
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09791-z

ORIGINAL ARTICLE

Primitive shape recognition from real‑life scenes using the PointNet
deep neural network

Senjing Zheng1 · Marco Castellani1

Received: 16 December 2021 / Accepted: 13 July 2022
© The Author(s) 2022

Abstract
In many industrial applications, it is possible to approximate the shape of mechanical parts with geometric primitives such
as spheres, boxes, and cylinders. This information can be used to plan robotic grasping and manipulation procedures. The
work presented in this paper investigated the use of the state-of-the-art PointNet deep neural network for primitive shape
recognition in 3D scans of real-life objects. To obviate the need of collecting a large set of training models, it was decided
to train PointNet using examples generated from artificial geometric models. The motivation of the study was the achieve-
ment of fully automated disassembly operations in remanufacturing applications. PointNet was chosen due to its suitability
to process 3D models, and ability to recognise objects irrespective of their poses. The use of simpler shallow neural net-
work procedures was also evaluated. Twenty-eight point cloud scenes of everyday objects selected from the popular Yale-
CMU-Berkeley benchmark model set were used in the experiments. Experimental evidence showed that PointNet is able
to generalise the knowledge gained on artificial shapes, to recognise shapes in ordinary objects with reasonable accuracy.
However, the experiments showed some limitations in this ability of generalisation, in terms of average accuracy (78% circa)
and consistency of the learning procedure. Using a feature extraction procedure, a multi-layer-perceptron architecture was
able to achieve nearly 83% classification accuracy. A practical solution was proposed to improve PointNet generalisation
capabilities: by training the neural network using an error-corrupted scene, its accuracy could be raised to nearly 86%, and
the consistency of the learning results was visibly improved.

Keywords Primitive shape recognition · Remanufacturing · Robotic manipulation · Point cloud · Deep neural network ·
PointNet · Shallow neural network

1 Introduction

Reliable object manipulation procedures are a fundamental
prerequisite for the robotic handling of parts in disassembly
and remanufacturing. The literature on grasping and manip-
ulation includes methods based on properties of the objects
like their appearance and geometry [1, 2], or their dynamics
[3]. Regardless of the method used, the shape of the target
object usually needs to be estimated.

Object shape can be estimated from 2D camera images or
3D point clouds. Due to the variable appearance and state of

used parts, and the loss of structural information, methods
based on 2D images often fail to obtain acceptable results
in remanufacturing applications [4, 5]. For this reason, 3D
models are often preferred.

Thanks to the increasing availability of reliable and
affordable sensors, 3D scans have nowadays become easily
obtainable from the field. However, point clouds pose their
own challenges due to their lack of topological structure, and
the large amount of information they carry (usually millions
of data points).

This study aims to investigate the ability of the Point-
Net deep neural network (DNN) [6] to recognise primitive
shapes in point cloud models of everyday objects, after
being trained on computer-generated geometric primitives.
PointNet directly takes the elements of the point cloud as
input, and is able to recognise objects irrespective of their
position and orientation. PointNet can also be trained to
segment parts and sub-assemblies from the point cloud

 * Marco Castellani
 m.castellani@bham.ac.uk

 Senjing Zheng
 senjing.zheng@gmail.com

1 School of Engineering, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

/ Published online: 2 August 2022

The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09791-z&domain=pdf

1 3

scene. These features make it an ideal candidate for object
recognition in a highly unstructured domain such as the
disassembly and manipulation of end-of-life products.
They also distinguish PointNet from standard DNNs, par-
ticularly those based on convolutional layers, since the
latter require structured input data, and their internal rep-
resentation of the input is generally not rotation invariant
[6].

Zheng et al. [7] used CAD-generated models to train
PointNet to identify complex mechanical parts for disas-
sembly applications. Experimental evidence indicated the
viability of the proposed approach, although the accuracy of
the trained DNN was validated on artificial scenes created
via a depth-camera simulator. This study aims to evaluate
the ability of PointNet to recognise object shapes from real
scans of objects, after being trained on artificial geometric
models. The focus of this study is also on the abstraction
of primitive shape information, rather than the recognition
of detail-rich objects like car turbocharger components [7].

The research has direct application to many engineer-
ing problems beyond the disassembly and remanufacturing
domain, since mechanical objects have often fairly regular
shapes, which can be approximated with geometric primi-
tives such as spheres, boxes, and cylinders (e.g. the cylindri-
cal head of a piston, the spheres of a rolling bearing) [8, 9].

This study also aims to compare the performance of
PointNet to the performance of simpler classifiers like shal-
low neural networks (SNNs). Provided a simple method is
available to extract a structured and meaningful representa-
tion of the point cloud scenes, usually a set of features, SNNs
are preferable for their comparable ease of training and low
computational overheads. In this study, the performance of
PointNet was compared to the performance of two popular
shallow neural networks: a multi-layer perceptron (MLP)
[10] and a radial basis function network (RBFN) [11].

The main difficulty in the recognition task comes from the
fact that the shape of the scans is often not perfectly regu-
lar. Sensor imprecision and occlusion (partial view) further
complicate the problem. In this study, the performance of
PointNet was tested on real scans of common objects from
the Yale-CMU-Berkeley (YCB) benchmark set [12], a popu-
lar robotics benchmark.

The use of real scans of physical objects constitutes a
more realistic setting than the CAD-generated images used
in the tests performed by the creators of PointNet [6], or the
simulated scans used by Zheng et al. [7]. The fact that Point-
Net had not been evaluated on real-life point cloud model
sets was first pointed out by Garcia-Garcia et al. [13], and
later acknowledged by Uy et al. [14] who manually built the
ScanObjectNN set. ScanObjectNN contains camera scans
of physical objects grouped in categories modelled on the
popular ModelNet40 benchmark set of CAD models [15]. In
their study, Uy et al. [14] reported very poor classification

accuracy (32.2%) when the the PointNet was trained using
ModelNet40 and tested on the ScanObjectNN set.

The objects used in this study have a more regular shape
than those featured in the ModelNet40 and ScanObjectNN
sets. PointNet will be trained using a set of geometric primi-
tive shapes, and then used to recognise similar shapes from
real-life scenes. The obvious advantage of this arrangement
is the possibility of generating an arbitrarily large model
set for training the DNN, removing the need of acquiring a
database of object scans.

This paper is organised as follows. Related work is dis-
cussed in Sect. 2, whilst the PointNet deep architecture is
described in Sect. 3. Section 4 describes the SNN archi-
tectures, and presents the extraction scheme generating the
features they use. The model sets used in the experiments
are described in Sect. 5. The experimental setup and results
are reported in Sect. 6, whilst the outcomes of the tests are
discussed in Sect. 7. Section 8 concludes the paper.

2 Related work

Deep neural networks have gained wide popularity for 2D
machine vision applications, thanks to their high accuracy
and feature extraction ability [16]. In recent years, DNN-
based vision technology found increasing application in
the fields of manufacturing [17–19] and remanufacturing
[20–25].

In detail, Yildiz and Wörgötter [24, 25] developed a screw
detection and classification system based on a deep convolu-
tional neural network, and demonstrated its accuracy in a hard
disk drive disassembly case study. The creation of the train-
ing set of examples for the DNN entailed a large effort, where
20,000 sample images of 500 screw elements were collected
from 50 hard disk drives. Foo et al. [21] used deep learning
for screw detection in an LCD monitor disassembly applica-
tion. The system used an image preprocessing procedure, an
ontology reasoning module, and a Fast-RCNN network [26].
The training dataset was built combining numerous images of
screws acquired via an extensive Google search, plus 356 manu-
ally acquired images. A total of 1496 bounding boxes around
the screw samples had to be manually labelled in the images. Li
et al. [22] used a fast region-convolution neural network to detect
screws on motherboards of mobile phones for disassembly. The
training procedure needed the manual acquisition of 488 images.

