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Abstract
In the manufacturing process of polyvinyl chloride (PVC) tubes, the required thickness and weight depend on the extruder 
flow rate. The extruder setup can be very time-consuming and inefficient since it requires adjusting the screw rotational 
speed by trial and error, as the relation between the flow rate and the rotational speed is not known a priori. Furthermore, 
it is also affected by the material properties, the melt temperature, and the pressure drop in the die. Direct measuring the 
flow rate or the tube thickness would require expensive gravimetric dosers or X-ray systems, respectively. Therefore, a soft 
sensor was developed to monitor tube thickness and its weight per unit length. Two alternative approaches are proposed to 
predict the extruder flow rate under wall slip conditions: one is based on a developed analytical model and one on data-driven 
algorithms. Results show that machine learning regression models can achieve high predictive performance (a relative error 
of 1.2% using a support vector regressor).

Keywords Data-driven · Soft sensor · Wall slip · Extrusion process · Machine learning · Regression model

1 Introduction

Polymer extrusion is one of the most widely used plastic 
manufacturing processes. It is employed to obtain several 
products such as films, sheets, wire coatings, tubes, pipes, 
and many other profiles with complex shapes [1]. In plas-
tic tube manufacturing, three main customer requirements 
need to be addressed: (i) the weight per unit length, (ii) the 
inner diameter, and (iii) the outer diameter of the tube. How-
ever, extrusion involves numerous interdependent input and 
output parameters (both process and system variables) [2]. 
Hence, tuning the process settings to meet the desired targets 
is often based on time-consuming trial and error procedures, 
leading to high process inefficiencies in scrap rates and 
lengthy setup phases, even when carried out by experienced 
machine operators. The mass flow rate of the extruder should 
be continuously measured to make a real-time estimation 
of the tube thickness and weight per unit length. Therefore, 
a soft sensor was developed to monitor tube thickness and 
its weight per unit length. Making use of a soft sensor, the 

extrusion line can be continuously monitored, and any devia-
tion from the target outputs can be detected. Furthermore, a 
soft sensor can provide the machine operator with a useful 
tool to quickly evaluate the effect of any process parameter 
modification, allowing to speed up the extruder setup phase. 
This is especially relevant in a (relatively) small-batch pro-
duction environment, where setup time can have a significant 
impact on the overall downtime. Moreover, direct measuring 
the flow rate or the tube thickness would require expensive 
gravimetric dosers or X-ray systems, respectively, which 
may not be feasible for a whole plant with many production 
lines.

A soft sensor is a technique employed to estimate process 
parameters (e.g., quality-based measures, variables indicat-
ing functionality, faults) in various applications when a hard-
ware sensor is unavailable or unsuitable for making direct 
measurements [3]. It is also known as a virtual sensor or an 
inferential estimator. One of the soft sensors’ major pur-
poses is to stabilize product quality via online estimation 
and reduce energy and material consumption via effective 
operation close to specifications [4]. Generally, soft sensors 
can be divided into “physical knowledge-based” and “data-
driven” soft sensors.

