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Abstract
In many industrial applications, it is possible to approximate the shape of mechanical parts with geometric primitives such 
as spheres, boxes, and cylinders. This information can be used to plan robotic grasping and manipulation procedures. The 
work presented in this paper investigated the use of the state-of-the-art PointNet deep neural network for primitive shape 
recognition in 3D scans of real-life objects. To obviate the need of collecting a large set of training models, it was decided 
to train PointNet using examples generated from artificial geometric models. The motivation of the study was the achieve-
ment of fully automated disassembly operations in remanufacturing applications. PointNet was chosen due to its suitability 
to process 3D models, and ability to recognise objects irrespective of their poses. The use of simpler shallow neural net-
work procedures was also evaluated. Twenty-eight point cloud scenes of everyday objects selected from the popular Yale-
CMU-Berkeley benchmark model set were used in the experiments. Experimental evidence showed that PointNet is able 
to generalise the knowledge gained on artificial shapes, to recognise shapes in ordinary objects with reasonable accuracy. 
However, the experiments showed some limitations in this ability of generalisation, in terms of average accuracy (78% circa) 
and consistency of the learning procedure. Using a feature extraction procedure, a multi-layer-perceptron architecture was 
able to achieve nearly 83% classification accuracy. A practical solution was proposed to improve PointNet generalisation 
capabilities: by training the neural network using an error-corrupted scene, its accuracy could be raised to nearly 86%, and 
the consistency of the learning results was visibly improved.

Keywords Primitive shape recognition · Remanufacturing · Robotic manipulation · Point cloud · Deep neural network · 
PointNet · Shallow neural network

1 Introduction

Reliable object manipulation procedures are a fundamental 
prerequisite for the robotic handling of parts in disassembly 
and remanufacturing. The literature on grasping and manip-
ulation includes methods based on properties of the objects 
like their appearance and geometry [1, 2], or their dynamics 
[3]. Regardless of the method used, the shape of the target 
object usually needs to be estimated.

Object shape can be estimated from 2D camera images or 
3D point clouds. Due to the variable appearance and state of 

used parts, and the loss of structural information, methods 
based on 2D images often fail to obtain acceptable results 
in remanufacturing applications [4, 5]. For this reason, 3D 
models are often preferred.

Thanks to the increasing availability of reliable and 
affordable sensors, 3D scans have nowadays become easily 
obtainable from the field. However, point clouds pose their 
own challenges due to their lack of topological structure, and 
the large amount of information they carry (usually millions 
of data points).

This study aims to investigate the ability of the Point-
Net deep neural network (DNN) [6] to recognise primitive 
shapes in point cloud models of everyday objects, after 
being trained on computer-generated geometric primitives. 
PointNet directly takes the elements of the point cloud as 
input, and is able to recognise objects irrespective of their 
position and orientation. PointNet can also be trained to 
segment parts and sub-assemblies from the point cloud 
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scene. These features make it an ideal candidate for object 
recognition in a highly unstructured domain such as the 
disassembly and manipulation of end-of-life products. 
They also distinguish PointNet from standard DNNs, par-
ticularly those based on convolutional layers, since the 
latter require structured input data, and their internal rep-
resentation of the input is generally not rotation invariant 
[6].

Zheng et al. [7] used CAD-generated models to train 
PointNet to identify complex mechanical parts for disas-
sembly applications. Experimental evidence indicated the 
viability of the proposed approach, although the accuracy of 
the trained DNN was validated on artificial scenes created 
via a depth-camera simulator. This study aims to evaluate 
the ability of PointNet to recognise object shapes from real 
scans of objects, after being trained on artificial geometric 
models. The focus of this study is also on the abstraction 
of primitive shape information, rather than the recognition 
of detail-rich objects like car turbocharger components [7].

The research has direct application to many engineer-
ing problems beyond the disassembly and remanufacturing 
domain, since mechanical objects have often fairly regular 
shapes, which can be approximated with geometric primi-
tives such as spheres, boxes, and cylinders (e.g. the cylindri-
cal head of a piston, the spheres of a rolling bearing) [8, 9].

This study also aims to compare the performance of 
PointNet to the performance of simpler classifiers like shal-
low neural networks (SNNs). Provided a simple method is 
available to extract a structured and meaningful representa-
tion of the point cloud scenes, usually a set of features, SNNs 
are preferable for their comparable ease of training and low 
computational overheads. In this study, the performance of 
PointNet was compared to the performance of two popular 
shallow neural networks: a multi-layer perceptron (MLP) 
[10] and a radial basis function network (RBFN) [11].

The main difficulty in the recognition task comes from the 
fact that the shape of the scans is often not perfectly regu-
lar. Sensor imprecision and occlusion (partial view) further 
complicate the problem. In this study, the performance of 
PointNet was tested on real scans of common objects from 
the Yale-CMU-Berkeley (YCB) benchmark set [12], a popu-
lar robotics benchmark.

The use of real scans of physical objects constitutes a 
more realistic setting than the CAD-generated images used 
in the tests performed by the creators of PointNet [6], or the 
simulated scans used by Zheng et al. [7]. The fact that Point-
Net had not been evaluated on real-life point cloud model 
sets was first pointed out by Garcia-Garcia et al. [13], and 
later acknowledged by Uy et al. [14] who manually built the 
ScanObjectNN set. ScanObjectNN contains camera scans 
of physical objects grouped in categories modelled on the 
popular ModelNet40 benchmark set of CAD models [15]. In 
their study, Uy et al. [14] reported very poor classification 

accuracy (32.2%) when the the PointNet was trained using 
ModelNet40 and tested on the ScanObjectNN set.

The objects used in this study have a more regular shape 
than those featured in the ModelNet40 and ScanObjectNN 
sets. PointNet will be trained using a set of geometric primi-
tive shapes, and then used to recognise similar shapes from 
real-life scenes. The obvious advantage of this arrangement 
is the possibility of generating an arbitrarily large model 
set for training the DNN, removing the need of acquiring a 
database of object scans.