Brogan et al. [20] proposed a vision system based on
the Tiny YOLO v2 (Tiny-You Only Look Once v2) pre-
trained DNN architecture, to identify screws on electrical
waste for disassembly. The system achieved over 92% rec-
ognition accuracy using 900 manually collected training
images. A YOLO (v4) architecture was used also by Rehn-
holm [23] to build the vision system for a battery package
disassembly application. The training procedure required

3068 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

the creation of nearly 25,000 images in total for training
and validation.

In summary, although DNNs generally achieve good
recognition accuracies, they require a large dataset of indi-
vidually labelled images. Moreover, commonly used con-
volutional neural network (CNN) architectures can only
process structured data such as 2D images.

With the development of 3D sensors like RADAR
(radio detection and ranging), LiDAR (light detection and
ranging), and RGB-D (red, green, blue, and depth chan-
nels) camera, 3D data can be easily obtained from field.
Typically, the raw data is in the form of point cloud, an
unordered set of data points (X, Y, Z coordinates) delin-
eating the surfaces of the scanned object. Although depth
information adds valuable context for the identification
task, the lack of structure and the uneven distribution of
the data points constitutes a challenge for the recognition
algorithm.

In particular, the unstructured characteristic of point
cloud models cannot be handled by convolutional architec-
tures. For this reason, four main DNN approaches can be
identified in the literature. Three of these methods use stand-
ard DNN architectures, often including convolutional layers,
and feed these architectures with point cloud representations
where the information is structured via volumetric [15, 27],
multi-scene [28], or graph-/tree-based methods [29–31]. The
fourth method directly processes the raw point cloud via
purpose-designed DNNs like the PointNet architecture [6]
used in this work. For a more detailed discussion of deep
learning methods for point cloud understanding, the reader
is referred to a recently published survey by Guo et al. [32].

PointNet [6] was the first DNN architecture to be able to
process directly point cloud scenes. PointNet can be used to
perform shape identification or segmentation, and is able to
recognise objects regardless of their rotation and translation.
Being able to process directly point cloud scenes, PointNet
does not require computationally intensive pre-processing
steps which may also cause information loss. These features
immediately made PointNet very popular for the recognition
of real life scenes, and spawned several similar architectures
[33–35].

Zheng et al. [7] used PointNet to recognise components of
two different types of turbochargers for disassembly purposes.
The DNN was trained using CAD models of the automotive
parts, and tested on point clouds generated using a depth
camera simulator. The simulator allowed replicating various
degrees of sensor imprecision and partial occlusion of the
objects. The PointNet achieved classification accuracy above
90%, although its performance degraded with the addition
of simulated sensor imprecision to the model test set. Zheng
et al. [7] showed that the effect of sensor imprecision could
be counteracted by adding comparable noise to the training
data. The method has not been tested yet on real-life images,
where the level and distribution of sensor error is not known.

3 The PointNet deep neural network

PointNet was proposed by Qi et al. [6] for object classifica-
tion and segmentation for point cloud models. It is a DNN
constituted of multiple neural layers as shown in Fig. 1, and
can be divided into three key modules.

The first module is designed to map the input space to a
higher-dimensional representation (embedding space), and
makes the procedure invariant to rigid transformations of
the object’s pose. Differently from the Spatial Transformer
proposed by Jaderberg et al. [36], a mini-network (T-Net) is
used in PointNet [6]. The T-Net takes all the points from the
point cloud as input, and predicts the affine transformation
matrix that aligns the object to a canonical space before fea-
ture extraction. Additionally, another T-Net (‘feature trans-
form’ in Fig. 1) is used to further align the embedding space.

The second module is the feature extraction module: it
is composed of a set of MLPs and a max pooling function
[6]. The MLPs are used as feature detectors that are applied
to the higher-dimensional embedding space, whilst the
max pooling layer is used to aggregate the feature detec-
tion result. The overall action of the first two modules is to
transform the input information into a feature set. That is,
it implements a symmetric function that maps the spatial
information in the point cloud to the feature space, irrespec-
tive of the object pose.

Fig. 1 Structure of the classifi-
cation part of PointNet

x1, y1, z1

xa, ya, za

xn, yn, zn

Input points
(nx3)

3x3 input

transform

nx
3T-Net

matrix

product

(-64-64-)

mlp

(-512-256-k)

64x64 feature

transform

T-Net

matrix

product
mlp

(-64-128-1024-)

nx
64

nx
64

nx
10

24

max

pooling

1x1024

mlp

output scores (1xk)

3069The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

The third module of PointNet is a fully connected layer
that takes the feature information and generates the identi-
fication result.

In summary, when a point cloud consisting of (n) points is
fed to PointNet, the coordinates of all its points are mapped
into the feature space through the first and second modules
of the network. The third module of the network is a stand-
ard classifier that takes the features extracted in the previ-
ous layers, and outputs the classification score for the input
scene.

4 Shallow neural network architectures

Shallow neural networks (SNNs) have a longer history than
DNNs. Compared to DNNs, SNNs are known to be faster to
train, and are less likely to overfit the training data because
they use a much smaller number of parameters (weights).
Their main limitation is that they need a pre-processing
step to extract the vector of input features (variables). In
DNNs, feature extraction is performed by the first layers
of the architecture, and is optimised by the learning proce-
dure together with the classifier proper (the last layers of the
architecture). Nonetheless, when fed with a descriptive set
of features, SNNs are known to reach accuracies comparable
to those obtained by DNNs [37] in point cloud classification
problems.

In this study, the performance of two classical SNN mod-
els will be compared to the performance of PointNet. The
first SNN is the widely used multi-layer perceptron (MLP).
MLP is a popular feed-forward and versatile neural network
used for classification and modelling problems [38]. The MLP
is usually trained using the back-propagation learning algo-
rithm, which was firstly proposed by Rumelhart et al. [39].
The versatility of the MLP stems from its ability to approxi-
mate any function to any desired degree of accuracy [40].

The second is the radial basis function network (RBFN).
RBFN was firstly proposed by Broomhead and Lowe [11].
Like the MLP, the RBFN is a popular feed-forward neural
network used for modelling and classification problems [38].
The RBFN has a strictly defined architecture, featuring one
input layer, one hidden layer, and one output layer. The activa-
tion function of the hidden layer is the radial basis function.
The input layer of an RBFN acts as a buffer, and broadcasts
the input vector to each neuron in the hidden layer. The hidden
neurons process the input vector via the activation function
(radial basis function), whilst the output neurons perform a lin-
ear summation of the weighted outputs of the hidden neurons.

4.1 Numerical feature generation

A point cloud is a data structure containing an unordered list
of x-y-z coordinates. Differently from PointNet, the MLP
and RBFN treat the input as a vector, and are thus sensitive

to the ordering of its elements. Therefore, point clouds can-
not be fed directly to the MLP or RBFN. In this section, a
feature generation scheme to extract numerical features from
the point clouds is described.

In the tests, it is assumed that the objects are in unknown
orientation. Thus, the extraction process starts with align-
ing the shapes with the coordinate axes. For this purpose,
principal component analysis [41, 42] was used to extract
the eigenvectors of the point cloud. The point cloud is then
placed with its centroid in the origin, and its eigenvectors
are aligned with axes of the Cartesian coordinates. Since the
eigenvectors broadly correspond with the main axes of the
shapes, this method was proven to align the point cloud with
reasonable accuracy.

In real life, a human eye can recognise a primitive
shape from its orthogonal projections onto the three
planes x = 0 , y = 0 , and z = 0 . Namely, a cube with its
sides aligned with the Cartesian axes will create three
rectangular shapes (one per plane), a sphere will gener-
ate three disks, and a cylinder will create two rectangular
shapes and one disk. In summary, recognising the three
3D primitive shapes boils down to recognising two 2D
shapes (rectangle and disk) in their projections. This idea
is exploited as follows.

