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Abstract
Frequent changes in customer needs and large product variety are forcing manufacturing companies to move from mass 
production to mass customization. Customized production can be achieved by introducing reconfigurable production systems 
(RMS). The customized flexibility and several characteristics of RMSs provide many opportunities in terms of process and 
production planning. However, those characteristics greatly increase the complexity of the design and planning of production 
systems. This paper presents a decision support system relying on a skill-based approach to design a reconfigurable assembly 
line considering the planning of assembly processes and monitoring. The proposed decision aid system is modular in design 
and is composed of four modules. The main input data is a CAD model of a new product variant for the identification of the 
assembly and monitoring requirements. Besides, a current assembly system layout with its resource descriptions exists. In the 
first developed module, assembly-by-disassembly and a skill-based approach are used to generate different assembly plans. 
In the second module, feature recognition and skill-based approaches generate process monitoring alternatives. The third 
module uses a linear program (LP) that aims to minimize the total cost of workstation activation and reconfiguration, as well 
as cycle time, and to maximize the process quality of the assembly tasks. A user-based generative model design approach 
is applied to optimize the values of three objective functions. In the fourth and final module, a simulation of the optimized 
assembly plan allows either the validation of the assembly plan and process monitoring plan or initiates a new iteration due 
to their infeasibility. To further demonstrate how the proposed methodology works, some computational experiments are 
provided for two use cases.

Keywords  Decision support system · Reconfigurable manufacturing system · Assembly · Skill-based approach · CAD 
analysis · Feature recognition · Optimization

1  Introduction

Manufacturing companies are transforming from mass 
production to mass customization since they are facing 
increasing product individualization, uncertainty in the market 
demand, and product and technology variety. This situation 
causes those manufacturing companies to become more 
and more flexible and adaptable to quickly respond to any 
changes in the market and launch new products frequently. In 
this context, Koren et al. [1] proposed a new manufacturing 
system concept, called reconfigurable manufacturing system 
(RMS). This concept is based on the reconfigurability of 
machines, equipment (hardware), and their control systems 
(software). In such manufacturing systems, all manufacturing 
components (hardware/software) are designed taking into 
account the characteristics [2]: modularity, integrability, 
scalability, customization, convertibility, and diagnosability. 
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An RMS is defined as a manufacturing system where physical 
manufacturing components and process capabilities can be 
added, removed, or modified easily and efficiently to change 
the production capacity. Thereby, an RMS can create the 
functionality and capacity that are needed, when they are 
needed [3]. RMSs offer higher flexibility in production and 
can therefore meet the challenges resulting from today’s 
trends in production (e.g., individualized products, shorter 
product life cycles, higher quality demands) [4]. To be able 
to handle such flexibility a great amount of manual effort and 
expert knowledge is needed to plan the production processes. 
Especially in assembly, which causes most of the resulting costs 
of a product, the amount of time and expert knowledge required 
to consider the huge variety of possible assembly sequences 
and assembly plans is immense [5]. Therefore, automated 
planning approaches must be applied to handle this kind of 
flexibility efficiently. Besides planning assembly processes 
including the assignment of production devices and stations, 
the quality of the produced goods must be considered. This can 
be done by simultaneously planning process monitoring [6]. 
This paper addresses today’s challenges in production planning 
by generating and analyzing various assembly and monitoring 
plans offered by an RMS. We identify the different alternatives 
for assembling a new product in an existing production system 
and simultaneously consider the possibility of introducing 
process monitoring. The developed automated planning 
methodology includes the optimization of the solution space 
(assembly plans) concerning production criteria (e.g., necessary 
reconfigurations, monitoring efficiency). The rest of this paper 
is organized as follows: Section 2 presents an overview of 
the state of the art on which the methodology of this paper 
is based. Furthermore, existing automated planning processes, 
necessary semantic taxonomies, and existing optimization 
approaches are presented. In Sect. 3, we discuss the challenges 
that are addressed in this paper. Additionally, the vision which 
motivates our research in this field is introduced. Section 4 
first describes an overview of the methodology before the 
individual modules of the decision aid system are introduced 
and explained. Validation is given in Sect. 5 by presenting two 
case studies that show the applicability and functionality of the 
proposed methodology. Section 6 gives a conclusion based on 
the results and some perspectives for future research.

2 � Literature review

Industrial companies are faced with a high level of uncertainty, 
changes, fluctuations, and a lot of challenges and constraints 
corresponding to the market, product variety, and manufacturing 
technologies. In this context, manufacturing systems need to 
increase their flexibility, adaptability, and reconfigurability. For 
this reason, within the evolution of manufacturing systems, 
they have switched from dedicated manufacturing systems 

(DMS) to flexible manufacturing systems (FMS), and then to 
reconfigurable manufacturing systems (RMS). As mentioned, 
the concept of RMS is introduced by [1], which allows the 
company to manufacture a part family of products and react 
quickly and efficiently to any changes in the market. An 
RMS can be reconfigured by adding, removing, or changing 
the physical structure of the system or the manufacturing 
components. Thereby, an RMS can create the capacity and 
functionality that is needed when it is needed [3, 7–9]. Overall, 
an RMS combines the advantages of DMS and FMS in terms 
of higher throughput and customized flexibility [2]. In the 
following, the literature on RMS in general and automated 
planning in combination with skill-based approaches and 
optimization approaches for process planning to efficiently use 
the flexibility of RMS are reviewed. Last, approaches for feature-
based identification of process requirements are presented. The 
combination of these approaches for the automated identification 
of resource capabilities and process requirements in an RMS 
and their matching represent an important cornerstone of the 
methodology presented here.

2.1 � RMS literature review

The literature on RMS has considered several problems of 
operations management at different levels such as planning, 
design, and operation [10–13]. Since our study corresponds 
to the design of an RMS with process monitoring, this 
literature review focuses on this concept. With regard 
to the recent literature study of [11], little attention has 
been paid to diagnosability in the literature on the RMS. 
Diagnosability, which is an ability to quickly detect issues 
concerning the quality and reliability in a system, is one of 
the six characteristics of an RMS [3].

The development of sensor technology enables the 
monitoring of processes by measuring geometric, kinematic, 
and mechanical values, as well as fluid parameters and 
temperature [14]. Process monitoring and especially inline 
process monitoring have therefore become more relevant 
to address global trends such as production in small batch 
sizes while maintaining high production quality [15, 16]. 
Process monitoring is investigated as a feasible quality 
control method based on sensing and control technology 
[17]. Online signals, such as force and temperature, are 
collected to determine the states of manufacturing processes 
[18]. Planning process monitoring on the other hand is 
quite time and cost consuming and requires high expert 
knowledge so that in today’s production it is often only used 
for mass production. To enhance the diagnosability of RMS, 
automated planning of process monitoring is an essential 
aspect to consider.

In 2018, [2] went into details of the characteristics, principles, 
and architecture of the RMS. A key aspect is the performance 
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improvement of RMS and the reduction of design effort by 
introducing cyber-physical manufacturing systems and new 
intelligent manufacturing technologies. This concept assists 
manufacturers and is fully applicable in practice. For this 
reason, the concept of a digital twin has been researched for 
the last several years. The term digital twin describes a digital 
image of a physical or immaterial object or process from 
the real world. Thus, the digital twin forms a simultaneous 
representation that exists throughout the entire life cycle of the 
depicted system [19–21]. The aim is to enable production to 
become an autonomous decision-making and control system 
by using simulations and sensor data in planning and operation 
[22]. To be able to benefit from RMS, the heterogeneous field 
device landscape must be handled efficiently. Therefore, a 
semantic description of devices and functionalities, as well as 
an automated analysis of the solution space, is necessary.

2.2 � Automated process planning

Automated process planning represents a decisive research 
focus to use production systems efficiently in a flexible and 
targeted manner [23]. Skill-based approaches have become 
increasingly popular for automated process planning due 
to their flexibility. These approaches are also described as 
capability-based approaches [24, 25]. [26] present a capability-
based approach for the evaluation of changes in the RMS. This 
approach has also been extended by integrating rules so that 
skills can be combined to determine the impact of changes in 
a production system by identifying different capability models 
and thus functionalities in a production system [27]. Due to 
different understanding and definition of capabilities, the focus 
of skill-based approaches varies. [28] focuses on planning and 
scheduling by using a skill-based approach to automatically 
generate production schedules. Furthermore, [29] combine 
taxonomies of different publications to build up a skill taxonomy 
that relies on norms and VDI guidelines (e.g., DIN 8580, VDI 
2860). They focus on skills in assembly so that an existing 
production system is able to offer these skills for the assembly 
and thereby satisfy product requirements. [30] build upon this 
approach and defined skills that are relevant for monitoring 
processes in assembly. The results of these studies [29, 30] make 
it possible to generate a skill model of an existing assembly 
system by focusing on actorial and sensorial functionalities. The 
combination of skills has also been presented in these papers. 
Through this, functionalities of resources can be connected 
with each other in an existing assembly system to identify more 
skills than can be seen at first glance. This makes it possible to 
automatize the identification of skills in the existing assembly 
system by concerning actorial (e.g., assembly processes) and 
sensorial (e.g., monitoring processes) skills. The generation 
of assembly plans via skill-based approaches allows to use 
the flexibility of RMS. Hereby, multiple plans can be created 
automatically. Identifying which process plan to use hereby 

leads to an assembly line balancing problem in automated 
process planning [31]. Using optimization approaches and 
algorithms can be a favorable condition to identify the most 
suitable assembly plan based on certain criteria (e.g., number of 
reconfigurations, reconfiguration cost and time) [32]. This will 
be discussed in the following subsection.