This paper is organised as follows. Related work is dis-
cussed in Sect. 2, whilst the PointNet deep architecture is 
described in Sect. 3. Section 4 describes the SNN archi-
tectures, and presents the extraction scheme generating the 
features they use. The model sets used in the experiments 
are described in Sect. 5. The experimental setup and results 
are reported in Sect. 6, whilst the outcomes of the tests are 
discussed in Sect. 7. Section 8 concludes the paper.

2  Related work

Deep neural networks have gained wide popularity for 2D 
machine vision applications, thanks to their high accuracy 
and feature extraction ability [16]. In recent years, DNN-
based vision technology found increasing application in 
the fields of manufacturing [17–19] and remanufacturing 
[20–25].

In detail, Yildiz and Wörgötter [24, 25] developed a screw 
detection and classification system based on a deep convolu-
tional neural network, and demonstrated its accuracy in a hard 
disk drive disassembly case study. The creation of the train-
ing set of examples for the DNN entailed a large effort, where 
20,000 sample images of 500 screw elements were collected 
from 50 hard disk drives. Foo et al. [21] used deep learning 
for screw detection in an LCD monitor disassembly applica-
tion. The system used an image preprocessing procedure, an 
ontology reasoning module, and a Fast-RCNN network [26]. 
The training dataset was built combining numerous images of 
screws acquired via an extensive Google search, plus 356 manu-
ally acquired images. A total of 1496 bounding boxes around 
the screw samples had to be manually labelled in the images. Li 
et al. [22] used a fast region-convolution neural network to detect 
screws on motherboards of mobile phones for disassembly. The 
training procedure needed the manual acquisition of 488 images.

Brogan et al. [20] proposed a vision system based on 
the Tiny YOLO v2 (Tiny-You Only Look Once v2) pre-
trained DNN architecture, to identify screws on electrical 
waste for disassembly. The system achieved over 92% rec-
ognition accuracy using 900 manually collected training 
images. A YOLO (v4) architecture was used also by Rehn-
holm [23] to build the vision system for a battery package 
disassembly application. The training procedure required 
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the creation of nearly 25,000 images in total for training 
and validation.

In summary, although DNNs generally achieve good 
recognition accuracies, they require a large dataset of indi-
vidually labelled images. Moreover, commonly used con-
volutional neural network (CNN) architectures can only 
process structured data such as 2D images.

With the development of 3D sensors like RADAR 
(radio detection and ranging), LiDAR (light detection and 
ranging), and RGB-D (red, green, blue, and depth chan-
nels) camera, 3D data can be easily obtained from field. 
Typically, the raw data is in the form of point cloud, an 
unordered set of data points (X, Y, Z coordinates) delin-
eating the surfaces of the scanned object. Although depth 
information adds valuable context for the identification 
task, the lack of structure and the uneven distribution of 
the data points constitutes a challenge for the recognition 
algorithm.

In particular, the unstructured characteristic of point 
cloud models cannot be handled by convolutional architec-
tures. For this reason, four main DNN approaches can be 
identified in the literature. Three of these methods use stand-
ard DNN architectures, often including convolutional layers, 
and feed these architectures with point cloud representations 
where the information is structured via volumetric [15, 27], 
multi-scene [28], or graph-/tree-based methods [29–31]. The 
fourth method directly processes the raw point cloud via 
purpose-designed DNNs like the PointNet architecture [6] 
used in this work. For a more detailed discussion of deep 
learning methods for point cloud understanding, the reader 
is referred to a recently published survey by Guo et al. [32].

PointNet [6] was the first DNN architecture to be able to 
process directly point cloud scenes. PointNet can be used to 
perform shape identification or segmentation, and is able to 
recognise objects regardless of their rotation and translation. 
Being able to process directly point cloud scenes, PointNet 
does not require computationally intensive pre-processing 
steps which may also cause information loss. These features 
immediately made PointNet very popular for the recognition 
of real life scenes, and spawned several similar architectures 
[33–35].

Zheng et al. [7] used PointNet to recognise components of 
two different types of turbochargers for disassembly purposes. 
The DNN was trained using CAD models of the automotive 
parts, and tested on point clouds generated using a depth 
camera simulator. The simulator allowed replicating various 
degrees of sensor imprecision and partial occlusion of the 
objects. The PointNet achieved classification accuracy above 
90%, although its performance degraded with the addition 
of simulated sensor imprecision to the model test set. Zheng 
et al. [7] showed that the effect of sensor imprecision could 
be counteracted by adding comparable noise to the training 
data. The method has not been tested yet on real-life images, 
where the level and distribution of sensor error is not known.

3  The PointNet deep neural network

PointNet was proposed by Qi et al. [6] for object classifica-
tion and segmentation for point cloud models. It is a DNN 
constituted of multiple neural layers as shown in Fig. 1, and 
can be divided into three key modules.

The first module is designed to map the input space to a 
higher-dimensional representation (embedding space), and 
makes the procedure invariant to rigid transformations of 
the object’s pose. Differently from the Spatial Transformer 
proposed by Jaderberg et al. [36], a mini-network (T-Net) is 
used in PointNet [6]. The T-Net takes all the points from the 
point cloud as input, and predicts the affine transformation 
matrix that aligns the object to a canonical space before fea-
ture extraction. Additionally, another T-Net (‘feature trans-
form’ in Fig. 1) is used to further align the embedding space.

The second module is the feature extraction module: it 
is composed of a set of MLPs and a max pooling function 
[6]. The MLPs are used as feature detectors that are applied 
to the higher-dimensional embedding space, whilst the 
max pooling layer is used to aggregate the feature detec-
tion result. The overall action of the first two modules is to 
transform the input information into a feature set. That is, 
it implements a symmetric function that maps the spatial 
information in the point cloud to the feature space, irrespec-
tive of the object pose.

Fig. 1  Structure of the classifi-
cation part of PointNet
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The third module of PointNet is a fully connected layer 
that takes the feature information and generates the identi-
fication result.

