
The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854

Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09610-5

ORIGINAL ARTICLE

Exploring the concept of Cognitive Digital Twin from model‑based 
systems engineering perspective

Lu Jinzhi1 · Yang Zhaorui2 · Zheng Xiaochen1   · Wang Jian2 · Kiritsis Dimitris2

Received: 9 March 2022 / Accepted: 23 June 2022 
© The Author(s) 2022

Abstract
Digital Twin technology has been widely applied in various industry domains. Modern industrial systems are highly com-
plex consisting of multiple interrelated systems, subsystems and components. During the lifecycle of an industrial system, 
multiple digital twin models might be created related to different domains and lifecycle phases. The integration of these 
relevant models is crucial for creating higher-level intelligent systems. The Cognitive Digital Twin (CDT) concept has been 
proposed to address this challenge by empowering digital twins with augmented semantic capabilities. It aims at identifying 
the dynamics and interrelationships of virtual models, thus to enhance complexity management capability and to support 
decision-making during the entire system lifecycle. This paper aims to explore the CDT concept and its core elements follow-
ing a systems engineering approach. A conceptual architecture is designed according to the ISO 42010 standard to support 
CDT development; and an application framework enabled by knowledge graph is provided to guide the CDT applications. 
In addition, an enabling tool-chain is proposed corresponding to the framework to facilitate the implementation of CDT. 
Finally, a case study is conducted, based on simulation experiments as a proof-of-concept.

Keywords  Cognitive Digital Twin · Digital Twin · Knowledge graph · Semantic modelling · Model-based systems 
engineering · KARMA language

1  Introduction

The complexity of modern industrial systems is continu-
ously increasing. A highly complex industrial system, such 
as a smart manufacturing system, can be defined as a system-
of-systems (SoS) [1]. SoS is a large-scale integrated system 
with multiple independent systems working collectively for 
a common mission [2]. Each of the systems may consist of 
many interconnected subsystems and components. Empow-
ered by Information and Communication Technologies 
(ICT) and Cyber-physical Systems (CPS), a large number 
of virtual entities, such as data, information and knowledge 
related to the systems, subsystems and components, are gen-
erated, which compose the virtual space of the SoS. Certain 
digital models are required in order to specify, detect and 

resolve dependencies among these virtual entities. During 
the entire SoS lifecycle, these virtual entities are evolving 
frequently, which makes it even more challenging to handle 
the architectural dependencies among different SoS systems, 
subsystems and components. Therefore, reliable approaches 
and tools are needed for the complexity and change manage-
ment, as well as prediction of evolution dynamics [3–5].

The Digital Twin (DT) concept provides a method to con-
nect physical and virtual spaces. It was first defined in [6], 
where a three-dimension DT model was proposed: a DT 
consists at least three elements, i.e., physical entities in real 
space, virtual entities in virtual space, and the communica-
tions between physical and virtual entities. In recent years, 
DT has been widely applied in various industrial sectors and 
the enabling technologies of DT have been evolving rapidly. 
It reflects the increasing demand of integrating physical sys-
tems with their virtual models [7]. A five-dimension DT 
model was proposed in [8] to promote the DT applications. 
It is an extended version of the previous three-dimension 
DT model with two more elements, i.e., DT data and ser-
vices. As a key enabling technology for Industry 4.0, DT 
technology has been reshaping the modern manufacturing 

 *	 Zheng Xiaochen 
	 xiaochen.zheng@epfl.ch

1	 ICT for Sustainable Manufacturing, Ecole Polytechnique 
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

2	 University of Electronic Science and Technology of China, 
Chengdu 611731, China

Published online: 29 July 2022/

http://orcid.org/0000-0003-1506-3314
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09610-5&domain=pdf


The International Journal of Advanced Manufacturing Technology (2022) 121:5835–5854	

1 3

systems from many perspectives such as production plan-
ning and control, production process simulation product 
fault warning, equipment status monitoring and predictive 
maintenance, layout planning, production index optimiza-
tion [9, 10].

DTs are expected to support different phases of the system 
lifecycle, such as design, production, and maintenance [11]. 
An industrial system may have many DT models across its 
lifecycle corresponding to different system, subsystems and 
components. DT models created by different domain experts 
may have different protocols and standards, which results in 
heterogeneous structures, in terms of syntax, schema, and 
semantics. Moreover, DT models evolve frequently across 
the lifecycle, making them even more difficult to manage. 
According to a survey about DT applications [7], a universal 
design and development platform is required to facilitate the 
integration of different DT models.

When developing an integrated DT platform, semantic 
modelling is commonly used to capture complex system 
information in an intuitive way and to provide a concise, 
high-level description of that information [12]. It formal-
izes the information using standardized formalism making 
possible of specifying direct interrelationships among vari-
ous systems. In addition, a series of tools are available for 
the design, maintenance, query, and navigation of semantic 
models, which makes it a promising solution to facilitate 
the integration of heterogeneous DT models across system 
lifecycle phases and domains. Previous study [13] has dem-
onstrated the feasibility to build semantics-based DT models 
using semantic technologies. Researchers [14] make use of 
semantic models to describe the rules, computing processes 
and interrelationships related to computing models in order 
to support automatic decision-makings. Targeting at the 
manufacturing domain applications, a decision-making DT 
platform based semantic models is proposed for monitoring 
and controlling the machining quality [15].

Advanced semantic technologies like Knowledge Graph 
(KG), have been widely adopted in recent years. KG enables 
to represent information in a triple format with entities and 
relationships based on the defined ontology. Moreover, it can 
be used to derive new knowledge using a reasoner [16, 17]. 
Previous studies have explored the application of KG in DT 
development and implementations. It is considered as a main 
enabling technology for the next generation DT paradigm for 
linking and retrieving heterogeneous data, as well as descrip-
tive and simulation models [18]. For example, a semantic 
DT solution was proposed in [19] based on an enterprise 
KG. It proves that semantic technologies enables to provide 
a formal representation to reinforce the capability of DT. 
A knowledge graph model is applied in [20] for integrated 
knowledge representations for designing data, processing 
data, inspection data and additional data. Graph-based query 
languages play a important role for knowledge retrieving 

with semantic modelling [21]. They support extracting and 
inferring knowledge from large-scale production data, as 
well as enable KG queries thus to enhance complexity man-
agement of DT models with reasoning capabilities.

