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Abstract
Simultaneous localization and mapping (SLAM) is considered to be an important way for some smart devices to perform 
automatic path planning, and many successful SLAM systems have been developed in the past few years. Most existing 
approaches rely heavily on static world assumptions, and such strong assumptions limit the application of most vSLAM 
(visual SLAM) in complex dynamic reality environments, where dynamic objects often lead to incorrect data association in 
tracking, which reduces the overall accuracy and robustness of the system and causes tracking crashes. The dynamic objects 
in the map may change over time; thus, distinguishing dynamic information in a scene is challenging. In order to solve the 
interference problem of dynamic objects, most point-based visual odometry algorithms have concentrated on feature matching 
or direct pixel intensity matching, disregarding an ordinary but crucial image entity: geometric information. In this article, 
we put forward a novel visual odometry algorithm based on dynamic point detection methods called geometric prior and 
constraints. It removes the moving objects by combining the spatial geometric information of the image and depends on the 
remaining features to estimate the position of the camera. To the best of our knowledge, our proposed algorithm achieves 
superior performance over existing methods on a variety of public datasets.
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1 Introduction

Since the twenty-first century, simultaneous localization and 
mapping (SLAM) have attracted great interest because of its 
potential applications in robot navigation, 3D reconstruction, 
and autonomous vehicles [1–3]. In SLAM, multiple visual 
sensors were used to obtain the relevant image sequences. The 
posture of the objectives (robot, human, or automobile) was 
estimated by analyzing the images. Some sensors, for exam-
ple, RGB-D cameras [4], binocular cameras [5], and LiDAR 
[6], can provide depth information for each image frame, 
facilitating state estimation, and mapping. Currently, most 
visual odometers are implemented in a static environment 
[7]. In the presence of many dynamic objects in the scene, 
the SLAM fails to perform well, limiting its applications in 

actual scenarios. Therefore, in this paper, we aimed to make 
visual odometers more accurate in dynamic scenarios.

Traditionally, there are two general methods of visual 
range measurement: feature-based visual odometry (FVO) 
and dense visual odometry (DVO). The FVO, such as PTAM 
[8], RGB-D SLAM [9], and ORB-SLAM [10], generate 
sparse 3D maps for posture estimation based on feature point 
extraction and matching by minimizing geometric reprojec-
tion errors. Recently, the DVO [10, 11] has become prevalent. 
This method acts directly on the original pixel intensity by 
minimizing photometric errors. According to Akinlar and 
Topal [12], a dense or semi-dense map can be generated with 
more image information, and the heavy geometric projection 
error of the key points is usually robust to the image noise 
and the larger geometric distortion and motion. However, the 
existing SLAM algorithms suffer from poor robustness, the 
low-texture environment as there are only a few significant 
features. Generated sparse or semi-dense maps convey little 
information about motion planning. Although some studies 
use a plane or scene to regularize the map, they need to get 
good state estimation from other sources. Li et al. [13] pre-
sents a semantic-assisted visual inertial odometry (VIO) sys-
tem for low-texture scenes and highly dynamic environments. 
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The trained U-shaped mesh will be used to detect moving 
objects, and its performance in dynamic environments is 
improved by removing feature points on dynamic objects. 
The joint optimization of IMU measurement error and repro-
jection error ensures that the system obtains good pose calcu-
lation results in low-texture environments, but the semantic 
segmentation process leads to system speed reduction. In 
Engel et al. [14], a direct and sparse model was proposed in 
the form of a single-order vision-theodolite algorithm, but the 
3D model was denser, and the complexity was increased. Ban 
et al. [15] demonstrated a learning visual odometry (L-VO) 
and dense 3D mapping, where the system trains deep neu-
ral networks in a supervised or self-supervised manner to 
achieve end-to-end estimation of pose states.

In Costante and Ciarfuglia [16], a new monocular camera 
ego-motion estimation network architecture LS-VO is pro-
posed. This architecture consists of two branches that jointly 
learn the potential spatial representation of field inputs and 
camera motion estimation. The method was tested on data-
sets KITTI and Malaga, optimizing the robustness of domain 
transform appearance and dynamic range, but the performance 
degradation due to excessive fitting limited the entire network.