After principal component analysis alignment, the points
in the cloud are projected onto the three planes x = 0 , y = 0 ,
and z = 0 . For example, the projection of a point of coor-
dinates z = (x, y, z) onto the z = 0 plane is z = (x, y, 0) . For
each 2D projection on a plane:

1. The coordinates of all the points are transformed into 2D
polar-coordinates: (r, �).

2. The plane is divided into 64 sectors (intervals of �).
3. For each of the 64 sectors, the radius r of the most dis-

tant point from the origin is taken as representative
of the interval. Namely, the representative of interval
1 ≤ j ≤ 64 is mj = max(ri) where 1 ≤ i ≤ N indicates one
of the N points of the cloud.

4. The arithmetic mean and standard deviation of the 64 rep-
resentatives mj of the interval are calculated for each plane.

The features extracted from one point cloud form a 6-
dimensional vector:

where mk and �k (k = x, y, z) are respectively the mean and
standard deviation of the 64 representatives on the planes
x = 0 , y = 0 , and z = 0 . In a perfect point cloud without
error, all the most distant points of a disk will be at the
same distance from the origin; hence, mx = my = mz and
�x = �y = �z = 0 . Also, the most distant points of a rectangle
will not be at the same distance from the origin, �x,y,z ≠ 0 ,

(m
x
, �

x
, m

y
, �

y
, m

z
, �

z
)

3070 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

and in general mx ≠ my ≠ mz . This will hold as long as the
error level is reasonable, namely that it will not completely
blur the shapes of the projections, or when the model has
been cleaned of sensor error.

5 Model sets

The goal of this study was to evaluate the ability of PointNet
to recognise primitive shapes in point clouds generated from
scans of real objects, after being trained on sample point
clouds of geometric shapes. All the point clouds were nor-
malised before being fed into the PointNet: the normalisation
procedure shrank or enlarged the shape without deforma-
tion to fit it into a box of side 1. The procedure described
in Sect. 4.1 was run to extract numerical features from the
scenes for the SNNs.

At present, there is no specific model set in the literature
for benchmarking the accuracy of primitive shape classifiers
on real-life scenes. For this study, a popular benchmark of
3D models of real-life objects was used: the YCB model set
[12]. This model set was originally created and mainly used
for robotic manipulation, instead of classification purposes.
A subset of twenty-eight models from the YCB set was
retained, containing objects of three basic primitive shapes:
boxes, cylinders, and spheres. This subset was used to gen-
erate a test set of examples that will be henceforth called
the YCB-28 model set. In all the experiments, the YCB-28
model set was employed to validate the learning accuracy of
the trained neural networks. The methodology followed to
create the YCB-28 model set is detailed in Sect. 5.1. To train
the classifiers, two artificial model sets were used. They are
presented in Sects. 5.2 and 5.3. The normalisation procedure
for point clouds before being fed into PointNet is described
in Sect. 5.4

5.1 The Yale‑CMU‑Berkeley (YCB) object and model
set

The Yale-CMU-Berkeley object and model set was created
by Calli et al. [12] for research in robotic manipulation. Calli
et al. [12] used two series of depth cameras (BigBIRD
Object Scanning Rig and Google Scanners) to capture point
clouds from several real-life objects from multiple angles
of views. The point clouds captured from each object were
merged and de-noised to create mesh models, using the
truncated signed distance function method [43] and Pois-
son reconstruction [44]. Only one mesh model was created
for each object [12]. The mesh models were used for the
experiments presented in this paper.

Differently from large classification sets like Model-
Net40 [15], which contains 12,311 items from 40 different
categories, the YCB set contains point clouds and mesh
models from only 77 daily-life objects. These objects were

Table 1 IDs and names of the selected twenty-eight objects from the
YCB set

Box Cylinder Sphere

003-cracker box 001-chips can 012-strawberry
004-sugar box 002-master chef can 014-lemon
008-pudding box 005-tomato soup can 015-peach
009-gelatin box 007-tuna fish can 017-orange
010-potted meat can 019-pitcher base 018-plum
026-sponge 025-mug 054-softball
036-wood block 040-large marker 055-baseball
061-foam brick 065-a-cups 056-tennis ball
077-rubiks cube 057-racquetball

058-golf ball
063-a-marble

Fig. 2 The nine selected
box-like objects (images and
meshes) from YCB set

3071The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

broadly classified by Calli et al. [12] in 5 main catego-
ries: food items, kitchen items, tool items, shape items,
and task items. In this study, the objects were grouped by
their shape, and samples of appearance reasonably close
to boxes, cylinders, and spheres were picked. The twenty-
eight selected samples included nine models of box-
shaped objects, eight models of cylinder-shaped objects,
and eleven models of sphere-shaped objects.

The names and IDs (progressive identification number
in the YCB set) of the twenty-eight selected models are
reported in Table 1, and their pictures and mesh models
are shown in Figs. 2, 3, and 4. Despite the de-noising and
reconstruction, the mesh models still contain a certain
level of sensor error, which is visible as irregularities such
as bumps and hollows in the figures.

The following three-step procedure was used to gener-
ate the YCB-28 model set out of the twenty-eight selected
object scans. The first step was to randomly sample with
uniform probability 1,000,000 points from the mesh model
of each object. This initial large point set was called the
point pool. The second step was to create 20 point clouds
by randomly sampling 1000 out of the 1,000,000 points
from the point pool. Each of the 20 point clouds created
from one object model contained a different sample of
points. Given that the sampling rate was (1/1000), it is
reasonable to think that any two of the 20 point clouds had
very little sampled points in common. Finally, in the third
and last step, each point cloud was centred on the origin
and the shape randomly rotated (roll-pitch-yaw rotation).
In detail, the YCB-28 model set contained the following
point clouds:

• Box: 9 objects × 20 pointclouds = 180 pointclouds

• Cylinder: 8 objects × 20 pointclouds = 160 pointclouds

• Sphere: 11 objects × 20 pointclouds = 220 pointclouds

• Total: 560 pointclouds

In summary, the YCB-28 model set contains 560 point
clouds sampled from twenty-eight mesh models generated
from real scenes, and was created for final performance
testing.

5.2 The artificial primitive shapes (APS) sets

The APS set was used to train the neural network classifiers.
This model set was originally created by Baronti et al. [45] for
research on primitive shape fitting. The shape generation soft-
ware can be downloaded from Baronti’s GitHub repository1.

The APS set contains point cloud models of the following
three geometric shapes: box, cylinder, and sphere. Baronti
et al. [45] created 591 different artificial shapes by changing
the height (H), width (W), breadth (B), and diameter (D) of the
three geometric shapes. The APS set was created from a full-
factorial combination of the parameters defining each shape.
The height, width, and breadth of the shapes were incremented
from 1 to 10 in steps of 1 units. The diameter of the base of the
cylinders was incremented from 0.5 to 5 in steps of 0.25 units.
The diameter of the spheres was incremented from 1 to 10 in
steps of 0.05 units. In summary:

• Box: 220 point clouds withH, W, B ∈ {1, 2, ..., 10} (H ≥

W ≥ B)

• Cylinder: 190 point clouds withD ∈ {0.5, 0.75, ..., 5} and

H ∈ {1, 2, ..., 10}

• Sphere: 181 point clouds withD ∈ {1, 1.05, 1.10, ..., 10}

• Total: 591 point clouds

Given that the point clouds represent artificial objects, and
are normalised before being fed to the PointNet, the unit
of measurement of the H, W, B, and D parameters was not
specified. It should also be noted that information on the size
is not relevant to the determination of the shape of an object.
All the shapes were placed with their centres at the origin of
a Cartesian coordinate frame, and randomly oriented. The
point clouds of the APS model set represent perfect shapes,
since they are not corrupted by any sensor error. They are
also complete, as opposed to real-life scans, like those of the
YCB-28 set, where at least the information of base is miss-
ing since not reachable by the scanners. This set of perfect
shapes will be henceforth called APS-clean.

