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Abstract
New technological advances are changing the way robotics are designed for safe and dependable physical human–robot 
interaction and human-like prosthesis. Outstanding examples are the adoption of soft covers, compliant transmission ele-
ments, and motion control laws that allow compliant behavior in the event of collisions while preserving accuracy and 
performance during motion in free space. In this scenario, there is growing interest in variable stiffness actuators (VSAs). 
Herein, we present a new design of an anthropomorphic elbow VSA based on an architecture we developed previously. A 
robust dynamic feedback linearization algorithm is used to achieve simultaneous control of the output link position and stiff-
ness. This actuation system makes use of two compliant transmission elements, characterized by a nonlinear relation between 
deflection and applied torque. Static feedback control algorithms have been proposed in literature considering purely elastic 
transmission; however, viscoelasticity is often observed in practice. This phenomenon may harm the performance of static 
feedback linearization algorithms, particularly in the case of trajectory tracking. To overcome this limitation, we propose 
a dynamic feedback linearization algorithm that explicitly considers the viscoelasticity of the transmission elements, and 
validate it through simulations and experimental studies. The results are compared with the static feedback case to showcase 
the improvement in trajectory tracking, even in the case of parameter uncertainty.

Keywords  Variable stiffness · Upper-limb prosthesis · Static feedback linearization · Dynamic feedback linearization · 
Physical prototyping

1  Introduction

Transhumeral amputations (i.e., between the elbow and 
shoulder) are the second most common type of upper limb 
amputation, accounting for approximately 16% of all upper 
limb amputation surgeries [1]. This highlights the impor-
tance of developing prostheses concerning not only the hand 

and wrist, but also the elbow. Most daily tasks require the 
use of the upper limbs; therefore, the loss of one or both 
upper limbs can complicate a variety of tasks, which can 
significantly worsen the quality of life.

If we take the human limb as reference to create a pros-
thesis as natural as possible, we cannot avoid introducing 
the concept of variable stiffness, as suggested by Sensinger 
et al. [2]. In fact, the muscle and bone structure of the human 
arm allow for stiffness modulation by contracting a pair of 
agonistic and antagonist muscles. In particular, the alternate 
muscle contraction leads to the arm motion, whereas the 
simultaneous contraction leads to stiffness variation [3]. The 
artificial counterpart of such behavior may be found in vari-
able stiffness actuators (VSAs), which are now extensively 
studied and employed within the robotic/mechatronic com-
munity. In the last decade, several examples of VSAs for 
robotic manipulators with programmable stiffness have been 
designed and developed by different research institutes, with 
the aim of verifying the effectiveness and reliability of the 
variable stiffness approach (see, e.g., [4–7]). In particular, 
Vanderborght et al. [8] comprehensively analyzed VSA uses 

 *	 Mario Baggetta 
	 mario.baggetta@unige.it

	 Giovanni Berselli 
	 giovanni.berselli@unige.it

	 Gianluca Palli 
	 gianluca.palli@unibo.it

	 Claudio Melchiorri 
	 claudio.melchiorri@unibo.it

1	 Dept. of Mechanical, Energy, Management 
and Transportation Engineering, University of Genova, 
Genoa, Italy

2	 Dept. of Electrical, Electronic and Information Engineering, 
University of Bologna, Bologna, Italy

/ Published online: 5 August 2022

The International Journal of Advanced Manufacturing Technology (2022) 122:4437–4451

http://orcid.org/0000-0003-0093-3006
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09886-7&domain=pdf


1 3

and possible configurations, starting with an initial distinc-
tion between active and passive VSAs. In active VSAs, a 
motor flanked by a dedicated control system performs the 
stiffness change based on the signals returned by sensors at 
the joint. This type of VSA is able to undergo theoretically 
infinite stiffness changes, and is widely used for industrial 
[9] and biomedical applications, including in the construc-
tion of prostheses [2, 10, 11].

On the other hand, passive VSAs, also named structure-
controlled systems, generally rely on the change in geometry 
of some passive spring whose preload is used to achieve 
stiffness variations [12–14]. In terms of prime movers, either 
traditional electric motors (see, e.g., [15, 16]) or intrinsically 
soft actuators may be employed (e.g., McKibben acutua-
tors [17] or dielectric elastomer actuators [18]). In all cases, 
owing to the presence of one or more inherently compli-
ant or soft transmission, hereafter referred to as compliant 
transmission element (CTE), passive VSAs present several 
advantages over their active counterparts. For example, they 
protect the joint from unexpected impacts by decoupling the 
joint and motor through the CTE deformation [19], which 
makes them safer in the event of collisions with things or 
people. In addition, they maintain the inherent stiffness 
of the joint even when the motor is deactivated. Finally, 
since the CTE may be used as an elastic energy buffer to be 
released as needed, its inclusion may allow to downsize the 
motors for a given peak-torque requirement.