2.3 � Optimization approaches for assembly line 
balancing

Assembly line balancing (task assignment) and design 
(resource allocation) are crucial steps for the production 
planning [33]. These topics have been studied by many 
researchers [34–37]. The lack of a complete planning 
approach that covers configuration and reconfiguration of 
a line taking into account the assembly and monitoring 
processes can be seen in the literature [33]. In the literature 
on assembly lines, several objective functions are optimized 
using different optimization methods. Such optimization 
problems for assembly line balancing and production 
planning are usually modeled using mathematical 
programming [38–41], and solved by different solution 
approaches, either exact or approximate methods like 
(meta-)heuristic algorithms [42–44]. For instance, [38] build 
a linear programming model and constructive heuristics to 
solve a workforce minimization problem in a paced assembly 
line, motivated by an automotive industry case. The goal 
was to find a workforce assignment, which minimizes the 
maximal number of workers used in all production cycles. 
[45] describe a bi-level optimization approach to combine 
the selection and positioning of production resources into 
one single optimization problem. Hereby, a nested genetic 
algorithm has been developed which is capable of solving 
an assembly line balancing problem with resource selection 
and layouting. Moreover, the optimization approaches 
can be integrated to simulation techniques which is 
called simulation-based optimization approaches. These 
approaches have been adopted to manufacturing systems’ 
optimization, efficiently [46]. For example, [47] developed 
a simulation-based optimization approach using a discrete 
event simulation model and simulated annealing (SA) 
algorithm, to solve a production planning and resource 
allocation problem in reconfigurable manufacturing system.

2.4 � Feature‑based approaches for the identification 
of requirements

Products and processes place requirements on devices and 
skills. These requirements can be detected by identifying 
features in CAD models (computer-aided design) that store 
information about products, parts, or resources throughout 
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the entire product life cycle [48]. Functions and requirements 
can thereby be assigned to specific products and parts. These 
can either be geometric information (e.g., topology) or 
describe functional information (e.g., product manufacturing 
information (PMI) [49]). Depending on the application 
domain, features are defined differently for computer-aided 
design, manufacturing (CAM), and process planning (CAPP) 
models [48, 50]. Especially in manufacturing planning, feature-
based approaches are used to define product and process 
requirements [51]. [52] describe an approach to identify critical 
manufacturing features on metallic aerospace components. 
Hereby, a rule-based feature recognition method is used to 
identify features on different representations of solid models 
(i.e., curve solid geometry (CSG), boundary-representation 
(B-rep). In assembly, features have been considered just 
recently as relevant for process planning [53]. [54] summarizes 
several studies about assembly features and creates a structure 
of assembly features. The recognition of features varies among 
graph-based, hint-based, cell-based, rule-based, neuronal-
network-based, and convex hull decomposition recognition 
approaches [52, 55]. These approaches are differently efficient 
depending on the required outcome and product complexity. 
For example, rule-based approaches have been shown to 
produce the best results for the identification of assembly 
features due to their scalability and transparency [52, 54].

2.5 � Summary of the literature review

Up to now methodologies and decision support systems for 
process planning have not addressed the aspect of diagnosability 
in RMSs. As can be seen in Sect. 2.1, monitoring becomes more 
relevant in production and specifically in RMS. Unfortunately, 
there are few approaches to how to consider process monitoring 
in today’s (semi-)automatic production or assembly planning. 
Existing methods in assembly planning have not yet been 
adapted to process monitoring planning (Sect. 2.2). CAD feature 
recognition is a promising way to identify relevant data in CAD 
models (assembly and/or parts) as can be seen in Sect. 2.4. 
These methods and tools can be transferred and modified for 
monitoring planning (e.g., identification of relevant parameters/
data on individual products and/or parts). Therefore, this paper 
provides an approach on how to plan monitoring processes 
alongside assembly planning. This approach enables a reduction 
in manual effort, which is needed to plan monitoring processes 
especially for complex products and production systems.

3 � Problem description

The problem addressed in this study concerns the design of an 
RMS, with humans and robots as resources in the assembly 
line. Several product variants are assembled on an existing line. 

The CAD model of the new product variant and the simulation 
model of the assembly line, including their resources and tools, 
serve as inputs. These inputs are derived from the product 
design (new CAD model and process description due to a new 
product variant) and assembly line (digitized assembly system). 
In our problem description, only one robot or worker works at 
each station. Robots and workers are assigned to workstations. 
A set of automated and manual equipment pieces (i.e., tools) 
is considered in the resource library of the line (part of the 
digitized assembly system) which can be used to execute a task 
(i.e., process). Note that each piece of equipment may also be 
able to monitor an assembly process, which allows using it as a 
sensor for process monitoring at the station (e.g., torque sensor).

The CAD model ideally contains all information 
about the assembly sequence and, if possible, process 
information as well. Nevertheless, additional process data 
can be provided as input via supplementary documents. The 
assembly operations for each product must be performed 
according to the priority relationships between the tasks of 
the respective product. This information is contained in the 
CAD model and additional documents and must be obtained. 
Furthermore, additional information must be generated for 
each task to describe which combinations of resources and 
tools can be used for a process. Here, the processing time 
of each task depending on the combination of tool and 
resource, the reconfiguration costs of the tools in the line, 
and the efficiency of using each tool for process monitoring 
are needed to make a valid decision.

On the other hand, the skill model of the assembly line, 
which contains the current configuration of the resources and 
tools in the stations and additional tools from the resource 
library that can be used for any reconfigurations, is provided 
as input. The skill model contains semantic descriptions 
of the individual resources, tools, stations, and thereby 
assembly line. Hereby, algorithms are able to automatically 
analyze the assembly line configuration and match individual 
skills with product and process requirements (e.g., necessary 
torque). A structure is required to store these matches, which 
can be enriched using matchmaking algorithms to provide 
more detailed criteria (i.e., key performance indicators 
(KPI)). These are necessary to make critical decisions when 
selecting an assembly and process monitoring plan. Graph-
based models have been proven to be a suitable structure for 
saving multiple matches or tasks (e.g., assembly precedence 
graph, and/or graph [56, 57]). Valuable information for such 
decisions in a production graph is the feasibility of the task, 
necessary reconfigurations (including the additional time 
and costs), process parameters (e.g., assembly paths, cycle 
times, efficiency of process monitoring), and task types (e.g., 
screwing — primary; handling — secondary).

As a result, there are several alternatives that require 
a multi-criteria selection approach or a user-centered 
optimization model. Based on any restriction from the user 
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(the decision-maker) concerning the value of one or more 
criteria (e.g., cycle time, monitoring efficiency, number of 
reconfigurations, costs), the rest of the criteria are optimized. 
The feasibility of the optimal solution concerning collision 
freedom and reachability must be ensured through a simulation 
model of the individual assembly processes. This loop 
(optimization-simulation) continues until it finds a feasible 
and optimal process plan for the assembly line. The problem is 
further clarified with a small example given in Fig. 1.

The description of the assembly line and features of 
only one type of product are given in Fig. 1. We assume 
an assembly line arranged and equipped as it is shown in 
Fig. 1b. The line possesses two stations, one is manual and 
one is automated, which are equipped by a worker and a 
robot, respectively. Some manual and automated tools exist 
in the resource library. The current state of the line must 
be reconfigured for producing a new product with possible 
process plans. The new product requires a set of four tasks 
(I1, I2, I3, I4) as given by the precedence graph in Fig. 1a 
and Table 5 in Appendix 2 (e.g., task processing times, 
precedence graph, possible matches of resources, and tools 
to perform the tasks).

According to the data provided by the product and 
production system (e.g., CAD models, process parameters, 
resource capabilities), a set of feasible processes can be 
generated. Table 5 in Appendix 2 describes an approach how 

to display the matches and which criteria are relevant. Each 
valid match between a tool (T) and a task (I) is described 
with a process time (Pt in seconds) and a monitoring 
efficiency (Mon. Eff. in percent) based on suitability of the 
resource and tool. The objective of the optimization model 
is to determine the optimal solution with regard to individual 
criteria (e.g., cycle time and monitoring efficiency) for an 
assembly plan including monitoring tasks in order to enable 
high process quality. Fig. 2a shows, as an example, the 
optimal process plan with reconfiguration costs of 290 € 
(reconfiguration costs for T1 and T2).

This solution (shown in Fig. 2a) is not feasible according 
to the simulation model, since the second task (I2) cannot be 
performed by the first manual tool (T1) in the first station 1 
due to a collision. Thereby, by implementing the simulation-
optimization loop, the final feasible and optimal process plan 
is achieved with the same objective function value of 290 € 
for the reconfiguration cost (see Fig. 2b).