Fig. 3 The eight selected
cylinder-like objects (images
and meshes) from YCB set

1 https:// github. com/ lucab aronti/ BA- Primi tive_ Fitti ng_ Datas et

3072 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

https://github.com/lucabaronti/BA-Primitive_Fitting_Dataset

1 3

Baronti’s software allows also injecting error (local
imprecision simulating sensor inaccuracy) into the point
clouds, as shown in Fig. 5. For details of the procedure used
to inject error in the scenes, the reader is referred to [45]. A
new model set was created duplicating the elements of the
APS-clean set, normalising them within a bounding box of
side 1, and for each element perturbing the position of the
points of an amount randomly drawn with uniform probabil-
ity within the interval [−0.025,+0.025] . This new model set
will be henceforth called APS-error

Finally, a validation set containing 200 point clouds for
each primitive shape was created. These shapes had ran-
dom dimensions (H, W, B, D) and contained no sensor error.
Henceforth, this set will be called APS-clean-val.

In summary, three model sets were created for the experi-
ments from the original APS set: APS-clean and APS-error
for training the classifiers, and APS-clean-val for optimisa-
tion of the SNNs and DNNs.

5.3 YCB‑similar artificial primitive shapes

For each primitive shape, the APS set contained a wide range
of shape variations. To make the training of the classifiers
more focused on the recognition of the shapes of the YCB-28

objects, one more model set of artificial primitive shapes
was created. This model set contained artificial primitive
shapes of features (H, W, B, D) more similar to those of
the YCB-28 objects. This new set allowed simulating the
case where some knowledge about the expected shape of
the objects is available.

Specifically, the Open3D open-source library [46] was
obtained to enquire the shape features from the mesh models
of the twenty-eight objects selected from the YCB set. Each
mesh model was firstly visualised using Open3D. The shape
features (H, W, B, D) of the objects were measured from the
coordinates of manually picked key points from the visual-
ised model. Three examples of the manually measured shape
features are shown in Table 2, and the three objects and their
mesh models are shown in Fig. 6, whilst the complete list
of all the measured shape features from the twenty-eight
selected YCB mesh models is detailed in Appendix 1. It
should be noted that all point clouds are normalised in size
before being fed to the classifiers. Therefore, the important
information in the figures in Appendix 1 is not in the size
but the proportions of the features.

Afterwards, twenty point clouds were generated from
each of the twenty-eight selected objects based on their
measured shape features. To generate a new point cloud,

Fig. 4 The eleven selected
sphere-like objects (images and
meshes) from YCB set

Fig. 5 Example of created
box-shape point cloud, from left
to right: point cloud without
any error, and point cloud with
error [45]

3073The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

each shape feature (H, W, B, D) was independently modified
of a random amount. That is, each feature K ∈ (H,W,B,D)
of the primitive shape was randomly changed of an amount
within the [−5%,+5%] range of its size:

where x ∼ U(−0.05,+0.05) is a randomly sampled num-
ber from the uniform distribution U(−0.05,+0.05) . Con-
sequently, each element of the new set of generated point
clouds was similar in shape, although not the same, to the
twenty-eight selected objects in YCB-28. Figure 6 shows
examples of artificial point clouds near the real-life objects
from which they were generated.

Henceforth, this new model set will be named YCB-similar.
Its structure is as below:

• Box: 9 objects × 20 pointclouds = 180 pointclouds

• Cylinder: 8 objects × 20 pointclouds = 160 pointclouds

• Sphere: 11 objects × 20 pointclouds = 220 pointclouds

• Total: 560 pointclouds

(1)K� = [1 + x ∼ U(−0.05,+0.05)] × K

In summary, the point cloud models of the YCB-similar set
simulate the shape of objects in the YCB-28 set. They contain
no sensor error, and will be used for training the classifiers.

5.4 Point cloud normalisation

The point clouds were rescaled into a size 1 bounding box
before they were fed to the PointNet. The procedure consists
of the following steps. Given a point cloud PC containing N
points, each point �� is represented by coordinates (xi, yi, zi)
in a Cartesian 3D frame F:

An initial rigid transformation is made so as all points pi
are described by positive (xi, yi, zi) coordinate values:

where ���� = (xmin, ymin, zmin) and

The point cloud is then scaled based on the diago-
nal of its bounding box, and limited within the interval
x ∈ [0, 1], y ∈ [0, 1], z ∈ [0, 1]:

(2)PC = {��, ��, ...��, ...��}

(3)�� = (xi, yi, zi), i ∈ [1,N]

(4)PC
� = {��

�
} = {�� − ����}, i ∈ [1,N]

(5)xmin = min
∀i∈[1,N]

xi, ymin = min
∀i∈[1,N]

yi, zmin = min
∀i∈[1,N]

zi

(6)PC
�� = {p��

i
} =

{p�
i

s

}

, i ∈ [1,N]

Fig. 6 Original YCB objects,
their mesh models, and point
cloud models of similar shape

Table 2 Manually measured shape features of three sample mesh mod-
els from YCB-28 set

ID-name Shape H (mm) W (mm) B (mm) D (mm)

036-wood block Box 190.35 80.52 75.81 -
002-master chef

can
Cylinder 129.79 - - 96.09

012-strawberry Sphere - - - 48.52

3074 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

where

and

Finally, the point cloud is again translated so as its cen-
troid (C) coincides with the origin of the Cartesian frame F:

This procedure was introduced to resize the point clouds
to a bounded space. It is important to notice that the normali-
sation does not rescale the objects to a standard size, since
the size after normalisation depends not only on the view but
also the orientation of the objects. For example, the size of
a cuboid will be largest when all its sides are aligned to the
coordinate axes, and smallest when one of its diagonals is
aligned to the coordinate axes.

6 Experiments and results

This section describes the experimental setup and the results
obtained by PointNet and the two SNN classifiers. Three
artificial model sets, APS-clean model set, APS-error model
set, and YCB-similar model set, were used for training the
neural networks. The final performance of trained classi-
fiers was evaluated on the YCB-28 model set. In all experi-
ments, 10 independent learning trials were performed, and
the results were statistically analysed.

The PointNet architecture used in the experiments was
obtained from open-source code made available by Qi et al.
[6] in their Github repository2. Following the methodology
of Qi et al. [6], the PointNet was trained using the Adam
optimiser [47]. Adam updates the network weights based on
gradients calculated from randomly picked mini-batches of
point clouds of predefined size. The batch size is an impor-
tant hyper-parameter of the algorithm.

Based on preliminary tests, the structure and most of
the hyper-parameters of PointNet were kept as originally
designed by Qi et al. [6], and the remaining hyper-parameters
were manually optimised. They are shown in Table 3. The MLP
was trained using the standard BP algorithm with momen-
tum term [39], whilst the RBFN was trained using first a

(7)s =

√

(x�
max

)2 + (y�
max

)2 + (z�
max

)2

(8)x�
max

= max
∀i∈N

(x�
i
), y�

max
= max

∀i∈N
(y�

i
), z�

max
= max

∀i∈N
(z�

i
),

(9)� = (xc, yc, zc) = (
1

N

N
∑

i=0

(x��
i
),
1

N

N
∑

i=0

(y��
i
),
1

N

N
∑

i=0

(z��
i
)

(10)P̄C = {���
�
− ���}, i ∈ [1,N]

KNN-based algorithm for a broad brush optimisation of
the radial basis function parameters, and then the BP algo-
rithm to fine tune the whole network parameters. The hyper-
parameters of the SNNs and those of their learning proce-
dures were optimised by trial and error. They are detailed
in Table 4.