Owing to the above advantages, passive VSAs are widely 
used in collaborative robots (i.e., robots designed to work 
alongside humans) [20–22], exoskeletons for the rehabili-
tation of upper and lower limbs [23–26], and prosthetic 
devices [27]. In the latter reference, Lemerle et al. reported 
the first example of a variable stiffness elbow joint using 
an antagonistic motor configuration, which is a common 
architecture discussed in the literature [14, 16, 28]. How-
ever, major drawbacks of all VSAs, despite being active or 
passive or employing traditional or soft prime movers, are 
(1) a rather complex mechanical design due to the need of 
a couple of prime movers along with additional compli-
ant components to simultaneously adjust both position and 
stiffness of the joint; and (2) a more complicated control 
approach, as compared to traditional, single-motor, servo-
systems, especially when dealing with parameter uncertain-
ties or undesired system behaviors to be compensated (such 
as, for instance, non-negligible damping [27–29]). Within 
this scenario, it is self-evident that any possible solution 
aiming at system simplification, either at the mechanical 
design or control level, is welcome and shall be pursued.

Focusing at first on the mechanical design and, in par-
ticular on the CTE implantation, a solution possibly lead-
ing to part-count reduction may be based on the compliant 
mechanism concept [30]. In fact, the growing interest on 
compliant mechanism with localized [31] or distributed 

[32] compliance is mainly due to the possibility of mak-
ing simpler and more compact mechanical systems with 
completely customized characteristics (such as non-linear 
springs [33, 34], deformable structures employed as rota-
tional/prismatic kinematic pairs [35–37], and spatial sin-
gle-piece mechanisms [38, 39]). Naturally, by relying on 
the deflection of flexible members for their functioning, the 
performances of a generic compliant mechanism are heav-
ily dependent on the binomial material-morphology. In par-
ticular, at present, complex morphologies may be realized 
with linear elastic materials (e.g., spring steel) or even with 
low-cost plastics for additive manufacturing (e.g., polylac-
tic acid — PLA or thermoplastic polyurethane — TPU). 
In the second instance, it is often the case that the compli-
ant element behaves as expected in quasi-static conditions, 
though it is highly affected by undesired time-dependent 
phenomena (e.g., damping) during motion. Therefore, in 
the hypothesis to resort to CTE morphologically conceived 
as distributed compliant mechanisms but realized with 
materials affected by viscoelasicity, the mentioned design 
philosophy aiming at a simplification of the VSA mechani-
cal structure is achieved at the expense of an undesired 
behavior in dynamic conditions, thus limiting the joint pre-
cision during actual tasks. However, such unwanted behav-
ior can be effectively mitigated/compensated by means of 
appropriate control strategies. In this context, the technical 
challenge is to design a variable stiffness device comprising 
intrinsic compliance while compensating for the disadvan-
tages of viscoelasticity.

In light of these considerations, the aim of this study is 
to develop a novel anthropomorphic variable stiffness elbow 
joint that can be used as either a human limb prosthesis or a 
human-like robotic arm, in combination with a robust con-
trol strategy to reduce positional error due to CTE hysteresis. 
This device, shown in Fig. 1, uses two nonlinear CTEs in an 
antagonistic configuration to achieve a stiffness variation of 
about 13,500 Nmm/rad. The CTEs, each consisting of an 
inner and outer ring connected by four slender beams, were 
designed using a Matlab/ANSYS APDL optimization rou-
tine and then prototyped and tested. The experimental results 
showed good consistency with the finite element analysis 
(FEA) data, albeit with high hysteresis owing to the inter-
nal damping of the material. To overcome this drawback, a 
mathematical model of the VSA was prepared to develop a 
robust control strategy. Finally, the joint was fabricated and 
tested for validation of the model.

The rest of the paper is organized as follows. Section 2 
reports the static model of the antagonistic VSA; Sect. 3 
describes the design, main features, and capabilities of the 
presented device; Sect. 4 is dedicated to the design and 
experimental testing of the CTEs that provide the stiffness 
variation; Sect. 5 discusses the device model and control 
strategy; and Sect. 6 presents the experimental results of 
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the physical prototype. Finally, Sect. 7 reports the conclu-
sions of the work.

2 � VSA static model

In variable stiffness antagonistic devices [14, 15, 40], as 
schematized in Fig. 2, two actuators are employed for each 
moving joint, which contribute to the position and stiffness 
of the joint by acting on the two CTEs that are connected 
between the motors and moving joint. The torques applied 
on the inner rings of CTEs by the motors, �� and �� , are 
given by

(1)𝜏𝛼 = 𝜓𝛼(𝜖𝛼) + Jm𝜃̈𝛼

where �� = �� − q and �� = �� + q are the angular deflection of  
the CTEs; Jm is the inertia of the motor; �� = ��(��) = ��(q, ��) 
and �� = ��(��) = ��(q, ��) are the torques applied by the 
motors to the moving link through the deflection of the CTEs; �� 
and �� are the positions of the motors; and q is the angular posi-
tion of the moving link. For the static case, 𝜃̈𝛼 and 𝜃̈𝛽 both equal 
zero; therefore, the total torque applied to the joint �j is equal to

To independently control the position q and stiffness k = ��j

�q
 

of the moving joint by guiding the angular positions of the 
motors ( �� and �� ), the torques �� and �� must be nonlinear 
functions of the angular deformations �� and ��.

Assuming a quadratic profile, we can write the torque of 
the motors and joint as follows:

where a1 and a2 are the first- and second-order coefficients, 
respectively, of the quadratic torque–deflection profile. The 
stiffness profile k will then be equal to

Equation 6 shows that nonlinear CTEs are essential for 
achieving stiffness modulation, because linear CTEs would 
have a zero a2 coefficient and thus a constant joint stiffness 
of k = 2a1.