In summary, when a point cloud consisting of (n) points is 
fed to PointNet, the coordinates of all its points are mapped 
into the feature space through the first and second modules 
of the network. The third module of the network is a stand-
ard classifier that takes the features extracted in the previ-
ous layers, and outputs the classification score for the input 
scene.

4  Shallow neural network architectures

Shallow neural networks (SNNs) have a longer history than 
DNNs. Compared to DNNs, SNNs are known to be faster to 
train, and are less likely to overfit the training data because 
they use a much smaller number of parameters (weights). 
Their main limitation is that they need a pre-processing 
step to extract the vector of input features (variables). In 
DNNs, feature extraction is performed by the first layers 
of the architecture, and is optimised by the learning proce-
dure together with the classifier proper (the last layers of the 
architecture). Nonetheless, when fed with a descriptive set 
of features, SNNs are known to reach accuracies comparable 
to those obtained by DNNs [37] in point cloud classification 
problems.

In this study, the performance of two classical SNN mod-
els will be compared to the performance of PointNet. The  
first SNN is the widely used multi-layer perceptron (MLP). 
MLP is a popular feed-forward and versatile neural network 
used for classification and modelling problems [38]. The MLP 
is usually trained using the back-propagation learning algo-
rithm, which was firstly proposed by Rumelhart et al. [39]. 
The versatility of the MLP stems from its ability to approxi-
mate any function to any desired degree of accuracy [40].

The second is the radial basis function network (RBFN). 
RBFN was firstly proposed by Broomhead and Lowe [11]. 
Like the MLP, the RBFN is a popular feed-forward neural 
network used for modelling and classification problems [38]. 
The RBFN has a strictly defined architecture, featuring one 
input layer, one hidden layer, and one output layer. The activa-
tion function of the hidden layer is the radial basis function. 
The input layer of an RBFN acts as a buffer, and broadcasts 
the input vector to each neuron in the hidden layer. The hidden 
neurons process the input vector via the activation function 
(radial basis function), whilst the output neurons perform a lin-
ear summation of the weighted outputs of the hidden neurons.

4.1  Numerical feature generation

A point cloud is a data structure containing an unordered list 
of x-y-z coordinates. Differently from PointNet, the MLP 
and RBFN treat the input as a vector, and are thus sensitive 

to the ordering of its elements. Therefore, point clouds can-
not be fed directly to the MLP or RBFN. In this section, a 
feature generation scheme to extract numerical features from 
the point clouds is described.

In the tests, it is assumed that the objects are in unknown 
orientation. Thus, the extraction process starts with align-
ing the shapes with the coordinate axes. For this purpose, 
principal component analysis [41, 42] was used to extract 
the eigenvectors of the point cloud. The point cloud is then 
placed with its centroid in the origin, and its eigenvectors 
are aligned with axes of the Cartesian coordinates. Since the 
eigenvectors broadly correspond with the main axes of the 
shapes, this method was proven to align the point cloud with 
reasonable accuracy.

In real life, a human eye can recognise a primitive 
shape from its orthogonal projections onto the three 
planes x = 0 , y = 0 , and z = 0 . Namely, a cube with its 
sides aligned with the Cartesian axes will create three 
rectangular shapes (one per plane), a sphere will gener-
ate three disks, and a cylinder will create two rectangular 
shapes and one disk. In summary, recognising the three 
3D primitive shapes boils down to recognising two 2D 
shapes (rectangle and disk) in their projections. This idea 
is exploited as follows.

After principal component analysis alignment, the points 
in the cloud are projected onto the three planes x = 0 , y = 0 , 
and z = 0 . For example, the projection of a point of coor-
dinates z = (x, y, z) onto the z = 0 plane is z = (x, y, 0) . For 
each 2D projection on a plane: 

1. The coordinates of all the points are transformed into 2D 
polar-coordinates: (r, �).

2. The plane is divided into 64 sectors (intervals of �).
3. For each of the 64 sectors, the radius r of the most dis-

tant point from the origin is taken as representative 
of the interval. Namely, the representative of interval 
1 ≤ j ≤ 64 is mj = max(ri) where 1 ≤ i ≤ N indicates one 
of the N points of the cloud.

4. The arithmetic mean and standard deviation of the 64 rep-
resentatives mj of the interval are calculated for each plane.

The features extracted from one point cloud form a 6- 
dimensional vector:

where mk and �k ( k = x, y, z ) are respectively the mean and 
standard deviation of the 64 representatives on the planes 
x = 0 , y = 0 , and z = 0 . In a perfect point cloud without 
error, all the most distant points of a disk will be at the 
same distance from the origin; hence, mx = my = mz and 
�x = �y = �z = 0 . Also, the most distant points of a rectangle 
will not be at the same distance from the origin, �x,y,z ≠ 0 , 
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and in general mx ≠ my ≠ mz . This will hold as long as the 
error level is reasonable, namely that it will not completely 
blur the shapes of the projections, or when the model has 
been cleaned of sensor error.

5  Model sets

The goal of this study was to evaluate the ability of PointNet 
to recognise primitive shapes in point clouds generated from 
scans of real objects, after being trained on sample point 
clouds of geometric shapes. All the point clouds were nor-
malised before being fed into the PointNet: the normalisation 
procedure shrank or enlarged the shape without deforma-
tion to fit it into a box of side 1. The procedure described 
in Sect. 4.1 was run to extract numerical features from the 
scenes for the SNNs.