Developing a “physical knowledge-based” soft sensor for 
the flow rate monitoring in extrusion requires the knowledge 
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of the physical equations describing the material behavior and 
the boundary conditions. Materials like PVC, high-molecular 
polyethylene (HDPE), and polymer suspensions display wall 
slippage under certain conditions [5]. They violate the classic 
no-slip boundary condition used in Newtonian fluid mechanics 
and do slip over solid surfaces when the shear stress exceeds 
a critical value. Also, fillers inside the polymer’s matrix affect 
the material’s slip behavior. During the flow of a suspension 
of rigid particles, the particles cannot physically occupy the 
space adjacent to a wall as efficiently as they can away from 
the wall. This phenomenon leads to forming a generally rela-
tively thin layer of fluid, the apparent slip layer, which has a 
significantly lower viscosity than the bulk, acting as a lubricant 
[6]. The mechanisms leading to the formation of the slip layer 
are extensively discussed in [7] and [8]. Inert fillers, defined 
as solid particulates, such as calcium carbonate  (CaCO3), are 
often incorporated in large proportions in plastic compositions 
(including PVC) to reduce the material cost or modify the 
material properties. However, to predict the slip effect on the 
material flow as a function of the filler volume fraction (ϕ) is 
not a trivial problem. Investigating concentrated suspensions of 
polymethyl methacrylate (PMMA) particles in a viscous fluid, 
Jana et al. determined that the slip velocity increases with ϕ in 
0.45 < ϕ < 0.52 [9]. Gulmus and Yilmazer studied a suspension 
of PMMA particles in hydroxyl-terminated polybutadiene and 
confirmed that for increasing ϕ the slip velocity also increases 
[10]. These results were contradicted by the work of Haworth 
and Khan [11], where the slip velocity increased for a lower 
concentration of talc particles in PP compounds, while Wilms 
et al. [12] obtained opposite results for limestone-filled suspen-
sions made by different thickeners. The wall slip phenomenon 
in extrusion is complex and affected by numerous factors [13]. 
Recently, the single-screw extrusion of wood–plastic compos-
ites under wall slip conditions has been studied experimentally 
and theoretically by Wilczyński et al. [14]. They developed 
a global model of the extrusion process to predict the extru-
sion flow rate, pressure, temperature profiles, melting profile, 
and power consumption. Lewandowski and Wilczyński [15] 
performed fully 3D non-Newtonian finite element modeling 
to design the extruder and die characteristics into a global 
model for a comprehensive description of polymer extrusion 
in slip conditions. In further studies, Wilczyński et al. [16] 
validated the global model with experimental data, reporting 
that the predictions of the pressure gradient along the screw 
were slightly overestimated. However, the use of such a global 
model is computationally expensive since it requires a complex 
numerical simulation of both the extruder and the die [17].

An alternative approach consists of developing “data-
driven” soft sensors based on physical quantities measured 
on the extrusion line.

Over the last few years, data-driven methods have received 
increasing attention in manufacturing (e.g., quality prediction), 
especially when complex processes and materials are involved 

and analytical approaches are unavailable. Román et al. [18] 
developed a neural network to predict the presence of surface 
defects in injection-molded plastic parts, obtaining a testing 
accuracy of 90.5% with a support vector machine (SVM) 
classifier. The possibility of using decision trees to predict the 
quality of injection-molded tensile specimens made of HDPE 
was investigated by Ogorodnyk et al. [19]. Ke and Huang [20] 
used multilayer perceptron neural networks to predict the geo-
metrical dimensions of molded parts with an accuracy of 92%. 
Sun et al. [21] predicted multiple quality indexes of injection 
molding parts using multi-output support vector regressors 
(SVR), obtaining a good agreement with experimental results. 
SVR was also employed by Altarazi et al. [22] to predict the 
tensile strength of polymeric films made by compression mold-
ing and extrusion blow-molding, obtaining a high coefficient 
of determination (96%). Mulrennan et al. [23] developed a 
random forest-based soft sensor for the inline predictions of 
tensile properties of PLA sheets during twin-screw extrusion 
processing.

More specifically related to this research work, García 
et al. [24] used experimental data and regression models 
to predict extruded plastic tubes’ inner and outer diameter, 
observing good prediction performances. In their work, the 
estimation of the quality indexes (inner and outer diameter) 
was carried out through a purely data-driven approach where 
15 extrusion and pulling process parameters were considered 
input features of the regression model. However, they used a 
high number of predictors, which can lead to high collinear-
ity between variables. When a regression model has many 
correlated variables, their coefficients are poorly determined 
and exhibit high variance, i.e., the regression coefficients 
represent the noise rather than the genuine relationships in 
the population [25]. Regression models with many predic-
tors are also more likely to overfit and less interpretable. 
Also, no variables related to the material properties were 
included in the prediction algorithms, even though they sig-
nificantly affect the extrusion process.

In this work, two alternative approaches are proposed and 
compared to determine the extruder flow rate in slip condi-
tions: the first relies on analytical models derived from phys-
ics and first principles. In contrast, the second is based on 
data-driven methods that use machine learning algorithms. 
In the first approach, a simplified analytical model was devel-
oped based on the well-known Tadmor and Klein (Tadmor, 
Z.; Klein, 1970) model. A velocity reduction term inspired 
by the generalized Navier slip law was introduced into the 
equation to consider the reduced drag flow due to the material 
slippage in the extruder. The extruder flow rate was estimated 
in the second approach after training, validating, and testing 
different machine learning algorithms. A feature selection 
phase was carried out before training the models. Accord-
ing to the analytical pressure-throughput models, the pre-
dictor variables were chosen among the physical quantities 
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known to affect the flow rate the most. The amount of inert 
filler in the PVC compound was also included in the model’s 
input variables as a wall slip predictor. Once the volumetric 
throughput was known, the inner diameter of the tube was 
calculated through the mass continuity equation.