3 � VSA design overview

This section describes the design of the variable stiff-
ness elbow. To be used as an upper limb prosthesis, this 
device must be adaptable to replicate the shape and size 
of the missing limb. The design of the arm presented in 
this article derives directly from our previous work [41]. 
Our first prototype of a passive antagonistic variable stiff-
ness joint, shown in Fig. 3, used a pair of acrylonitrile 
butadiene styrene (ABS) CTEs and achieved a stiffness 
variation range of 726–1795 N mm/rad. To transition from 
a variable stiffness joint to a humanoid elbow joint, two 
major design challenges must be overcome. The first con-
cerns the geometric constraints of the device owing to the 
need to replicate the human limb as faithfully as possible. 
The second concerns the physical capabilities of the joint 
itself and thus the range of motion and stiffness that can be 
achieved. According to NASA [42], the human upper arm 

(2)𝜏𝛽 = 𝜓𝛽(𝜖𝛽) + Jm𝜃̈𝛽

(3)�j = �� − �� = �� − ��

(4)�� = a2�
2

�
+ a1���� = a2�

2

�
+ a1��

(5)�j = [a2(�� + ��) + a1][�� − �� + 2q]

(6)k = 2[a2(�� + ��) + a1]

Fig. 1   Physical prototype of the variable stiffness elbow joint

Fig. 2   Schematic representation of an antagonistic VSA
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and forearm have approximate dimensions and weights of 
180 × 100 mm and 1.25 kg and 150 × 100 mm and 0.75 
kg, respectively. From the perspective of motor skills, an 
angular range of motion of 0–130◦ is normally sufficient 
to perform all necessary daily activities. The main com-
ponents of the device, as shown in Fig. 4, are as follows:

•	 Upper arm: serves as a fixed frame for the DC motors and 
joint, connected to the upper arm support.

•	 Two 24-V Faulhaber 2642W024CR DC motors: equipped 
with a 23:1 reduction gearbox and a 0.7◦ resolution opti-
cal encoder.

•	 512 pulse per revolution rotary encoder: measures the 
absolute joint position, connected to the forearm support 
through a 5.4:1 reduction ratio transmission element.

•	 Upper arm support: connected to the upper arm and main 
shaft of the joint.

•	 Conical shaft and motor gears with a reduction ratio of 
3.5:1: allow the motors to be placed in an upright posi-
tion with respect to the joint, reducing the width of the 
device.

•	 Two identical CTEs: connected to the shaft gear and fore-
arm support.

•	 Forearm support: the moving link of the device, con-
nected to the forearm and supported by the main shaft.

•	 Forearm: the output link of the device.
•	 Inertial measurement unit (IMU) position sensor: iden-

tifies the spatial position of the forearm and, combined 
with the rotary encoder, the whole device, embedded in 
the forearm.

The main shaft, motors, IMU sensor, encoder, bearings, 
motor, and shaft gears were standard parts. All other com-
ponents were made by additive manufacturing. Specifically, 
the encoder and forearm transmission gears were fabricated 
from a thermoset resin (Formlabs Tough 1500) using a 
Formlabs Form 3 printer; the two CTEs were fabricated 
from thermoplastic polyurethane (TPU) and all other com-
ponents were made from polylactic acid (PLA) using an 
Ultimaker S3 printer.

The final design of the CTE is shown in Fig. 5. It consists 
of four slender beams with distributed compliance that are 
connected at either end to the inner and outer rigid rings of 
the CTE. In this way, when the inner ring rotates, torque is 
transmitted to the outer ring. Because it would be very difficult 
to obtain an ideally rigid outer ring in the physical prototype, 
especially given the dimensions of the beams compared to 

Encoder

ABS CTE
Specimen

Moving
Link

Central
Member

Support

Faulhaber
motors

Fig. 3   Previous prototype

Fig. 4   VSA CAD overview
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those of the ring itself, the forearm support was modeled to 
have a series of protrusions (red filled areas in Fig. 5) that 
serve as passive contacts to prevent deformation of the outer 
ring during use. The final parameters of the device and CTEs 
are listed in Table 1.

4 � CTE design and testing

This section presents the design and characterization of 
the CTEs used to adjust the stiffness of the device. Refer-
ring to Fig. 6, the neutral axis of the beam was determined 
using a series of six points interpolated over a cubic spline. 

The initial and final points ( pin and pfin , respectively) were 
fixed at the inner and outer rings, respectively, and the 
positions of the remaining four points ( p1–4 ) were deter-
mined using a Matlab/ANSYS APDL optimization routine, 
whereby ANSYS was tasked to solve the 1D model of the 
beam while Matlab managed the optimization procedure 
in batch.

The optimization of the beam profile to obtain the 
desired nonlinear behavior is discussed in more detail in 
our previous article [41]. An overview of the procedures 
and tools for designing beam-based compliant mechanisms 
can also be found in ref. [43]. For the sake of brevity, only 
the optimal values of this particular profile are given here 
(see Table 2), and only the dimensions of the beam sec-
tion were changed to tune the torque performance of the 
device.

Given the nature of the device, we aimed to maximize 
the torque response of the planar spring while respect-
ing the maximum stress of the material and the maximum 
dimensions of the robotic joint.

