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Abstract
During milling operations, wear of cutting tool is inevitable; therefore, tool condition monitoring is essential. One of the 
difficulties in detecting the state of milling tools is that they are visually inspected, and due to this, the milling process needs 
to be interrupted. Intelligent monitoring systems based on accelerometers and algorithms have been developed as a part of 
Industry 4.0 to monitor the tool wear during milling process. In this paper, acoustic emission (AE) and vibration signals 
captured through sensors are analyzed and the scalograms were constructed from Morlet wavelets. The relative wavelet energy 
(RWE) criterion was applied to select suitable wavelet functions. Due to the availability of less experimental data to train 
the LSTM model for the prediction of tool wear, SinGAN was applied to generate additional scalograms and later several 
image quality parameters were extracted to construct feature vectors. The feature vector is used to train three long short-
term memory network (LSTM) models: vanilla, stacked, and bidirectional. To analyze the performance of LSTM models 
for tool wear prediction, five performance parameters were computed namely R2, adjusted R2, mean absolute error (MAE), 
root mean square error (RMSE), and mean square error (MSE). The lowest MAE, RMSE, and MSE values were observed 
as 0.005, 0.016, and 0.0002 and high R2 and Adj. R2 values as 0.997 are observed from the vibration signal. Results suggest 
that the stacked LSTM model predicts the tool wear better as compared to other LSTM models. The proposed methodology 
has given very less errors in tool wear predictions and can be extremely useful for the development of an online deep learn-
ing tool condition monitoring system.

Keywords Tool condition monitoring (TCM) · Milling · Industry 4.0 · SinGAN · Deep learning · Stacked LSTM

1 Introduction

Stainless steel alloys are widely used in many industrial 
fields such as automotive, aerospace, and medical. However, 
machining of stainless steel possesses a lot of challenges 
and difficulties. This is due to the tendency of work hard-
ening, low thermal conductivity, and high strength. These 
are very hard materials which are difficult to machine and 
result in poor surface finish, tool failure, and irregular wear. 
The presence of a build-up edge increases tool wear rate 
and deteriorates the surface integrity of the work. Face mill-
ing of stainless steel can solve these difficulties. Milling is 
a common and efficient machining operation employed in 
modern industrial manufacturing for fabricating various 
mechanical parts, such as flat surfaces, grooves, threads, and 
other complex geometric shapes [1]. Cutting tools are key 
components in machine milling operations that are inevi-
tably subject to wear during milling and therefore present 
conditions that vary over their effective lifetimes. Machining 

 * Vinay Vakharia 
 Vinay.Vakharia@sot.pdpu.ac.in

 * Khaled Giasin 
 Khaled.giasin@port.ac.uk

 Milind Shah 
 Milind.smtmd20@sot.pdpu.ac.in

 Rakesh Chaudhari 
 rakesh.chaudhari@sot.pdpu.ac.in

 Jay Vora 
 vorajaykumar@gmail.com

 Danil Yu. Pimenov 
 danil_u@rambler.ru

1 School of Technology, Pandit Deendayal Energy University, 
Gandhinagar 382007, Gujarat, India

2 Department of Automated Mechanical Engineering, South 
Ural State University, Lenin Prosp. 76, 454080 Chelyabinsk, 
Russia

3 School of Mechanical and Design Engineering, University 
of Portsmouth, Portsmouth PO1 3DJ, UK

/ Published online: 20 May 2022

The International Journal of Advanced Manufacturing Technology (2022) 121:723–736

http://orcid.org/0000-0001-9791-7525
http://orcid.org/0000-0001-6904-2362
http://orcid.org/0000-0002-7543-903X
http://orcid.org/0000-0002-5568-8928
http://orcid.org/0000-0002-3992-8602
http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09356-0&domain=pdf