The novelty of this work mainly lies in the methodology 
adopted for the product quality prediction in the manufac-
turing of extruded tubes. First, regression algorithms (both 
analytical and data-driven) are used to estimate the extruder 
flow rate, while the weight and inner diameter of the tube are 
then determined using the continuity equation. Moreover, 
no pure “black-box” approach is deployed since predictor 
variables are chosen according to physics.

2  Materials and method

2.1  Material characterization

Four flexible PVC types were chosen among the most fre-
quently used ones for tube manufacturing after a preliminary 
screening to include the materials exhibiting the maximum 
and minimum viscosity in the experimental campaign. The 
characteristics and compositions of these materials are 
reported in Table 1.

The apparent shear viscosity curves for each material were 
obtained by capillary rheometry (Ceast, Rheologic 500) oper-
ating at three different temperatures: 145, 160, and 175 °C.

As shown in Fig. 1, the materials present a typical shear 
thinning behavior. Therefore, the viscosity was modeled 
using a power law equation [26]:

where n is the flow behavior index of the material and m(T) 
is the flow consistency index which allows keeping into 
account the temperature dependence of viscosity, accord-
ing to the WLF model:

(1)𝜂 = m(T)�̇�n−1

(2)m(T) = Dexp

[

A1(T − T∗)

A2 + (T − T∗)

]

where T∗ is a reference temperature and D, A1, and A2 are 
model coefficients.

The material’s density function ρ(p,T) is required to com-
pute the mass flow rate. The pressure–volume–temperature 
curves (pvT) for each material were determined using the 
capillary rheometer in a temperature range of 50 to 180 °C. 
Experimental data were then fitted with the dual-domain Tait 
pvT model, and the zero-pressure curve was extrapolated.

2.2  Process equipment

The experimental campaign was carried out on an indus-
trial extrusion line equipped with a single-screw extruder 
having a 60-mm diameter barrier screw. The extruder was 
monitored using a temperature–pressure transducer (Gefran, 
ME) installed before the breaker plate. This melt transducer 
had a temperature–pressure operating range of 0–400 °C 
and 0–2000 bar, respectively, with an accuracy at the full-
scale output of ± 0.25%. Once the polymer melt is pushed 
through the die and formed into a tube shape, a mechanism 
pulls the tube at a constant speed through two water-cooling 
tanks. After the first tank, the material shrinkage is almost 

Table 1  Main characteristics of the four PVCs used during experiments

Hardness, 
ShA

Specific 
weight, g

cm3

Suspension 
PVC K70, %

Mass PVC, % CaCO3 (inorganic 
filler), %

DOTP 
(plasticizer), %

Ca/Zn 
(stabilizer), %

ESBO (thermal 
stabilizer), %

PVC A 85 1.44 49 0 26.4 22.3 0.5 1.7
PVC B 80 1.44 43.5 0 29.2 25.2 0.4 1.5
PVC C 80 1.35 0 51.6 18.6 27.9 0.5 1
PVC D 78 1.21 63.3 0 0 33.9 0.5 2.2

Fig. 1  Shear viscosity curves for the four flexible PVC types at the 
temperature of 145 °C
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complete, and a dual-axis laser device measures the tube’s 
outer diameter. A schematic representation of the process 
equipment is shown in Fig. 2.

