2 = i2kt2 −
k
L
r2

L2

(
x
n
cos 𝛼2 + 𝜑2r2

)
−

b
L
r2

L2

(
ẋ
n
cos 𝛼2 + �̇�2r2

)
− b

M2�̇�2

mẍ
n
= −k(x

n
− x) − b(ẋ

n
− ẋ) +

k
L

L2

(
−x

n
cos 𝛼2 − 𝜑2r2

)
cos 𝛼2+

+
b
L

L2

(
−ẋ

n
cos 𝛼2 − �̇�2r2

)
cos 𝛼2 −

k
L

L1

(
x
n
cos 𝛼1 + 𝜑1r1

)
cos 𝛼1−

−
b
L

L1

(
ẋ
n
cos 𝛼1 + �̇�1r1

)
cos 𝛼1

3  Vibration damping analysis

The sensitivity of real mechanical systems to external distur-
bance determines their usefulness and suitability for particu-
lar task. Analysis and reduction of sensitivity are the main 
goal of this paper.

External disturbance with significant effect of given pre-
sented mechanical system (Fig. 1) is the horizontal force 
application on the beam tip (TCP). For evaluation of system 
vibration damping capability, the frequency analysis of the 
transfer function Y

W
 is performed. W represents disturbance 

and Y system output, in the case of our system the distur-
bance is applied horizontal force and output is the horizontal 
coordinate of the beam tip, xn.

The state-space representation is used for system proper-
ties evaluation. The comparison is performed also with the 
system without the cables. The state-space system descrip-
tion has the following form:

(27)
�̇ = 𝔸� + 𝔹�

� = ℂ� + 𝔻�
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Fig. 13  Magnitude phase diagram of the transfer function xn
w

 is plot-
ted, x

n
 is beam tip horizontal coordinate, and w is horizontal distur-

bance force applied at beam tip. There is performed the comparison 

between original beam structure (blue line) and structure with cables 
with drives in position control mode (without control — red line and 
with state feedback control — yellow line)
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The state-space matrices for the system without cables 
excited by external force w(t) as at Fig. 12 are the following:

The output is xn coordinate, inputs are x and w:

The system is transformed into the Laplace domain and cor-
responding transfer function Xn

W
 for the system without cables 

is

(28)

𝔸 =

[
0 −

k

m

1 −
b

m

]
𝔹 =

[
𝔹x 𝔹w

]
𝔹x =

[
k

m
b

m

]
𝔹w =

[
1

m

0

]

ℂ =
[
0 1

]
𝔻 =

[
0 0

]

(29)� =

[
z1
z2

]
z2 = xn � =

[
x

w

]
� =

[
xn
]

(30)

Xn

W
= ℂ(𝕀s −𝔸)

−1
𝔹w =

=
1

ms2 + bs + k

where symbol s represents Laplace variable, Xn and W are 
output (beam tip horizontal coordinate) and input (horizon-
tal force) in the Laplace domain, and � represents eigenma-
trix of the same size as matrix �.

3.1  Effect of cables with drives in position control 
mode

The system with the cables and drives in position control 
mode with external disturbance force w(t) is depicted at 
Fig. 12. If the drives are in position control mode, the pre-
scribed drive positions form in fact the kinematic excitation. 
The system properties are compared with the system without 
cable structure.

The linearized equations describing the system in Fig. 12 
are derived from Eq. (26), and only the third equation is 
used. For obtaining the frequency response, the state space 
representation is assembled.

-120

-100

-80

-60

-40

-20

M
ag

ni
tu

de
 (d

B)

100 101 102
-180

-135

-90

-45

0

Ph
as

e 
(d

eg
)

beam only
beam with cables
beam with cables and pole placement
simulation experiment with feedback

Frequency  (Hz)

Fig. 14  Magnitude phase diagram of the transfer function xn
w

 is plot-
ted, x

n
 is beam tip horizontal coordinate, and w is horizontal distur-

bance force applied at beam tip. There is performed the comparison 

between original beam structure (blue line) and structure with cables 
with electric drives in torque control mode (without control — red 
line and with state feedback control — yellow line)
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The output is xn coordinate, and inputs are �1 , �2 , x, and w.