4 � System overview

The system proposed in this paper analyzes digital products 
and production system data to generate multiple feasible 
assembly plans including the capability to monitor processes. 
Fig. 3 describes the 4 modules that result in an optimized 

Fig. 1   The information related 
to a simple example, assem-
bling a single new item and 
the assembly line. The left 
side of the figure a) displays 
the product domain with the 
individual parts (A, B, C, D, E) 
and tasks required (I). The right 
side of the figure b) shows the 
assembly line domain with the 
stations (St) and tools (T)

Fig. 2   a The optimal solution 
from the optimization model, 
but an infeasible solution in 
the simulation model. b The 
optimal solution from the opti-
mization model, and a feasible 
solution in the simulation model
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assembly and inspection plan by analyzing a new product 
variant (i.e., CAD model) and existing digitized production 
system (i.e., layout, resource descriptions). Multiple 
alternative assembly and process monitoring plans are 
generated that increase the flexibility of an RMS. Continuous 
user interaction enables the demand-driven selection of an 
optimized plan depending on the defined criteria (i.e., number 
of necessary reconfigurations, the relevance of process 
monitoring in each individual process step). Each of the four 
modules of the system can be viewed individually and is 
connected to the next one via a text-based data format (i.e., 
XML and JSON). The following subsections will describe 
each module as well as its inputs and outputs.

Module (1) focuses on the generation of assembly plans 
through an assembly-by-disassembly approach as described 
in [58]. Assembly plans contain information about the 
assembly sequences, process types (e.g., joining), assembly 
path and process specific parameters (e.g., torque).

Module (2) displays a new approach for the planning and 
generation of alternatives to monitor assembly processes 
inline. This means that no additional and unnecessary 
monitoring processes are generated that increase the 
cycle time, but rather parallel monitoring processes are 

identified. A rule-based CAD feature recognition approach 
in combination with a general process requirement database 
identifies the monitoring requirements. Existing assembly 
plans are then used in module (2) to generate a variety of 
process monitoring alternatives that result in new assembly 
plans that include process monitoring.

Module (3) focuses on the optimization of these alternatives 
depending on user criteria (e.g., cycle time, production costs, 
number of reconfigurations). This results in one optimized 
assembly plan with a process monitoring plan.

The last module (4) validates the optimized assembly plan via 
a simulation in which the optimized assembly plan, including 
the monitoring processes, is checked for collision-free and visual 
reachability. If an assembly plan including its process monitoring 
alternative is not feasible, the optimization module identifies 
another optimal assembly plan taking into account process 
monitoring for the validation module. To keep the simulation 
effort low, the validation by means of simulation of the process 
plan has been placed after the optimization module. For complex 
assembly modules and a large number of possible process plans, 
the simulation effort can quickly become very high. Selecting the 
assembly plan with optimization before simulation reduces the 
number of simulation runs.

Fig. 3   The overall methodology with all decision aid modules
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4.1 � Generation of assembly plans

To identify valid and collision-free assembly sequences, 
an assembly-by-disassembly approach is used to analyze 
CAD models of new product variants [57–59]. Each part 
of the CAD assembly group is virtually disassembled to 
generate assembly sequences and define assembly paths 
for each part of the product as described in Fig. 4. An 
assembly process graph, independent of the production 
system and its resources, is generated. Here, each vertex 
(node) in the process graph contains information about the 
necessary assembly process and its requirements (not yet 
of the production system and resources, i.e., devices). The 
requirements describe the necessary tasks semantically to 
allow broad applicability for a variety of products (e.g., 
screwing, joining).

The allocation of each requirement to each assembly 
process and part is executed automatically. Additional or 
missing information (e.g., torque, force) can be inserted 
afterward by the user as this module serves as an assistant 
for the identification of valid assembly sequences and 
processes. Standard parts and constraints between parts are 
identified automatically to define assembly processes such as 
screwing and joining. To identify the specific requirements 
of each assembly process, a semantic skill-based domain is 
used that can be applied to the product as well as resources 
and the assembly system. [29] describe a skill domain for 
actorial skills (e.g., joining, screwing). Regardless of the 

sensorial requirements, an assembly process graph can be 
created that includes the skills of each resource and possible 
combinations (e.g., robot + gripper).

The matchmaking between product requirements and 
assembly system skills generates different assembly plans 
through resource allocation. As a prerequisite, the existing 
assembly system, its resources (i.e., tools), and additional 
resources available for production (resource storage) must be 
digitized with their specific information models, including 
a semantical description of functionalities (e.g., joining). 
The digitized production system is described in Fig. 4 as the 
actorial skill model of the production system. The resource 
library describes relevant technical and economic device 
functionalities (e.g., velocity, investment cost) as well as 
skills.

The generation of the process graph, containing the 
assembly processes and possibly allocated resources to 
stations, is divided into two steps. The first step deals with 
the identification of tools and stations that are suitable for 
executing the production system-independent assembly 
plans. Each necessary product and process requirement 
(e.g., joining, screwing) is semantically matched with the 
corresponding skill (e.g., gripping, moving, screwing). 
Then, the alignment parameters are verified for their 
suitability in the second step (e.g., gripping-width, joining-
force, torque). If existing resources at a station do not fit due 
to missing skills or unfitting parameters, a reconfiguration is 
taken into account. Resources in the library (i.e., storage) are 

Fig. 4   Module (1) — generation 
of assembly plans through an 
assembly-by-disassembly and 
skill-based approach
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considered for their suitability (station restrictions need to 
match, e.g., interfaces — manual station-worker, automatic 
station-robot, pneumatic, electrical interfaces). The process 
graph at the end contains several assembly processes, which 
in combination represent different assembly plans.

4.2 � Generation of process monitoring alternatives 
for existing assembly plans

To date, there is no framework or system that addresses 
CAD models and assembly information and relates to 
the automatic determination of parameters for process 
monitoring. Therefore, the following section presents 
methods to determine process monitoring alternatives 
for existing assembly plans. As illustrated in Fig. 5, the 
product-specific identification of process monitoring 
requirements can be divided into three steps: templates 
for monitoring requirements, feature recognition, and 
parameter determination. These steps consist of importing 
data (e.g., CAD-model of the assembly, assembly plans), 
selection of monitoring requirement templates (i.e., solution 
neutral monitoring requirements for assembly processes), 
data extraction (i.e., rule-based feature recognition), and 
determination of monitoring requirements (i.e., filling the 
templates according to analyses). The output consists of 
several parameters. Each parameter has five characteristics: 
variables, values, priorities, units, and error ranges. The 

variables and units come from the templates stored in a 
parameter template subsystem (i.e., a database). The values, 
priorities, and error ranges of different parameters must be 
determined or entered by the user (e.g., engineer).

The monitoring requirement templates contain product-
neutral information about monitoring parameters relevant for 
individual assembly processes and are stored in a parameter 
template subsystem. These templates need to be filled through 
product-specific information. In the feature recognition 
step, features are automatically recognized using a hybrid 
geometric reasoning and rule-based approach (Fig. 5a). The 
CAD model including its parts is imported automatically. 
Afterward, the geometric and topological information can be 
extracted from the CAD models using an Open Cascade library 
(pythonocc). A unique ID is assigned to each feature. Hence, 
different features can be associated with each other through 
their IDs. Different topological entities are found, for example, 
solids and faces. Skill parameters [30], standard components 
(fasteners, such as DIN 912 for screws and DIN 934 for nuts), 
and standards related to connection (such as DIN 13-1 for 
ISO threads) are stored in the parameter template subsystem, 
describing requirements of processes (e.g., templates for 
assembly processes). According to the classification of joining 
processes from DIN 8593-0, each parameter template stores 
the specifications for a specific assembly process. Concrete 
assembly processes (such as screwing or point welding) are 
specified as tables in the databases.

Fig. 5   Module (2) — decision support module for the automated generation of process monitoring alternatives for existing assembly plans. The 
steps a) to d) display the individual domains of the submodules (e.g., a) monitoring requirements, b) monitoring skills)
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While creating or managing a database, engineers need to 
extract and construct data from standards and specifications 
(i.e., DIN, VDI). These tables can be supplemented or 
changed manually by an expert if necessary when processes 
or relevant process requirements have changed (e.g., due 
to new technologies or quality requirements of processes).

Based on the features and the filled process monitoring 
templates, a set of parameters is selected and collected in the 
parameter determination step (Fig. 5a). During this step, the user 
can either confirm or deny parameters and values, priorities, 
units, and error ranges for monitoring. The sensorial skill model 
of the production system is set up automatically according to 
the assembly system layout (Fig. 5b). Therefore, a skill-based 
approach is used as described in [30] and [56].