Two hyper-parameters, the batch size used by Adam train-
ing procedure and the number of training epochs, have the
largest effect on the learning accuracy of PointNet. Section 6.1
describes the procedure followed for their experimental opti-
misation. This procedure was carried out using the artificial
APS-clean model set. After optimisation, since the PointNet
was always tested on the same benchmark problem (YCB-28),
the hyper-parameters were fixed for all the experiments. The
results of the experiments are reported in Sect. 6.2.

6.1 Optimisation of the PointNet training
procedure

PointNet was trained using the APS-clean model set, and
the results validated using APS-clean-val set. That is, the
DNN was trained and optimised using only knowledge from
perfect artificial shapes.

Table 3 Hyper-parameters of PointNet used in the experiments

Parameter Value

Training algorithm Adam
Decay rate �

1

 in Adam 0.9
Decay rate �

2

 in Adam 0.999
Numerical constant 𝜖 in Adam 1 × 10

−7

Initial learning rate 0.0001
Minimum learning rate 0.00001
Learning rate decay rate 0.7
Learning rate decay step 200,000
Initial batch normalisation momentum 0.5
Maximum batch normalisation momentum 0.99
Batch normalisation momentum decay rate 0.5
Batch normalisation momentum decay step 200,000

Table 4 Hyper-parameters of MLP and RBFN used in the experi-
ments

Parameter MLP RBFN

Training algorithm Back propagation Back propagation
Number of inputs 6 6
Number of hidden layers 1 1
Number of hidden neurons 15 20
Number of outputs 3 3
Learning rate 0.01 0.01
Training epoch 2000 50002 https:// github. com/ charl esq34/ point net

3075The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

https://github.com/charlesq34/pointnet

1 3

6.1.1 Batch size optimisation

To optimise the batch size used by the Adam optimiser, tests
were performed varying the hyper-parameter from 10 to 100
in steps of 10, fixing the number of training epochs to 200.
Ten learning trials were performed for each batch size setting.

The experimental results are shown using box plots in
Fig. 7. The red line within the box indicates the median
result of the 10 independent learning trials. In terms of
median accuracy, the performance improves noticeably
when the batch size is increased from 10 (93.34% median
accuracy) to 20 (97.67%), and from 40 (98.0%) to 50
(99.33%). Both improvements are statistically significant at
an � = 0.01 confidence level: the p-value is 0.0343 for the
difference between the results obtained using batch sizes of
10 and 20, and p = 0.0006 for the difference between the
results obtained using batch sizes of 40 and 50.

Beyond a size of 50, the statistical analysis suggests
there are no benefits in any further increase of the batch
size. However, as the batch size increases, the training pro-
cedure appears to become more consistent (smaller width
of the box plots), and for this reason a batch size 100 was
chosen. Although this choice is the most computationally
intensive, the training process can be sped up using GPU
acceleration.

Since the number of PCs constituting the model sets used
in the experiments is not a multiple of 100, the number of
training examples in the last batch fed to the Adam optimiser
had to be brought to 100. This was achieved by duplicating
randomly picked PCs from the whole model set. For exam-
ple, the APS-error set contained 591 PCs, which were fed
in 6 batches of 100 PCs each. The last batch was formed by
the remaining unused 91 examples, and 9 randomly picked
duplicates.

Fig. 7 Performance of PointNet
as the batch size setting is var-
ied. The DNN was trained using
the APS-clean and the learning
accuracy tested on the APS-val
model set

10
 (9

3.
34

%
)

20
 (9

7.
67

%
)

30
 (9

8.
67

%
)

40
 (9

8%
)

50
 (9

9.
33

%
)

60
 (9

9.
33

%
)

70
 (9

7.
5%

)

80
 (9

9.
33

%
)

90
 (9

8.
67

%
)

10
0

(9
8.

84
%

)

Batch size (median acc)

70

75

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

Fig. 8 Performance of PointNet
as the number of training
epochs is varied. The DNN was
trained using the APS-clean and
the learning accuracy tested on
the APS-val model set

20
 (8

9.
75

%
)

40
 (9

4%
)

60
 (9

6.
84

%
)

80
 (9

8.
09

%
)

10
0

(9
8.

58
%

)

12
0

(9
8.

59
%

)

14
0

(9
9.

25
%

)

16
0

(9
9.

59
%

)

18
0

(9
9.

41
%

)

20
0

(9
9.

33
%

)

Training Epoch (median acc)

84

88

92

96

100

A
cc

u
ra

cy
 (

%
)

3076 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

6.1.2 Training epoch optimisation

After the batch size had been fixed to 100, the number of
training epochs was optimised by trial and error. Experi-
ments were performed increasing the number of epochs from
20 to 200 in steps of 20. The results are shown in Fig. 8.

Figure 8 shows a progressive improvement in the perfor-
mance of PointNet as the number of training epochs is increased
until 160. Pairwise Mann-Whitney statistical tests indicated that
the performance of PointNet trained using 160 epochs is signifi-
cantly superior to the performance obtained using any smaller
number of training epochs (from 20 to 140 epochs). Further
increases of the number of training epochs beyond the 160 did
not yield any significant improvement in performance. Conse-
quently, this hyper-parameter was fixed to 160.

6.2 Experimental results — artificial model sets

As mentioned in Sect. 6, three instances of PointNet were
trained using three artificial model sets: APS-clean, APS-error,
and YCB-similar, using the hyper-parameters shown in Table 3
and discussed in Sect. 6.1. The performance of the trained
PointNets was evaluated on their accuracy on the YCB-28
model set, and compared to that of two SNNs: an MLP and an
RBFN. The results of the experiments are visualised using box
plots in Fig. 9, and fully detailed in Table 5. Each box in the fig-
ure visualises the five-number summary of the accuracy results
attained in the 10 independent learning trials. The significance
of the differences in the results obtained in the various sets of
learning trials was evaluated via pairwise Mann-Whitney tests.
Table 6 fully details the results of the significance tests.

Fig. 9 Accuracy results
obtained on the YCB-28 model
set by the three classifiers
when trained using different
sets: APS-clean (Clean), APS-
error (Error) and YCB-similar
(Similar)

Poi
nt

N
et

-C
Lea

n
(7

8.
84

%
)

Poi
nt

N
et

-E
rr
or

 (8
5.

98
%

)

Poi
nt

N
et

-S
im

ila
r (

80
.7

1%
)

M
LP-C

le
an

 (8
2.

8%
)

M
LP-E

rr
or

 (8
2.

07
%

)

M
LP-S

im
ila

r (
75

.2
5%

)

R
B
FN

-C
le

an
 (7

4.
86

%
)

R
B
FN

-E
rr
or

 (7
3.