1 3

is a vital material removal technique in manufacturing that 
requires significant attention owing to the time and money 
required. As the applications for these machines expand, a 
system for monitoring tool wear becomes important. Tool 
condition monitoring (TCM) is an important technology in 
automated manufacturing processes because it increases 
productivity by reducing downtime, reduces damage to 
the cutting tool and workpiece, and ensures product qual-
ity [2, 3] because a broken tool causes permanent damage 
to the workpiece’s surface. As a result, tool wear affects 
the machined part surface quality, dimensional accuracy, 
and operating cost [4, 5]. As a consequence, it is vital to 
monitor tool wear using direct and indirect methods. The 
direct method requires the cutting tool to be removed from 
the machine and an optical microscope is generally used 
to measure wear, whereas the indirect method uses various 
sensor signals such as acoustic emission (AE), milling force, 
tool/workpiece vibration, and spindle motor current, to esti-
mate tool wear [6]. Under typical machining conditions, it 
is noticed that flank wear is the most prevalent. The width 
of flank wear (VB) is the most commonly used measure to 
determine the cutting tool life [7]. This may be quantified 
directly [6] or indirectly (using sensors). Direct inspection 
methods include using optical microscopy to examine the 
condition of the cutting tool edges and measuring the tool 
wear. However, using this method introduces undesirable 
interruption periods which slows the machining process 
and increases the manufacturing costs. On the other hand, 
the indirect approach makes use of sensors that can monitor 
the tool wear without interrupting the machining process, 
therefore reducing the machining time and improving the 
productivity. Tool condition monitoring is one of the direct 
methods which are used for determining the value of tool 
wear without stopping the machining operation [8]. Recent 
studies have shown an interest in tool wear prediction since 
this would bring a significant benefit to the industry when it 
comes to waste reduction, production cost, and accuracy [9]. 
The typical machine downtime due to tool wear is between 
7 and 20% [3]. Numerous methods have been developed in 
the recent two decades to quantify tool wear, including the 
use of outputs from acoustic emission sensors, vibration sen-
sors, and current sensors [10, 11]. From the data collected by 
these sensors, it is possible to estimate tool wear, allowing 
for a more efficient machining process. A handful of research 
have been conducted to establish a link between machin-
ing parameters and tool wear using the indirect approach 
of tool condition monitoring [12, 13]. Vakharia et al. [14], 
for instance, employed Symlet wavelets to extract statistical 
characteristics from vibration and acoustic emission signals 
to estimate tool wear. To characterize the acoustic emission 
(AE) signals captured during cutting, Liang and Dornfeld 
[15] utilized an autoregressive time series. Their results sug-
gested that detection of tool wear could be accomplished 

during machining by monitoring the evolution of the model 
parameter vector. Mohanraj et al. [16] predicted tool wear 
in the end milling machining process using wavelet char-
acteristics and Holder’s coefficient. The authors analyzed 
flank wear with vibration signals by implementing various 
machine learning (ML) algorithms. The confusion matrix 
was used to analyze the accuracy of ML algorithms and 
later verified by using benchmarking datasets. The obtained 
results from the analysis have shown an accuracy of 100% 
and 99.86% for the support vector machine and decision 
trees, respectively. Tool life estimation is estimated using 
various approaches starting from mathematical formulation 
[17] to stochastic modeling [18], to more complex statisti-
cal models [19], and recently, the application of various AI 
algorithms. Machine learning (ML) algorithms which is a 
subset of AI techniques can bring automation in a variety of 
machining tasks, without much involvement of humans. In 
ML, various models, like SVM, ANN, KNN, etc., initially 
learn and trained through input data and output data and later 
can be used for prediction for unseen data [20–22].