Based on the material used in the previous article (i.e., 
ABS, Young’s modulus E = 1800 MPa, Poisson’s ratio � = 
0.35), an optimization procedure was carried out in which 
the width B of the beam section (see Fig. 6) was fixed at 
the maximum value allowed by the overall dimensions (10 
mm) and the thickness H was varied cyclically to find the 
configuration with the maximum response, with the only 
constraint being that the maximum allowable stress of the 
material ( �ABS, max = 42.5 MPa) was not exceeded. The 
maximum torque determined in this initial optimization 

forearm 

passive
contact Rin

R2
Rext

R1

Fig. 5   Final TPU CTE

Table 1   Device datasheet

Parameter description Symbol Value

Upper arm len. × width - 165 × 95 mm
Upper arm mass - 920 g
Forearm len. × width - 156 × 92 mm
Forearm mass - 419 g
Rotation range - ±100◦

Total mass - 1329 g
Maximum stiffness kmax 15 830 N mm/rad
Minimum stiffness kmin 2417 N mm/rad
CTE main parameters
Outer ring: external radius Rext 46 mm
Outer ring: internal radius R2 41 mm
Inner ring: external radius R1 10 mm
Inner ring: internal radius Rin 6.5 mm
Beams Width B 10 mm
Beams Thickness H 4.35 mm

Fig. 6   CTE parameters

Table 2   Optimized shape 
parameters

Parameter r (mm) � (rad)

pin 10.00 1.27
p1 11.33 1.33
p2 23.19 1.70
p3 25.50 1.37
p4 35.36 1.71
pfin 41.00 1.73
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was 162.86 N mm for a single beam and 651.44 N mm for 
the whole spring, corresponding to a value of t = 1.014 
mm. Since this value is below that required for a prosthetic 
arm, another optimization was carried out using TPU (E 
= 80 MPa, �TPU, max = 8 MPa, values obtained by testing 
the filament available in the laboratory and maintaining 
a safety coefficient of 0.5 for �TPU, max ) instead of ABS. 
Using the same optimization procedure, we obtained a 
maximum torque of 500 N mm for a single beam and 2000 
N mm for the whole spring, corresponding to a value of 
t = 4.35 mm (see Fig. 7). Notably, the maximum torque 
values are about three times greater than those using ABS, 
for which a thickness of 29 mm would have been required 
(compared to the threshold thickness of 10 mm allowed 
based on the dimensions of the elbow) to obtain the same 
torque as that obtained with TPU. The optimal CTE was 
then verified using a 3D FEA simulation, as shown in 
Fig. 8.

4.1 � Experimental evaluation

A prototype of the optimized TPU CTE was fabricated using 
a fused deposition modeling (FDM) Ultimaker S3 printer 
and tested with a customized experimental setup comprising 
a Kollmorgen DC motor, six-axis ATI load cell, and pair of 
connecting ABS flanges (see Fig. 9).

The inner ring of the CTE was connected to the motor 
flange (black component), while the outer ring was connected 
to the load cell flange (red component). To control the motor 
drive and read the torque values captured by the load cell, a 
real-time LabVIEW script was used with an embedded NI-
cRIO controller. A sinusoidal motion law was then imposed on 
the motor ( 15◦ amplitude, 1 Hz frequency) and the correspond-
ing torque/rotation law of the CTE was obtained.

As shown in Fig. 10, the experimental results were in 
agreement with those of the FEA analyses, minus possible 
errors due to the 3D printing process. The torque–deflection 
relationship curve of the TPU CTE, as mentioned in Sect. 3, 
has a similar shape to that obtained for the ABS CTE [41]. 
It is important to note that this curve must be asymmetric 
to avoid zero stiffness at the minimum point and thus a sin-
gularity point in the control. Instead, the symmetry of the 
system results from the fact that the two CTEs are mounted 
in an antagonistic configuration.

Dynamic characterization was performed to visualize the 
effects of the internal damping of the material. There was 

Fig. 7   Equivalent deflection/torque characteristics of beams made 
from ABS (left) and TPU (right)

Fig. 8   3D FEA—positive (left 
) and negative (right) deflection 
and stress field

8.03
7.23
6.42
5.62
4.82
4.01
3.21
2.41
1.61
0.80
0.00

Von Mises Stress [MPa]

-15 deg +15 deg

Undeformed

Fig. 9   CTE experimental setup
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an evident hysteresis effect in the loading and unloading 
phases of the spring, especially when compared to the ABS 
CTE used in the previous work [41]. The damping coef-
ficients of the ABS and TPU CTEs were estimated using 
Recurdyn software, which is able to reproduce the dynam-
ics of the CTEs under the same conditions as those used in 
the experimental tests. Damping coefficients of 0.0025 and 
0.04 N s/mm were achieved for the ABS and TPU CTEs, 
respectively. This corresponds to a 16-fold difference; there-
fore, the effect of damping cannot be neglected for the TPU 
CTE, as it will have a significant effect on the control of the 
device (Fig. 11). For this reason, in the following sections, 
the model of the device is developed with consideration to 
damping, and a control strategy is proposed to compensate 
for its effect.

5 � Modeling and control

Referring to Fig. 2, the robot dynamic model is composed 
by the dynamics of 3 rigid bodies (the link and 2 actuators), 
coupled through elastic transmission elements.