When using semantic models, ontology is the basis to 
support unified knowledge description and DT integration 
among the specific fields across the entire system lifecy-
cle. Particularly, when using upper-level ontologies such as 
Basic Formal Ontology (BFO) [22] and Industrial Ontolo-
gies Foundry (IOF) domain ontologies, different ontology 
models can be integrated using a unified format to promote 
data interoperability. For example, the IOF-MBSE domain 
ontology is used in [23] to describe co-simulation models 
based on a standardized artifact representation. Then, using 
the same ontology, semantic models are used to represent 
the model structure of verification models in order to real-
ize DT integration [24]. However, the manual construction 
of ontologies is a time-consuming task [25] which restricts 
the applications of semantic models. Thus, more efforts on 
the ontology definitions should be made for managing the 
complexity of DTs.

From the perspective of the cognitive evolution of IoT 
technologies, Ahmed [26] proposed the Cognitive Digital 
Twin (CDT) concept as an augmented digital representation 
of a physical system, including its subsystems, with certain 
intelligent capabilities. The authors of [27] categorized DTs 
into digital twins, hybrid twins and cognitive twins on the 
basis of their intelligent capabilities. According to this cat-
egorization, digital twins are isolated digital models; hybrid 
twins are interconnected models with integrative prediction 
capabilities; and cognitive twins are incorporated with cog-
nitive features like sensing complex and unpredicted behav-
iors, and reasoning for optimization strategies. In a previous 
study [28], the CDT concept is defined as digital twins that 
are augmented with semantic capabilities to trace the dynam-
ics of virtual model evolution; to identify interrelationships 
between virtual models; and to enhance decision-making. 
This definition emphasizes the critical roles of semantic and 
knowledge graph technologies for CDT. When developing 
CDT, ontology plays an important role to support semantic 
modelling for each digital twin. As demonstrated in previ-
ous studies [19–21], semantic modelling and KGs are key 
enabling technologies to empower cognitive capabilities of 
DTs thus to realize the CDT paradigm.

CDT represents a promising evolution trend of the current 
DT technology and is expected to push forward the manufac-
turing technologies to a higher level of intelligence. Some 
recent studies and projects have been aiming to apply CDT 
in different industry sectors and manufacturing domain is 
one the main focuses. A cognitive twin toolbox conceptual 
architecture was developed and applied to several use cases 
such as operational optimization for aluminum production, 
silicon production, steel and related products production 
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etc. [27, 29]. An application case was presented in a recent 
study [30], in which a CDT enabled by KG was developed 
to support demand forecasting and production planning in a 
manufacturing plant. A knowledge-driven digital twin was 
developed in [31] by integrating dynamic knowledge bases 
with digital twin models to enable intelligent services for 
autonomous manufacturing such as manufacturing process 
planning, production scheduling and production process 
analysis.

Despite the promising future depicted by the CDT con-
cept, many challenges remain to be addressed to realize it. 
For example, there is a lack of unified reference architectures 
to support CDT development; there is no available appli-
cation frameworks to integrate enabling technologies and 
to provide an implementation tool-chain. This study aims 
to bridge these gaps by providing a novel solution based 
on systems engineering and KG to facilitate the integration 
of heterogeneous models across the entire lifecycle of an 
industrial system.

The main contributions of this study are: first, to explore 
the CDT concept using systems engineering methodology; 
second, to propose a conceptual architecture for CDT design 
according to existing standards; third, to provide a KG-cen-
tric application framework and a tool-chain to facilitate the 
implementation of CDT; and finally, to verify the proposed 
framework and tool-chain through a case study.

2 � Research methodology

This study follows a systems thinking approach to conduct 
relevant research activities. Systems thinking is an approach 
for capturing system nature by analyzing the interrelation-
ships between the components within the system boundary 
[32, 33]. Based on the systems thinking methodology, the 
following research steps (RS) are complied:

•	 RS 1: Define the scope and scenarios of CDT and pro-
vide the definition: The scenarios are defined based on 
the experience obtained from relevant research projects 
and industrial applications (this part is introduced in 
Sect. 3.1). Correspondingly, the scope (systems bound-
ary) and related concepts about CDT are specified. Stake-
holders, as well as their concerns, architecture viewpoints 
and views extracted from multiple industrial use cases, 
are adopted to initially identify relevant concepts within 
the systems boundaries of CDT.

•	 RS 2: Identify entities related to the scenarios: Within 
the system boundaries, the related entities of each sce-
nario are captured (the part is introduced in Eq. (1)), such 
as the requirements for constructing CDT [34].

•	 RS 3: Specify the interrelationships between entities: 
Interrelationships between entities refer to interactions 

between entities, for example, the traceability between 
requirement models and verification models (the part is 
introduced in Eq. (1)).

•	 RS 4: Develop an architecture description accord-
ing to ISO 42010: The formal architecture description 
of CDT is developed based on the standard ISO 42010 
“Software, systems and enterprise - Architecture pro-
cesses” (introduced in Sect. 3.2).

•	 RS 5: Construct a CDT proof-of-concept: A prototype 
of the proposed CDT is constructed based on an industrial 
use case to illustrate its feasibility (introduced in Sect. 3.3).

•	 RS 6: Evaluation of the case study: Through the 
case study, the architecture description of the CDT is 
explained and evaluated (introduced in Sect. 4).

Following the aforementioned approach, the proposed CDT 
concept, as well as its architecture and application frame-
work are presented in the next section; then, a tool-chain and 
a case study are provided in the following section.

3 � CDT definition, architecture 
and application framework based 
on MBSE

3.1 � CDT definition

As introduced in previous sections, the CDT concept is 
evolved from DT, aiming at integrating heterogeneous DT 
models across the entire lifecycle of a system. It is consid-
ered as a subset of DT with additional cognitive capabilities 
which is proposed for RS 1 in the research methodology. In 
a previous study [35], the CDT concept has been initially 
investigated where it was defined as a digital representation 
of a physical system that is augmented with certain cognitive 
capabilities and support to execute autonomous activities; 
comprises a set of semantically interlinked digital models 
related to different lifecycle phases of the physical system 
including its subsystems and components; and evolves con-
tinuously with the physical system across the entire lifecycle.

It is necessary to clarify that the above definition focuses 
on the virtual part of the physical-virtual twin to align with 
existing DT studies. Similar to DT, a complete CDT should 
also consist of virtual entities and physical entities. To avoid 
misunderstanding about the names and follow the commons 
of DT studies, in the rest of the paper, the singular form CDT 
will be used to represent a complete twin system including 
both physical and virtual entities. Whereas the plural form 
CDTs is used to represent multiple different CDT couples 
corresponding to different application cases.