The automated generation of process monitoring alternatives 
is executed by a comparison of product-specific monitoring 
features and assembly system-specific (i.e., resource-specific) 
monitoring skills [6, 56]. The semantical analysis focuses on the 
presence or absence of monitoring skills, i.e., skills related to 
measuring and checking physical process properties. After the 
semantical analysis, parameters are checked to ensure that the 
monitoring feature can be monitored efficiently by the aligned 
resource (i.e., characteristics matching in Fig. 5c). Different 
parameters, depending on the specific skill and monitoring 
feature, are analyzed and matches are determined (e.g., joining 
force, temperature). Once a matching pair of a monitoring 
feature and a monitoring skill of a resource is identified, the 
comparison of the feature and resource-specific parameters is 
initialized. If the criteria are not fulfilled for any monitoring 
resource in the production system (i.e., no reconfiguration 
possible), the feature is designated as invalid for monitoring 
and the matchmaking continuous for the next feature. Matching 
efficiency (i.e., monitoring efficiency) depends on the alignment 
of resources with monitoring requirements (e.g., sensorial 
skills) according to [56]. The weighting of the pairing depends 
on the relevance being defined by the user for each monitoring 
requirement in the monitoring requirement step (Fig. 5a).

The nominal value range of the monitoring feature of 
the assembly process defines the parameter comparison. 
To ensure suitability, the resource must be able to measure 
values across the range. As an example, a pyrometer that 
cannot detect temperatures below 300 ◦ C is not suitable for 
monitoring a hot gluing process performed at temperatures 
between 120 and 180 ◦ C. Likewise, a force-torque sensor 
must be able to monitor the exact force range in which the 
process takes place. The minimum and maximum values of 
the requirement (Rmin and Rmax) and the range in which 
the skill can be used by the resource (Smin and Smax) define 
the match and its suitability. If the range Rmin–Rmax is 
not contained entirely within the interval Smin–Smax, the 
resource is considered unsuitable, even though it has the 
appropriate skill.

The assessment of the measuring accuracy of the resource 
is a further criterion for the parameter comparison. This 
includes quality-critical or high-precision processes where 
a fraction of a deviation can affect the outcome of a process. 
The logic for the evaluation is based on a comparison of 
the required accuracy for the process and the accuracy of 
the resource for the skill (e.g., 0.1 N is represented with the 
accuracy value 10). If there is no resource at a station with 
sufficient accuracy to monitor a feature, it is assumed that 
reconfiguration is necessary for that feature.

Measuring speed expressed as the frequency with the unit 
Hertz is a parameter to be checked continuously. This ensures 
that the monitoring process does not add any additional 
time to the cycle time. The parameter comparison is used 
to identify unsuitable sensors that need to be replaced or 
adjusted. If a resource fulfills the qualitative and quantitative 
matchmaking to monitor a feature, the information is stored 
in a node (vertex) of the enhanced process monitoring graph 
(ePMG) (see Fig. 5d — enhanced process monitoring graph). 
If monitoring requirements cannot be matched with sensors 
(i.e., resources) a reconfiguration of the production system 
is necessary. Determining which resources can be used to 
cover the missing skills is done through further iterations 
via matchmaking. Matchmaking between monitoring 
characteristics and the resource library is integrated so that 
whenever a process is classified as not monitorable, a query 
for the relevant characteristics is started and a potential 
resource is searched in the resource library. The process 
monitoring efficiency (Mon. Eff. in percentage) depends 
on the resource inheriting the sensorial skill. This value is 
calculated from the match (best fit) of the sensorial skills 
with the individual monitoring requirement (parameter 
match and number of individual matches) and the accuracy 
of the sensor. Any monitoring efficiency between 0 and 
100 % represents a match, whereas 100 % indicates the best 
possible match.

The result of the module (2) is a process graph and 
process monitoring graph containing valid assembly plans 
and process monitoring alternatives (i.e., allocated actorial 
and sensorial resources and stations). These alternatives 
are further analyzed in module (3) (optimization). Process 
times are approximated depending on manual and automatic 
assembly processes.

4.3 � Optimization model

The next module aims to find the optimal process plan for 
the models taking into account all theoretically feasible 
process plans generated in the production graph. A 
generative design model for a user-optimization system is 
built. The goal is to propose an optimization model which 
incorporates users’ (decision-makers) opinions relating to 
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the three criteria: minimization of the reconfiguration cost 
and the cycle time, and maximization of the minimum 
monitoring efficiency of all tasks. To be precise, a user-
optimization framework is designed where the user 
can enter the value that he/she wants for each objective 
function, and get the optimal values for the rest. The rest 
of this section covers importing data from the production 
graph to the optimization model, the mathematical model, 
and the user-optimization loop.

The production graph contains the inputs of the 
optimization model, namely, the set of precedence 
A including pairs of tasks (i, i�) where task i must be 
performed before task i′ , the compatibility among tools, 
tasks, and resources through a binary matrix Kr

it
 that 

shows the capabilities of tools to perform a set of tasks 
on the resources, the processing time Ptirt of task i if 
executed on resource r with tool t, and cycle time C. 
Note that the compatibility matrix Kr

it
 provides two sets 

Ntr and Nir , which respectively contain the tasks that 
can be performed by tool t on resource r and the tools 
that can execute task i on resource r. Moreover, several 
tools are used for process monitoring, so-called sensors, 
which can monitor the quality of tasks executions. �irt 
refers to the efficiency of using tool t (as a sensor) to 
monitor task i on resource r, and takes the value in range 
[0, 1]. ctr denotes the set-up cost (per time unit) of tool 
t on resource r. Besides, ar refers to the set-up cost of 
resource r for use.

Based on this data, the following mixed integer linear 
programming (MILP) is solved to find the assembly plan with 
minimum reconfiguration cost, minimum cycle time, and 
maximum level of monitoring efficiency. The model has three 
binary decision variables, namely, xirt is equal to 1 if task i is 
performed by tool t on resource r (0 otherwise), zr , is equal to 
1 if resource r is opened (0 otherwise), and yrt equals to 1 if 
tool t is assigned to resource r in the configuration associated 
to process task i (0 otherwise). Besides, two continuous 
variables qi and Q are defined which respectively represent 
the monitoring efficiency of executing task i and the minimum 
monitoring efficiency of all tasks. For these decision variables, 
a quantification of the monitoring efficiency is required. This 
efficiency can be calculated from the ratio of the match between 
process monitoring requirements and the capabilities of the 
matched resource 4.2. The nomenclature with further details 
on the quantities, parameters, and variables considered is given 
in Appendix 1. The proposed MILP is given in Eq. (1)-(16), 
where I , T  , and R denote the sets of tasks, tools, and resources, 
respectively.

(1)min
∑

r∈R

∑

t∈T

ctryrt +
∑

r∈R

arzr

s.t

The objective function Eq. (1) is to minimize the total cost, 
including the used resources activation cost and reconfiguration 
cost of the tools that have been used in the line, where sensors 
are counted as tools. The objective function (2) aims to minimize 
cycle time. The objective function Eq. (3) maximizes the 
minimum monitoring efficiency of all task execution monitored 
by sensors. Constraint Eq. (4) ensures that objective function 
Eq.  (3) maximizes the minimum monitoring efficiency of 
all tasks, which is computed by constraints Eqs. (4) and (5). 
Constraint Eq. (6) states that each task must be processed 
by exactly one resource. Constraint (7) ensures that a tool 

(2)min C

(3)max Q

(4)Q ≤ qi i ∈ I

(5)qi =
∑

r∈R

∑

t∈T

�irtxirt i ∈ I

(6)
∑

r∈R

∑

t∈T

xirt = 1 i ∈ I

(7)
∑

i∈I

xirt ≤ ⏐ I ⏐ yrt t ∈ T, r ∈ R

(8)
∑

r∈R

yrt ≤ 1 t ∈ T

(9)
∑

t∈T

yrt ≤ ⏐ T ⏐ zr r ∈ R

(10)
∑

t∈T

∑

i∈Ntr

Ptirtxirt ≤ C r ∈ R

(11)
∑

t∈T

∑

r∈R

rxirt ≤

∑

t�∈T

∑

r�∈R

r�xi�r�t� (i, i�) ∈ A

(12)xirt ∈ {0, 1} i ∈ I, t ∈ T, r ∈ R

(13)yrt ∈ {0, 1} t ∈ T, r ∈ R

(14)zr ∈ {0, 1} r ∈ R

(15)qi ∈ [0, 1] i ∈ I

(16)Q ∈ [0, 1]
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is available on the resource to process each assigned task. 
Constraint (8) prevents assigning a tool to more than one 
resource. Constraint Eq. (9) opens a resource if at least one tool 
is located on that resource. Constraint Eq. (10) states that the 
total processing time on each resource cannot exceed the cycle 
time. Constraint Eq. (11) ensures the precedence relationships 
between the tasks. Constraints Eqs. (12), (13), (14), (15) and 
(16) give the domains of the variables.

In real case studies as well as in future researches, 
different variants of this model can be considered. For 
example, constraints Eqs. (7) and (9) could be written 
for each task and tool. As another example, the uncertain 
processing time for tasks can be considered in constraint Eq. 
(10). In addition, several constraints can be considered, such 
as area constraints that prevent or penalize the assignment 
of a set of tasks to the same station.