2.3  Experiments

In order to determine the pumping characteristic of the 
extruder over a reasonable working range for the production 
practice, the experiments were carried out varying the fol-
lowing process variables: the material, the die diameter, and 
the screw speed. Eventually, two full factorial designs were 
adopted for the experimental campaign. In the first design 
of experiment, the material was changed among three levels 
(PVC A, B, and C); the die diameter was set to 17, 18, and 
19 mm and the screw speed to 10, 20, 30, and 40 rpm. In the 
second design of experiment, only one material (PVC D) was 
considered; the die diameter was set to 20 and 21 mm and 
the screw speed to 12, 24, 36, and 48 rpm. Both the experi-
mental factors’ levels and the materials were chosen in order 
to replicate the operating conditions of the extrusion lines 
in the industrial framework. The extruder temperatures were 
fixed for all the experiments: Tzone1 = 165 °C, Tzone2 = 170 °C, 
Tzone3 = 175 °C, Tzone4 = 175 °C, and Tdie = 165 °C, from the 
hopper to the die. The die dimensions were modified by 
replacing only the die, while the mandrel dimensions were 
fixed, keeping a mandrel diameter Dm = 15 mm. A schematic 
representation of the die is shown in Fig. 3.

For each combination of material die dimensions, four 
runs were taken at four different levels of the screw speed 
N. Eventually, 56 experiments were carried out. The adopted 
experimental design is summarized in Table 2. For each 
experiment run, the die pressure drop ΔP, the melt tempera-
ture Tmelt, and the pulling speed vline, as well as the mass flow 
rate, were recorded. For each process condition combination, 

the mass flow rate measurement was recorded as follows: 
once the process reached the steady-state condition letting 
the extruder operate with the pulling mechanism off, the 
weight of a polymer melt sample extruded in 2 min was 
measured with a digital scale. Hence, the mass flow rate was 
obtained by dividing the measured weight by the sampling 
time. After reconnecting the extruded tube to the pulling 
mechanism, the melt temperature and die pressure drop were 
recorded for each run. The outer diameter and the imposed 
pulling speed were recorded, while the inner diameter of the 
tube was measured manually. 

3  Modeling

3.1  Geometrical calculation of the inner diameter

The estimation of the inner diameter of the tube was per-
formed using the mass continuity equation between two 
sections of the extruded pipeline, as illustrated in Fig. 4, 
where Sect. (0) refers to the cross-section of the tube right 
at the exit of the die.

Fig. 2  Schematic of the tube extrusion line. Adapted from [27]

Fig. 3  Schematic configuration of the die and mandrel
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In contrast, Sect. (1) refers to the cross-section of the 
tube once the polymer has stopped shrinking after the 
water-cooling bath:

where Qm0, Qm1 are the mass flow rate at Sects. (0) and (1), 
respectively:

where Qv0, Qv1, ρ0, and ρ1 are the volumetric flow rates and 
the material densities at Sects. (0) and (1), respectively. The 
material temperature is assumed to be equal to the melt tem-
perature at Sect. (0) and the room temperature at Sect. (1). 
The pulling mechanism determines the tube speed at 
Sect. (1), v1. The cross-sectional area of the tube at Sect. (1) 
can be calculated as

Since the outer diameter at Sect. (1) is measured inline 
by a dual-axis laser device, the inner diameter of the tube 
can be calculated once S1 is known from Eq. (6):

(3)Qm0 = Qm1

(4)Qm0 = Qv0�0

(5)Qm1 = Qv1�1 = v1S1�1

(6)S1 =
Qm0

v1�1

(7)d(1) =

√

D(1)2 −
4S1

�

The weight per unit length can also be calculated once 
Qm0 is known:

Hence, to estimate the weight and the inner diameter of the 
tube, the density and the volumetric flow rate of the extruded 
material (i.e. the extruder pumping characteristic) are needed. 
The development of a soft sensor for the inline estimation of 
the volumetric throughput of the extruder requires a predic-
tive model capable of fitting the experimental data.

3.2  Model of the extruder characteristic

Since this work aims at developing a soft sensor for industrial 
purposes, the choice of the model (i.e., of its input parameters) 
must be based on the availability of measurable data during the 
tube extrusion process. For example, more advanced models 
allow keeping into account the leakage flow through the clear-
ance between the flight and the barrel. However, it is not fea-
sible to easily retrieve this data in the production framework. 
All of the analytical and data-driven models in this work do not 
require extra sensorization of the production lines. The single-
screw extruder (SSE) can be considered a melt pump. The last 
zone of the extruder (metering zone) increases the polymer 
pressure to the level necessary for it to be pumped through 
the die at the desired rate. A model for the SSE pumping is 
given, for example, in [28] and was first proposed by Tadmor 
and Klein (1970). In these simple analyses, the polymer melt 
is considered a Newtonian isothermal fluid with constant vis-
cosity. The effects of leakage phenomena over the flights and 
flight flanks are neglected, and the hydrodynamic boundary 
condition applies (i.e. no slip at the wall). Furthermore, it is 
assumed that the channel depth is very small compared to the 
screw diameter so that the flat plate model can be used [29]. 
According to the previous hypotheses, the SSE flow rate in the 
down-channel direction can be expressed as follows:

where W is the channel width, H is the channel depth, vbz is 
the barrel velocity, µ is the Newtonian viscosity, and ΔP/Zp 
is the pressure gradient in the down-channel direction. ΔP 
is the pressure drop across the die, and Zp is the unwounded 
length of the metering zone. The first term in Eq. (9) repre-
sents the flow rate in pure drag flow, i.e., the flow rate as if 
no die was mounted at the end of the extruder, and is directly 
proportional to the screw speed, since

(8)mtube =
Qm0

v1

(9)Qv =
WHvbz

2
−

WH3

12�

ΔP

Zp

(10)vbz = �DN����

Table 2  Extrusion experimental design

Factors Levels

Material PVC A, PVC B, PVC C PVC D
Die diameter, mm 17, 18, 19 20, 21
Screw speed N, rpm 10, 20, 30, 40 12, 24, 36, 48

Fig. 4  Schematic representation of tube extrusion
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where N is the screw speed and ϕ is the helix angle of the 
flight. A pressure-driven flow (the second term in Eq. (9)) 
decreases the overall output due to a positive pressure gra-
dient in the down-channel direction. Equation (9) is the 
simplest throughput–pressure gradient model for the SSE. 
When the non-Newtonian behavior of the fluid is taken into 
account, Eq. (9) becomes

where n is the pseudo-plastic coefficient of the polymer. The 
viscosity, µ, is calculated with the power law equation as a 
function of the shear rate in the channel:

Equation (11) can be written in a shorter form:

where α and β are model parameters that include the geo-
metrical characteristics of the extruder. In this work, the first 
attempt to fit the experimental data was conducted using Eq. 
(13). The coefficients α and β were obtained minimizing the 
residual sum of squares:

where Qv and Q̂v are the experimental and predicted values 
(using Eq. (13)) of the flow rate, respectively, and K is the 
total number of samples (56).

The Tadmor and Klein model assumes that the polymer 
melt adheres to the screw and the barrel wall during extru-
sion. Even if this is generally accepted, several materials 
like filled polymers (e.g., wood plastics composites), elas-
tomers, and pure polymers like PVC and HDPE display 
wall slippage under certain conditions.

For the slip analysis, a non-linear slip velocity law (general-
ized Navier slip law) is usually assumed to approximate the actual 
slip behavior of several fluids, including molten polymers [30]:

where β is the slip coefficient, b is the slip law exponent, and 
τ is the wall shear stress. The nominal screw speed N in Eq. 
(10) was decreased by a slip velocity term, Nslip, to account 
for wall slippage in the extruder model. Its expression was 
derived by analogy to Eq. (15), leading to the following 
expression for the effective screw speed N':

(11)Qv =

(

4 + n

10

)

WHvbz −
(

1

1 + 2n

)

WH3

4�

ΔP

Zp

(12)� = m(T)
(vbz

H

)n−1

(13)Qv =

(

4 + n

10

)

�N −

(

1

1 + 2n

)

�
ΔP

�

(14)RSS =

K
∑

i

(

Qv − Q̂v

)2

(15)us = −��b

(16)N
�

= N − Nslip = N − kN�

Equation (9) thus becomes

where α and β are model coefficients as in Eq. (13) and the 
viscosity was calculated with the power law equation, con-
sidering that �̇� ∝ vbz ∝ N. Introducing Eq. (16) into Eq. (17), 
the full expression of the throughput is obtained:

Equation (18) contains four model parameters (α, β, k, 
and δ), determined by model fitting.