The main difference between CDT and DT is that cog-
nitive entities of CDT include multiple virtual models 
across the entire system lifecycle. Each of the models has 
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its corresponding ontology descriptions as illustrated in 
Fig. 1. The ontology of virtual models describes the fea-
tures of cross-domain models, with the fact that it identi-
fies the interrelationships between different virtual models. 
As shown in Fig. 1, it supposes the physical entity is an 
engine; then, the virtual entities may include CAD models, 
performance models, information models, FEM models, 
and CFD models etc. These models are used in the different 
phases of the engine’s lifecycle. The ontology is defined as 
a representational artifact, comprising a taxonomy as proper 
part, whose representations are intended to designate some 
combination of universals, defined classes, and certain rela-
tions between them [22]. It is developed as the core to for-
malize the meaning of engine models and interrelationships 
between all the models.

Based on the previous definitions and systems engineer-
ing methodology, for a given system, we formally define its 
CDT and relevant compositions as follows (RS 2 and RS 3 
in the research methodology):

The meaning of each composition in CDT is explained 
below:

(1)

CDTsys =PEsys

⋃

CE{
∑

Modelt(Mst,Mpt,

Mtht,Mlt,Mtt,Mmt),

Ontology(entities, relationships)}
⋃

Comm{EntitySt,EntityDe,

DType,DContent}

•	 CDTSysrefers to the corresponding CDT of a given system 
sys;

•	 The notation a
⋃

b refers to a collection of a and b. a = b 
refers to a is equal to b;

•	 PESys is defined as the physical entities of Sys;
•	 CE{

∑

Modelt(...), Ontology(..)} is defined as one cogni-
tive entity which is a collection of virtual models related 
to Sys with their ontology description;

–	 Modelt refers to model or data used in the system 
lifecycle.

–	 t refers to a timestamp in system lifecycle which each 
virtual model is used at.

–	 Ms (Model Structure) is defined as model topology 
representing model compositions, interrelationships 
between them, with entire inputs, outputs and param-
eters in compositions.

–	 Mp (Model purpose) refers to the goal for modelling, 
“why is the model needed?”

–	 Mth (Modelling theory): the mathematical foundations 
for modelling, e.g., differential algebraic equations.

–	 Ml (Modelling language): modelling languages for-
malizing information and knowledge of the given 
system which is defined by a consistent set of rules.

–	 Mt (Modelling tool): tools for developers to build 
models.

–	 Mm (Modelling method): a concept to explain the 
approach to develop models using a given language 
to represent the system formalisms in one modelling 
tool, e.g., finite element modelling.

Fig. 1   An example of the CDT 
concept and its core elements, 
i.e., physical entities, cogni-
tive entities (including multiple 
virtual models and Ontology 
models) and the communica-
tions between them
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–	 Ontology (entities, relationships) refers to the ontol-
ogy description representing the model features and 
topology between them, where one entity is defined 
as one node with the information related to mod-
els, such as one model composition. The interre-
lationships of entities are defined as relationships 
between model compositions which are introduced 
with details in a previous study [36]:

•	 Reference — refers to one interaction to track the 
versions of the related Modelt.

•	 Control — refers to one interaction that Modelt 
can control another.

•	 Co-simulation — refers to one interaction that 
real-time data exchange among Modelt and sys.

•	 Model transform — refers to one interaction that 
one Modelt is generated from another by model 
transformation.

•	 Trace — describes that traceability links of data 
between different Modelt.

•	 Copy — describes that one Modelt is copied from 
another.

•	 Refine — describes that one Modelt is refined by 
another.

•	 Verify — describes that one Modelt can verify 
another.

•	 Satisfy — describes that one Modelt can satisfy 
another.

•	 Comm{(...)} is defined as the data and information chan-
nels between physical and virtual models or virtual mod-
els themselves. Each channel has four key attributes:

–	 EntitySt (Entities of Start) represents the start of the 
data and information flow.

–	 EntityDe (Entities of Destination) represents the end 
of the data and information flow.

–	 DType (Data Type) represents the type of data, 
including real-time data and historical data.

–	 DContent (Data Content) represents the content been 
transferred in this data flow.

All of these compositions enable to provide services to 
stakeholders, data platform and IoT systems.

It is worth mentioning that the term “CDT” in this paper 
represents the concept of cognitive digital twin in general, 
whereas in Eq. (1), the “sys” subscript is added to indicate 
that “ CDTsys ” is a specific cognitive digital twin of the given 
system “sys”. This “ CDTsys ” can be then decomposed to a 
set of physical entities, cognitive entities and communication 
entities etc., as shown in Eq. (1).

3.2 � CDT architecture

Due to the heterogeneity of the virtual models for differ-
ent systems, a unified architecture is needed to facilitate the 
development of CDT. Based on the standard ISO/IEC/IEEE 
42010 “Software, systems and enterprise - Architecture 
processes”, a conceptual architecture of CDT is designed 
(RS 4 in the research methodology), as presented in Fig. 2. 
According to this standard, the physical entity sys of CDTsys 
is defined as a “system” with a physical architecture which 
is expressed by an architecture description. Using systems 
thinking, systems can be considered as a material entity 
or a physical process in the real world. The architecture 
description then identifies twins-of-interest, stakeholders 
and stakeholders’ concerns respectively. Twins-of-interest 
refers to a collection of cognitive digital twins including 
cognitive entities and physical entities. Stakeholders refers to 
the individuals, teams and organizations related to the twins-
of-interest. Concerns refers to the system interests related to 
the stakeholders.

The architecture description includes architecture view-
point, architecture view, correspondence, correspond-
ence rule and rational. The architecture viewpoint refers 
to entities for establishing specifications of constructing, 
interpreting and using architecture views to frame specific 
system concerns. The architecture view refers to entities for 
expressing the physical entities from specific concerns. The 
correspondence refers to interrelationships of architecture 
description entities, such as refinement. The correspond-
ence rule refers to specifications for enforcing relations 
and governing correspondences. The rational contains the 
description, justification or proof of reasoning about the 
architecture decisions. It supports physical entity devel-
opment, including the basis for a decision, alternatives, 
trade-offs and potential consequences of the decisions and 
reference to sources of additional information. The archi-
tecture viewpoint includes different model types which are 
used to develop virtual models based on relevant domain 
specifications.