The dynamic model of the system is as follows: whole 
manipulator can be written by grouping the actuators in two 
sets, denominated here as � and � , described by two equa-
tions, one for each actuators set:

(7)Jq q̈ + bq q̇ − 𝜓𝛼 + 𝜓𝛽 = 𝜏e

(8)Jm 𝜃̈𝛼 + 𝜓𝛼 = 𝜏𝛼

(9)Jm 𝜃̈𝛽 + 𝜓𝛽 = 𝜏𝛽

where q is joint positions, Jq is the link inertia matrix, bq is 
the joint damping coefficient, �� and �� are the actuator posi-
tions, and Jm is the diagonal inertia matrix of the actuators, 
while �� and �� are the torques applied by the actuators and �e 
is the load torque applied to the link (e.g., the gravity torque 
acting on the output link).

In case of quadratic transmission elements, such as in [14, 
40], the coupling torque between the actuators and the moving 
link can be expressed as

where � is the the spring displacement �� = �� − q and 
�� = �� + q for the two actuators, respectively, a2 and a1 are 
the quadratic spring coefficients, and b1 is the transmission 
elements’ damping factor.

5.1 � Feedback linearization

Since we are interested to control both the position and the 
stiffness of the joint, it is useful to define a new output vector 
that contains directly this information:

where k is the mechanical stiffness of the joint and k0 = 2 a1 
is the stiffness value in the equilibrium condition. By assum-
ing � = (�� − ��)∕2 and s = �� + �� , it is possible to write

where � = �� − �� and �k = �� + �� , k(s) > 0 is a strictly 
positive function representing the generalized joint stiffness, 

(10)𝜓{𝛼,𝛽} = a2𝜖
2

{𝛼,𝛽}
+ a1𝜖{𝛼,𝛽} + b1𝜖̇{𝛼,𝛽}

yc =
[
q k − k0

]T

Jq q̈ + bqq̇ + k(s)𝜑(q − 𝜃) + 2b1𝜑̇(q − 𝜃) = 𝜏e

2Jm𝜃̈ + k(s)𝜑(𝜃 − q) + 2b1𝜑̇(𝜃 − q) = 𝜏

Jms̈ + b1ṡ + 𝜗(q − 𝜃, s) = 𝜏k

Fig. 10   Torque–deflection relationship of the TPU CTE Fig. 11   CTE FEA damping behavior
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�(q − �) is a odd strictly monotonically increasing func-
tions representing the generalized joint displacement, while 
�(q − �, s) is a function such that �(0, 0) = 0.

In case of transmission elements characterized by the 
torque displacement relation (10), the following relations 
hold:

By dropping the dependance of k from s and inverting its 
relation, we obtain

It can be also noted that k̈ = 2 a2s̈.
Since the joint stiffness k is a function of s, that is 

in turn a function of the actuators configuration, k is 
in general a function of time, i.e., k = k(t) . Moreover, it 
is k(t) > 0 for all t, since it has no physical meaning to 
consider negative stiffness while if the stiffness drops 
to zero the joint/transmission would lead to an unactu-
ated system.

Taking into account for model uncertainties, the system 
dynamics can be rewritten as

where J� = 2Jm , Jk = Jm∕(2 a2) , b� = 2 b1 , and bk = b1∕(2 a2) .  
Moreover, it is assumed that all the effects due to frictions, 
dead-zones, non-modeled dynamics, parameters variability, 
etc., not considered in the other terms of the dynamics, can 
be collected by introducing the additive functions of time 
�{q,�,k}(t).

Therefore, the controllable input is u = [� �k]
T  , the 

non-controllable input is w = �e , and the robot state is 
x = [q q̇ 𝜃 𝜃̇ k k̇]T  . Considering the new output vector yc , 
the input u, and the state vector x, the dynamic model of the 
VSA joint in the nominal case (i.e., without model uncer-
tainties) can be rewritten in the state space form:

where x ∈ ℝ
6 , u, yc ∈ ℝ

2 and w ∈ ℝ . In particular, for the 
model of the antagonistic actuated joint:

k(s) = 2(a2 s + a1)

�(q − �) = q − �

�(q − �, s) =
a2

2
s2 + a1 s + 2 a2 (q − �)2

s =
k − 2 a1

2 a2
=

k − k0

2 a2

�k(q − �, k) =
1

8 a2
(k − k0)

2 +
a1

2 a2
(k − k0) + 2 a2 (q − �)2

Jq q̈ + bqq̇ + k (q − 𝜃) + b𝜃(q̇ − 𝜃̇) + 𝜂q(t) = 𝜏e

J𝜃𝜃̈ + k(𝜃 − q) + b𝜃(𝜃̇ − q̇) + 𝜂𝜃(t) = 𝜏

Jkk̈ + bkk̇ + 𝜗k(q − 𝜃, k) + 𝜂k(t) = 𝜏k

(11)ẋ = f (x) + g(x)u + d(x)w

(12)yc = h(x)

Considering the control input u and the output information 
yc , Eqs. (11)–(15) define a square nonlinear system that can 
be linearized via output feedback if suitable conditions are 
satisfied [40, 44, 45].