At present, there is no specific model set in the literature 
for benchmarking the accuracy of primitive shape classifiers 
on real-life scenes. For this study, a popular benchmark of 
3D models of real-life objects was used: the YCB model set 
[12]. This model set was originally created and mainly used 
for robotic manipulation, instead of classification purposes. 
A subset of twenty-eight models from the YCB set was 
retained, containing objects of three basic primitive shapes: 
boxes, cylinders, and spheres. This subset was used to gen-
erate a test set of examples that will be henceforth called 
the YCB-28 model set. In all the experiments, the YCB-28 
model set was employed to validate the learning accuracy of 
the trained neural networks. The methodology followed to 
create the YCB-28 model set is detailed in Sect. 5.1. To train 
the classifiers, two artificial model sets were used. They are 
presented in Sects. 5.2 and 5.3. The normalisation procedure 
for point clouds before being fed into PointNet is described 
in Sect. 5.4

5.1  The Yale‑CMU‑Berkeley (YCB) object and model 
set

The Yale-CMU-Berkeley object and model set was created 
by Calli et al. [12] for research in robotic manipulation. Calli 
et  al. [12] used two series of depth cameras (BigBIRD 
Object Scanning Rig and Google Scanners) to capture point 
clouds from several real-life objects from multiple angles 
of views. The point clouds captured from each object were 
merged and de-noised to create mesh models, using the 
truncated signed distance function method [43] and Pois-
son reconstruction [44]. Only one mesh model was created 
for each object [12]. The mesh models were used for the 
experiments presented in this paper.

Differently from large classification sets like Model-
Net40 [15], which contains 12,311 items from 40 different 
categories, the YCB set contains point clouds and mesh 
models from only 77 daily-life objects. These objects were 

Table 1  IDs and names of the selected twenty-eight objects from the 
YCB set

Box Cylinder Sphere

003-cracker box 001-chips can 012-strawberry
004-sugar box 002-master chef can 014-lemon
008-pudding box 005-tomato soup can 015-peach
009-gelatin box 007-tuna fish can 017-orange
010-potted meat can 019-pitcher base 018-plum
026-sponge 025-mug 054-softball
036-wood block 040-large marker 055-baseball
061-foam brick 065-a-cups 056-tennis ball
077-rubiks cube 057-racquetball

058-golf ball
063-a-marble

Fig. 2  The nine selected 
box-like objects (images and 
meshes) from YCB set
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broadly classified by Calli et al. [12] in 5 main catego-
ries: food items, kitchen items, tool items, shape items, 
and task items. In this study, the objects were grouped by 
their shape, and samples of appearance reasonably close 
to boxes, cylinders, and spheres were picked. The twenty-
eight selected samples included nine models of box-
shaped objects, eight models of cylinder-shaped objects, 
and eleven models of sphere-shaped objects.

The names and IDs (progressive identification number 
in the YCB set) of the twenty-eight selected models are 
reported in Table 1, and their pictures and mesh models 
are shown in Figs. 2, 3, and 4. Despite the de-noising and 
reconstruction, the mesh models still contain a certain 
level of sensor error, which is visible as irregularities such 
as bumps and hollows in the figures.

The following three-step procedure was used to gener-
ate the YCB-28 model set out of the twenty-eight selected 
object scans. The first step was to randomly sample with 
uniform probability 1,000,000 points from the mesh model 
of each object. This initial large point set was called the 
point pool. The second step was to create 20 point clouds 
by randomly sampling 1000 out of the 1,000,000 points 
from the point pool. Each of the 20 point clouds created 
from one object model contained a different sample of 
points. Given that the sampling rate was (1/1000), it is 
reasonable to think that any two of the 20 point clouds had 
very little sampled points in common. Finally, in the third 
and last step, each point cloud was centred on the origin 
and the shape randomly rotated (roll-pitch-yaw rotation). 
In detail, the YCB-28 model set contained the following 
point clouds:

• Box: 9 objects × 20 pointclouds = 180 pointclouds

• Cylinder: 8 objects × 20 pointclouds = 160 pointclouds

• Sphere: 11 objects × 20 pointclouds = 220 pointclouds

• Total: 560 pointclouds

In summary, the YCB-28 model set contains 560 point 
clouds sampled from twenty-eight mesh models generated 
from real scenes, and was created for final performance 
testing.

5.2  The artificial primitive shapes (APS) sets

The APS set was used to train the neural network classifiers. 
This model set was originally created by Baronti et al. [45] for 
research on primitive shape fitting. The shape generation soft-
ware can be downloaded from Baronti’s GitHub repository1.

The APS set contains point cloud models of the following  
three geometric shapes: box, cylinder, and sphere. Baronti 
et al. [45] created 591 different artificial shapes by changing 
the height (H), width (W), breadth (B), and diameter (D) of the 
three geometric shapes. The APS set was created from a full-
factorial combination of the parameters defining each shape. 
The height, width, and breadth of the shapes were incremented 
from 1 to 10 in steps of 1 units. The diameter of the base of the 
cylinders was incremented from 0.5 to 5 in steps of 0.25 units. 
The diameter of the spheres was incremented from 1 to 10 in 
steps of 0.05 units. In summary:

• Box: 220 point clouds withH, W, B ∈ {1, 2, ..., 10} (H ≥

W ≥ B)

• Cylinder: 190 point clouds withD ∈ {0.5, 0.75, ..., 5} and

H ∈ {1, 2, ..., 10}

• Sphere: 181 point clouds withD ∈ {1, 1.05, 1.10, ..., 10}

• Total: 591 point clouds

Given that the point clouds represent artificial objects, and 
are normalised before being fed to the PointNet, the unit 
of measurement of the H, W, B, and D parameters was not 
specified. It should also be noted that information on the size 
is not relevant to the determination of the shape of an object. 
All the shapes were placed with their centres at the origin of 
a Cartesian coordinate frame, and randomly oriented. The 
point clouds of the APS model set represent perfect shapes, 
since they are not corrupted by any sensor error. They are 
also complete, as opposed to real-life scans, like those of the  
YCB-28 set, where at least the information of base is miss-
ing since not reachable by the scanners. This set of perfect 
shapes will be henceforth called APS-clean.