The transfer function Xn

W
 is

The original system (without cables) has eigenfrequency 
10.81Hz and damping � = 4.6 ⋅ 10−3 , system with cables  
has eigenfrequency 21.27Hz with � = 0.4 , and we are 
going to introduce the state feedback control with damped 
arbitrarily prescribed poles ( Ω = 30Hz and � = 0.8 ) using 
pole placement algorithm [46]. The system 

(
�1,��

)
 is 

controllable and feedback gain �place1 is obtained. The  
transfer function of controlled system Eq. (34) is investi-
gated too.

The comparison of external disturbance sensitivity is shown 
at Fig. 13. System extended with cables move the overall 
eigenfrequency and its behaviour is in comparison with 
original structure more damped. If we use the state feed-
back to choose the eigenfrequency and adequate damping, 
the sensitivity to disturbance further decreases.

The simulation experiment is performed too and it veri-
fies the findings. The system with and without cables is 
loaded with disturbance force at different frequencies 
(sweep cosine function is used) to obtain the xn

w
 transfer 

function behaviour. At Fig. 13, the dotted line represents 
the simulation experiment verification of system with pole 
placement.

(31)

𝔸1 =

⎡
⎢⎢⎣
0 −

1

m

�
k +

kL cos
2 �1

L1
+

kL cos
2 �2

L2

�

1 −
1

m

�
b +

bL cos
2 �1

L1
+

bL cos
2 �2

L2

�
⎤
⎥⎥⎦

𝔹1 =
�
𝔹� 𝔹x1 𝔹w1

�

𝔹� =

�
−

kLr1 cos �1

mL1
−

kLr2 cos �2

mL2

−
bLr1 cos �1

mL1
−

bLr2 cos �2

mL2

�
𝔹x1 =

�
k

m
b

m

�
𝔹w1 =

�
1

m

0

�

ℂ1 =
�
0 1

�
𝔻1 =

�
0 0 0 0

�

(32)�1 =

�
z11
z12

�
xn = z12 �1 =

⎡⎢⎢⎢⎣

�1

�2

x

w

⎤⎥⎥⎥⎦
�1 =

�
xn
�

(33)

Xn

W
= ℂ1

(
𝕀s − 𝔸1

)−1
𝔹w1 =

=
1

ms2 +
(
b +

bL cos
2 �1

L1
+

bL cos
2 �2

L2

)
s + k +

kL cos
2 �1

L1
+

kL cos
2 �2

L2

(34)
Xn

W
= ℂ1

(
𝕀s −

(
𝔸1 − 𝔹�𝕂place1

))−1
𝔹w1

3.2  Effect of cables with drives in torque control 
mode

The full model of experimental stand on Fig. 2 excited at 
beam tip with external horizontal force w(t) as disturbance 
is investigated. The system with cables is compared with 
the system without cable structure, which is common with 
the previous case.

The linearized equations at Eq. (26) are used for assorting the  
state space representation. It further serves as a base for the 
system frequency response.

(35)
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Fig. 15  Experimental stand description
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The output is xn coordinate, inputs are electric drive currents 
i1 and i2 , cart coordinate x, and external force w.

The transfer function Xn

W
 as a measure of vibration damping is

(36)

�2 =

⎡⎢⎢⎢⎢⎢⎢⎣

z21
z22
z23
z24
z25
z26

⎤⎥⎥⎥⎥⎥⎥⎦

xn =
z22

m
�1 =

z24

I1
�2 =

z26

I2
�2 =

⎡
⎢⎢⎢⎣

i1
i2
x

w

⎤
⎥⎥⎥⎦

�2 =
�
xn
�

(37)

Xn

W
= ℂ2

(
𝕀s − 𝔸2

)−1
𝔹w2 =

=
c4s

4 + c3s
3 + c2s

2 + c1s + c0

s6 + a5s
5 + a4s

4 + a3s
3 + a2s

2 + a1s + a0

where coefficients a0, ..., a5 and c0, ..., c4 are in the Appendix 
section.