Starting from the analysis on the feedback linearization of 
antagonistic actuated robots carried out in the previous chapter, 
we have to check, first of all, some conditions on the relative 
degrees of the output information. In this preliminary analysis, 
only the controllable input u of the system is taken into account 
while the external torque �e applied to the joint is neglected. In 
this case, for the output q it is possible to write:

while for the output S:

where Li
f
hq(x) stays for the i-th Lie derivative of h(x) with 

respect to the generic function f(x) and Lg� and Lgk denote the 
restriction of the Lie derivative respectively to the � and �k 
component of the input vector while Lg(�,k) denotes both the 
cases above mentioned.

(13)f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

q̇�
−b𝜃 (q̇ − 𝜃̇) − bqq̇ − k (q − 𝜃)

�
∕Jq

𝜃̇�
−b𝜃 (𝜃̇ − q̇) − k (𝜃 − q)

�
∕J𝜃

k̇�
−bkk̇ − 𝜗k(q − 𝜃, k)

�
∕Jk

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)g(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

J−1
�

0

0 0

0 J−1
k

⎤
⎥⎥⎥⎥⎥⎥⎦

, d(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

J−1
q

0

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)h(x) =

[
q

k − k0

]

(16)Lg(�,k)L
i
f
hq(x) = 0 , i = 0, 1

(17)Lg�L
2

f
hq(x) =

b�

J�Jq

(18)LgkL
2

f
hq(x) = 0

(19)Lg(�,k)hk(x) = 0

(20)Lg�Lf hk(x) = 0

(21)LgkLf hk(x) =
1

Jk
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If the disturbance input, the external torque applied to the 
joint, is considered, the relative degrees of the output � can be 
defined as:

while for the output k:

On the basis of this consideration, it is possible to state that 
the joint position cannot be decoupled from the external 
torque, while the joint stiffness is not affected by the exter-
nal torque, since the relative degree of the stiffness w.r.t the 
control input is lower that w.r.t. the disturbance. The external 
torque �e will be neglected in the sequel to simplify the anal-
ysis. The problem of feedback linearization under the effects 
of an external torque will be an object of future research.

5.1.1 � Static feedback linearization

From Eqs. (16)–(21), we can state that, considering the con-
trollable input u, the vector relative degree of q is 3 while the 
one of k is 2. The sum of the vector relative degrees of the 
output is then not equal to the dimension of the state of the sys-
tem, so the conditions for the solution of the full feedback lin-
earization problem are not satisfied [44]. Anyway, the system 
can be partially linearized via static feedback if it is possible to 
define a nonsingular coordinates transformation from the space 
of the original state variables to the state space of the partially 
linearized one [46]. To solve this problem, since the additional 
entries of the coordinates transformation (the ones that must be 
added to make the coordinates transformation nonsingular) can 
be arbitrary chosen, it is convenient, if possible, to make the 
nonlinear part of the new system independent from the inputs.

The state of the partially linearized system z can be split 
into the linear part:

and its nonlinear part:

where z6 will be chosen in suitable way as shown in the 
sequel. Hence, the overall system state in the new coordinate 
system is:

(22)Ldhq(x) = 0

(23)LdLf hq(x) =
1

Jq

(24)LdL
i
f
hk(x) = 0, i = [0,… , 2]

zl =
[
z1 z2 z3 z4 z5

]T

=
[
q q̇ q̈ k − k0 k̇

]T

zn = z6

(25)z =

[
zl
zn

]

The dynamics of the partially linearized system can be then 
written as:

in which Q(x) is the so-called decoupling matrix and the 
matrices A, B, and C are in the Brunowsky canonical form

where Eq. (27) represents the nonlinear part of the system 
and z = Φ(x) represents the coordinates transformation 
between the original and the partially linearized system. 
Obviously the term L2

f
hq(x) = q̈ can be expressed in terms 

of the state vector x by using the second element of Eq. (13), 
while Φ6(x) must be chosen in such a way to make the coor-
dinate transformation Φ(x) nonsingular.

It is important to note that the nonlinear residual part of the 
system �(zl, zn, ul) is unobservable from the outputs, as can 
be seen looking at Eq. (28). In particular, the stability of the 
zero dynamics

is a necessary condition for the controllability with bounded 
internal state of the overall system [44]. Looking at the first 
five rows of dΦ(x)

dx
:

(26)żl = Azl + Bul

(27)żn = 𝜂(zl, zn, ul)

(28)yc = Czl

(29)ul =

[
L3
f
hq(x)

L2
f
hk(x)

]
+ Q(x)u

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 0

0 1

⎤
⎥⎥⎥⎥⎥⎦

,

C =

�
1 0 0 0 0

0 0 0 1 0

�
, Φ(x) =

⎡⎢⎢⎢⎢⎢⎢⎣

hq(x)

Lf hq(x)

L2
f
hq(x)

hk(x)

Lf hk(x)

Φ6(x)

⎤⎥⎥⎥⎥⎥⎥⎦

(30)żn = 𝜂(0, zn, 0)

dΦ

dx
=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−
k

Jq
−

bk+b�

Jq

k

Jq

b�

Jq

�−q

Jq
0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦
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it is clear that the third and the fourth columns are linearly 
dependent. Therefore, Φ6(x) must be choosen to make this 
matrix full rank. By choosing z6 = 𝜃̇

the state space transformation Φ(x) is nonsingular in the 
whole state space, and in particular in the origin (since k is 
always positive by assumption). The state space transforma-
tion Φ(x) is then:

The state space transformation form the original to the lin-
earized system can be then expressed only by means of the 
state space information of the original system. The dynamic 
equations that describe the nonlinear part of the system is 
then:

Even if the nonlinear residual part of the system depends 
on the input, it is important to note that the zero dynamics

is asymptotically stable in the whole state space, so the sys-
tem can be controlled with bounded internal state.