Data-driven TCM has grown significantly as the need to 
incorporate automation and Industry 4.0 in manufacturing 
industries increases. Furthermore, with more inclusions of 
multi-sensors, sensor networks, and complex and unstruc-
tured data, big data poses a challenge for developing robust 
models. At present, deep learning (DL) serves as a bridge 
that efficiently connects big data coming from machinery 
with intelligent machine condition monitoring techniques. 
DL is another type of ML algorithm and has been applied in 
a variety of applications, since 2006. It mimics the function-
ality of ANN and consists of multiple information process-
ing layers which learn the hierarchical representations of 
data. Recently, Serin et al. [23] did a comprehensive study 
about the applications of various deep learning algorithms 
for TCM. A methodology has been developed for automatic 
detection of tool wear in the face milling process using con-
volutional neural network (CNN) that is capable of iden-
tifying wear rates with minimal error [24]. Kothuru et al. 
[25] investigated the application of hyperparameter tuning 
to improve the accuracy of tool condition monitoring in the 
face milling process using CNN. Recently, Dzulfikri et al. 
[26] proposed a deep metric learning approach for stamp-
ing tool condition diagnosis. Several DML approaches were 
examined to see which one was best for determining the state 
of stamping tools. Authors concluded that the triplet network 
provided the most favorable results.

Numerous researchers have identified the lack of 
adequate experimental data to develop machine learning 
models as a barrier for effective tool condition monitor-
ing and prediction of tool wear. The task becomes chal-
lenging when DL models need to be developed as they 
require large experimental data for training. To overcome 
this obstacle and to enable effective automation, the 
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authors developed and investigated the utility of SinGAN 
for the generation of additional scalograms. Additionally, 
a thorough review of the literature indicates that prior 
research has paid little consideration to the prediction of 
tool wear using a combined approach of wavelet scalo-
grams, SinGAN, and DL models like LSTM. Further 
authors applied the mother wavelet selection criterion 
relative wavelet energy (RWE) to select the base wavelet 
to generate scalograms from acoustic and vibration sig-
nals and extract relevant information from image quality 
parameters and, finally, tool wear has been predicted with 
various types of LSTM models.

A methodology has been presented related to the gen-
eration of additional data. Based on this, the advantage of 
the proposed method is verified after conducting experi-
ments on publicly available milling datasets from Prog-
nostics Centre of Excellence-Data Repository, NASA [27]. 
Comparisons of various LSTM models are discussed, and 
findings are evaluated with the standard performance 
metrics to determine the efficacy of models for prediction 
of tool wear. The remainder of the article is structured 
as follows. In Sect. 2, relevant information related to the 
experimentation and utilization of SinGAN are described. 
Section 3 discusses LSTM architecture. In Sect. 4, the 

results are described and in Sect. 5 the concluding remarks 
are highlighted. The methodology of the proposed work 
can be seen in Fig. 1.

2  Materials and methods

2.1  Workpiece setup and cutting parameters

The experiments were conducted on a milling machine with 
a varying machining conditions in order to predict tool wear 
[27]. Cutting speed was set to 200 m/min, the feed rate was 
varied between 0.25 and 0.5 mm/rev, and cutting depth was 
varied between 0.75 and 1.5 mm as shown in Table 1. Two 
types of material, cast iron, and stainless steel J45 were used 
with an insert of type KC710. The size of the workpieces 
was 483 mm × 178 mm × 51 mm.

A 70-mm face mill with six KC710 inserts coated with 
TiC, TiC-N, and TiN for toughness was used in the milling 
tests. Tool wear was considered and analyzed with three 
distinct cuts: entrance cut, standard cut, and exit cut. From 
two locations, i.e., table and spindle, signals were collected 
using three different types of sensors: acoustic emission, 
vibration, and current sensor. Among these data, this study 

Fig. 1  TCM approach using SinGAN and LSTM
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is concentrating on the spindle’s vibration and acoustic emis-
sion data when milling is performed on a steel workpiece. 
The experiment was performed 58 times with different cut-
ting parameters, resulting in the generation of 58 AE and 58 
vibration signals. The milling machine’s schematic diagram 
is shown in Fig. 2. Table 1 shows the cutting parameters for 
the end milling process used in the current study.