The model with drives and cables has three eigenfrequen-
cies: 6.87Hz with damping 0.2, 15.78Hz with damping 0.5, 
and 24.95Hz with damping 0.6. The first eigenfrequency, 
which appears due to the electric drives equations of motion, 
is danger one, because of the relatively small damping. The 
behaviour of the system at Fig. 14 affirms the suspect. That 
is the reason to introduce state feedback control as in the pre-
vious case. The system 

(
�2,�i

)
 is controllable and feedback 

gain �place2 is calculated. The prescribed poles with arbitrar-
ily prescribed frequencies are 30Hz, 80Hz, and 90Hz with 
common damping 0.8. The transfer function of controlled 
system is the following:

(38)
Xn

W
= ℂ2

(
𝕀s −

(
𝔸2 − 𝔹i𝕂place2

))−1
𝔹w2
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Fig. 16  Magnitude phase diagram of the transfer function xn
w

 is plot-
ted, x

n
 is measured beam tip horizontal position, and w is horizon-

tal disturbance force measured at beam tip. The comparison between 

original beam structure (blue line) and structure with cables with 
preload torque and feedback control (red line)
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The transfer function xn
w

 behaviour as a measure of system 
sensitivity to external disturbances is shown at Fig. 14. 
System extended with cables has similar behaviour as the 
original system at low frequencies, but newly arises the first 
eigenfrequency and the feedback in this region is needed to 
improve the system vibration suppression properties.

Similarly as in the first case, the simulation experiment is 
performed and it verifies the findings. At Fig. 14, the dotted 
line represents some of the simulation experiment points.

4  Experimental test

The experimental verification of proposed cable system is 
performed. The setup is described in Fig. 15.

The mechanical system consists of the cart mounted to 
linear axis Rexroth with the electric drive Kollmorgen 6SM 
57M-3.000-S3-1325. On the cart is mounted a beam with the 
cables attached at its tip. The cables are actuated with elec-
tric drives Kollmorgen D062M-92-9310-010. The cart and 
beam tip horizontal positions are measured by lasertracker 
Leica AT960-MR and Leica AT901-B, respectively, and the 
drive angular positions are measured by internal sensors. 
The whole system is managed by real-time control system 
Beckhoff AX5911 TwinCAT3 based on bus EtherCAT. The 
horizontal external force at the beam tip is excited by shaker 
Tira TV51140 and measured by force sensor PCB Piezotron-
ics 208C02 connected to the Brüel &Kjaer 2694 amplifier.

The external horizontal force, as a disturbance, is set to be 
sweep cosine function with frequency change from 0.5 until 
20Hz. The force magnitude is tuned manually.

Measurement result with feedback control algorithm 
shows the transfer function xn

w
 at Fig. 16. The feedback gain 

is obtained in a similar way as for Eq. (38) with prescribed 
frequencies 30Hz, 35Hz, and 40Hz and common damping 
0.5; the condition of always loaded cables is fulfilled by 
demanded torque modification. The cable structure with 
applied feedback control decreases the system sensitivity to 
the external disturbance up to −20dB and the system eigen-
frequency is not significantly excited.

5  Conclusions

Vibration suppression is frequently solved in engineer-
ing practice. The presented approach deals with the flex-
ible structure and such systems are often problematic. The 

flexibility does not allow higher dynamic movements with-
out residual vibrations. To overcome this problem, the aux-
iliary cable structure is attached to the system to increase 
system stiffness and remove the oscillations.

The resonance amplitude of the plant was suppressed and 
behaviour of the system until 15Hz was reduced by −20dB 
using the cable structure with feedback control. It was shown 
that the concept is suitable to be used for vibration damping 
of slender structures.

Obtained results conceptionaly prove the validity of pro-
posed concept. Follow-up research will deal with deeper 
experimental verification of the achieved results.

The obtained results can be summarized as follows:

• Experimental stand representing the main properties of 
machine tools with a large workspace and long and heavy 
movable parts damped by auxiliary cable structure is pre-
pared

• The cables can be easily reconfigured and the original 
workspace of machine is almost preserved

• Experimental stand identification is performed and model 
is created

• State feedback simplified model control law for cable 
structure is assembled

• Frequency analysis shows the vibration suppression
• Low frequencies are suppressed, especially first eigen-

frequency
• Additional cable system uses standard drives commonly 

used by machine tool manufacturers
• Experimental test shows the desired behaviour with 

transfer function reduction of 20dB
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Coefficients of transfer function in (37) are the following:
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