66
%

)

R
B
FN

-S
im

ila
r (

72
.4

9%
)

Network-Dataset (median acc)

72

76

80

84

88

A
cc

u
ra

cy
 (

%
)

Table 5 Shape identification
accuracies obtained on the YCB-
28 model set by the three neural
network architectures. Each
column reports the results of
10 independent learning trials
performed using a different
training set: APS-clean (Clean),
APS-error (Error), and YCB-
similar (Similar)

Index PointNet MLP RBF

Clean Error Similar Clean Error Similar Clean Error Similar

1 84.64% 85.54% 82.32% 83.78% 82.28% 74.42% 74.93% 73.35% 72.70%
2 75.00% 84.11% 64.46% 82.56% 82.32% 76.08% 74.50% 73.54% 71.48%
3 82.68% 81.25% 81.25% 82.69% 81.40% 79.65% 74.51% 73.35% 72.95%
4 79.11% 87.32% 80.18% 79.25% 81.40% 73.10% 75.17% 73.84% 70.99%
5 81.79% 81.79% 85.00% 82.86% 81.65% 78.12% 74.80% 73.72% 73.19%
6 75.36% 85.54% 82.14% 82.74% 81.85% 72.95% 75.22% 74.01% 72.95%
7 70.71% 88.75% 45.00% 83.41% 83.39% 76.72% 76.01% 73.60% 72.03%
8 87.14% 86.43% 78.39% 85.28% 82.77% 78.41% 74.74% 73.60% 73.44%
9 78.57% 87.14% 78.75% 83.29% 81.46% 73.26% 74.74% 74.03% 72.27%
10 76.96% 86.79% 82.68% 82.49% 82.68% 72.95% 75.64% 74.15% 71.84%
Median 78.84% 85.98% 80.71% 82.80% 82.07% 75.25% 74.86% 73.66% 72.49%

3077The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

Figure 9 shows that PointNet achieved an average (median)
accuracy of 86% circa when trained on the APS-error model
set. If a stringent � = 0.01 confidence level is sought, Table 6
indicates that when trained on the APS-error model set, Point-
Net outperformed any other combination of classifier and
training set, except for the MLP trained on the clean set. If the
confidence level is relaxed to the often used � = 0.05 , it can be
said that PointNet trained on the APS-error set was the clear
winner of the comparison.

PointNet did not perform equally well when trained using
the APS-clean and APS-similar model sets, although the per-
formance on the latter (81% circa average accuracy) was still
adequate.

Despite the unsophisticated feature extraction method used,
the MLP performed remarkably well. Trained using the APS-
clean model set, it achieved nearly 83% training accuracy,
and slightly less (82%) when trained using the APS-error set.
Compared to the PointNet, the MLP obtained more consistent
learning results, as shown by the width of the box plots. The
RBFN was the clear underperformer of the three tested classi-
fiers. Finally, training the classifiers on the YCB-Similar set did
not provide any visible benefit, particularly for the two SNNs.

7 Discussion

In this study, the hyper-parameters of PointNet were tuned
using artificial models. The exercise can be seen as an
attempt to evaluate whether knowledge gained on artificial
models could be transferred to real-life scenes. The study
aimed also at testing whether simple SNNs were able to
obtain results comparable to those obtained by the much
more complex PointNet.

The experimental tests showed that, in terms of accuracy,
PointNet had indeed an edge, albeit small, on a standard
shallow MLP classifier. However, the MLP showed more
consistent training results. The tests also indicated that
PointNet performs best (85.98%) when trained on scenes
that were perturbed with some level of random error.

Training PointNet using shapes of features similar to those
to the real images, instead of training it with more general
artificial shapes, did not significantly improve the accuracy
of the classifier.

The above results suggest that the generalisation accuracy
of PointNet is likely to be sensitive to sensor error. As the
mesh models in Figs. 2, 3, and 4 show, this error had not
been completely removed by the pre-processing procedures.
Trained for 160 epochs on perfect artificial shapes, Point-
Net was able to obtain nearly perfect recognition accuracy
(99.59%) on previously unseen artificial shapes (Fig. 8).
However, the average accuracy of PointNet dropped to
78.84% when the trained network was tasked with recognis-
ing the shape of real-life objects. The learning results were
also not consistent, and widely varied in quality between the
ten independent learning trials performed (Table 5).

Training PointNet on models of features that are closer to
those of the real-life objects (YCB-Similar) produced only a
marginal improvement in accuracy and consistency, because
the YCB-Similar models still consist of clean geometric
shapes. However, training PointNet using noisy scenes
(APS-error) markedly improved its learning accuracy and
consistency. That is, training the DNN to recognise ‘imper-
fect’ shapes increased its ability to correctly classify shapes
from imperfect real-life scans.

The difficulties encountered by PointNet to generalise the
knowledge learned from artificial models to models of real-
life objects have been already reported by other authors [14].
These difficulties are common to the general DNN field,
where large over-parameterised structures are often able to
perfectly fit the training data, and have issues of poor gener-
alisation or overfitting [48, 49].

A contribution from this study is the confirmation of
the validity of the idea of injecting local imprecision in the
training shapes, so as to ‘blur’ their boundaries and pre-
vent PointNet from learning the perfect examples. This
approach bears similarities with data augmentation tech-
niques where slightly modified copies of already existing
data are added to the training set, in order to regularise the

Table 6 Mann-Whitney
test results for each pair of
experiments. Results equal to or
below the � = 0.01 confidence
level are reported in bold

PointNet MLP RBF

Clean Error Similar Clean Error Similar Clean Error Similar

PointNet Clean - 0.007 0.910 0.041 0.162 0.059 0.010 0.002 0.002
Error - - 0.002 0.019 0.010 0.000 0.000 0.000 0.000
Similar - - - 0.010 0.112 0.041 0.023 0.023 0.023

MLP Clean - - - - 0.034 0.000 0.000 0.000 0.000
Error - - - - - 0.000 0.000 0.000 0.000
Similar - - - - - - 1.000 0.450 0.001

RBF Clean - - - - - - - 0.000 0.000
Error - - - - - - - - 0.000
Similar - - - - - - - - -

3078 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

neural network models [50]. Other similar regularisation
procedures contaminate the input patterns with randomly
re-sampled noise at each iteration of the learning procedure
[51, 52]. The common approach of all these procedures is
to oversample the training set to smoothen the mapping of
the neural network model. Their common goal is to optimise
the bias-variance trade-off of the learned model, and pro-
mote generalisation [51]. Rather than smoothening PointNet
mapping, the approach used in this study aims to promote a
‘tolerance’ to local imprecision, similar to the approxima-
tion threshold used in the RANSAC algorithm [53]. The
proposed approach also does not augment the training data
or re-sample the noise at every iteration, promoting thus the
efficiency of the learning procedure.

It should be noted that both the SNNs obtained their
best learning accuracies when trained on the APS-clean set.
This result might be due to the particular feature extraction
method used (Sect. 4.1), where the simulated sensor error
might have excessively blurred the shape of the projections
of some objects. It may also indicate that the SNNs did not
overfit the training data. In general, trained on the APS-clean
set, the MLP obtained higher classification accuracies and
more consistent results than PointNet.

The main advantage of PointNet is that the data requires
only minimal pre-processing (normalisation and down sam-
pling), beyond the standard cleaning of the raw point cloud
scenes. In particular, PointNet does not need the feature
extraction process required by the MLP. The feature extrac-
tion process is embedded in the first block of layers of the
PointNet, and optimised simultaneously to the classifier by
the learning algorithm. In this study, the feature extraction
process was carried out prior to the MLP training proce-
dure, and it is possible that the criterion of the former did
not perfectly match the inductive and representational biases
of the latter. The concurrency of the feature extraction and
classification procedures might have given and edge to the
PointNet respect to the MLP.

7.1 Indications for future work

This study proved that PointNet can be trained using artificial
data to recognise with good accuracy shapes from real-life
scans of objects. This approach makes it easier for designers
to build the usually large data set needed to train the classifier.

The experimental work was based on the recognition of
three primitive shapes: box, cylinder, and sphere. Further
work should validate the proposed method on a more varied
and complex set of objects. In particular, given the context of
robotic disassembly, the proposed approach should be vali-
dated on models of real mechanical parts. Although prelimi-
nary tests suggested the applicability of the technique to com-
plex automotive components [7], the simulations did not take
into account real-world occurrences such as reflective surfaces.

The main hurdle to an extensive testing of the proposed
approach has been so far the lack of a database of real-life
mechanical object models. The assembly of such set has
been hampered by the restrictions due to the recent pan-
demic. The collection and scanning of object samples is now
a priority.