2.2  Vibration and acoustic signals

Depending on the quality of the cutting tool, vibration lev-
els might vary greatly throughout the machining process. 
Work-holding or tool-holding devices in one or more direc-
tions are the primary focus of the vibration. Vibration data 
for this experiment were collected using a vibration sensor 

attached to the spindle of a Matsuura MC-510 V milling 
center. The accelerometer was used to detect vibrations 
(model 7201–50, ENDEVCO). The signal was routed via a 
Phoenix contact cable connection and amplified and filtered 
using LP/HP filters before being calculated and entered into 
the computer for data collection. Acoustic emission (AE) is 
the spontaneous release of transitory elastic stress energy 
during the deformation of a material. Acoustic emission data 
were collected for this experiment utilizing an acoustic emis-
sion sensor (model WD 925, Physical Acoustic Group) with 
a frequency range of up to 2 MHz. This sensor was secured 
using clamping support. The signal was linked to the ter-
minal of a preamplifier (model 1801, Dunegan/Endevaco) 
fitted with a high-pass filter set to 50 kHz, and then amplified 
by a dual amplifier (model DE 302A). The signal is routed 
via a custom-designed RMS meter and then through a cable 
to a high-speed data collection board (MIO-16). Figure 3 
shows the vibration and acoustic signals captured through 
various sensors.

2.3  Selection of mother wavelet

To effectively predict the tool wear from the signals, wavelet 
transform (WT) was used for pre-processing of signals and 
to generate scalograms. Wavelet is a short wave that is sym-
metrical and has a mean value of 0. WT was formulated to 
solve the constraints of extracting useful information from 
non-stationary signals which Fourier transform was not 
able to do because of fixed window size [28]. Since then, it 
has been used in a variety of signal processing applications 
[29, 30]. In contrast to the short-time Fourier transform’s 
windowed representation, the WT produces a smooth rep-
resentation. As a result, sudden changes and abnormalities 
as well as similarities can be effectively analyzed from cap-
tured signals. WT is analogous to a mathematical micro-
scope in such a way that it can analyze signals at a variety 
of scales [31].

Based on the comprehensive literature review, the above-
mentioned mother wavelets have been chosen for compari-
son and the wavelet which is giving maximum relative wave-
let energy (RWE) has been chosen to generate scalograms. 
RWE refers to the energy relative with the distinct frequency 
bands and further can be applied to characterize and iden-
tify specific phenomena in both the temporal and frequency 
domains [32, 33]. For a given signal, RWE is calculated as 
follows:

Here, Yi and  Yt represent the energy content and total 
energy content of a signal.

(1)R =
Yi

Yt

Table 1  Cutting parameters for end milling process

S. no D.O.C
(mm)

Feed
(mm/rev)

Cutting speed
(m/min)

Material

1 1.5 0.5 200 Cast iron
2 0.75 0.5 200 Cast iron
3 0.75 0.25 200 Cast iron
4 1.5 0.25 200 Cast iron
5 1.5 0.5 200 Cast iron
6 1.5 0.25 200 Cast iron
7 0.75 0.25 200 Cast iron
8 0.75 0.5 200 Cast iron
9 1.5 0.5 200 Steel
10 1.5 0.25 200 Steel
11 0.75 0.25 200 Steel
12 0.75 0.5 200 Steel
13 0.75 0.25 200 Steel
14 0.75 0.5 200 Steel
15 1.5 0.25 200 Steel
16 1.5 0.5 200 Steel

Fig. 2  Schematic diagram of milling machine
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2.4  SinGAN