Fig. 3  The eight selected 
cylinder-like objects (images 
and meshes) from YCB set

1 https:// github. com/ lucab aronti/ BA- Primi tive_ Fitti ng_ Datas et
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Baronti’s software allows also injecting error (local 
imprecision simulating sensor inaccuracy) into the point 
clouds, as shown in Fig. 5. For details of the procedure used 
to inject error in the scenes, the reader is referred to [45]. A 
new model set was created duplicating the elements of the 
APS-clean set, normalising them within a bounding box of 
side 1, and for each element perturbing the position of the 
points of an amount randomly drawn with uniform probabil-
ity within the interval [−0.025,+0.025] . This new model set 
will be henceforth called APS-error

Finally, a validation set containing 200 point clouds for 
each primitive shape was created. These shapes had ran-
dom dimensions (H, W, B, D) and contained no sensor error. 
Henceforth, this set will be called APS-clean-val.

In summary, three model sets were created for the experi-
ments from the original APS set: APS-clean and APS-error 
for training the classifiers, and APS-clean-val for optimisa-
tion of the SNNs and DNNs.

5.3  YCB‑similar artificial primitive shapes

For each primitive shape, the APS set contained a wide range 
of shape variations. To make the training of the classifiers 
more focused on the recognition of the shapes of the YCB-28 

objects, one more model set of artificial primitive shapes 
was created. This model set contained artificial primitive 
shapes of features (H, W, B, D) more similar to those of 
the YCB-28 objects. This new set allowed simulating the 
case where some knowledge about the expected shape of 
the objects is available.

Specifically, the Open3D open-source library [46] was 
obtained to enquire the shape features from the mesh models 
of the twenty-eight objects selected from the YCB set. Each 
mesh model was firstly visualised using Open3D. The shape 
features (H, W, B, D) of the objects were measured from the 
coordinates of manually picked key points from the visual-
ised model. Three examples of the manually measured shape 
features are shown in Table 2, and the three objects and their 
mesh models are shown in Fig. 6, whilst the complete list 
of all the measured shape features from the twenty-eight 
selected YCB mesh models is detailed in Appendix 1. It 
should be noted that all point clouds are normalised in size 
before being fed to the classifiers. Therefore, the important 
information in the figures in Appendix 1 is not in the size 
but the proportions of the features.

Afterwards, twenty point clouds were generated from 
each of the twenty-eight selected objects based on their 
measured shape features. To generate a new point cloud, 

Fig. 4  The eleven selected 
sphere-like objects (images and 
meshes) from YCB set

Fig. 5  Example of created 
box-shape point cloud, from left 
to right: point cloud without 
any error, and point cloud with 
error [45]
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each shape feature (H, W, B, D) was independently modified 
of a random amount. That is, each feature K ∈ (H,W,B,D) 
of the primitive shape was randomly changed of an amount 
within the [−5%,+5%] range of its size:

where x ∼ U(−0.05,+0.05) is a randomly sampled num-
ber from the uniform distribution U(−0.05,+0.05) . Con-
sequently, each element of the new set of generated point 
clouds was similar in shape, although not the same, to the 
twenty-eight selected objects in YCB-28. Figure 6 shows 
examples of artificial point clouds near the real-life objects 
from which they were generated.

Henceforth, this new model set will be named YCB-similar. 
Its structure is as below:

• Box: 9 objects × 20 pointclouds = 180 pointclouds

• Cylinder: 8 objects × 20 pointclouds = 160 pointclouds

• Sphere: 11 objects × 20 pointclouds = 220 pointclouds

• Total: 560 pointclouds

(1)K� = [1 + x ∼ U(−0.05,+0.05)] × K

In summary, the point cloud models of the YCB-similar set 
simulate the shape of objects in the YCB-28 set. They contain 
no sensor error, and will be used for training the classifiers.

5.4  Point cloud normalisation

The point clouds were rescaled into a size 1 bounding box 
before they were fed to the PointNet. The procedure consists 
of the following steps. Given a point cloud PC containing N 
points, each point �� is represented by coordinates (xi, yi, zi) 
in a Cartesian 3D frame F:

An initial rigid transformation is made so as all points pi 
are described by positive (xi, yi, zi) coordinate values:

where ���� = (xmin, ymin, zmin) and

The point cloud is then scaled based on the diago-
nal of its bounding box, and limited within the interval 
x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1]:

(2)PC = {��, ��, ...��, ...��}

(3)�� = (xi, yi, zi), i ∈ [1,N]

(4)PC
� = {��

�
} = {�� − ����}, i ∈ [1,N]

(5)xmin = min
∀i∈[1,N]

xi, ymin = min
∀i∈[1,N]

yi, zmin = min
∀i∈[1,N]

zi

(6)PC
�� = {p��

i
} =

{p�
i

s

}

, i ∈ [1,N]

Fig. 6  Original YCB objects, 
their mesh models, and point 
cloud models of similar shape

Table 2  Manually measured shape features of three sample mesh mod-
els from YCB-28 set

ID-name Shape H (mm) W (mm) B (mm) D (mm)

036-wood block Box 190.35 80.52 75.81 -
002-master chef 

can
Cylinder 129.79 - - 96.09

012-strawberry Sphere - - - 48.52
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where

and

Finally, the point cloud is again translated so as its cen-
troid (C) coincides with the origin of the Cartesian frame F:

This procedure was introduced to resize the point clouds 
to a bounded space. It is important to notice that the normali-
sation does not rescale the objects to a standard size, since 
the size after normalisation depends not only on the view but 
also the orientation of the objects. For example, the size of 
a cuboid will be largest when all its sides are aligned to the 
coordinate axes, and smallest when one of its diagonals is 
aligned to the coordinate axes.

6  Experiments and results

This section describes the experimental setup and the results 
obtained by PointNet and the two SNN classifiers. Three 
artificial model sets, APS-clean model set, APS-error model 
set, and YCB-similar model set, were used for training the 
neural networks. The final performance of trained classi-
fiers was evaluated on the YCB-28 model set. In all experi-
ments, 10 independent learning trials were performed, and 
the results were statistically analysed.

The PointNet architecture used in the experiments was 
obtained from open-source code made available by Qi et al. 
[6] in their Github repository2. Following the methodology 
of Qi et al. [6], the PointNet was trained using the Adam 
optimiser [47]. Adam updates the network weights based on 
gradients calculated from randomly picked mini-batches of 
point clouds of predefined size. The batch size is an impor-
tant hyper-parameter of the algorithm.