For what concerns the data-driven modeling, from the 
experimental data recorded for each process condition combi-
nation, a dataset of N = 56 observations (or instances) D = {(xi, 
yi),…,(xN,yN)} was created. Any input vector xi = (× 1, × 2,…, 
xd) (also called features vector) is associated with an output 
variable, yi. Polynomial regression, support vector regres-
sion, decision tree, and multi-layer perceptron neural network 
(MLPNN) models were trained to seek a function f that pre-
dicts a continuous output y given a new input x.

4  Data analysis methodology

The data acquired during the experimental campaign were 
processed using Python 3 from its distribution platform 
Anaconda, which includes the essential data science and 
machine learning packages. The code was edited and run 
through the Jupiter Notebook web application.

The input and output variables were defined as follows:

where Cfiller is the concentration of filler  (CaCO3) in the 
PVC and it was included in the input features because it 
affects the slippage behavior of the material in the extruder. 
To ensure a good generalization error of a machine learning 
model, it is required to have at disposal a number of obser-
vations ten times greater than the number of features, i.e., 
10 × 5 = 50 observations, as stated in [31]. As in this work, 
56 experiments were conducted; the generalization heuristic 
was satisfied.

Prior to training the machine learning algorithms, data pre-
processing needed to be applied to the raw data. Data normali-
zation was applied to the input vectors with the minimum–max-
imum scaler method to map the original data into the uniform 
range [0,1]. Feature selection was carried out by choosing the 
input variables according to physical-based considerations. All 
the above-mentioned predictors are thus known to be informa-
tive, based on the evaluation of analytical extruder models 

(17)Qv = �N� − �
ΔP

m(T)N�n−1

(18)Qv = �
(

N − kN�
)

− �
ΔP

m(T)(N − kNy)
n−1

(19)
xi =

(

N,ΔP,m(T), n,Cfiller

)

yi = Qv
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from the literature. The dataset was then randomly split into 
a training set and a test set: 48 samples were used for model 
selection and hyperparameters tuning, while the remaining 

eight samples were held out to calculate an unbiased estima-
tion of the generalization error (out-of-sample error). Model 
selection was based on k-fold cross-validation (CV) results to 
reduce bias and variance, ensuring that all the samples data 
were considered during the learning phase. The dataset was 
iteratively split into 12-folds (k = 12): 11-folds were used for 
model training and the one remaining for model testing. The 
average test error across all the 12-folds was then computed. 
k-fold CV was used simultaneously to find the optimal model 
hyperparameters, whose values control the learning process and 
are external to the model, which means they remain unchanged 
during the training phase. A schematization of the workflow for 
the model construction is given in Fig. 5.

Both model selection and hyperparameters tuning must 
be based on specific evaluation metrics. The root mean 
square error RMSE was used as an evaluation metric:

This metric indicates how far from the regression line the 
target points are, and it has the advantage that it is expressed 
in the same units of the predicted variable. Moreover, it can 
be used for evaluating both linear and non-linear regression 
models. However, RMSE is not sufficient for a comprehen-
sive assessment of a regression algorithm. In addition to the 
RMSE, two techniques for model diagnosing were consid-
ered: the residuals scatter plot and the learning curves.

5  Results and discussion

The experimental data are shown in the typical throughput-
pressure plot in Fig. 6.

(20)RMSE =

√

√

√

√
1

N

N
∑

i=1

(

yi − ŷi
)2

Fig. 5  Schematic of the machine learning model construction

Fig. 6  Throughput-pressure 
scatter plot of experimental data 
for a PVC A, b PVC B, c PVC 
C, and d PVC D
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The performances of different analytical and machine 
learning models are compared when predicting the 
extruder flow rate. The flow rate predicted values are 
then considered to estimate the tube’s weight and inner 
diameter.

5.1  Flow rate

In order to make a consistent comparison between the ana-
lytical and the data-driven regression methods, the perfor-
mances of the analytical models were evaluated by carrying 
out a 12-fold CV.

In Table  3, the 12-fold CV errors for the analytical 
models and each of the proposed regression models are 
reported. The high discrepancy between the predicted and 
the experimental values is evident when calculating the flow 
rate with the classic Tadmor and Klein model. The root 
mean square error computed for all the considered materials 
was RMSE = 45  cm3/min. Figure 7 shows the comparison 
between the flow rate measured and calculated with Eq. 
(13) for the PVC A.