Within the defined architecture, the Ontology in CDT is 
used to represent correspondence rule and correspondence 
among virtual models 

∑

Modelt as Comm{(...)} in order to 
construct cognitive entities. Moreover, Ontology enables 
to represent Comm{(...)} among physical entity sys and 
its models 

∑

Modelt as well. Finally, the Ontology is the 
basis to support trade-off and reasoning whose outcomes 
are recorded as rational. Through this given framework, 
the interrelationships between models and Ontology can 
be identified clear which is also the reason why the cor-
responding cognitive entities are required for the physical 
entities.
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3.3 � CDT application framework based 
on knowledge graph

The application of CDT in industry is a challenging task as 
it involves multiple domains and across different lifecycle 
phases. A framework is developed based on KG to facilitate 
CDT applications (RS 5 in the research methodology), as 
shown in Fig. 3. It is composed of the following five main 
components:

1.	 Industrial system dynamics modelling and simula-
tion. The purpose of this component is to develop the 
virtual models for a real physical system sys and to sim-
ulate the system behaviors based on different models 
∑

Modelt using modelling and simulation approaches. 
Most modern industrial systems sys are hybridized by 
continuous and discrete systems [37]. Thus, the virtual 
models 

∑

Modelt are required to simulate the hybrid sys-
tems, continuous systems and discrete systems providing 
simulation results for analyzing the system dynamics 
using a simulation tool Mt, which are developed based 
on mathematical theories related to the physical systems. 

Finally, simulation results Modelt are generated for con-
structing CDTSys.

2.	 KG modelling. KG models are considered as the core to 
formalize the Ontology (topological interrelationships), 
for virtual models 

∑

Modelt and the comm (communica-
tions between physical entities and cognitive entities). 
Moreover, the KG models are expected to represent the 
services of each CDTSys, which refers to the purposes 
of using the CDT. Based on the basic CDT concepts 
and domain-specific features of Internet of things [38], 
we identify seven main concerns when using CDT for 
industrial systems Sys:

•	 Social impacts of industrial systems
•	 Business models and ecosystems
•	 Domain dependent and independent services and 

application
•	 Software architectures of the operational systems and 

middle-ware, etc.
•	 Enabling technologies and systems architecture
•	 Security and privacy mechanisms
•	 Management strategies of industrial systems

Fig. 2   Conceptual architecture of cognitive digital twins defined based on ISO/IEC/IEEE 42010 standard (labels in red color represent the com-
ponents defined in Eq. (1))
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	   Based on the seven main concerns, the KG models 
can be developed in four main dimensions [28]:

•	 Domains consist of the contents related to system 
domains including physical entities Sys and commu-
nications comm.

•	 Model objects refer to the contents related to CDT 
models CDTSys, such as virtual models 

∑

Modelt and 
Ontology (topology between models).

•	 Organizations represent the organizations related to 
the system, such as suppliers and manufacturers as 
stakeholders in Fig. 2.

•	 KG objects contain the key information for support-
ing description, structure, methodology, decision-
making, reasoning and manuals of knowledge graph 
models as related architectural viewpoints in Fig. 2.

3.	 CDT construction. Mt with machine learning and AI 
APIs, 

∑

Modelt including KG models, historical data 
and results of system dynamics are combined to gener-
ate virtual entities of CDTSys. When developing CDT, 
machine learning models are trained based on the inputs: 
(1) KG models, representing ontology including domain-
specific knowledge and information of virtual models 
and their topology; (2) Dynamic simulation results, 
representing the predicted dynamic system behaviors 

based on simulation models; (3) historical data, repre-
senting the previous behaviors of real systems. Then, the 
generated machine learning models are used to support 
trade-off and reasoning during development and imple-
mentation of the physical system Sys in order to obtain 
the rational for its system behaviors.

4.	 CDT-based analysis for real-time process and devel-
opment optimization. This component is used to make 
decisions and optimize the Sys including physical system 
and development processes based on the CDT models 
and collected real-time data Modelt . When developing 
the system Sys, CDT can provide decision-makings for 
designers to select one more expected solution, such as 
parameter selections and design space exploration [39]. 
Moreover, CDT enables to optimize the design solu-
tions in order to find an optimal solution. During sys-
tem implementation, CDT enables to support decision-
makings during anomaly detection and forecasting [40]. 
Moreover, the optimization can be utilized to manipulate 
the physical entity and control the workflow of system 
development with better performances as a Sys.

5.	 Service-oriented interface for data interoperability. 
A service-oriented approach are used to support inte-
gration of heterogeneous data based on Open Source 
Lifecycle Collaboration (OSLC) from our previous work 

Fig. 3   Application framework of cognitive digital twins enabled by knowledge graphs (labels in red color represent the components defined in 
Eq. (1))
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[41]. The digital engineering assets 
∑

Modelt including 
models, documents and data across business domains 
are transformed to unified data formats through the 
developed OSLC adapters. These unified data is used 
in different components in our proposed framework to 
promote the their interoperability. Moreover, different 
business domain systems such as ERP provide real-time 
data for making decisions based on CDT.

4 � Case study

The aim of this case study is to verify the proposed CDT 
conceptual architecture and KG-centric framework for CDT 
application (RS 6 in the research methodology). This case is 
designed based on a vehicle auto-braking system develop-
ment scenario. A tool-chain corresponding to the application 
framework is provided to enable the CDT development and 
implementation. A series of simulation experiments are con-
ducted, and a machine learning algorithm is used to create 
the AI model for constructing CDT for decision-makings in 
the case study.

4.1 � Scenario definition

In this case study, a simplified scenario of the vehicle auto-
braking system is defined as shown in Fig. 4. Two vehicles 
( V1,V2 ) are driving on the same direction with different ini-
tial positions ( p1, p2 ), velocities ( v1, v2 ) and accelerations 
( a1, a2 ). A controller is expected to be developed for V2 to 
protect it from crashing with V1 in different situations. The 
distance between them should be more than 1.5 meters, oth-
erwise they are considered as crashed.

The target of the case study is to develop a CDT to 
support decision-making of the controller development. 
The CDT is expected to evaluate if the current solution of 

auto-braking system architecture represented by the system 
models can satisfy the demands of the auto-braking scenario, 
i.e., preventing the two vehicles crashing. When developing 
this controller, a model-based systems engineering approach 
is adopted in the previous work [42]. KARMA (Kombina-
tion of ARchitecture Modeling specificAtion) language is 
firstly used to support architecture design including require-
ment modelling, functional modelling, behaviors model-
ling and physical architecture modelling based on SysML 
specification [43]. Moreover, based on the code generation 
approach, KARMA models of physical architecture can be 
transformed to Matlab language scripts which are used to 
generate Simulink models automatically [44]. Such Simulink 
models aim to simulate the performances of the auto-braking 
systems and verify the requirements of auto-braking system.