When ML or DL models need to be constructed for either 
classification or regression, the primary issue is the availability 
of experimental data. The number of experiments conducted 
for any manufacturing operations is limited, which results in 
data scarcity. There are several limitations for inadequate data 
which include associated cost, restrictions in the upper and 
lower limits of operating parameters, duration of experiments, 
etc. Thus, to address this issue, and overcome the abovemen-
tioned limitations, generative adversarial networks (GAN) are 
attracting importance in the research community, and it is a 
type of unsupervised learning. Formulations of new instances 
from the original data with the applications of GAN are pos-
sible in most of the applications as evident from recently pub-
lished works of literature [34, 35]. GANs have made significant 
advances in the modelling of high-dimensional distributions 
of visual data [36]. The goal of GAN is to allow two or more 
neural networks Generator G and Discriminator D to compete 
against each other. The Neural Network Generator creates new 
data instances, while the Neural Network Discriminator exam-
ines them for authenticity. When the discriminator is trained, 
the generator values are maintained constant, and the discrimi-
nator values are kept constant when the generator is trained. 
A duel between the Generator and the Discriminator against 
a static opponent is used to teach both the Generator and the 
Discriminator. Following the framework of minmax game, the 
model can be represented mathematically as [37, 38]:

Here, x represents the input image, E is cross-entropy, z 
is the latent space G draws samples from, and p represents 
the respective probability distributions.

(2)
minGmaxDV(D, G) = Ex∼pdata(x)[log D(x)]

+ Ez∼pz(z)[log(1 − D(G(z)))]

In the current study, authors have formulated SinGAN, 
which is an unconditional image generation approach that 
can learn from a single natural image [39, 40]. Once trained, 
SinGAN can generate a wide range of high-quality image 
samples with different aspect ratios as well as different sizes 
that are semantically similar to the training image from 
coarse “0” to fine “4” scale.

2.5  Long short‑term memory network

Deep learning approaches have been initially used for 
video and image analysis. However, the vibration signals 
or acoustic signals are usually one-dimensional sequential 
data. It is observed that recurrent neural network (RNN), 
which is a type of DL algorithm, suffers from short-term 
memory and also vanishing gradient problems. Layers hav-
ing small gradients stop learning and, as a consequence, 
RNNs forget what is seen in longer sequences. LSTM is a 
kind of RNN that is generally considered more appropri-
ate for sequential data, and as a result, they are frequently 
utilized in natural language processing and speech recog-
nition [41]. Furthermore, it is also observed that in com-
parison to conventional RNNs, LSTMs perform better in 
time series prediction [42]. To circumvent the issue of 
short-term memory loss, LSTM is used which consists of 
cells and gates through which the flow of information is 
regulated. To understand which data information should 
be kept and which should be discarded, gates in LSTM 
play a vital role, whereas cell carries relevant informa-
tion about the data throughout the processing stage. The 
LSTM cell is controlled by three gates: a forget gate (Fa) , 
an input gate (Ia) , and an output gate (Oa) whereas Ka,Ka−1 , 
and K̂a denote the current, previous, and temporary cell 
states, respectively, as shown in Fig. 4. A sigmoid activa-
tion function of type tanh is used inside gates which keeps 

Fig. 3  a Acoustic and b vibration signal at feed = 1.5 mm/rev and depth of cut = 0.5 mm
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the values between 0 and 1. The closer value to 0 means 
forget information, and the closest value to 1 means keep 
information. The forget gate (Fa) , the input gate (Ia) , and 
the output gate (Oa) decide the information that will be 
discarded from the previous cell, or added to the current 
cell, and exported from the current cell, with the help of 
the following equations:

Here, Wf  , Wi , and Wo are three weight matrices with 
respect to forget, input, and output gates respectively. Sim-
ilarly, Bf  , Bi , and Bo are the offset vectors for the forget 
gate, the input gate, and the output gate. The hidden state 
Ha of an LSTM cell is computed as:

whereas � and tanh activation functions are computed as 
follows:

(3)Fa = �(Wf ⋅

[

Ha−1, xa
]

+ Bf )

(4)Ia = �(Wi ⋅

[

Ha−1, xa
]

+ Bi)

(5)Oa = �(Wo ⋅

[

Ha−1, xa
]

+ Bo)

(6)Ha = Oa ∗ tanh(Ka)

In our study, we have considered three LSTM models: 
vanilla LSTM, stacked LSTM, and bidirectional LSTM [43] 
for in-depth analysis of tool wear prediction for end milling.