For the user-optimization loop, the user can give his/her 
opinion for the value of any objective functions Eqs. (2) 
and (3). Next, this value is taken into account by adding 
any constraint Eqs. (17), (18) and (19) to the model and 
removing the corresponding objective function from the 
model. In this context, the upper limit for the reconfiguration 
cost of each model and cycle time, and the lower limit for 
the monitoring efficiency of each model, proposed by the 
user, are shown as Costuser , Cycletimeuser , and Qualityuser , 
respectively. For example, if the user aims at cycle time 
Cycletimeuser(second) and Qualityuser(%) quality for the 
process in the whole line, two constraints Eqs. (18) and 
(19) are added to the mathematical model, and it is tackled 
with only one objective function Eq. (2) to minimize the 
reconfiguration cost.

To guide the user in the selection of relevant values for 
the target, the tool provides upper and lower bounds for each 
objective. Let o, o1 , and o2 be three objective functions like 
the ones existing in the proposed MILP. Solving the model 
for objective o with no restriction on the other objectives 
yields a lower bound for o. To compute an upper bound for 
objective o, we solve the multi-objective model with the 
lexicographic approach. We consider any orders where o is 
the least important objective, and the maximum value for 
o is an upper bound. If the user sets infeasible targets, the 
tool may suggest a correction for the two objectives o1 and 
o2 where a target is set. To suggest a new value for o1 (resp. 
o2 ), the model is optimized for o1 (resp. o2 ) with the target 
on o2 (resp. o1).

(17)
∑

r∈R

∑

t∈T

ctryrt +
∑

r∈R

�rzr ≤ Costuser

(18)C ≤ Cycletimeuser

(19)Q ≥ Qualityuser

4.4 � Feasibility testing through the simulation 
model

Module (3) generates an optimized assembly plan including 
resources that are available for monitoring. The last 
module of the methodology serves as a validation (Fig. 6). 
A global 3D simulation of the entire assembly line is 
executed to analyze the collision freedom and feasibility 
of the assembly plan. Hereby, each device involved in the 
individual assembly, feeding, and monitoring processes 
are checked for collision freedom and accessibility in a 
multi-body simulation. The multi-body simulation consists 
of rigid components such as assembly parts, stations, and 
resources, which are loaded as step files with the additional 
information (assembly and monitoring plan) via a standalone 
solution through an application programming interface 
(API). Kinematics (e.g., robots) are set in advance whereas 
the movements of assembly parts and resources (e.g., 
gripper and screwdriver) can either be calculated using the 
information of module (1) simulation and assembly-by-
disassembly or set manually.

Process Simulate (PS) has been chosen as a simulation 
software in this paper. During assembly and feeding 
execution, the device and assembly path are checked for 
any collisions. In the meantime, devices responsible for 
monitoring are checked for collision freedom and visual 
accessibility. Information about the individual resources 
and processes is provided by the assembly and monitoring 
plan identified by the optimizer. The simulation model to 
which the assembly and monitoring plan data is applied is an 
existing digitized production system. During the simulation 
of the assembly and monitoring processes, continuous 
collision and visibility checking evaluates if the entire plan is 
feasible or infeasible and needs to be tagged as “infeasible.” 
This information is played back to the optimization module 
as a set of constraints. A new iteration is executed to identify 
the optimal assembly and monitoring plan.

5 � Computational experiments and results

This section serves to validate the methodology proposed 
in this study. First, two case studies, at two different levels 
of complexity, are presented with all associated data. The 
first case study shows a relatively simple product to be 
assembled, illustrating the flexibility available in creating 
an optimized assembly plan including a process monitoring 
alternative. The second case study considers a somewhat 
more complex product to be assembled with different 
types of assembly processes (i.e., “joining,” “screwing”). 
For case study (2), the same assembly system is used as in 
case study (1), which is an RMS. The computational results 
are presented for each case study in the following. The 

2655The International Journal of Advanced Manufacturing Technology (2022) 122:2645–2670



1 3

methodology is implemented on different computer systems 
and the individual modules are implemented in different 
programming and software environments (see Table 1).

The individual module numbers and descriptions 
correspond to the nomenclature from the methodology in this 
article. Table 1 also shows the programming and software 
environments used to implement the developed methods 
and the computer system on which they were carried out 
for both case studies. Software programs often interact with 
self-developed solutions, e.g., for CAD feature recognition 
(FreeCAD, PythonOCC, and C# implementation) or multi-
body simulation (Process Simulate and C# implementation).

5.1 � Computational results of case study 1 — LEGO® 
product

The first case study displays a simple product that needs 
to be assembled on an existing assembly line (Fig. 7). The 
assembly and monitoring plan are generated automatically 
by using the methodology described in Sect. 4. The product, 
consisting of 4 parts (1 LEGO® plate (base part) and 3 
LEGO® bricks), already displays the complexity which 
assembly and inspection planners are facing. The inherent 
flexibility resulting from the number of possible assembly 
sequences, stations, and resource allocation cannot be 
efficiently accounted for in manual processing. Various 
criteria have to be taken into account during the generation 
of assembly plans (e.g., fulfillment of process requirements, 
number of reconfigurations). Additionally, monitoring 
aspects have to be taken into account (e.g., monitoring 
alternatives and their monitoring accuracy).

Therefore, the methodology presented in this paper 
serves as an assistant by automatically providing decision 
support during the planning phase. In the first module of 
the methodology, the LEGO® product is analyzed for its 
valid and collision-free assembly sequences (Fig. 7). Three 

sequences generated by the assembly-by-disassembly 
approach are displayed in Fig. 7. Figure 8 shows a hybrid 
assembly line of 5 stations. The first and the last three 
stations (1, 3, 4, 5) are manual stations equipped with 
supply tools, screwdrivers, screwdriver controllers, and a 
worker. The second station is an automatic station where a 
robot automatically executes processes with end effectors, 
in this case, grippers. Each resource (e.g., a robot, a worker) 
accompanied by a tool (e.g., screwdriver or gripper) has 
skills such as “screwing” or “joining.” Therefore, each 
combination of tools is designated for specific processes. 
The combination of the assembly line layout with each 
resource and the resource library with the skill taxonomy 
allows the automated generation of a skill model. Each 
station inherits its specific skills depending on the resources.

The skill model of the production system can be displayed 
as a graph or matrix. In Fig. 8, the default configuration as 
well as resource storage of the assembly system are shown. 
Once the product requirements and assembly line skills are 
defined, the assignment of production resources to processes 
automatically creates assembly plans. This procedure 
has been described in Sect. 4.1 and partly in [58]. The 
comparison generates the assembly plans using semantical 
matchmaking and parameter matchmaking (quantitatively). 
Due to the fact that this methodology considers the planning 
of process monitoring alongside the assembly planning, 
the optimization and simulation-based validation are done 
after the allocation of resources/tools for monitoring. 
When assembly plans have been generated considering the 
necessary assembly processes, the module (2) identifies 
product requirements that are relevant for monitoring the 
assembly processes. The input is provided by the assembly 
plans, the CAD model of the product, the process monitoring 
database with tables and logical rules for the identification 
of geometries. The CAD model is analyzed automatically by 
using predefined geometrical rules in Python in combination 

Fig. 6   Modules (3) and (4) — 
optimization and simulation 
module for the identification of 
an optimal and feasible assem-
bly and monitoring plan
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Fig. 7   Assembly process graph of the first case study (LEGO® product) automatically generated using assembly-by-disassembly

Fig. 8   Existing assembly line with five stations to which resources (R) and tools (T) are assigned
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with an Open Cascade library in Python (pythonocc). The 
recognition stage allows the identification of geometrical 
shapes and constraints. Therefore, contacts, chamfers, 
and their positions that are relevant for the success of the 
assembly process can be identified and fill the requirement 
table (template) for process monitoring. The table is derived 
through the fuzzy search algorithm (e.g., joining) from the 
database of the monitoring requirement stage (see Sect. 4.2). 
In this use case, the table already contains the relevant 
parameter templates (e.g., joining force in [Nm]) necessary 
to assemble the LEGO® bricks, and therefore the user does 
not have to create the template manually.

After the feature recognition and parameter determination 
define the monitoring requirements, the comparison of 
monitoring skills and monitoring requirements starts. 
Semantical matching allows the identification of a variety 
of different resources for monitoring. The comparison of 
sensorial skills and monitoring requirements, taking into 
account the ability to assemble the product at each station 
(from assembly plans), identifies different alternatives for 
process monitoring. These alternatives have not yet been 
validated due to their parameters. The second step allows 
a parameter comparison where efficiency, speed, and 
accuracy are taken into account. Multiple assembly plans 
and alternatives for process monitoring are automatically 
generated by combining individual assembly/monitoring 
matches or processes. The individual assembly and 
monitoring processes are displayed in Appendix 3 in 
Table 6. Possible combinations of resources are shown 
for each station (e.g., second station (automatic robot 
station 2) R2 (robot) + T4 (gripper) + T6 (supply device)). 
Hereby, resources (R) define the station type (e.g., manual 
or automatic station) and inherit the essential skill “move.” 
Tools (T) must always be connected to a resource. Depending 
on the process, process times (Pt in seconds) vary due to 
the assembly path of each LEGO® brick. As described in 
Sect. 4.2, the process monitoring efficiency (Mon. Eff. in 
percentage) depends on the resource inheriting the sensorial 
skill. This quantified value of monitoring efficiency can take 
values between 0 % and 100 % and represents a match, while 
100 % indicates the best possible match. Therefore, at station 
2 the combination (Station 2: R2; T4, T5, T6) with a force-
torque sensor (T5) has a higher monitoring efficiency than 
the combination without a force-torque sensor (Station 2: 
R2; T4, T6). Both combinations require a reconfiguration 
(Rec.) for the second process due to the required gripping 
width (here T19).