Based on preliminary tests, the structure and most of 
the hyper-parameters of PointNet were kept as originally 
designed by Qi et al. [6], and the remaining hyper-parameters  
were manually optimised. They are shown in Table 3. The MLP  
was trained using the standard BP algorithm with momen-
tum term [39], whilst the RBFN was trained using first a 

(7)s =

√

(x�
max

)2 + (y�
max

)2 + (z�
max

)2

(8)x�
max

= max
∀i∈N

(x�
i
), y�

max
= max

∀i∈N
(y�

i
), z�

max
= max

∀i∈N
(z�

i
),

(9)� = (xc, yc, zc) = (
1

N

N
∑

i=0

(x��
i
),
1

N

N
∑

i=0

(y��
i
),
1

N

N
∑

i=0

(z��
i
)

(10)P̄C = {���
�
− ���}, i ∈ [1,N]

KNN-based algorithm for a broad brush optimisation of 
the radial basis function parameters, and then the BP algo-
rithm to fine tune the whole network parameters. The hyper-
parameters of the SNNs and those of their learning proce-
dures were optimised by trial and error. They are detailed 
in Table 4.

Two hyper-parameters, the batch size used by Adam train-
ing procedure and the number of training epochs, have the 
largest effect on the learning accuracy of PointNet. Section 6.1 
describes the procedure followed for their experimental opti-
misation. This procedure was carried out using the artificial 
APS-clean model set. After optimisation, since the PointNet 
was always tested on the same benchmark problem (YCB-28), 
the hyper-parameters were fixed for all the experiments. The 
results of the experiments are reported in Sect. 6.2.

6.1  Optimisation of the PointNet training 
procedure

PointNet was trained using the APS-clean model set, and 
the results validated using APS-clean-val set. That is, the 
DNN was trained and optimised using only knowledge from 
perfect artificial shapes.

Table 3  Hyper-parameters of PointNet used in the experiments

Parameter Value

Training algorithm Adam
Decay rate �

1

 in Adam 0.9
Decay rate �

2

 in Adam 0.999
Numerical constant 𝜖 in Adam 1 × 10

−7

Initial learning rate 0.0001
Minimum learning rate 0.00001
Learning rate decay rate 0.7
Learning rate decay step 200,000
Initial batch normalisation momentum 0.5
Maximum batch normalisation momentum 0.99
Batch normalisation momentum decay rate 0.5
Batch normalisation momentum decay step 200,000

Table 4  Hyper-parameters of MLP and RBFN used in the experi-
ments

Parameter MLP RBFN

Training algorithm Back propagation Back propagation
Number of inputs 6 6
Number of hidden layers 1 1
Number of hidden neurons 15 20
Number of outputs 3 3
Learning rate 0.01 0.01
Training epoch 2000 50002 https:// github. com/ charl esq34/ point net
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6.1.1  Batch size optimisation

To optimise the batch size used by the Adam optimiser, tests 
were performed varying the hyper-parameter from 10 to 100 
in steps of 10, fixing the number of training epochs to 200. 
Ten learning trials were performed for each batch size setting.

The experimental results are shown using box plots in 
Fig. 7. The red line within the box indicates the median 
result of the 10 independent learning trials. In terms of 
median accuracy, the performance improves noticeably 
when the batch size is increased from 10 (93.34% median 
accuracy) to 20 (97.67%), and from 40 (98.0%) to 50 
(99.33%). Both improvements are statistically significant at 
an � = 0.01 confidence level: the p-value is 0.0343 for the 
difference between the results obtained using batch sizes of 
10 and 20, and p = 0.0006 for the difference between the 
results obtained using batch sizes of 40 and 50.

Beyond a size of 50, the statistical analysis suggests 
there are no benefits in any further increase of the batch 
size. However, as the batch size increases, the training pro-
cedure appears to become more consistent (smaller width 
of the box plots), and for this reason a batch size 100 was 
chosen. Although this choice is the most computationally 
intensive, the training process can be sped up using GPU 
acceleration.

Since the number of PCs constituting the model sets used 
in the experiments is not a multiple of 100, the number of 
training examples in the last batch fed to the Adam optimiser 
had to be brought to 100. This was achieved by duplicating 
randomly picked PCs from the whole model set. For exam-
ple, the APS-error set contained 591 PCs, which were fed 
in 6 batches of 100 PCs each. The last batch was formed by 
the remaining unused 91 examples, and 9 randomly picked 
duplicates.

Fig. 7  Performance of PointNet 
as the batch size setting is var-
ied. The DNN was trained using 
the APS-clean and the learning 
accuracy tested on the APS-val 
model set

10
 (9

3.
34

%
)

20
 (9

7.
67

%
)

30
 (9

8.
67

%
)

40
 (9

8%
)

50
 (9

9.
33

%
)

60
 (9

9.
33

%
)

70
 (9

7.
5%

)

80
 (9

9.
33

%
)

90
 (9

8.
67

%
)

10
0 

(9
8.

84
%

)

Batch size (median acc)

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Fig. 8  Performance of PointNet 
as the number of training 
epochs is varied. The DNN was 
trained using the APS-clean and 
the learning accuracy tested on 
the APS-val model set
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6.1.2  Training epoch optimisation

After the batch size had been fixed to 100, the number of 
training epochs was optimised by trial and error. Experi-
ments were performed increasing the number of epochs from 
20 to 200 in steps of 20. The results are shown in Fig. 8.

Figure 8 shows a progressive improvement in the perfor-
mance of PointNet as the number of training epochs is increased 
until 160. Pairwise Mann-Whitney statistical tests indicated that 
the performance of PointNet trained using 160 epochs is signifi-
cantly superior to the performance obtained using any smaller 
number of training epochs (from 20 to 140 epochs). Further 
increases of the number of training epochs beyond the 160 did 
not yield any significant improvement in performance. Conse-
quently, this hyper-parameter was fixed to 160.