When developing the auto-braking systems using model-
based systems engineering (MBSE), KARMA models and 
Simulink models with different parameters represent differ-
ent solutions. In this case, 100 sets of SysML models and 
Simulink models with different parameters are developed as 
the solution candidates. The Simulink models provide 100 
sets of simulation results as the verification of such candi-
dates. In order to make decisions among these solution can-
didates, a CDT model is expected to analyze the controller 
solutions (KARMA models) using the previous simulation 
results. Finally, this CDT model will be used in a web-based 
process management system to support decision-makings 
automatically for the controller development [45]. More 
details about this case are introduced in previous publica-
tions as listed in Table 1.

4.2 � Tool‑chain for CDT development 
and application

The proposed tool-chain is shown in Fig. 5, corresponding 
to the application framework. This tool-chain includes Meta-
Graph1 for system modelling, Simulink2 for verification of 
the auto-braking system, Protégé3 for ontology construction, 
and KNIME4 for data processing and AI model training. The 
workflow of these tools is introduced as follows: 

1.	 A controller for the auto-braking system is designed by 
system models including requirement models, functional 
models, logic models and physical structure models in 
a domain-specific modelling tool MetaGraph [43] and 
verified by virtual simulation models in Simulink [42]. 

Fig. 4   Scenario definition of the use case for auto-braking controller 
system

1  A domain-specific modelling tool based on KARMA language, 
http://​www.​zkhon​eycomb.​com/
2  https://​www.​mathw​orks.​com/​produ​cts/​matlab.​html
3  https://​prote​ge.​stanf​ord.​edu/
4  https://​www.​knime.​com/
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Such Simulink models can be generated from system 
models using the code generation function in Meta-
Graph. The detailed models built in this case study are 
listed in Table 2.

2.	 Ontology models are generated from KARMA models 
of auto-braking system architectures which represent 
the topology and information related to the MetaGraph 
models and Simulink models [46]. Thus, one set of sys-
tem models refers to one entire solution of the auto-
braking controller development. Moreover, the gener-
ated Simulink models are used to verify the solutions 
and provide their results for controller performances.

3.	 Several sets of system models and related simulation 
results obtained from Simulink models are imported 
to KNIME for data processing [47]. In KNIME, a data-
analysis workflow is developed to capture the required 
data from ontology models, to develop machine learning 
algorithms for AI model training and generation, and to 
validate the AI models based on the captured data.

4.	 Finally, after the AI models are generated, they are inte-
grated with a process management system in order to 
support parameter selection for system developers.

4.3 � Virtual model development for CDT 
construction

A set of the KARMA models are developed to define require-
ments, functions, behaviors, physical structure and verifica-
tion of the auto-braking system based on the SysML specifi-
cation. Such KARMA models are constructed as one solution 
for the auto-braking system development. As introduced in 
the Scenario definition, each set of KARMA models repre-
senting one solution has their own parameters5. Moreover, 
such models can be used to generate a Simulink model for 
verifying the performance of the designed controller.

4.3.1 � Architecture models

As shown in 6, some examples of the KARMA models are 
created with relevant information listed in Table 2. The phys-
ical entities, cognitive entities and comm construct a com-
plete CDT, which enables to make decisions in the process 
management system [45]. The overall architecture design 
and verification process for the auto-braking system consists 
of the following five phases:

Fig. 5   Tool-chain for CDT development and application

Table 1   Case study and related previous work

Previous work Reference Steps in Fig. 5

A model-driven approach for auto-braking system development [42] Steps 1–3
KARMA Language supporting architecture design of auto-braking system [43] Step 1
KARMA Language supporting code generation for implement Simulink models automatically [44] Step 2
GOPPRRE ontology generation from KARMA language for constructing knowledge graph models [46] Step 4
A process management platform which can integrate CDT for selecting parameters automatically [39] Step 8

5  The entire models are introduced in https://​www.​youtu​be.​com/​
watch?v=​Flccx​JBdtwo
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•	 Requirement: KARMA models are used to create 
SysML Requirement diagrams for describing the require-
ments of the controller when developing the auto-braking 

system. As shown in Fig. 7A, requirements such as “top 
level requirement for auto-braking system”, “the system 
shall provide a base brake funnctionality where the driver 

Table 2   Cognitive digital twins constructed for the case study

Entities Models Views

Physical entities Decision-making processes for auto-braking system 
design

Making decisions in the process management system 
for auto-braking systems

Cognitive entities Models 
(Virtual 
entities)

Requirement models SysML requirement diagram for formalizing the 
requirements of auto-braking systems

Function models SysML use case and activity diagrams for developing 
the functions of the auto-braking systems

Behavior models SysML State machine diagram and Sequence diagram 
for behavior formalism of auto-braking systems

Physical structure models SysML Block definition diagram and Internal block 
diagram for describing the system structure of the 
auto-braking systems

Verification models (mirror to Simulink models 
which are not included in models)

SysML Parametric diagram and Internal block diagram 
to describe the parameter configuration and model 
structure of Simulink models

Simulink models Simulation models for verifying the controller 
performances

Simulation results Simulation results obtained from Simulation models for 
verifying the controller performance

Ontology KG models generated from SysML models described 
in OWL

Topologies between all the model entities with their 
own information

Comm Integration of CDT models and a web-based process 
management platform

Implementations of Decision-makings between system 
development process based on cognitive entities

Fig. 6   Construction of the CDT virtual models including architecture models and Simulink models
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indicates that he/she wants to reduce speed and the brak-
ing system starts decelerating the vehicle”, are defined in 
the Requirement Diagram.

•	 Function: SysML Use Case and Activity diagrams are 
used to develop KARMA models aiming to identify the 
use case scenarios and function flow of the controller. As 
shown in Fig. 7B, several Use Case diagrams are created 
to identify the stakeholders and the features (an abstract 
concept of a collection of functions). Such features are 
decomposed into 158 functions as shown in Fig. 7C. For 
example, the function of breaking control needs four 
functions. Such functions are then defined as an entire 
function flow, as shown in Fig. 7D, which is used to rep-
resent the functioning process for the entire auto-braking 
scenario.

•	 Behaviors: SysML State Machine diagram and Sequence 
diagram are used to develop KARMA models for design-
ing the logic flow of the controller with the behaviors of 
each component. As shown in Fig. 7E, system behaviors 
of each component are represented by Sequence dia-
grams in order to identify all the physical components in 
the physical structure.