Observing Fig. 7, the following considerations can 
be deduced. First, the volumetric flow rate is not pro-
portional to the screw speed at low pressure drops, as 
the Tadmor and Klein model would imply. As the screw 
speed increases, the flow rate increases less than propor-
tionally so that the model systematically overestimates 
the f low rate since it does not consider the material 
slippage. Second, at constant screw speed, the model 
cannot describe the decrease of the flow rate when the 
pressure drop increases, especially at high pressure 
drops, which means that the behavior of the extruder is 
pressure-sensitive.

The introduction of a velocity reduction term in the 
Tadmor and Klein model allows considering the drag 
flow reduction due to the slip effects, especially at lower 
pressure drops. The prediction performances significantly 
increase from RMSE = ±45

cm3

min
 to RMSE = ±29

cm3

min
 . The 

significant improvement of the slip model over the Tadmor 
and Klein model is mainly due to the ability of the slip 
model to capture the less than proportional increase of the 
flow rate with the screw speed while extruding materials 
that exhibit wall slip. Even if the novel analytical model 
exhibited a significant improvement over the Tadmor and 
Klein model, quality production standards require even 
higher prediction performance. As a result, data-driven 
techniques are being tested.

For what concerns the machine learning models, since 
CV was performed for each possible combination of the 
values of the considered hyperparameters, the reported 
results are relative to the learning algorithm whose hyper-
parameters allowed to obtain the best prediction perfor-
mance (the smallest RMSE). For example, polynomial 
regression exhibited its best score when the degree of 
the polynomial features transformation was set equal to 
2, predicting the volumetric flow rate with an accuracy 
of ±13, 80cm3

min
.

Figure 8 represents the residuals scatter plot for the ran-
dom forest regressor, which displays the predicted flow rate 
Q̂v on the x-axis and the difference between the observed 
and the predicted flow rate Qv − Q̂v (residual) on the y-axis. 
Usually, the residuals are randomly scattered around 
zero, since the error committed by the model should be 

Table 3  Cross-validation error for different regression algorithms

Regression method 12-folds CV error
RMSE,cm

3

min

Analytical (Tadmor–Klein) 45.00
Analytical (slip model) 29.26
Data-driven
Polynomial regression 14.32
SVR 14.93
MLP neural network 18.52
Random forest regressor 45.30

Fig. 7  Flow rate prediction results with Tadmor–Klein isothermal 
non-Newtonian model for PVC A

Fig. 8  Flow rate residuals scatter plot Random Forest Regressor
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stochastic. However, a non-random pattern can be noticed 
in Fig. 8, which means that the deterministic part of the 

model is missing some explanatory information. On the 
other hand, learning curves are valuable tools to check if a 
training/testing dataset is suitably representative of a spe-
cific learning algorithm.

Figure 9 shows the learning curves for the MLP neu-
ral network regressor. The size of the training set and 
the training and testing performance is displayed on the 
x-axis and y-axis, respectively. The noisy movements of 
the curves suggest that the training/testing datasets are 
unrepresentative, i.e., they do not contain sufficient infor-
mation to evaluate the ability of the model to general-
ize. Figure 10 depicts the residuals plot and the learning 
curves for the polynomial regression and the SVR. The 
residuals are randomly scattered around zero for both 
models, i.e., the models are not biased. The learning 
curves show how increasing the size of the training set 

Fig. 9  Learning curves of MLP regressor for flow rate prediction

Fig. 10  Flow rate a residuals plot and b learning curves for polynomial regression. Flow rate c residuals plot and d learning curves for SVR
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the in-sample error and the out-of-sample error gradu-
ally increases and decreases, respectively. The results in 
Fig. 10 refer to a polynomial regression where the degree 
of the polynomial features transformation was set equal 
to 2, and the ridge regularization method (α = 0.01) was 
applied. The SVR used a polynomial kernel function 
(coeff = 1, degree = 3, γ = 1) and a regularization coeffi-
cient C = 125 . These model hyperparameters were deter-
mined with the GridSearch method from the scikit-learn 
Pyhton package.