To define the input of the linearized system, see Eq. (29), 
the nonlinear terms L3

f
hq(x) and L2

f
hk(x) and the decoupling 

matrix Q(x) must be defined first:

(31)
dΦ

dx
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

−
k

Jq
−

bk+b�

Jq

k

Jq

b�

Jq

�−q

Jq
0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

z1 = q

z2 = q̇

z3 =
[
−b𝜃 (q̇ − 𝜃̇) − bqq̇ − k (q − 𝜃)

]
∕Jq

z4 = k

z5 = k̇

z6 = 𝜃̇

ż6 =
[
−b𝜃 (𝜃̇ − q̇) − k (𝜃 − q) + 𝜏

]
∕J𝜃

(32)ż6 = −
b𝜃

J𝜃
z6

L3
f
hq(x) =

(b𝜃 + bq)
[
b𝜃 (q̇ − 𝜃̇) + bqq̇ + k (q − 𝜃)

]

J2
q

+

−
k(q̇ − 𝜃̇)

Jq
−

b2
𝜃
(𝜃̇ − q̇) + b𝜃k (𝜃 − q)

J𝜃Jq

L2
f
hk(x) =

4 a2(q − 𝜃)(q̇ − 𝜃̇)

Jk
+

k k̇

4 a2Jk
+

+
b2
k
k̇ + bk𝜗k(q − 𝜃, k)

J2
k

By considering Eqs. (17)–(21), the decoupling matrix Q(x) 
is defined as

that is always nonsingular. The control law that allows to 
obtain the linearized system is then:

where v =
[
vq vk

]T is the new input of the system. Note that 
this control law is static, since it can be be computed directly 
from the system state information x and from the new refer-
ence input v. The dynamics of the system Eqs. (26)–(29) is, 
in the z coordinates:

By recalling the definition of the matrices A, B, and C, it is 
possible to write:

An important point to note is that if the damping coefficient 
of the transmission elements b� tends to zero (considering 
also the case in which b� can be neglected), the control law 
Eq. (34) becomes ill conditioned and the zero dynamics 
Eq. (32) is not exponentially stable anymore.

Due to the structure of the matrices A, B, and C, the sys-
tem described by Eqs. (35) and (37) is completely control-
lable and observable, while Eq. (36) represents its unobserv-
able part. This implies that the state zl can be estimated by 
means of an asymptotic state observer and of the change of 
coordinates Φ(x) or, since the position of each rigid body is 
directly measurable, the velocities can be estimated in many 
ways, e.g., by means of state variable filters or adaptive win-
dowing algorithms [47].

For the control of the partially linearized system, an outer 
control loop can be used to solve the problem of simulta-
neous decoupled stiffness and position trajectory tracking. 
From Eq. (38), applying the control laws:

(33)Q(x) =

[ b�

J�Jq
0

0
1

Jk

]

(34)u = Q−1(x)

([
−L3

f
hq(x)

−L2
f
hk(x)

]
+

[
vq
vk

])

(35)żl = Azl + Bv

(36)żn = 𝜂(zl, zn, v)

(37)yc = Czl

(38)
[
q[3]

k̈

]
=

[
vq
vk

]

(39)
vq = q

[3]

d
+ K2q

[q̈d − L2
f
hq(x)] + K1q

[q̇d − Lf hq(x)]+

+ K0q
[qd − hq(x)]
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where K2q
 , K1q

 , K0q
 , K1k

 , and K0k
 are such that

are Hurwitz polynomials, the convergence to zero of the 
tracking error is ensured. If the desired trajectories qd is con-
tinuous together with its derivatives up to 3th and kd is con-
tinuous together with its fist derivative, also the asymptotic 
trajectory tracking is achieved. The control law in Eqs. (39) 
and (40) is equivalent to a static state feedback plus feedfor-
ward in the state space of the linearized system:

and Φ(q,k)(x) stays for the restriction of the coordinate trans-
formation to the state component zl:

The matrix K can be also obtained via direct eigenvalues 
assignment or through the solution of the CARE equation 
with an opportune choice of the weight matrices.

5.1.2 � Dynamic feedback linearization

Since the sum of the relative degrees of the inputs is not equal 
to the dimension of the state space of the system, to achieve 
full state linearization and to solve the problem of a vanishing 
damping factor b� , a dynamic feedback compensator must be 
designed.