PointNet has shown a tendency to overfit the training data,
showing poor generalisation capability on noisy data. Addi-
tion of noise to the training samples boosted the performance
of PointNet. Further work should be done to test other regular-
isation techniques such as dropout [54] and weight decay [55].

The generalisation ability of PointNet could also be
improved by decreasing the complexity of its architecture.
Based on preliminary tests, this architecture has been kept so
far similar to the one originally designed by Qi et al. [6]
(see Sect. 6). A more thorough analysis might reveal the
advantage of more economical structures.

Finally, the segmentation ability of PointNet should also
be explored. Scene segmentation will be very useful in dis-
assembly scenarios to identify end-of-life products and their
sub-assemblies in scanned scenes.

8 Conclusions

This study investigated the possibility of training the Point-
Net DNN on point cloud models of perfect geometric primi-
tive shapes, and use it to recognise primitive shapes in mod-
els of daily-life objects. The ultimate objective of the study
is to use PointNet to generate shape information for robotic
manipulation and disassembly of end-of-life products.

Experimental tests showed that, trained on perfect geo-
metric shapes, PointNet was able to recognise with nearly
80% average accuracy primitive shapes in real-life objects.
The tests also showed some inconsistency in the perfor-
mance of the DNN. Trained on perfect geometric shapes
using a simple feature extraction method, a simple shallow
MLP architecture obtained better results than the PointNet
in terms of average accuracy and consistency of the learn-
ing results. The main difficulty found by PointNet seemed
to consist of generalising the knowledge gained on perfect
artificial shapes to real-life cases. This finding confirmed the
results of a handful of similar experiments in the literature,
and is the first contribution of this study.

The accuracy of PointNet could be raised to nearly 86% by
locally perturbing the position of the elements of the train-
ing point clouds. This operation corresponded to blurring
the representation of the shapes, in order to train the DNN
on imprecise models that are more similar to real-life repre-
sentations. In this study, this new training method has been
verified on the recognition of shapes from real-life objects. In
addition to improving the recognition accuracy, it also greatly
improved the consistency of PointNet learning results. This
result constitutes the second contribution of this study.

3079The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

1 3

Indications for further work were given in Sect. 7.

Appendix

Features of YCB‑28 objects

The main features of the YCB-28 objects are described in
Table 7.

Author contribution All authors contributed to the study conception
and design. Data collection and preparation and the experimental tests
were performed by Senjing Zheng, data analysis by both authors. The
first draft of the manuscript was written by Senjing Zheng and Marco
Castellani edited it and expanded it. All authors read and approved the
final manuscript.

Funding This work was supported by the UK Engineering and Physical
Sciences Research Council (EPSRC) granted Autonomous Remanufac-
turing (AutoReman) project (Grant No. EP/N018524/1).

Declarations

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Kopicki M, Detry R, Adjigble M, Stolkin R, Leonardis A, Wyatt
JL (2016) One-shot learning and generation of dexterous grasps
for novel objects. Int J Robot Res 35(8):959–976

 2. Saxena A, Driemeyer J, Ng AY (2008) Robotic grasping of novel
objects using vision. Int J Robot Res 27(2):157–173

 3. Mavrakis N, Stolkin R, Baronti L, Kopicki M, Castellani M et al
(2016) Analysis of the inertia and dynamics of grasped objects,
for choosing optimal grasps to enable torque-efficient post-grasp
manipulations. In: 2016 IEEE-RAS 16th International Conference
on Humanoid Robots (Humanoids), IEEE, pp 171–178

 4. Vongbunyong S, Kara S, Pagnucco M (2013) Application of cog-
nitive robotics in disassembly of products. CIRP Ann 62(1):31–34

 5. Wegener K, Chen WH, Dietrich F, Dröder K, Kara S (2015) Robot
assisted disassembly for the recycling of electric vehicle batteries.
Procedia Cirp 29:716–721

 6. Qi CR, Su H, Mo K, Guibas LJ (2017) PointNet: deep learning on
point sets for 3D classification and segmentation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, pp 652–660

 7. Zheng S, Lan F, Baronti L, Pham DT, Castellani M (2022)
Automatic identification of mechanical parts for robotic disas-
sembly using the PointNet deep neural network. Int J Manuf Res
17(1):1–21

 8. Rabbani T, Van Den Heuvel F (2005) Efficient Hough transform
for automatic detection of cylinders in point clouds. Isprs Wg Iii/3,
Iii/4 3:60–65

 9. Zheng Y, Liu J, Liu Z, Wang T, Ahmad R (2019) A primitive-
based 3D reconstruction method for remanufacturing. Int J Adv
Manuf Technol 103(9):3667–3681

 10. Pham D, Liu X (1995) Neural Networks for Identification.
Springer, Prediction and Control

Table 7 Manually measured shape features of the twenty-eight selected
objects from YCB set

ID-name Shape-type H (mm) W (mm) B (mm) D (mm)

003-cracker
box

Box 216.23 149.82 57.04 -

004-sugar box Box 162.50 82.58 32.32 -
008-pudding

box
Box 97.80 79.34 29.38 -

009-gelatin
box

Box 73.70 65.62 23.73 -

010-potted
meat can

Box 80.16 76.26 39.73 -

026-sponge Box 95.09 60.03 14.20 -
036-wood

block
Box 190.35 80.52 75.81 -

061-foam
brick

Box 63.68 54.29 43.36 -

077-rubiks
cube

Box 57.35 48.56 46.12 -

001-chips can Cylinder 237.27 - - 69.33
002-master

chef can
Cylinder 129.79 - - 96.09

005-tomato
soup can

Cylinder 92.34 - - 64.63

007-tuna fish
can

Cylinder 38.44 - - 80.25

019-pitcher
base

Cylinder 226.75 - - 128.13

025-mug Cylinder 101.24 - - 84.78
040-large

marker
Cylinder 103.09 - - 14.81

065-a-cups Cylinder 57.36 - - 43.53
012-strawberry Sphere - - - 48.52
014-lemon Sphere - - - 63.59
015-peach Sphere - - - 73.05
017-orange Sphere - - - 74.81
018-plum Sphere - - - 52.29
054-softball Sphere - - - 97.03
055-baseball Sphere - - - 75.46
056-tennis ball Sphere - - - 69.18
057-racquetball Sphere - - - 60.41
058-golf ball Sphere - - - 47.36
063-a-marble Sphere - - - 39.92

3080 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

http://creativecommons.org/licenses/by/4.0/

1 3

 11. Broomhead DS, Lowe D (1988) Radial basis functions, multi-
variable functional interpolation and adaptive networks. Tech.
rep, Royal Signals and Radar Establishment Malvern (United
Kingdom)

 12. Calli B, Singh A, Walsman A, Srinivasa S, Abbeel P, Dollar AM
(2015) The YCB object and model set: towards common bench-
marks for manipulation research. In: 2015 International Confer-
ence on Advanced Robotics (ICAR), IEEE, pp 510–517

 13. Garcia-Garcia A, Orts-Escolano S, Oprea S, Villena-Martinez V,
Garcia-Rodriguez J (2017) A review on deep learning techniques
applied to semantic segmentation. arXiv preprint arXiv: 1704.
06857

 14. Uy MA, Pham QH, Hua BS, Nguyen T, Yeung SK (2019) Revisit-
ing point cloud classification: a new benchmark dataset and clas-
sification model on real-world data. In: Proceedings of the IEEE/
CVF International Conference on Computer Vision, pp 1588–1597

 15. Wu Z, Song S, Khosla A, Yu F, Zhang L, Tang X, Xiao J (2015)
3D shapenets: a deep representation for volumetric shapes. In:
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp 1912–1920

 16. LeCun Y, Bengio Y, Hinton G, et al. (2015) Deep learning. nature,
521 (7553), 436-444. Google Scholar Google Scholar Cross Ref
Cross Ref