•	 Physical structure: SysML Definition Block diagram 
and Internal Block diagram are used to develop KARMA 
models for describing physical structure of the auto-brak-
ing system including its components, such as the control-
ler. As shown in Fig. 7F, the entire physical structure is 
shown including all the related system components.

•	 Verification: In order to realize automated testing 
from the architecture models, we construct a KARMA 
model to derive Simulink models for simulation based 

on SysML Internal Block diagram. Moreover, KARMA 
models based on SysML Parametric diagram are defined 
to support parameter settings for automated testing as 
shown in Fig. 8.

It is worth noting that the decision-making process for the 
auto-braking system design is considered as the physical 
entity in this case study. The main reason is that from the 
systems engineering perspective, a process can also be con-
sidered as a system. In this case study, although the targeted 
“physical” entity is the auto-braking system, we are focusing 
on the design phase of its lifecycle, or more specifically the 
decision-making process among different design solutions. 
Therefore, the system becomes process-oriented instead 
of product-oriented. The physical auto-braking system 
becomes the target of the process and more other informa-
tion related to the decision-making process itself is included 
to create a more complete “system”. Corresponding to the 
decision-making process, different types of models such as 
requirement models, function models, behavior models, and 
physical structure models are defined as the virtual entities 
as introduced above. Among them, the physical structure 
models can be mapped to the physical auto-braking system 
which can be used in the following lifecycle stages such as 
production and maintenance.

4.3.2 � Code generation for automatic testing

Enabled by the code generation function of KARMA [45], 
the KARMA models of SysML Internal Block diagram are 
used to generate the Simulink models. First, a KARMA 

Fig. 7   KARMA models in MetaGraph 2.0
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script is designed in order to implement code generation. 
As shown in Algorithm 1, after identifying all the elements 

and connections of the KARMA model which represents 
the physical architecture, an M file is generated based on the 
developed KARMA script. Then, an M file, which can be 
used by Matlab, is generated from KARMA Internal Block 
diagram model for generating Simulink Models finally.

Fig. 8   Code generation process from KARMA models for Simulink execution
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Moreover, KARMA models of SysML Parametric dia-
grams are used to describe parameter configurations of Sim-
ulink model executions. As shown in Algorithm 2, after each 
constraint is identified, based on the connected parameters, 
the M script is printed for configuring the parameters in 
Simulink based on the KARMA script. Then, it enables to 
generate an M file to execute parameter setting and simu-
lations through code generation. Through these KARMA 
models, Matlab scripts are generated to configure the Sim-
ulink models and execute the simulation automatically. 
During the automatic testing process, 6 key parameters are 
captured when implementing the simulations:

•	 initial position of the V1

•	 initial velocity of the V1

•	 initial acceleration of the V1

•	 initial position of the V2

•	 initial velocity of the V2

•	 initial acceleration of the V2

The KARMA model based on SysML Parametric diagram 
describes the given range of each previous parameter. Then, 
when executing the simulations, the value of each parameter 
in Simulink is set for every simulation.

4.4 � Machine learning algorithm for CDT 
construction

In order to construct CDT, 100 KARMA models based on 
SysML specifications are firstly transformed to 100 OWL 
files by MetaGraph. Moreover, Simulink models generated 
from SysML models are implemented with 100 simulation 
results. As shown in Fig. 9A, the OWL models and simula-
tion results from Simulink models are input into KNIME for 
developing AI models used in the web-based process man-
agement system. As shown in Fig. 9C, the AI model aims 
to import the OWL file (model structural data generated 
from KARMA models) to provide a decision-making option 
(being crash or not) for the process management system. In 
order to train the AI model, the OWL files are transformed to 
structural OWL data using SPARQL query [48] and simula-
tion results are labelled as (0 (crash) and 1 (no crash)) based 
on the situation if the distance of these two vehicles is less 
than 1.5 meters anytime. These labels are mapping to the 
structural OWL data which means if the OWL data repre-
senting each solution from KARMA models can satisfy the 
demand that these two vehicles cannot be crashed.

The data from labels and structural OWL data are col-
lected as training dataset for a five-layer neural network 
model development empowered by the APIs provided by the 
Tensorflow in KNIME. Some key parameters of the neural 
network model are listed in Table 3. Regarding the training 

dataset, 80% of the simulation data (80 pairs of OWL struc-
tural data and labels (1 or 0)) are used to train the neural 
network model and the rest 20% are used to test the perfor-
mance of the obtained model.
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The details of the data processing are demonstrated in 
Algorithm 3. The source code of the data processing and 
neural network model training are available online6 with all 
the data samples. One set of the data contains one OWL 
file and multiple simulation result files generated with Sim-
ulink. Some key parameters and performance indicators of 
the neural network model are listed in Table 3. With 80 sets 
training of data, the five-layer neural network produced 65% 
accuracy with an 86% recall rate among 20 sets of testing 
data. The accuracy of the neural network is relatively low 

mainly because the size of the data samples is small. Since 
the machine learning algorithm is not the main contribution 
of this paper, we used a basic neural network structure to 
demonstrate the workflow. In real industrial applications, 
much larger training data size will be available and more 
advanced machine learning algorithms can be applied to 
achieve a better performance.

4.5 � Applying CDT for supporting decision‑making

As shown in Fig. 5, the trained neural network model based 
on historical data referring to the CDT is integrated into a 
web-based process management system for the auto-braking 

Fig. 9   CDT models supporting automated parameter selections

6  https://​github.​com/​zheng​xiaoc​hen/​cogni​tivet​wins
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system development (Fig. 9B). This development process is 
developed in our previous research [39] aiming at selecting 
parameters for co-simulation of auto-braking system design. 
In the previous research, a web-based process management 
system is developed to select parameters for co-simulation 
based on the Simulink simulation. In this paper, we develop 
a CDT which is plugged into the web-based process man-
agement system to provide a decision-making process for 
automatic testing. The whole process includes 5 tasks:

•	 Work task 1, referring to requirement analysis of the 
auto-braking system. In this working task, requirement 
models are developed using KARMA. Through the web-
based process management system, users can reach to the 
requirement models developed in MetaGraph 2.0.

•	 Work task 2, referring to generating architecture model 
for auto-braking systems. In this working task, function, 
behavior, physical structure and verification models 
are reviewed. After the models are developed, different 
stakeholders enable to reach to the related KARMA mod-
els through the web service.