These results suggest that both the PR and SVR are 
suitable algorithms for predicting the extruder flow rate, 
where the SVR exhibits the best prediction performance, 
according to Table 3. Both models were then tested to 
estimate the out-of-sample error, using the data which 
had been left apart during the training phase. The pre-
diction errors are ±13, 67 and ±12, 92cm3

min
 for the PR and 

SVR, respectively. Finally, the best algorithms were 
retrained on the entire dataset, and the mean absolute 
percentage error (MAPE) was calculated. The error com-
mitted by the polynomial regression is MAPE = 1.65% 
(accuracy = 98.35%), while the error committed by the 
SVR is MAPE = 1.17% (accuracy = 98.83%). In sum-
mary, both the PR and the SVR are unbiased models 
and exhibit a good fit of the experimental data, con-
firmed by the analysis of the residuals plots and the 

learning curves, respectively. Moreover, the error com-
mitted when predicting the extruder flow rate is small 
enough to be compatible with the required production 
quality standards. These regression models are thus suit-
able for predicting the extruder flow rate with accept-
able accuracy.

5.2  Tube weight and inner diameter

Sensitivity analysis was performed to measure the effect 
of the estimated flow rate error on the tube inner diam-
eter and weight error. Since an uncertainty of ± 5% on 
the flow rate leads to a tube weight error of ± 5% and an 
inner diameter error < 1%, which are acceptable to meet 
the industrial quality requirements, both the PR and the 
SVR are suitable to predict the extruder flow rate with 
sufficient accuracy.

The weight per unit length of the tube was calculated with 
Eq. (8) using the predicted volumetric flow rate. The inner 
diameter of the tube was calculated according to Eqs. (6) 
and (7). RMSE and accuracy results for the predicted inner 
diameter and weight of the tube are reported in Table 4, 
where the volumetric flow rate in Eq. (4) is estimated using 
the SVR algorithm.

The residuals for the two tube characteristics are shown in 
Fig. 11. The residuals are positive for almost all the samples, 
which means that the predicted weight of the tube is always 
greater than the corresponding experimental value. Since 
the residuals of the predicted flow rate are randomly scat-
tered around zero, from Eq. (8), it can be deduced that the 
velocity of the line is systematically underestimated. This 

Table 4  RMSE and accuracy 
results for the predicted inner 
diameter and weight of the tube

RMSE Accuracy, %

d(1), mm 0.69 95.71
mtube,

g

m
10.95 93.28

Fig. 11  Residuals plot for a the inner diameter and b the weight per unit length
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implies that the tube’s predicted inner diameter will also be 
underestimated, as seen in Fig. 11b. These results support 
the need for a more accurate real-time measurement of the 
line speed.

6  Conclusions

The present work discussed the development of a soft sen-
sor for the inline measurement of extruded PVC tubes’ 
weight and inner diameter. To achieve this goal, the flow 
rate of the extruder needs to be measured. Experimental 
data were used to compare both analytical and data-driven 
methods to predict the volumetric flow rate under slip 
conditions. First, regression algorithms (both analytical 
and data-driven) were used to estimate the extruder flow 
rate, with predictor variables chosen based on physical 
concerns. The weight and inner diameter of the tube were 
then determined using the continuity equation. This rep-
resents a novel approach for the product quality predic-
tion in the manufacturing of extruded tubes. Moreover, 
no pure “black-box” approach were deployed. The novel 
analytical model proposed in this paper, which is based 
on physics principles, considers the wall slippage of the 
molten polymer exhibiting an accuracy of 95.5%. How-
ever, this model did not consider the influence of the filler 
concentration on the flow rate. More accurate results were 
obtained through machine learning regression algorithms, 
which allowed to include the percentage of filler (calcium 
carbonate) among the predictor variables, thus keeping 
into account the experimental evidence for which higher 
percentages of filler results in increased material slippage. 
The polynomial regression and the SVR exhibited the best 
performance among all the considered regression methods, 
with 98.35% and 98.83% accuracy, respectively, in pre-
dicting the extruder flow rate. The weight per unit length 
and the inner diameter of the tube were then calculated 
using the mass continuity equation. In particular, these 
calculations rely on the inline measurement of the veloc-
ity and the outer diameter of the tube. Since the estimated 
inner diameter and the weight resulted under- and overes-
timated, respectively, it was deduced that the line velocity 
was systematically underestimated. High accuracy of these 
measurements is thus mandatory to develop a reliable soft 
sensor for quality monitoring in tube extrusion.
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