 17. Börold A, Teucke M, Rust J, Freitag M (2020) Recognition of
car parts in automotive supply chains by combining synthetically
generated training data with classical and deep learning based
image processing. Procedia CIRP 93:377–382

 18. Krueger J, Lehr J, Schlueter M, Bischoff N (2019) Deep learn-
ing for part identification based on inherent features. CIRP Ann
68(1):9–12

 19. Weimer D, Scholz-Reiter B, Shpitalni M (2016) Design of deep
convolutional neural network architectures for automated feature
extraction in industrial inspection. CIRP Ann 65(1):417–420

 20. Brogan DP, DiFilippo NM, Jouaneh MK (2021) Deep learning
computer vision for robotic disassembly and servicing applica-
tions. Array 12:100094

 21. Foo G, Kara S, Pagnucco M (2021) Screw detection for disas-
sembly of electronic waste using reasoning and re-training of a
deep learning model. Procedia CIRP 98:666–671

 22. Li X, Li M, Wu Y, Zhou D, Liu T, Hao F, Yue J, Ma Q (2021)
Accurate screw detection method based on faster R-CNN and rota-
tion edge similarity for automatic screw disassembly. Int J Comput
Integr Manuf 34(11):1177–1195

 23. Rehnholm J (2021) Battery pack part detection and disassembly
verification using computer vision

 24. Yildiz E, Wörgötter F (2019) DCNN-based screw detection for
automated disassembly processes. In: 2019 15th International
Conference on Signal-Image Technology & Internet-Based Sys-
tems (SITIS), IEEE, pp 187–192

 25. Yildiz E, Wörgötter F (2020) DCNN-based screw classification
in automated disassembly processes. In: ROBOVIS, pp 61–68

 26. Ren S, He K, Girshick R, Sun J (2015) Faster R-CNN: towards
real-time object detection with region proposal networks. Adv
Neural Inf Process Syst 28:91–99

 27. Maturana D, Scherer S (2015) VoxNet: a 3D convolutional neural
network for real-time object recognition. In: 2015 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS),
IEEE, pp 922–928

 28. Su H, Maji S, Kalogerakis E, Learned-Miller E (2015) Multi-
view convolutional neural networks for 3D shape recognition. In:
Proceedings of the IEEE International Conference on Computer
Vision, pp 945–953

 29. Klokov R, Lempitsky V (2017) Escape from cells: deep Kd-
networks for the recognition of 3D point cloud models. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision, pp 863–872

 30. Riegler G, Osman Ulusoy A, Geiger A (2017) OctNet: learning
deep 3D representations at high resolutions. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
pp 3577–3586

 31. Wang PS, Liu Y, Guo YX, Sun CY, Tong X (2017) O-CNN:
octree-based convolutional neural networks for 3D shape analysis.
ACM Transactions On Graphics (TOG) 36(4):1–11

 32. Guo Y, Wang H, Hu Q, Liu H, Liu L, Bennamoun M (2020) Deep
learning for 3D point clouds: a survey. IEEE Trans Pattern Anal
Mach Intell

 33. Joseph-Rivlin M, Zvirin A, Kimmel R (2019) Momen (e) t: flavor
the moments in learning to classify shapes. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision Work-
shops, pp 0

 34. Sun X, Lian Z, Xiao J (2019) SRINet: learning strictly rotation-
invariant representations for point cloud classification and seg-
mentation. In: Proceedings of the 27th ACM International Confer-
ence on Multimedia, pp 980–988

 35. Yang J, Zhang Q, Ni B, Li L, Liu J, Zhou M, Tian Q (2019) Mode-
ling point clouds with self-attention and Gumbel subset sampling.
In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp 3323–3332

 36. Jaderberg M, Simonyan K, Zisserman A et al (2015) Spatial trans-
former networks. Adv Neural Inf Process Syst 28:2017–2025

 37. Dominguez M, Dhamdhere R, Petkar A, Jain S, Sah S, Ptucha
R (2018) General-purpose deep point cloud feature extractor.
In: 2018 IEEE Winter Conference on Applications of Computer
Vision (WACV), IEEE, pp 1972–1981

 38. Andina D, Pham DT (2007) Computational intelligence: for engi-
neering and manufacturing. Springer

 39. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal
representations by error propagation. California Univ San Diego
La Jolla Inst for Cognitive Science, Tech. rep

 40. Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward
networks are universal approximators. Neural Netw 2(5):359–366

 41. Hotelling H (1933) Analysis of a complex of statistical variables
into principal components. J Educ Psychol 24(6):417

 42. Pearson K (1901) LIII. On lines and planes of closest fit to systems
of points in space. The London, Edinburgh, and Dublin philo-
sophical Magazine and Journal of Science 2(11):559–572

 43. Curless B, Levoy M (1996) A volumetric method for building
complex models from range images. In: Proceedings of the 23rd
Annual Conference on Computer Graphics and Interactive Tech-
niques, pp 303–312

 44. Kazhdan M, Bolitho M, Hoppe H (2006) Poisson surface recon-
struction. In: Proceedings of the Fourth Eurographics Symposium
on Geometry Processing, vol 7

 45. Baronti L, Alston M, Mavrakis N, Ghalamzan EAM, Castellani M
et al (2019) Primitive shape fitting in point clouds using the bees
algorithm. Appl Sci 9(23):5198

 46. Zhou QY, Park J, Koltun V (2018) Open3D: a modern library for
3D data processing. arXiv preprint arXiv: 1801. 09847

 47. Kingma DP, Ba J (2014) Adam: a method for stochastic optimiza-
tion. arXiv preprint arXiv: 1412. 6980

 48. Bejani MM, Ghatee M (2021) A systematic review on overfitting
control in shallow and deep neural networks. Artif Intell Rev pp 1–48

 49. Salman S, Liu X (2019) Overfitting mechanism and avoidance in
deep neural networks. arXiv preprint arXiv: 1901. 06566

 50. Hernández-García A, König P (2018) Further advantages of data
augmentation on convolutional neural networks. In: International
Conference on Artificial Neural Networks, Springer, pp 95–103

 51. Bishop CM (1995) Training with noise is equivalent to Tikhonov
regularization. Neural Comput 7(1):108–116

 52. Matsuoka K (1992) Noise injection into inputs in back-propagation
learning. IEEE Trans Syst Man Cybern 22(3):436–440

3081The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

http://arxiv.org/abs/1704.06857
http://arxiv.org/abs/1704.06857
http://arxiv.org/abs/1801.09847
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1901.06566

1 3

 53. Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-
cloud shape detection. Computer graphics forum, Wiley Online
Library 26:214–226

 54. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov
R (2014) Dropout: a simple way to prevent neural networks from
overfitting. J Mach Learn Res 15(1):1929–1958

 55. Krogh A, Hertz J (1991) A simple weight decay can improve
generalization. Adv Neural Inf Proces Syst 4

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

3082 The International Journal of Advanced Manufacturing Technology (2023) 124:3067–3082

	Primitive shape recognition from real-life scenes using the PointNet deep neural network
	Abstract
	1 Introduction
	2 Related work
	3 The PointNet deep neural network
	4 Shallow neural network architectures
	4.1 Numerical feature generation

	5 Model sets
	5.1 The Yale-CMU-Berkeley (YCB) object and model set
	5.2 The artificial primitive shapes (APS) sets
	5.3 YCB-similar artificial primitive shapes
	5.4 Point cloud normalisation

	6 Experiments and results
	6.1 Optimisation of the PointNet training procedure
	6.1.1 Batch size optimisation
	6.1.2 Training epoch optimisation

	6.2 Experimental results — artificial model sets

	7 Discussion
	7.1 Indications for future work

	8 Conclusions
	References