Despite the advantages of these methods, the dynamic 
object can still cause a large depth error in the actual envi-
ronment, preventing the existing methods to estimate camera 
pose effectively. Researchers have conducted studies towards 
detecting, recognizing, and eliminating moving objects to 
solve this problem. For example, Sun et al. [17] detected the 
edges of moving objects by the variation of pixel intensity 
between two frames. In this approach that they proposed, 
the dynamic object points were divided by the clustering of 
the depth map. The performance of this method was stable 
in dynamic scenarios, but the real-time performance was 
rather poor. Wei et al. [18] proposed GMSK-SLAM, which 
innovatively combines a grid-based motion statistics (GMS) 
feature point matching method with a K-means clustering 
algorithm to distinguish dynamic regions from images and 
retain static information from dynamic environments; it can 
effectively increase the number of reliable feature points and 
retain more environmental features; the method can achieve 
a high improvement of localization accuracy in dynamic 
environments. However, it can be disturbed by environmen-
tal factors such as ambient brightness, weather conditions, 
and dynamic target density. Importantly, as the line features 
are more abundant in the structured environment and less 
affected by the dynamic object, the algorithms based on line 
features [19, 20] attracted more attention. Yang and Scherer 
[21] implemented direct monocular odometry using points 
and lines. They used line features to eliminate dynamic 
targets in the scene, thus improving the accuracy of visual 
odometry in the dynamic scene. Kim and Kim [22] built 
the static background environment by utilizing the depth 
disparity of previous frames. In a dynamic environment, the 

approach enhances the stability of visual odometry. How-
ever, when the moving object is parallel to the camera plane, 
as it was the border of the moving object that is recognized, 
the impact of the moving object cannot be totally erased. 
Cheng et al. [23] have leveraged the recent success of deep 
neural networks for detecting the moving objects, offering a 
label for each identified object and calculating pre-dynamic 
weights to account for the possibility of object mobility. 
Despite its good performance, this method still has the prob-
lem of tracking loss. In a low-texture environment, where 
the dynamic regions take up the majority of the image, the 
lack of information will cause the tracking process to crash. 
The reprojection information of feature points is utilized to 
create an adaptive index for distinguishing dynamic points in 
Cheng et al. [24], which presented a visual SLAM technique 
integrating optical flow with semantic masking; it performs 
well in highly dynamic surroundings, but there is a limita-
tion; if all scenes are dynamic and lack static features, this 
method cannot obtain accurate results.

In current algorithms research, the three sets of feature 
points in computing the fundamental matrix may contain 
mis-matched or dynamic feature points by using the P3P 
algorithm [25] to estimate the camera and cause the P3P 
algorithm [25] to fail. In this work, we presented a new 
framework of RGB-D visual odometry using image geo-
metric information dynamic targets that were eliminated by 
calculating the similarity between two sets of image match-
ing points. It improved the P3P algorithm [25] and made 
it suitable for dynamic scenarios. Our method significantly 
shrinks the errors in the frame tracking and enhances the 
precision and robustness of the visual odometer when com-
pared to current approaches based on ORB [26].

The rest of this paper is structured as follows. Section 2 
briefly describes the related work on visual odometry. Sec-
tion 3 gives the proposed methodology and makes a specific 
analysis. The experimental results are shown and analyzed in 
Sect. 4. Finally, we present a brief discussion and conclusion 
of this paper in Sect. 5.

2  Methodology

Our algorithm is an RGB-D SLAM based on ORB feature 
points. In this section, we first introduced feature match-
ing based on triangular geometric constraints and then 
tracked the keyframes using the P3P algorithm [25] to 
improve RGB-D SLAM’s [4] tracking and mapping ability 
in dynamic scenarios.

2.1  Feature matching algorithm

In our study, we use ORB [26] feature points to extract features 
from the image and then match the two contiguous keyframes. 
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In the image matching of dynamic scenarios, there may be some 
feature points of dynamic objects that could greatly affect the 
estimation of camera pose. The dynamic target matching is 
shown in Fig. 1. There are moving objects (people) in the figure. 
To prevent these dynamic points from affecting the accuracy of 
camera estimation, we designed a way to exclude these dynamic 
points by using the spatial information of the image.

No matter how the camera moves, the triangle formed 
by any three fixed points in space is fixed, so the triangles 
formed by these three points in different camera coordi-
nate systems are similar, as shown in Fig. 2, where the 
cube represents the camera coordinate systems and the 
triangle represents the imaging in the camera. Through 
RGB-D images, we can get partial 3D feature points and 
2D feature points (Kinect camera may lose part of the 
depth information). Therefore, in this paper, we evaluated 
the nature of feature points (dynamic or static) by compar-
ing the similarity of the triangle enclosed by three sets of 
feature points in two keyframes.

2.2  Tracking algorithm

Tracking is used to solve the problem of camera pose estima-
tion. RGB-D SLAM [4] uses multiple sets of 3D matching 

points in the two images to estimate the movement of the 
camera. But it can calculate the ideal pose only if the match-
ing point is completely accurate. The problem is more criti-
cal in dynamic scenarios, so we used spatial geometric con-
straints to restrict these dynamic points. In this work, we 
used the similarity of triangles to determine that all three 
feature points are static points to improve the accuracy of 
the P3P algorithm [25], as shown in Fig. 3.