Each assembly plan contains different alternatives 
for process monitoring as a result of module 2 and the 
allocation of resources with sensorial skills. Due to the 
similar component geometry and process parameters of the 
individual LEGO® bricks, the requirements for process 
monitoring do not differ between the tasks (see tasks 1, 2, 

and 3 in Table 6 in Appendix 3). This leads to similar match 
results between monitoring requirements and resource skills. 
Therefore, the individual process monitoring alternatives 
do not differ between tasks at the same station with the 
same resources and combination of tools (e.g., monitoring 
efficiency of 20% for tasks 1, 2, and 3 on station 1; Table 6). 
In a further step, assembly plans are optimized with 
various alternatives for process monitoring. Criteria for the 
optimization were explained in Sect. 4.3.

The obtained production information is used to solve the 
mathematical model for the first case study. As a result of 
the optimization, regarding the defined ranges for each pair 
of two criteria (see Sect. 4.3) by the user, we obtain several 
assembly plans with an alternative for process monitoring. 
Since the user defines several ranges for only two criteria, the 
mathematical model aims to optimize the third one at each 
run. The user must select only one of the obtained assembly 
plans (the best solution). Note that the assembly plan must 
be validated by a 3D multi-body simulation (Sect. 4.4). If 
collisions occur due to an infeasible assembly sequence 
or resource option and collisions or lack of visibility are 
detected, the assembly plan is considered infeasible. This 
leads to an iteration where the optimization model must 
take into account a set of new constraints on assignments 
of tasks and tools to resources (stations). The optimization 
model will determine another optimal assembly plan with 
process monitoring and provide another assembly plan. 
This plan also must be verified by the simulation model. 
The process ends if the solution of the optimization model 
is valid through the simulation model. Table 7 in Appendix 
3 shows all optimal solutions concerning the optimization 
of each selected criterion from the user side. Precisely, at 
each level, the user defines a range for two criteria and 
optimizes the third one. The optimal objective function 
value is obtained and it is shown with the corresponding tool 
and tasks assignments to the stations. These solutions are 
given to the user, then he/she selects the proper one among 
others. The user is satisfied by forcing the total costs to less 
than 350 €, the cycle time to less than 20 (s), and obtaining 
94 % as the minimum monitoring efficiency level of the 
tasks. Table 2 shows that the feasibility of the final selected 
assembly plan cannot pass through the simulation model 
since T19 cannot be used to perform task 2 on the robot 
existing at the second station. Due to the gripper geometry 
of T19, the LEGO® brick “E” cannot be assembled after 
LEGO® brick “D” (see Fig. 7 and Table 2). A collision 
occurs in the multi-body simulation between the gripper and 
the already assembled LEGO® brick “D.” The constraints 
concerning the infeasibility of these assignments are added 
to the mathematical model which prevents the model from 
taking into account such assignments. The optimization 
model is solved considering new constraints generated by the 
simulation model and provides the new optimal solution. As 

2659The International Journal of Advanced Manufacturing Technology (2022) 122:2645–2670



1 3

it can be seen in Table 2, the new assembly plan is valid in 
the simulation model. Therefore, the final plan corresponds 
to performing tasks 1 and 3 using T4 and T6 on the robot at 
the second station (R2), and task 2 using T15 by the worker 
at the last station (R5). This solution respects the cost of 390 
€and the cycle time of 17.5 (s) and provides 25 % monitoring 
efficiency, which all satisfy the user.

5.2 � Computational results of case study 2 — toy car 
product

The second case study deals with a more complex product 
where two assembly types are considered joining and 
screwing. This product (toy car) contains 11 parts (1 base-
part, 2 screws, and 8 parts for joining). One can easily see that 
the complexity of assembly plan generation increases due to 
multiple valid assembly sequences (generated via an assembly-
by-disassembly analysis: Fig. 9 in Appendix 4). In combination 
with the existing production system in Fig. 8 the matchmaking 
module (Fig. 4) generates multiple assembly plans. Also, the 
identification of process monitoring features increases in this 
case study exponentially due to the number and geometries of 
assembly parts (e.g., geometrical: joining surface, alignment; 
process: force) and feature types (e.g., torque-screwing, force-
joining). The matchmaking module in Sect. 4.2 identifies 
multiple process monitoring alternatives to each assembly 
plan as can be seen in Table 8 in Appendix 4. For the screwing 
processes, different screwdrivers and controllers necessary 
for the screwdrivers can be identified for the execution of the 
processes and also their monitoring. This enables the generation 
of multiple assembly plans including process monitoring 
alternatives. Consideration of process monitoring allows the 
optimization module to use various criteria for selecting the 
best assembly plan, taking into account quality aspects when 
planning production. Higher monitoring efficiency values 
indicate that the resources’ sensorial skills are more applicable 
for the monitoring features of the toycar in case study (2) than 
the LEGO® product of use case (1) (Table 8 in Appendix 4). 
Similar assembly parts and processes (e.g., axle front (AF) 
and axle back (AB)) lead to similar monitoring efficiencies. 
This is caused by the same input criteria for the CAD feature 
recognition and process type parameters for monitoring. The 

geometries of the wheels are the same, as well as the features 
(i.e., surface, chamfer) and the assembly process joining, which 
must be done with a certain force and coaxial to the axles (the 
same applies to the rear wheel (WB) and the chassis). Equivalent 
requirements for process monitoring lead to similar resource 
allocations (see monitoring efficiencies in Table 8 in Appendix 
4). The consideration of different tools from other stations (e.g., 
T2) or the equipment and tool store (T18, T17) expands the 
solution space by making greater use of the flexibility of the 
assembly line. Multiple alternatives for process monitoring can 
be generated by identifying diverse combinations (e.g., tasks 
8 and 9). These alternatives have been saved and transferred 
to the optimization module (Sect. 4.3) to identify the optimal 
assembly plan, including the process monitoring alternative. As 
with the first case study, the production graph is considered in 
the optimization model for the second case study (the toy car). 
Table 9 in Appendix 4 shows the best assembly plans obtained 
by the optimization module. Among all these plans, the user 
selects the best one which corresponds to a cycle time of 141 
(s) and monitoring efficiency of 70 % , and the optimal cost of 
640 €, where we perform tasks 1, 3, and 4 at the second station 
(R2) using tools T4 and T6, and the rest of tasks at the fourth 
station (R4) using corresponding proper tools T12, T10, and 
T11. Table 3 shows the results of the simulation model for 
the performance of the selected assembly plan. Because of a 
collision, simulation prevents us from performing tasks 9 and 
10 using tools T10 and T11. Similar to the first case study, new 
constraints for preventing such assignments are generated and 
imported to the optimization model. Therefore, a reconfiguration 
is needed to remove the tool T10 and use tools T11 and T12 
(which are already located at the station). However, this plan 
results in a bit higher cost (690 €compare to 640 €). This plan 
with a certain configuration of the route can be realized with the 
simulation model.

5.3 � Discussion

The results of the two case studies show how assembly 
plans, including alternatives for process monitoring, 
can be generated automatically. Even with a minimal 
increase in complexity, one can see how the number of 
possible assembly plans increases. In addition, planning 

Table 2   Final optimization results after validation via simulation (case study 1)

Generative intervals Objective value Task/tool assignment

Cost (€) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

350 20 - 0.94 (quality) - Tasks 1, 2, 3 - - -
T4, T6, T19

Validation via simulation (constraint: tool “T19” cannot be used to perform task 2 on robot “R2”)
390 17.5 - 0.25 (quality) - Tasks 1, 3 - - Task 2

T4, T6 T15
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process monitoring for an assembly plan further enhances 
complexity. Multiple alternatives for process monitoring 
can be identified for every single assembly plan. This 
methodology enables efficient and demand-driven planning 
of process monitoring alongside assembly planning. Due to 
multiple criteria (number of reconfigurations for assembly 
processes, number of reconfigurations for monitoring 
processes, monitoring accuracy and speed as monitoring 
efficiency, assembly and monitoring process costs, etc.) users 
can prioritize individual assembly and process monitoring 
plans. As shown in the results this can be achieved by 
connecting the information to an optimization module. 
Two observations can be derived from the case studies: 
First, the importance of the individual parameters defining 
the assembly system (e.g., resource and reconfiguration 
costs), and second, the consideration of investing in new 
resources and/or tools. The first observation concerns both 
case studies and the high activation costs of each station. 
This leads to more appropriate assembly on fewer stations to 
reduce assembly costs. When the activation costs decrease, 
other criteria such as monitoring efficiency come into play 
more in the optimization module. This allows the use of 
more stations in the line. A second remark is that both case 
studies consider occupied or not reconfigurable resources 
and/or tools, but investing in new resources/tools is not 
taken into account. The simulation makes it possible to give 
feedback if a resource/tool is available for reconfiguration 
(i.e., not occupied on other station). As an example of case 
study (2), if T2 is used in station 1, it cannot be used for 
reconfiguration in station 3 for the same assembly plan. 