•	 Work task 3, referring to uploading models for auto-braking 
system. In this working task, KARMA models are generated 
into OWL models and uploaded to the server which is used 
for decision-makings through CDT.

•	 Work task 4, as shown in Fig. 9C, when the CDT is 
integrated with the work task 4, the web-based process 
management system implements the CDT through a Java 
program which captures the inputs from the OWL mod-
els and then provides the decision-making options if the 
two cars are crashed or not without simulations.

•	 Work task 5, referring to feedback. In this working task, 
feedbacks based on the decision-makings from the CDT 
are provided to the users in the web-based process man-
agement system.

4.6 � Summary of case study

In the above case study, in order to design an architecture 
description for the auto-braking system design process, the 
architecture design and verification of the auto-braking sys-
tem are considered as two separate architecture viewpoints. 
Therefore, the KARMA models and Simulink models are 
defined as model type to support the architecture description 

of such process. They are essential elements for constructing 
the virtual entities. It is worth to mention that the KARMA 
models for verification are not considered as virtual entities, 
because they are only used to generate Simulink models. 
The simulation results generated from Simulink models 
are considered as virtual entities in the scope since they are 
important to the decision-making process.

The M files for Matlab and KARMA scripts for code gen-
eration are not considered as virtual entities. The reasons 
are two-fold: first, they are introduced to generate Simulink 
models from KARMA models and have no specific descrip-
tions about the real auto-braking system design process; 
thus, they are not included in any architecture view; second, 
they are not defined in the ontology models; thus, there is no 
relationships defined between them and other virtual entities 
such as architecture models, simulation models and simula-
tion results.

The OWL models generated from KARMA models 
contain specifications of the topology between virtual enti-
ties. They include the information of KARMA models for 
verification which is the mirror to Simulink models, thus, 
it is not necessary to add extra information to represent 
Simulink. The simulation results are not included in the 
generated OWL models. This information is added to the 
generated ontology models manually using Protégé. In sum-
mary, the OWL models include the following three types of 
information:

•	 KARMA models including requirement, function, behav-
ior and physical structure models and their topology.

•	 KARMA models including verification models which are 
mirrored to Simulink models and their topology.

•	 Simulink results which are linked to Simulink models 
and their topology.

All the cognitive entities and their quantities in the scope 
of the case study are listed in Table 4. There are totally 31 
KARMA models, including requirement, function, behavior, 
physical structure and verification models. Among them, the 
SysML parametric diagram model is configured 100 times 
with different settings to generate the Simulink models and 
the other 30 remain the same. Therefore, 130 KARMA 
models are created for this case study. Simulink models and 
results are separately generated by 100 times; thus, their 
numbers are both 100. Ontology models are generated by 
100 times in order to synchronize with Simulink models. A 
dedicated plugin is developed to integrate these virtual enti-
ties into the web-based process management system.

When constructing the cognitive entities, model evolu-
tion, understanding the interrelationships, and enhancing the 
decision-makings are three critical features. They are further 
elaborated as follows:

Table 3   Parameters and performance of the neural network model

Neural network model Performance

Layers 5 Accuracy 0.65
Batch 30 Recall 0.86
Learning rate 0.001 TN(FN) 7 (1)
Epochs 1000 TP(FP) 6 (6)
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First, model evolution is defined from two aspects: (1) 
dynamic model evolution across the entire lifecycle; (2) 
model evolution based on each model baseline. The first 
aspect refers to dynamic model evolution from problem 
domain to solution domain across the entire system lifecycle. 
In the case study, we develop requirement models, function 
models, behavior models, physical structure models, verifi-
cation models and simulation models using KARMA. These 
models support the whole development process from prob-
lem domain (black box) to solution domain (white box). All 
these KARMA models are transformed to ontology models 
including all the evolution information from requirement 
to verification. The second aspect is model evolution based 
on its baseline. Because all the model topology and param-
eters are described using ontology models, the IT techniques 
enable to support version management, change management 
and consistency management of KARMA models. Using 
such techniques, each KARMA model can be managed from 
its baseline and the following versions.

Second, using a unified ontology, virtual entities, physical 
entities and their relationships can be formally described. 
KARMA language [43] and GOPPRRE ontology [46] pro-
vide a basic specification to develop architecture models. 
Meta-models, such as SysML diagrams, are developed under 
a unified semantic data structure which promotes the inter-
operability of architecture models. Through code genera-
tions, KARMA architecture models can be transformed to 
Simulink models which describe the transformation rules 
from architecture to simulation models. With top-level 
ontology, such as BFO, ontology models enable to describe 
the interrelationships between physical systems, system life-
cycle, architecture models, models in other simulation tools 
and other data formats.

Third, the ultimate objective of the developed CDT is 
to replace the simulation execution in order to improve the 
efficiency of the decision-making process. When using tradi-
tional decision-making processes, Simulink models are cre-
ated through code generation and then executed to obtain the 
given simulation results as the input of the decision-making 

algorithm, which then provides a final decision reference. 
After constructing the CDT with pre-trained AI models, 
architecture model information in OWL models is provided 
as input of the decision-making algorithm directly. The code 
generation and simulation execution are not required com-
pared with the traditional process. In this situation, the effi-
ciency of decision-making process can be promoted.

5 � Discussion

5.1 � Main achievements

As an emerging concept, CDT is still in its early stage of 
development. Although some previous studies have explored 
the CDT concept from theoretical perspective, there is still 
a lack of successful application cases to realize the concept. 
This paper aims to bridge the gap between CDT theoretical 
concept and industrial applications by providing a concep-
tual architecture and an application framework containing 
necessary enabling technologies and tools.

A case study about auto-braking system development 
is used to validate the proposed solution. The CDT of this 
system is developed based on ontology models, heterogene-
ous virtual models and system dynamics simulation results. 
In this case, the development process of the auto-braking 
system can be considered as the physical entity of the CDT. 
As shown in Table 2, all the defined concepts related to 
the decision-making process for the parameter selection are 
captured. Using the KARMA language and Simulink tool, 
seven types of models are used as virtual entities. Moreo-
ver, the OWL models generated from KARMA models are 
used to represent model information and the topology across 
models. All these models compose the cognitive entities of 
the CDT. The communication between physical entities and 
cognitive entities refers to the integration of the AI models 
and the web-based process management system. The results 
of the case study prove that the given tool-chain is capable 
of constructing a practical CDT.