By choosing, for the linearized system, the new state vector:

the dynamics of the linearized system can be then written as:

(40)vk = k̈d + K1k
[k̇d − Lf hk(x)] + K0k

[kd − hk(x)]

(41)�3 + �2K2q
+ �K1q

+ K0q
= 0

(42)�2 + �K1k
+ K0k

= 0

(43)v = vd + K(zd − Φ(q,k)(x))

(44)vd =
[
q
[3]

d
k̈d

]T
, zd =

[
qd q̇d q̈d kd k̇d

]T

(45)K =

[
K0q

K1q
K2q

0 0

0 0 0 K0k
K1k

]

(46)

Φ(q,k)(x) = zl =

⎡
⎢⎢⎢⎢⎢⎣

q

q̇�
−b𝜃 (q̇ − 𝜃̇) − bqq̇ − k (q − 𝜃)

�
∕Jq

k

k̇

⎤⎥⎥⎥⎥⎥⎦

(47)z =
[
q q̇ q̈ q[3] k − k0 k̇

]T

(48)ż = Az + Bul

where

while the matrices A, B and C change in:

The expression of L4
f
hq(x) is not reported for brevity, since 

it can be derived by computing the Lie derivative of L3
f
hq(x) 

with respect to f(x), but it is important to note that, also in 
this case, it is an algebraic function of the system state x. 
Moreover, note that if the coefficient b� vanishes in Eq. (50), 
it is possible to show that the case of static feedback lineari-
zation with no damping in the transmission elements is 
recovered. The coordinates transformation between the 
original and the linearized system is then:

Now, by defining the dynamic compensation law:

we obtain the fully linearized system

that, together with Eq. (54), give the whole dynamics of 
VSA joint plus the dynamic controller. By recalling the defi-
nition of the matrices A, B, and C in Eq. (51), it is possible 
to write:

(49)yc = Cz

(50)ul =

[
L4
f
hq(x)

L2
f
hk(x)

]
+

[
q1
0

]
u̇q +

[
r1
0

]
uq +

[
0
1

Jk

]
uk

q1 =
b�

J�Jq
, r1 = −

b�(b� + bq)

J2
q
J�

+
k

JqJ�
−

b2
�

JqJ
2

�

(51)A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

, B =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

0 0

1 0

0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

,

(52)C =

[
1 0 0 0 0 0

0 0 0 0 1 0

]

(53)Φ(x) =
[
hq(x) Lf hq(x) L

2

f
hq(x) L

3

f
hq(x) hk(x) Lf hk(x)

]T

(54)u̇q =
1

q1

[
−L4

f
hq(x) − r1uq + vq

]

(55)uk = Jk

[
−L2

f
hk(x) + vk

]

(56)ż = Az + Bv

(57)yc = Cz
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The zero dynamics of the system is now inside the controller:

Hence, the zero dynamics of the system is clearly asymptoti-
cally stable. Also in this case, an outer control loop can be 
used to achieve trajectory tracking. By posing v = [vq vk]

T , 
the control law:

(58)
[
q[4]

k̈

]
=

[
vq
vk

]

(59)u̇q =
r1(0)

q1
uq = −

2 b𝜃 + bq

Jq
uq

(60)v = vd + K[zd − Φ(x)]

(61)vd =
[
q
[4]

d
k̈d

]T

(62)zd =
[
qd q̇d q̈d q

[3]

d
kd k̇d

]T

(63)K =

[
K0q

K1q
K2q

K3q
0 0

0 0 0 0 K0k
K1k

]

Fig. 12   Device subjected to 1 kg load in the maximum (left) and min-
imum (right) stiffness configurations

Fig. 13   Joint position setpoints

Fig. 14   Stiffness setpoints

Fig. 15   Stiffness errors

Fig. 16   Stiffness errors during sine motion

Fig. 17   Sine position errors
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6 � Elbow joint physical prototyping

A physical prototype of the device was produced by additive 
manufacturing and tested to verify its functionality. Figure 12 
shows the actual change in stiffness of the joint with a 1-kg 
weight attached to the end of the forearm section. Stiffness 
values of 15 830 and 2417 N mm/rad were achieved in the 
maximum and minimum stiffness configurations, respectively.

To validate the control algorithm presented in Sect. 5, 
the physical prototype used in the previous work [41] 
(see Fig. 3) was subjected to further experimental tests 
to compare the results. In particular, the errors related to 
the position and stiffness of the joint were compared in 
the following cases: (a) static feedback control without 
damping; (b) static feedback control with damping; and  
(c) dynamic feedback control with damping. All three 
cases were considered by providing the joint with both 
a sinusoidal and stepwise position setpoint (Fig. 13) and 
a stepwise stiffness adjustment (Fig. 14) evaluated both 
individually (Fig. 15) and during sine motion (Fig. 16).

Figures 17 and 18 reveal that the positional error was con-
siderably reduced when moving from case a (static feedback 
without damping) to cases b and c (static and dynamic feed-
back with damping, respectively), which take the damping of 
the material into consideration. This demonstrates the need 
for a dynamic feedback linearization algorithm that explicitly 
considers the viscoelasticity of the CTEs.

7 � Conclusion

This article reports the design of a variable stiffness elbow joint 
using a pair of motors and two nonlinear CTEs with an antagonistic 
configuration. The design of the device, which features a reduced 
number of components and is suitable for 3D printing prototyping, 
matches the appearance of a human upper limb so that it can be used 
as a prosthesis or as a component of a humanoid robot. The CTEs, 
consisting of two rigid rings connected by four beams with distrib-
uted compliance, were designed to have nonlinear characteristics 
and provide maximum variation in stiffness while remaining within 
the defined maximum dimensions of the device. Subsequent FEA 

and experimental tests confirmed the design values. Non-negligible 
hysteresis was present, which was counteracted by a robust control 
strategy that was experimentally verified using a simplified setup. 
Future work will extend the experimental testing of the final device 
both in the laboratory and in situations of normal daily use. In addi-
tion, a control system using electromyography signals will be imple-
mented for use by amputees.
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