6.2  Experimental results — artificial model sets

As mentioned in Sect. 6, three instances of PointNet were 
trained using three artificial model sets: APS-clean, APS-error, 
and YCB-similar, using the hyper-parameters shown in Table 3 
and discussed in Sect. 6.1. The performance of the trained 
PointNets was evaluated on their accuracy on the YCB-28 
model set, and compared to that of two SNNs: an MLP and an 
RBFN. The results of the experiments are visualised using box 
plots in Fig. 9, and fully detailed in Table 5. Each box in the fig-
ure visualises the five-number summary of the accuracy results 
attained in the 10 independent learning trials. The significance 
of the differences in the results obtained in the various sets of 
learning trials was evaluated via pairwise Mann-Whitney tests. 
Table 6 fully details the results of the significance tests.

Fig. 9  Accuracy results 
obtained on the YCB-28 model 
set by the three classifiers 
when trained using different 
sets: APS-clean (Clean), APS-
error (Error) and YCB-similar 
(Similar)
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Table 5  Shape identification 
accuracies obtained on the YCB-
28 model set by the three neural 
network architectures. Each 
column reports the results of 
10 independent learning trials 
performed using a different 
training set: APS-clean (Clean), 
APS-error (Error), and YCB-
similar (Similar)

Index PointNet MLP RBF

Clean Error Similar Clean Error Similar Clean Error Similar

1 84.64% 85.54% 82.32% 83.78% 82.28% 74.42% 74.93% 73.35% 72.70%
2 75.00% 84.11% 64.46% 82.56% 82.32% 76.08% 74.50% 73.54% 71.48%
3 82.68% 81.25% 81.25% 82.69% 81.40% 79.65% 74.51% 73.35% 72.95%
4 79.11% 87.32% 80.18% 79.25% 81.40% 73.10% 75.17% 73.84% 70.99%
5 81.79% 81.79% 85.00% 82.86% 81.65% 78.12% 74.80% 73.72% 73.19%
6 75.36% 85.54% 82.14% 82.74% 81.85% 72.95% 75.22% 74.01% 72.95%
7 70.71% 88.75% 45.00% 83.41% 83.39% 76.72% 76.01% 73.60% 72.03%
8 87.14% 86.43% 78.39% 85.28% 82.77% 78.41% 74.74% 73.60% 73.44%
9 78.57% 87.14% 78.75% 83.29% 81.46% 73.26% 74.74% 74.03% 72.27%
10 76.96% 86.79% 82.68% 82.49% 82.68% 72.95% 75.64% 74.15% 71.84%
Median 78.84% 85.98% 80.71% 82.80% 82.07% 75.25% 74.86% 73.66% 72.49%
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Figure 9 shows that PointNet achieved an average (median) 
accuracy of 86% circa when trained on the APS-error model 
set. If a stringent � = 0.01 confidence level is sought, Table 6 
indicates that when trained on the APS-error model set, Point-
Net outperformed any other combination of classifier and 
training set, except for the MLP trained on the clean set. If the 
confidence level is relaxed to the often used � = 0.05 , it can be 
said that PointNet trained on the APS-error set was the clear 
winner of the comparison.

PointNet did not perform equally well when trained using 
the APS-clean and APS-similar model sets, although the per-
formance on the latter (81% circa average accuracy) was still 
adequate.

Despite the unsophisticated feature extraction method used, 
the MLP performed remarkably well. Trained using the APS-
clean model set, it achieved nearly 83% training accuracy, 
and slightly less (82%) when trained using the APS-error set. 
Compared to the PointNet, the MLP obtained more consistent 
learning results, as shown by the width of the box plots. The 
RBFN was the clear underperformer of the three tested classi-
fiers. Finally, training the classifiers on the YCB-Similar set did 
not provide any visible benefit, particularly for the two SNNs.

7  Discussion

In this study, the hyper-parameters of PointNet were tuned 
using artificial models. The exercise can be seen as an 
attempt to evaluate whether knowledge gained on artificial 
models could be transferred to real-life scenes. The study 
aimed also at testing whether simple SNNs were able to 
obtain results comparable to those obtained by the much 
more complex PointNet.

The experimental tests showed that, in terms of accuracy, 
PointNet had indeed an edge, albeit small, on a standard 
shallow MLP classifier. However, the MLP showed more 
consistent training results. The tests also indicated that 
PointNet performs best (85.98%) when trained on scenes 
that were perturbed with some level of random error. 

Training PointNet using shapes of features similar to those 
to the real images, instead of training it with more general 
artificial shapes, did not significantly improve the accuracy 
of the classifier.

The above results suggest that the generalisation accuracy 
of PointNet is likely to be sensitive to sensor error. As the 
mesh models in Figs. 2, 3, and 4 show, this error had not 
been completely removed by the pre-processing procedures. 
Trained for 160 epochs on perfect artificial shapes, Point-
Net was able to obtain nearly perfect recognition accuracy 
(99.59%) on previously unseen artificial shapes (Fig. 8). 
However, the average accuracy of PointNet dropped to 
78.84% when the trained network was tasked with recognis-
ing the shape of real-life objects. The learning results were 
also not consistent, and widely varied in quality between the 
ten independent learning trials performed (Table 5).

Training PointNet on models of features that are closer to 
those of the real-life objects (YCB-Similar) produced only a 
marginal improvement in accuracy and consistency, because 
the YCB-Similar models still consist of clean geometric 
shapes. However, training PointNet using noisy scenes 
(APS-error) markedly improved its learning accuracy and 
consistency. That is, training the DNN to recognise ‘imper-
fect’ shapes increased its ability to correctly classify shapes 
from imperfect real-life scans.

The difficulties encountered by PointNet to generalise the 
knowledge learned from artificial models to models of real-
life objects have been already reported by other authors [14]. 
These difficulties are common to the general DNN field, 
where large over-parameterised structures are often able to 
perfectly fit the training data, and have issues of poor gener-
alisation or overfitting [48, 49].