Furthermore, scalability has not yet been tested. Increasing 
the complexity of the product to be assembled as well as the 
assembly system with its resources and tools has shown a 
direct relation to the data being generated (assembly plans 
and monitoring alternatives). It can be argued that individual 
modules can work more efficiently on a higher scale than 
others. For example, the generation of assembly plans due 
to assembly-by-disassembly is quite time-consuming for 
complex products due to the simulation effort. This can 
be seen in Table 4. The calculation times are approximate 
values determined from screen recordings. The time 
required for user interactions was not taken into account. 
The individual times assigned to the modules are therefore 
pure computing times (in seconds).

6 � Conclusion

The proposed methodology represents an approach to 
integrating process monitoring planning into assembly 
planning in combination with optimization. Considering 
monitoring processes as a relevant aspect in process planning 
can result in higher quality in process execution and final 
products. An early consideration of monitoring processes 
enables a more targeted generation of suitable assembly 
plans based on individual decision criteria (e.g., number of 
reconfigurations vs. higher accuracy in process monitoring 
and thus process control). To handle the complexity of 
various product variants, assembly sequences, assembly 
and monitoring resources, and assembly and monitoring 
plans, the proposed methodology has been implemented 
with proper feasibility and efficiency. We showed that the 
developed support system is very useful in practice to link 
the product designer and the process planner. Automated 
analysis of product CAD files to identify assembly and 
monitoring processes, and resource matching through a 
skill-based approach in an existing production system, 
enables more efficient process planning and use of RMS. 
In particular the aspect of diagnosability through planning 
variable process monitoring alternatives has been addressed 
in this paper. The optimization module shows that additional 

Table 3   Final optimization results after validation via simulation (case study 2)

Generative intervals Objective value Task/tool assignment

Cost (€) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 141 > 0.7 640 (cost) - Tasks 1, 3, 4 - Tasks 2, 5, 6, 7, 8/tasks 9–10 -
textitT4, T6 T12/T10, T11

Validation via simulation (constraint: tool “T10” cannot be used to perform tasks 9–10 by worker “R4”)
- < 141 > 0.7 690 (cost) - Task 1, 3, 4 - Tasks 2, 5, 6, 7, 8/tasks 

9–10
-

T4, T6 T12/T12, T11

Table 4   Performance of individual modules

Nr. Module description Case study (1) Case study (2)
Computing time Computing time Computing time

1 Assembly planning Approx. 370 s Approx. 840 s
2 Process monitoring plan-

ning
Approx. 0.74 s Approx. 0.83 s

3 Optimization Approx. 0.01 s Approx. 0.08 s
4 Validation Approx. 1160 s Approx. 2350 s
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criteria, by integrating process monitoring alternatives via 
a quality factor, can extend and improve the generation 
of assembly plans for RMS. This is the first conceptual 
attempt to show the performance of the proposed support 
system which has the potential to be extended considering 
following future research directions. In further research, 
the scalability of this methodology has to be tested by 
taking into account more complex products and production 
systems. Considering a large number of tasks leads to a 
combinatorial explosion in the number of possible assembly 
plans. Therefore, developing an appropriate optimization 
approach (e.g., a (meta-)heuristic) can be a useful future 
research contribution on the application of the proposed 
support system in large cases. Several extensions can be 
considered in the optimization model, as mentioned in this 
paper, such as adding area constraints for task assignment. 
Moreover, considering mobile robots and moving workers, 
as well as studying human-robot collaborative systems, 
opens interesting research avenues.

Appendix 1 The nomenclature 
and definitions of sets, parameters, 
and variables

All the sets, indices, parameters, and decision variables are 
defined in detail as follows:

Sets and indices

R The set of resources (worker/robot) r, r� ∈ R.
T The set of combinations of tools t, t� ∈ T .
I The set of tasks i, i� ∈ I .
Parameters
ctr The set-up cost of tool t on resource r.
ar The activation cost of resource r.
�irt The efficiency (in percentage %) of using 

monitoring tool (e.g. a sensor)
t on resource r to monitor the quality of task i.

ptirt The process time of task i performing by tool t 
on resource r.

C The cycle time.

Sets and indices

A The set of pairs of tasks i and i′ where task ii 
precedes task i′.

Kr
it

The compatibility matrix which shows the 
possible combinations of

resource r and tool t that are capable to perform 
task i.

Ntr The set of tasks that can be performed by tool t 
on resource r.

N′
ir

The set of tools that can be used to perform task 
i on resource r

Decision variables
xirt Binary variables that is equal 1 if task i is 

assigned to resource r to be performed
using tool t on this resource.

yrt Binary variables that is equal 1 if tool t is 
assigned/installed on resource r.

zr Binary variables that is equal 1 if resource r 
needs to be activated/used.

qi Continuous variables that show the monitoring 
efficiency of task i.

Q Continuous variables that show the minimum 
monitoring efficiency among all tasks.

Appendix 2 Problem description

Table  5 shows the possible task resource assignments. 
Tasks I1, I2, I3, and I4 are assigned to tools T1, T2, T3, 
and T4, which are located in station 1 and station 2 and 
their respective resources (i.e., worker and robot). For each 
allocation, a process time (in seconds) and monitoring 
efficiency (percentage of match of alignment) value has 
been generated depending on the alignment of the task 
requirements and tool/resource skills. These values have 
been generated with the matchmaking of module (1) and 
module (2) of the decision aid system (Fig. 3). The layout 
information provided by the production system makes 
it possible to generate various process plans from these 
matches.
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Appendix 3 Case study 1

Table 6 shows the alternative processes generated after 
matchmaking module (1) and module (2) for the LEGO® 
case study. As an example, task 2 at station 2 can be 
executed with robot R2 when tool T4 (i.e., gripper) is 
reconfigured with T19 (i.e., gripper with different gripping 
width). For this alignment, the process time is calculated 
as 7.2 s and the monitoring efficiency due to the sensory 
accuracy of the gripper is 40 ( % ). If the adjustment with 
the T5 (force-torque sensor) is selected, the monitoring 
efficiency increases to 94 ( % ) because the sensor is capable 
of better monitoring (higher accuracy).

In Table 7, module (3) can be used to generate different 
optimal process plans depending on the selected criteria. 
Depending on the selection of user criteria (e.g., (1) cycle 
time and monitoring efficiency, (2) cost and monitoring 
efficiency, (3) cost and cycle time), the optimal process 
plan varies. If the user defines low cycle time and high 
monitoring efficiency as his priority criteria and is satisfied 
with the cost of about 350 €, the result is shown in row 3 
(all tasks are performed at station 2 with R2).

Table 5   Compatibility among tasks (I), tools (T), and resources (robot/worker), the processing time of tasks (Pt), and efficiency values (Mon. 
Eff.) for each set of task-tool-resource

Resource Task T1 T2 T3 T4

Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%) Pt (s) Mon. Eff. (%)

Station 1 (worker) I1 30 95 - - - - - -
Station 1 (worker) I2 15 90 20 80 - - - -
Station 1 (worker) I3 - - - - - - - -
Station 1 (worker) I4 - - - - - - - -
Station 2 (robot) I1 - - - - - - - -
Station 2 (robot) I2 - - - - 20 85 - -
Station 2 (robot) I3 - - - - 25 92 10 95
Station 2 (robot) I4 - - - - 20 90 15 80

Table 6   Multiple assembly 
processes with monitoring 
alternatives (Pt, process 
time; Mon. Eff., monitoring 
efficiency; and Rec., necessary 
reconfiguration of the individual 
assembly process) (case study 
1 — LEGO®)

Station Resource Tool Part D E C
Task 1 2 3

1 R1—worker T3 Pt (s) 23.94 17.65 23.94
Mon. Eff. (%) 20 20 20
Rec. - - -

2 R2—robot T4+T6 Pt (s) 6.3 7.2 5.9
Mon. Eff. (%) 40 40 40
Rec. - T4–>T19 -

T4+T5+T6 Pt (s) 6.3 7.2 5.9
Mon. Eff. (%) 94 94 94
Rec. - T4–>T19 -

3 R3—worker T9 Pt (s) 19.4 26.45 19.4
Mon. Eff. (%) 23 23 23
Rec. - - -

4 R4—worker T12 Pt (s) 17.44 23.87 17.44
Mon. Eff. (%) 34 34 34
Rec. - - -

5 R5—worker T15 Pt (s) 33.23 16.29 33.23
Mon. Eff. (%) 25 25 25
Rec. - - -
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Appendix 4 Case study 2

All possible assembly sequences according to the constraints 
imposed by the assembled product (i.e., the CAD file) can 
be seen in Fig. 9. These sequences were determined using 
the assembly-by-disassembly approach, where the entire 
assembled product is virtually disassembled and checked 
for collision-freeness. Each node in this graph represents two 
start assemblies and one end assembly that is created after 
the assembly process (e.g., joining or screwing).