In Fig. 3, o and ô represent the origin of the camera’s 
coordinate system in different poses, and q1, q2, and q3 are 
three points in space. R and t represent the motion transfor-
mation from o coordinate system to ô coordinate system, 
where R is the rotation transformation matrix and t is the 
translation transformation matrix. We know the spatial 
position of three points in the o coordinate system and the 
space coordinate system, and we also know their 2D posi-
tion in the ô coordinate system. When the position of three 
spatial points remains unchanged, the P3P algorithm [25] 
can be used to obtain their accurate 3D coordinates in the ô 
coordinate system. At this stage, the triangle formed by the 
three points in the two-camera coordinate systems is similar. 
However, when the position of the feature point is changed, 
the triangle in the ô coordinate system will be simultane-
ously changed so that the two sets of triangles are no longer 
similar.

In the experiment, we evaluated the similarity of two tri-
angles by the ratio of three sides. In the o coordinate system, 
the three sides of the triangle are respectively:

Also, in the ô coordinate system, the three sides of 
another triangle are respectively:
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Fig. 1  ORB feature point extraction on TUM dynamic dataset

Fig. 2  Triangular structure. The change of the triangle formed by any 
three points in space in different camera coordinates
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Finally, by finding out whether two triangles are similar, 
we can distinguish whether three feature points are dynamic 
or static.

where e1 and e2 represent the conversion errors of q
2
q
3
 and 

q
3
q
1
 from the o coordinate system to the ô coordinate system 

respectively, and the total error is:

When e is less than the set similarity threshold, it is 
considered that the two groups of triangles are similar, 
and all the feature points are static; otherwise, the feature 
points contain dynamic points and need to be selected 
again.

In this way, we can effectively ensure that the feature 
points used in every calculation of camera pose are fixed 
points, thus improving the accuracy of RGB-D SLAM [4] 
in dynamic scenarios.

3  Experimental results

We conducted our experiments on TUM public dynamic 
dataset [27]. In the Sitting_xyz dataset and Walking_
xyz dataset, the camera keeps facing the desk. The 
mutual movement of the camera and the person was 
different from the mimic typical datasets of dynamic 
scenarios.
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3.1  The selection of the similarity threshold

For dynamic scene sequences, we used the ORB algorithm 
to describe and match feature points, as shown in Fig. 4.

Figure 4a, b show the matching of feature points in the mov-
ing scene, in which the triangles formed by two fixed points (3 
points) are similar; on the contrary, the triangles formed by two 
groups of moving points (3 points) are not similar. To facilitate 
the calculation, we respectively selected 5 sets of matching fea-
ture points with depth information to generate 10 different trian-
gles in the two scenarios, four matching points for the fixed point, 
and the remaining for the dynamic matching points. So, we had 
four triangles surrounded by fixed points, and one vertex of the 
remaining six triangles was a dynamic point. The experimental 
results are shown in Tables 1 and 2.

Table 1 shows that the similarity error of two groups of 
triangles was less than 0.5 m without dynamic vertices. How-
ever, in Table 2, the two sets of triangle errors with dynamic 
vertices were mostly greater than 0.5. Moreover, the similarity 
error of the low dynamic scene was smaller than that of the high 
dynamic scene because of the small change of moving objects in 
the low dynamic scenario. Finally, we used 0.5 as the similarity 
threshold to distinguish whether the two triangles were similar.

3.2  Comparison to the prior feature extraction 
methods

In the selection of feature points, the distance between any 
two points should be greater than a certain range to avoid 
three points on the same object.

Fig. 3  triangle constraint. The 
state of a moving object in dif-
ferent camera coordinates
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ẑ

ŷ
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To demonstrate the performance of the proposed algo-
rithm in dynamic scenarios, we used the relative trajectory 
error as the evaluation index to compare this method with 
the ORB point feature method and line feature method. The 
experimental results are displayed in Fig. 5.

Figure 5 shows that the feature point matching algorithm 
based on spatial triangle constraint had outperformed better 
than the ORB point feature method in dynamic scenarios.

3.3  TUM dataset evaluation

In order to further prove that the proposed algorithm can 
effectively improve the robustness and accuracy of SLAM 
algorithm in dynamic sequences, the experimental results 
before and after the algorithm improvement are shown in 
Fig. 6. Figure 6a, b are the comparison diagrams of the 
real trajectory before the algorithm’s improvement and the 

Fig. 4  Feature point matching. ORB characteristics match on TUM dynamic dataset

Table 1  The similarity error of the triangle without dynamic points

Similarity error (m) Error 1 Error 2 Error 3 Error 4

Walking_xyz 0.246 0.339 0.273 0.286
Sitting_xyz 0.327 0.259 0.192 0.247

Table 2  The similarity error of 
the triangle with dynamic points

Similarity error (m) Error 1 Error 2 Error 3 Error 4 Error 5 Error 6

Walking_xyz 0.831 0.749 0.624 0.726 0.663 0.547
Sitting_xyz 0.659 0.497 0.528 0.447 0.594 0.601
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experimental trajectory. The red line represents the real 
pose curve and the blue line represents the pose curve esti-
mated by the algorithm. Figure 6c, d show the comparison 
between the improved real trajectory of the algorithm and 

the experimental trajectory. The red line represents the real 
pose curve and the green line represents the estimated pose 
curve of the algorithm. Experimental results show that 
the improved algorithm can effectively reduce the error 
of camera pose estimation and improve the accuracy of 
the algorithm in both low dynamic environment and high 
dynamic environment.