A contribution from this study is the confirmation of 
the validity of the idea of injecting local imprecision in the 
training shapes, so as to ‘blur’ their boundaries and pre-
vent PointNet from learning the perfect examples. This 
approach bears similarities with data augmentation tech-
niques where slightly modified copies of already existing 
data are added to the training set, in order to regularise the 

Table 6  Mann-Whitney 
test results for each pair of 
experiments. Results equal to or 
below the � = 0.01 confidence 
level are reported in bold

PointNet MLP RBF

Clean Error Similar Clean Error Similar Clean Error Similar

PointNet Clean - 0.007 0.910 0.041 0.162 0.059 0.010 0.002 0.002
Error - - 0.002 0.019 0.010 0.000 0.000 0.000 0.000
Similar - - - 0.010 0.112 0.041 0.023 0.023 0.023

MLP Clean - - - - 0.034 0.000 0.000 0.000 0.000
Error - - - - - 0.000 0.000 0.000 0.000
Similar - - - - - - 1.000 0.450 0.001

RBF Clean - - - - - - - 0.000 0.000
Error - - - - - - - - 0.000
Similar - - - - - - - - -
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neural network models [50]. Other similar regularisation 
procedures contaminate the input patterns with randomly 
re-sampled noise at each iteration of the learning procedure 
[51, 52]. The common approach of all these procedures is 
to oversample the training set to smoothen the mapping of 
the neural network model. Their common goal is to optimise 
the bias-variance trade-off of the learned model, and pro-
mote generalisation [51]. Rather than smoothening PointNet 
mapping, the approach used in this study aims to promote a 
‘tolerance’ to local imprecision, similar to the approxima-
tion threshold used in the RANSAC algorithm [53]. The 
proposed approach also does not augment the training data 
or re-sample the noise at every iteration, promoting thus the 
efficiency of the learning procedure.

It should be noted that both the SNNs obtained their 
best learning accuracies when trained on the APS-clean set. 
This result might be due to the particular feature extraction 
method used (Sect. 4.1), where the simulated sensor error 
might have excessively blurred the shape of the projections 
of some objects. It may also indicate that the SNNs did not 
overfit the training data. In general, trained on the APS-clean 
set, the MLP obtained higher classification accuracies and 
more consistent results than PointNet.

The main advantage of PointNet is that the data requires 
only minimal pre-processing (normalisation and down sam-
pling), beyond the standard cleaning of the raw point cloud 
scenes. In particular, PointNet does not need the feature 
extraction process required by the MLP. The feature extrac-
tion process is embedded in the first block of layers of the 
PointNet, and optimised simultaneously to the classifier by 
the learning algorithm. In this study, the feature extraction 
process was carried out prior to the MLP training proce-
dure, and it is possible that the criterion of the former did 
not perfectly match the inductive and representational biases 
of the latter. The concurrency of the feature extraction and 
classification procedures might have given and edge to the 
PointNet respect to the MLP.

7.1  Indications for future work

This study proved that PointNet can be trained using artificial 
data to recognise with good accuracy shapes from real-life 
scans of objects. This approach makes it easier for designers 
to build the usually large data set needed to train the classifier.

The experimental work was based on the recognition of 
three primitive shapes: box, cylinder, and sphere. Further 
work should validate the proposed method on a more varied 
and complex set of objects. In particular, given the context of 
robotic disassembly, the proposed approach should be vali-
dated on models of real mechanical parts. Although prelimi-
nary tests suggested the applicability of the technique to com-
plex automotive components [7], the simulations did not take 
into account real-world occurrences such as reflective surfaces.

The main hurdle to an extensive testing of the proposed 
approach has been so far the lack of a database of real-life 
mechanical object models. The assembly of such set has 
been hampered by the restrictions due to the recent pan-
demic. The collection and scanning of object samples is now 
a priority.

PointNet has shown a tendency to overfit the training data, 
showing poor generalisation capability on noisy data. Addi-
tion of noise to the training samples boosted the performance 
of PointNet. Further work should be done to test other regular-
isation techniques such as dropout [54] and weight decay [55].

The generalisation ability of PointNet could also be 
improved by decreasing the complexity of its architecture. 
Based on preliminary tests, this architecture has been kept so  
far similar to the one originally designed by Qi et al. [6]  
(see Sect. 6). A more thorough analysis might reveal the 
advantage of more economical structures.

Finally, the segmentation ability of PointNet should also 
be explored. Scene segmentation will be very useful in dis-
assembly scenarios to identify end-of-life products and their 
sub-assemblies in scanned scenes.

8  Conclusions

This study investigated the possibility of training the Point-
Net DNN on point cloud models of perfect geometric primi-
tive shapes, and use it to recognise primitive shapes in mod-
els of daily-life objects. The ultimate objective of the study 
is to use PointNet to generate shape information for robotic 
manipulation and disassembly of end-of-life products.

Experimental tests showed that, trained on perfect geo-
metric shapes, PointNet was able to recognise with nearly 
80% average accuracy primitive shapes in real-life objects. 
The tests also showed some inconsistency in the perfor-
mance of the DNN. Trained on perfect geometric shapes 
using a simple feature extraction method, a simple shallow 
MLP architecture obtained better results than the PointNet 
in terms of average accuracy and consistency of the learn-
ing results. The main difficulty found by PointNet seemed 
to consist of generalising the knowledge gained on perfect 
artificial shapes to real-life cases. This finding confirmed the 
results of a handful of similar experiments in the literature, 
and is the first contribution of this study.

The accuracy of PointNet could be raised to nearly 86% by 
locally perturbing the position of the elements of the train-
ing point clouds. This operation corresponded to blurring 
the representation of the shapes, in order to train the DNN 
on imprecise models that are more similar to real-life repre-
sentations. In this study, this new training method has been 
verified on the recognition of shapes from real-life objects. In 
addition to improving the recognition accuracy, it also greatly 
improved the consistency of PointNet learning results. This 
result constitutes the second contribution of this study.
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Indications for further work were given in Sect. 7.

Appendix

Features of YCB‑28 objects

The main features of the YCB-28 objects are described in 
Table 7.
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