Table 4   CDT entities and their quantities

Physical entity Decision-making process during the auto-braking system design Quantities

Cognitive entity Models 
(Virtual 
entities)

KARMA models supporting auto-braking system design, including requirement, function, behavior, 
physical structure model

130

Simulink models supporting auto-braking system verification which are mapped to KARMA models 
for verification

100

Simulation results from Simulink models 100
Ontology Ontology models developed in Protégé representing topology among KARMA architecture models, 

Simulink models and simulation results
100

Comm A plugin for the web-based process management system embedded the CDT to implement decision-
makings without simulation execution [45]

1
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The conceptual architecture of the CDT is also validated 
through the given case study. In this case, the architecture 
description of the physical entity, i.e., the development 
process of the auto-braking system, includes viewpoints 
conforming concerns from stakeholders: (1) requirement 
analysis; (2) function definition; (3) logic flow of each com-
ponents in the auto-braking system; (4) physical structure; 
(5) verification of the controller; (6) performance analysis 
of the controller. Simulink models and KARMA models 
are used to represent views governed by such viewpoints. 
Because of code generation from KARMA models, the 
information related to Simulink models is represented in 
KARMA models. Thus, the OWL models which are gener-
ated from KARMA models, enable to represent the infor-
mation of not only KARMA models themselves, but also 
Simulink models and topologies among them. Such OWL 
models can be considered as ontology to represent relations 
and correspondences. The OWL models are constructed 
based on its own schema which can be defined as corre-
spondence rules.

In the case study, the feasibility of the proposed tool-
chain is also validated corresponding to the proposed CDT 
application framework. First, Simulink is used to imple-
ment the system dynamic analysis and simulation for con-
structing CDT. Second, OWL models generated from the 
KARMA models are constructed for KG modelling. Though 
the given KARMA models in the case study only represent 
seven viewpoints related to part of the mentioned concerns, 
the KARMA language enables to be extended with other 
meta-models for further concerns. KNIME is used to inte-
grate AI platforms, OWL models and data from Simulink 
model execution in order to construct CDT models. Finally, 
the CDT models are integrated with a real web-based pro-
cess management system in order to support decision-mak-
ings of parameter selections during auto-braking system 
development.

5.2 � Limitations

The work presented in this paper can be considered as a pri-
mary demonstrator to reveal the great potential of the CDT 
concept. However, many advanced enabling technologies 
are required to fully realize the CDT vision, such as seman-
tics engineering and KG, machine learning, IoT, and cloud 
computing. Due to limited resources, the case study mainly 
focused on some of the main functions of the CDT concept. 
There exist several limitations of this study as listed below.

•	 Due to limited resources, a simplified use case is used 
with much less factors than real complex systems. This 
impacts the performance of the obtained decision-support 
model. Moreover, since the machine learning algorithm is 
not the main focus of this paper, limited efforts are spent 

on the parameter tuning of the algorithm. In practical 
applications, much more data will be collected and more 
advanced machine learning algorithms should be designed 
to obtain better performance.

•	 The case study only covers the development phase of 
the auto-braking system, whereas a complete CDT is 
expected to include more lifecycle phases, such as pro-
duction, maintenance, and recycling. To construct such 
a complete CDT, a special team involving experts from 
all relevant domains is needed, which requires high-level 
of inter-organizational interoperability.

•	 The automatic testing scenario based on Simulink is lim-
ited by a simplified model. In this paper, the purpose of 
the use case is to evaluate our CDT concept rather than 
a real verification for the auto-braking system design. 
Thus, more complex models such as CAE models, CAD 
models are not considered in the case study. Further 
research will be implemented for the industrial case to 
improve the model complexity.

•	 The service-oriented interfaces are not included in the 
case study. However, previous research [41] has pro-
vided a possible solution for integrating heterogeneous 
data using OSLC, which will be integrated in the future 
research.

5.3 � Future works

CDT is a novel concept which is believed to be the next 
evolution of DT. The contributions of this paper, including 
the CDT concept, conceptual architecture and application 
framework, paved way to more future research opportunities. 
Some of them are listed below:

•	 Application of advanced KG and relevant technologies 
in CDT development: Semantic modelling and KG tech-
nologies are key enabling technologies for CDT. They 
are currently under rapid development and new tools are 
appearing frequently. It is important to investigate such 
new achievements and explore their applications for CDT 
development.

•	 Development and application of standardized industrial 
ontologies: Ontology is crucial to obtain high interop-
erability among digital entities. However, most ontolo-
gies are developed based on their own scenarios without 
standardization. Top-level ontologies, such as BFO and 
Descriptive Ontology for Linguistic and Cognitive Engi-
neering (DOLCE) [49], can help increase the semantic 
interoperability among different lower-level ontologies. 
Efforts are needed to investigate how to unify and stand-
ardize existing domain ontologies based on such top-
level ontologies.

•	 Development and application of MBSE technologies in 
complex system development: MBSE models provide a 
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structural description for formalizing DTs. Such models 
are the foundation to formalize the topology between dif-
ferent digital entities. The semantic and unified languages 
supporting MBSE, such as KARMA language, provide 
a potential way to create KGs automatically, which can 
accelerate the CDT development.

•	 Application of advanced machine learning techniques to 
support CDT implementation: The performance of the 
adopted machine learning algorithms determines the 
reliability of the decision-making results of CDT. More 
efforts are required to explore how to select and apply the 
optimal algorithms for CDT implementations.

•	 More detailed industrial CDT implementation refer-
ence architectures and tool-chains: This paper presents 
a conceptual architecture and tool-chain based on the 
knowledge of the authors. Experts from other domains 
might have different viewpoints and concerns about 
CDT implementation. More architectures and tools are 
required to complete the CDT vision.

6 � Conclusion

This paper proposes a formal definition of CDT based on a 
systems engineering approach. Moreover, a CDT concep-
tual architecture is defined based on the systems engineer-
ing standard ISO 42010. To facilitate CDT development and 
implementation, a KG-based framework is developed together 
with an enabling tool-chain. To verify the proposed frame-
work and tool-chain, a case study of an auto-braking system 
development is conducted. KARMA models and Simulink 
models are used to define solutions and verify requirements. 
Based on such models, a multi-layer neural network is trained 
based on simulation data and ontology models generated from 
KARMA models, which is then utilized to support decision-
making. The case study demonstrated the practicability of the 
proposed CDT concept, architecture and reference framework. 
The simulation results indicate the potential of CDT in pro-
moting the decision-makings during complex system develop-
ment. This study bridges the gaps between theoretical CDT 
concept and industrial CDT applications. It reveals the great 
potential of CDT, as the next generation of DT, for complex 
system development and management.
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