The error in the frame tracking process was signifi-
cantly reduced, and the accuracy was improved. Figure 7 
shows the comparison between the experimental trajectory 
and the real trajectory tested by the algorithm in this paper 
on the real scene, demonstrating that the proposed algo-
rithm can better estimate the camera’s track in dynamic 
scenarios.

3.4  Evaluation on the complexity

The geometric prior algorithm proposed in this paper 
ensures that the mis-matching and dynamic feature points 
in the three sets of feature points are eliminated, and then 
the P3P algorithm [25] is used when estimating. Compared 
with the traditional P3P algorithm [25], a total of eight 
steps from Eqs. (1) to (8) are added for dynamic point 
filtering, so the computational complexity O is:

(9)O = O(P3P) + 8

Fig. 5  Error comparison on fr3/Walking_xyz sequence. The blue line 
represents the visual odometer error using ORB feature matching, 
The red line represents the visual odometer error using line features 
and the yellow line represents the visual odometer error of ORB char-
acteristics with triangular structural constraints

Fig. 6  Comparison of experi-
mental trajectories and real  
trajectories of the algorithm 
before the improvement in 
different datasets. a fr3/Sitting_
xyz. b fr3/Walking_xyz. c fr3/
Sitting_xyz. d fr3/Walking_xyz

zyx_gniklaw/3rf)b(zyx_gnittis/3rf)a(

zyx_gniklaw/3rf)d(zyx_gnittis/3rf)c(
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Despite the increased complexity, it does not seriously affect 
the real-time performance and greatly improves the accuracy of 
the visual odometer for subsequent map construction.

4  Discussion

In this paper, we have developed an algorithm using spa-
tial triangle constraints to restrict moving feature points 
in space. We verified that the triangle formed by three 
fixed points in space in different camera coordinates was 
close to similar. This method used ORB feature points 
for initial matching, and during the calculation of camera 
pose, we eliminated the dynamic points based on whether 
the triangles in the two camera coordinate systems were 
similar. We used two sets of image sequences on the TUM 
common dataset [27]. In the experiment, we extracted fea-
ture points from the RGB images and calculated the actual 
depth position of feature points with depth images. Finally, 
dynamic feature points were eliminated by structural con-
straints between feature points. Experimental results on 
the common dataset showed that the proposed approach 
reduces errors and effectively improves accuracy in the 
dynamic environment compared to the existing ORB point 
feature method. Therefore, the method proposed in this 
paper greatly decreases the effect of moving objects during 
camera pose estimation while also improving the accu-
racy and robustness of the visual odometer in dynamic 
environments.

Our method requires the 3D coordinates of the spatial 
points in the camera coordinate system. Due to the error 
of the Kinect camera itself, the depth information may be 
inaccurate or lost; thus, we need to re-estimate the depth of 
these feature points. Moreover, when selecting three sets of 
matched feature points, the dynamic points may be selected 
multiple times. These options increase computing time and 
reduce the running efficiency of SLAM. In the future, we 
could eliminate the dynamic points directly, rather than rese-
lecting the initial points.

5  Conclusions

In order to improve the accuracy and robustness of visual 
SLAM in dynamic environments and to solve the problem of 
large deviations in pose estimation of visual SLAM systems 
due to the presence of moving objects in dynamic scenes, in 
this paper, we proposed a new visual odometry approach based 
on the structural relations between feature points in an image. 
This method used the spatial position information of feature 
points to determine whether the object is moving or not, and 
this approach could eliminate dynamic points when calculating 
camera pose. In the process of drawing construction, this 
method can get rid of the influence of dynamic objects in space, 
thus reducing the tracking error and improving the accuracy 
of drawing construction. We conducted our experiments 
on TUM public dynamic dataset [27]. The results show that 
the localization accuracy of our system is greatly improved 
compared to the traditional method in a dynamic environment.

In the future, we plan to add a semantic segmentation 
module to directly eliminate dynamic points and use the 
results of semantic segmentation to construct a semantic 
octree map, which improve the ability to avoid moving 
obstacles in dynamic scenes and it is useful for high-level 
robotic tasks.
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