3  Results and discussion

To predict tool wear from the end milling process, the 
authors computed the RWE from different mother wave-
lets. It has been observed from Table 2 that the Morlet 
wavelet exhibits maximum RWE for both signals. Fifty-
eight scalograms each have been generated from the Morlet 
wavelet coefficients from both AE and vibration signals, 
with different operating conditions [44]. Figure 6 illustrates 
scalograms generated from AE and vibration signals at 
various scales. In the current study, the authors created 
29,000 images (14,500 each from AE and vibration signals) 
through the Morlet wavelet scalograms which are shown 
in Fig. 5.

Feature extraction is a process to extract useful infor-
mation from images. To predict the tool wear with a 
deep learning network from generated images as seen 
in Fig. 6, fourteen image quality parameters (IQP) were 
extracted according to Table 3. Figure 7 shows the fea-
ture extraction procedure from scalograms. A feature 
vector of size 14,500 × 14 each was constructed from 
both AE and vibration scalograms. This feature vector 
is then fed to deep learning models for training and pre-
diction of tool wear. Long short-term memory network 
(LSTM), which is a type of deep learning model, is uti-
lized for prediction.

Sample feature vectors are mentioned in Tables 4 and 
5 which were constructed from scalograms. As observed 
from both tables, there are a lot of variations in extracted 
features. Therefore, the robust transformation of the 

(7)� =
1

1 + e−x

(8)tanh =
ex − e−x

ex + e−x

Fig. 4  LSTM cell structure

Table 2  Maximum relative 
wavelet energy of different 
wavelets

Wavelet Maximum relative wavelet energy for 
spindle acoustic emission

Maximum relative wavelet 
energy for spindle vibration

Coiflet1 0.018 0.017
Daubechies1 0.019 0.016
Meyr 0.019 0.017
Morlet 0.021 0.018
Reverse biorthogonal1.1 0.019 0.017
Symlet 0.018 0.017
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feature vector is needed to reduce the biasedness and 
to train the LSTM model effectively. In robust feature 
vector transformation, scaling will be required so that 
every feature value lies between 0 and 1. It is achieved by 
subtracting a particular feature column from the median 
and then dividing it by interquartile range and afterward 
applied to the full feature vector. The robust transfor-
mation was chosen since it is a widely used approach 
in prediction; Tables 6 and 7 show the sample robust 
transformed feature vectors. These transformed feature 
vectors are fed into three different LSTM models namely 
vanilla LSTM, stacked LSTM, and bidirectional LSTM 
for prediction of flank wear. To assess the prediction 
capability, five performance parameters, R2, adjusted R2, 
MAE, RMSE, and MSE, were calculated, and formulas 
are listed in Table 8.

Here, yr is actual tool wear, yp is predicted tool wear, y 
is mean of actual tool wear, and  N is the total number of 
observations.

In the current study, 70% of the tool wear features were 
used for training and the rest (30%) of the tool wear features 
for testing of the model. Prediction results, from performance 
metrics, are shown in Fig. 8a–d. It is observed that there 
are significant variations in values of performance metrics 

Fig. 5  Morlet scalograms

(a) DOC -0.75 mm and feed – 0.5 mm/rev 
(AE)

(b) DOC – 1.5 mm and feed – 0.25 mm/rev 
(AE)

(c) DOC -0.75 mm and feed – 0.5 mm/rev 
(Vibration)

(d) DOC – 1.5 mm and feed – 0.25 mm/rev 
(Vibration)