Table 8 shows all process results after modules (1) 
and (2) are executed. Each process resource allocation 
is assigned a process time and monitoring efficiency that 

shows the match between the monitoring requirements 
from the process and the resource and tool capabilities for 
monitoring that specific process.

Table 9 shows the results after the optimization module 
(module (3)). The user defines criteria (i.e., a multi-criteria 
problem) so that different process plans are identified as 
optimal depending on these criteria. A pair of two criteria 
is defined by the user (e.g., (1) cost and cycle time, 
(2) cycle time and monitoring efficiency, (3) cost and 
monitoring efficiency), while on the right side of the table 
the individual tasks/tool assignments to the predefined 
criteria are shown.

Table 7   The results of the optimization for each pair of criteria (e.g., cycle time and monitoring efficiency) before validation via simulation (case 
study 1)

Generative intervals Objective value Task/tool assignment

Cost (€) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 80 > 0.20 170 (cost) Tasks 1, 2, 3 - - - -
T3

- < 40 > 0.20 340 (cost) Task 2 - Tasks 1, 3 - -
T3 T9

- < 20 > 0.94 350 (cost) - Tasks 1, 2, 3 - - -
T4, T6, T19

- < 19 > 0.20 390 (cost) Task 2 Task 1, 3 - - -
T3 T6

- < 17.5 > 0.34 520 (cost) - Tasks 1, 2 - Task 3 -
> 17.43 T4, T6, T19 T12

< 600 - > 0.34 17.43 (time) - Tasks 2, 3 - Task 1 -
T4, T6, T19 T12

< 520 - > 0.20 17.65 (time) Task 2 Tasks 1, 3 - - -
T3 T4, T6

< 390 - > 0.94 19.4 (time) - Tasks 1, 2, 3 - - -
T4, T6, T19

< 350 - > 0.20 34.88 (time) Task 2 - - Tasks 1, 3 -
T3 T12

< 340 - > 0.34 58.75 (time) - - - Tasks 1, 2, 3 -
> 170 T12
< 360 < 20 - 0.94 (quality) - Tasks 1, 2, 3 - - -

T4, T5, T6, T19
< 350 < 20 - 0.94 (quality) - Tasks 1, 2, 3 - - -

T4, T6, T19
< 390 < 17.5 - 0.25 (quality) - Tasks 1, 3 - - Task 2

T4, T6 T15
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Fig. 9   Assembly precedence graph of the second case study (toy car) generated by the assembly-by-disassembly approach
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Table 8   Multiple matches (assembly and monitoring processes) according to assembly and process monitoring planning, which in sequential 
combination result in assembly and monitoring plans (case study 2 — toycar)

Station Resource Tool Part AF AB W1 W2 W3 W4 C WB S1 S2
Task 1 2 3 4 5 6 7 8 9 10

1 R1—worker T1+T2 Pt (s) - - - - - - - - 23.67 23.67
Mon. Eff. (%) - - - - - - - - 80 80
Rec. - - - - - - - - - -
Pt (s) 26.73 26.73 11.4 11.4 11.4 11.4 28.35 13.63 - -
Mon. Eff. (%) 76 76 54 54 54 54 53 54 - -
Rec. - - - - - - - - - -

2 R2—robot T4+T6 Pt (s) 7.56 7.56 3.54 3.54 3.54 3.54 8.94 5.25 - -
Mon. Eff. (%) 64 64 61 61 61 61 59 61 - -
Rec. - - - - - - T4->T19 - - -

T4+T5+T6 Pt (s) 7.56 7.56 3.54 3.54 3.54 3.54 8.94 5.25 - -
Mon. Eff. (%) 96 96 94 94 94 94 89 94 - -
Rec. - - - - - - T4–>T19 - - -

3 R3—worker T7+T8 Pt (s) - - - - - - - - 25.38 25.38
Mon. Eff. (%) - - - - - - - - 85 85
Rec. - - - - - - - - - -

T7+T8 Pt(s) - - - - - - - - 18.45 18.45
Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T8–>T2 T8–>T2

T9 Pt (s) 19.8 19.8 15.76 15.76 15.76 15.76 23.65 18.54 - -
Mon. Eff. (%) 73 73 56 56 56 56 58 56 - -
Rec. - - - - - - - - - -

4 R4—worker T10+T11 Pt (s) - - - - - - - - 24.51 24.51
Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - - -

T10+T12 Pt (s) - - - - - - - 21.8 21.8
Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T10->T18 T10–>T18

T12 Pt (s) 18.83 18.83 16.8 16.8 16.8 16.8 24.54 17.92 - -
Mon. Eff. (%) 63 63 74 74 74 74 77 74 - -
Rec. - - - - - - - - - -

5 R5—worker T13+T14 Pt (s) - - - - - - - - 19.74 19.74
Mon. Eff. (%) - - - - - - - - 88 88
Rec. - - - - - - - - - -

T13+T14 Pt (s) - - - - - - - - 19.74 61
Mon. Eff. (%) - - - - - - - - 95 95
Rec. - - - - - - - - T14–>T17 T14–>T17

T15 Pt (s) 28.34 28.34 22.76 22.76 22.76 22.76 22.4 18.1 - -
Mon. Eff. (%) 81 81 63 63 63 63 76 63 - -
Rec. - - - - - - - - - -
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Table 9   The results of the optimization for each pair of criteria (e.g., cycle time and monitoring efficiency) before validation via simulation (case 
study 2)

Generative intervals Objective value Task/tool assignment

Cost (€) Cycle time (s) Mon. Eff. (type) R1 (worker) R2 (robot) R3 (worker) R4 (worker) R5 (worker)

- < 200 > 0.50 370 (cost) - - Tasks 1–8/tasks 
9–10

- -

- T9/T7, T8
- < 200 > 0.70 420 (cost) - - - Tasks 1–8/tasks 

9–10
-

- T12/T10, T11
- < 181 > 0.50 420 (cost) Tasks 1–8 - - Tasks 9–10 - -

T3 T7, T8
- < 181 > 0.70 445 (cost) - - - Tasks 1–8 Tasks 9–10

T12 T13, T14
- < 141 > 0.50 540 (cost) Task 1 - 6 - Task 7–8/tasks 

9–10
- -

T3 T9/T7, T8
- < 141 > 0.70 640 (cost) - Tasks 1, 3, 4 - Tasks 2, 5, 6, 7, 

8/tasks 9–10
-

T4, T6 T12/T10, T11
- < 70 > 0.50 730 (cost) Tasks 1, 2, 5 - Task 7/tasks 

9–10
Tasks 3, 4, 6, 8 -

T3 T9/T7, T8 T12
- < 70 > 0.70 790 (cost) - Tasks 1, 2, 3, 7 Tasks 9–10 Tasks 4, 5, 6, 8 -

T4, T6 T7, T8 T12
- 40 > 0.50 815 (cost) Task 2,5 Tasks 1, 3, 4, 7 Tasks 6, 8 - Tasks 9–10

T3 T4, T6 T9 T13, T14
- 40 > 0.60 960 (cost) Tasks 1, 3, 4, 7/

task 2
Tasks 9–10 Tasks 5–6 Task 8

T4, T6/T19, T5, 
T6

T7, T8 T12 T15

< 370 - > 0.5 181.7 (time) - Tasks 1–8/tasks 
9–10

- -

T9/T7, T8
< 420 - > 0.5 141 (time) Tasks 1–8 - Tasks 9–10 - -

T3 T7, T8
< 450 - > 0.7 147.3 (time) - - - Tasks 1–8 Tasks 9–10

T12 T13, T14
< 600 - > 0.5 76.2 (time) Tasks 1, 2, 3, 6 - Tasks 4, 5, 7, 8 - Tasks 9–10

T3 T9 T13, T14
< 800 - > 0.5 50 (time) - Tasks 1, 2, 3, 

4, 7
Tasks 5, 6, 8 Tasks 9–10

T4, T6 T9 T13, T14
< 800 - > 0.7 51.5 (time) - Tasks 1, 2, 3, 

4, 7
Tasks 5, 6, 8 Tasks 9–10 -

T4, T6 T12 T7, T8
< 900 - > 0.5 38.1 (time) Task 2,6 Tasks 1, 3, 4, 7 Tasks 9–10 Tasks 5, 8 -

T3 T4, T5, T6 T7, T8 T12
< 900 - > 0.7 51.5 (time) - Tasks 1, 2, 3, 

4, 7
- Tasks 5, 6, 8 Tasks 9–10

T4, T6 T12 T13, T14
< 900 < 40 - 0.54 (quality) Tasks 2, 5 Tasks 1, 3, 4, 7 Tasks 9–10 Tasks 6, 8 -

T3 T4, T6 T7, T8 T12
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