Table 3  Image quality parameters

Sr. no IQP features

1 Structural Similarity Index Measure
(SSIM)

2 Chromaticity similarity value (CS value)
3 Mean square error (MSE)
4 Multiscale Structural Similarity Index Measure

(MSSIM)
5 Root mean squared error

(RMSE)
6 Root mean squared error using sliding window (RMSESW)
7 Relative average spectral error (RASE)
8 Erreur Relative Globale Adimensionnelle de Synthèse

(ERGAS)
9 Peak signal to noise ratio

(PSNR)
10 Universal Quality Image Index

(UQI)
11 Spatial correlation coefficient (SCC)
12 Spectral angle mapper

(SAM)
13 Visual information fidelity

(VIF)
14 Block sensitive—peak signal-to-noise ratio (PSNRB)
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from all LSTM models. In order to further validate the tool 
wear prediction capability by trained LSTM models, testing 
of models was carried out and separate plots are included 
which are shown in Fig. 8b, d. Out of the three LSTMs mod-
els, the tool wear prediction error values, i.e., MAE, RMSE, 

and MSE, were observed to be very low from AE tool wear 
feature vector as 0.006, 0.012, and 0.0001, respectively, from 
the stacked LSTM training model, whereas R2 and Adj. R2 
values were observed to be 0.998, as shown in Fig. 8a. Simi-
larly, the tool wear prediction error values of MAE, RMSE, 

Fig. 6  a–j Generated scalo-
grams from SinGAN at DOC 
(0.75 mm) and feed (0.5 mm/
rev).

Fig. 7  Feature extraction from scalograms
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and MSE observed with testing of models are 0.008, 0.023, 
and 0.0005, respectively, with stacked LSTM model, whereas 
R2 and Adj. R2 values are observed to be 0.995 (Fig. 8b), 
which is significantly high and near the ideal value as men-
tioned in Table 8. Therefore, stacked LSTM performance 
is better than bidirectional LSTM and vanilla LSTM mod-
els, when AE tool wear features were used for prediction of 
wear rate. The performance metrics graphs obtained from 
vibration features are shown in Fig. 8c, d respectively. The 
lowest MAE, RMSE, and MSE observed for tool wear pre-
diction are 0.005, 0.008, and 0.00005 again with the stacked 

LSTM model during training, whereas significantly high 
values of R2 and Adj. R2 were observed as 0.999, which is 
shown in Fig. 8c. Similarly, the lowest MAE, RMSE, and 
MSE observed from testing of feature vectors which are 
used for tool wear prediction are 0.005, 0.016, and 0.0002 
with the stacked LSTM model and R2 and Adj. R2 was 0.997, 
which can be observed from Fig. 8d. The performance of the 
stacked LSTM model to predict the tool wear is superior as 
compared to that of bidirectional LSTM and vanilla LSTM 
models with both training and testing as well as with AE and 
vibration features respectively as evident from the results. 
The probable reason why the stacked LSTM model works so 
well for tool wear prediction with robust scalar transformed 
features is that robust scalar is resilient against possible out-
liers present in the feature vector extracted through wavelet 
transform, and the feature vector is transformed in such a 
way that outliers have no negative influence when the pre-
diction model is built for tool wear prediction. Furthermore, 
vanilla LSTM utilizes only one LSTM layer, whereas stacked 
LSTM utilizes many layers, which are connected very well 
with each other enabling the model to compute information 
easily which boosts the model’s effectiveness in predicting 
tool wear values obtained through experimental results. To 
highlight and justify the utility of proposed methodology, a 
comparison table (Table 9) has been prepared with the avail-
able literature in which various authors have utilized the same 
dataset.

Table 8  Performance parameters

Performance metric Formulas Ideal value

R2
1 −

∑

i (yp−yr)
2

∑

i(yp−y)
2

˜1

Adjusted R2
1 −

[

(N−1)(1−R2)

(N−v−1)

]

˜1

Mean absolute error (MAE)
MAE =

1

N

N
∑

i=1

�

�

�

yp − yr
�

�

�  

˜0

Root mean square error 
(RMSE) RMSE =

�

1

N

N
∑

i=1

yr − yp
  

˜0

Mean square error (MSE)
MSE =

1

N

N
∑

i=1

yr − yp  

˜0

Table 9  Comparison table with existing literature to highlight the utility of proposed methodology

References Material of workpiece Sensors used Algorithm RMSE MAE R2

Hanachi et. al [45] Cast iron Current sensors Sipos 0.42 - 0.429
Adaptive neuro-fuzzy inference system 

(ANFIS)
0.56 - 0.289

Regularized particle filter (RPF) 0.22 - 0.086
Yuan et al. [46] Cast iron and steel All sensors are considered CNN 0.0836 0.0671 0.8725
Traini et al. [47] Cast iron and steel All sensors are considered Logistic regression 0.11 - 0.817

Decision forest 0.123 - 0.781
Decision jungle 0.116 - 0.813
Boosted decision tree 0.122 - 0.794
Neural network 0.11 - 0.821

Cai et al. [48] Cast iron and steel All sensors are considered Temporal encoder deep LSTM 0.0456 0.0322 0.90
Kumar et al. [49] Cast iron and steel Vibration Vanilla LSTM 0.1129 0.091 0.773

Bidirectional LSTM 0.0982 0.0764 0.8366
Encoder—decoder LSTM 0.0586 0.0431 0.9489
Hybrid LSTM 0.0364 0.0258 0.9837

Zhou and Sun [50] Cast iron and steel Current sensors Kernel extreme learning machine (KELM) 0.013 0.0926 -
Two-layer angle KELM (TAKELM) 0.003 0.0134 -
Least squares SVM (LS-SVM) 0.012 0.0254 -

Proposed work Steel AE and vibration sensors Vanilla LSTM 0.0472 0.0284 0.9822
Bidirectional LSTM 0.0663 0.0393 0.9649
Stacked LSTM 0.0233 0.0090 0.9957
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4  Conclusion

In the present paper, a methodology is presented to predict 
tool wear based on wavelet scalograms, SinGAN, and deep 
learning models. Initially, 58 scalograms each from AE and 
vibrations signals were generated from Morlet wavelets 
and, afterward, SinGAN was applied to generate additional 
images which are extremely useful to trained LSTM models. 
Fourteen IQP were extracted to form the feature vector and 
to randomly split into training and testing. The three models 
vanilla LSTM, stacked LSTM, and bidirectional LSTM were 
explored for efficient prediction of tool wear. To analyze the 

performance of models, five performance metrics were used, 
and the outcomes are summarized as follows:

• Tool wear prediction was found to be extremely well 
from both AE and vibration feature vectors.

• The lowest MAE, RMSE, and MSE values (testing) 
observed from AE feature vector are 0.008, 0.023, and 
0.0005, respectively, whereas from vibration signals 
0.005, 0.016, and 0.0002 values (testing) are observed.

• Significantly high R2 and Adj. R2 values of 0.997 are 
observed from the vibration feature vector as compared 
to 0.995 with the AE feature vector.

(a) (b)

(c) (d)

0 0.2 0.4 0.6 0.8 1

Vanilla LSTM

Stacked LSTM

LSTM

AE Training

Adj. R^2 R^2 MAE RMSE MSE
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Bidirectional LSTM
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Adj R^2 R^2 MAE RMSE MSE

Fig. 8  a–d Performance metric values.
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• Stacked LSTM predicted tool wear much better as com-
pared to bidirectional LSTM and vanilla LSTM models 
in case of AE and vibration feature vectors both.

• Superior prediction of tool wear is achieved with the 
proposed methodology, specifically when the availabil-
ity of experimental data set is less to train the model.

Availability of data and material The data used in this work can be 
requested by contacting the corresponding author.
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