
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-022-09219-8

ORIGINAL ARTICLE

Visual odometry algorithm based on geometric prior for dynamic
environments

Gang Xu1,2 · Ze Yu2 · Guangxin Xing2 · Xingyu Zhang2 · Feng Pan1

Received: 17 January 2022 / Accepted: 10 April 2022
© The Author(s) 2022

Abstract
Simultaneous localization and mapping (SLAM) is considered to be an important way for some smart devices to perform
automatic path planning, and many successful SLAM systems have been developed in the past few years. Most existing
approaches rely heavily on static world assumptions, and such strong assumptions limit the application of most vSLAM
(visual SLAM) in complex dynamic reality environments, where dynamic objects often lead to incorrect data association in
tracking, which reduces the overall accuracy and robustness of the system and causes tracking crashes. The dynamic objects
in the map may change over time; thus, distinguishing dynamic information in a scene is challenging. In order to solve the
interference problem of dynamic objects, most point-based visual odometry algorithms have concentrated on feature matching
or direct pixel intensity matching, disregarding an ordinary but crucial image entity: geometric information. In this article,
we put forward a novel visual odometry algorithm based on dynamic point detection methods called geometric prior and
constraints. It removes the moving objects by combining the spatial geometric information of the image and depends on the
remaining features to estimate the position of the camera. To the best of our knowledge, our proposed algorithm achieves
superior performance over existing methods on a variety of public datasets.

Keywords Simultaneous localization and mapping · Visual odometry · Dynamic objects

1 Introduction

Since the twenty-first century, simultaneous localization and
mapping (SLAM) have attracted great interest because of its
potential applications in robot navigation, 3D reconstruction,
and autonomous vehicles [1–3]. In SLAM, multiple visual
sensors were used to obtain the relevant image sequences. The
posture of the objectives (robot, human, or automobile) was
estimated by analyzing the images. Some sensors, for exam-
ple, RGB-D cameras [4], binocular cameras [5], and LiDAR
[6], can provide depth information for each image frame,
facilitating state estimation, and mapping. Currently, most
visual odometers are implemented in a static environment
[7]. In the presence of many dynamic objects in the scene,
the SLAM fails to perform well, limiting its applications in

actual scenarios. Therefore, in this paper, we aimed to make
visual odometers more accurate in dynamic scenarios.

Traditionally, there are two general methods of visual
range measurement: feature-based visual odometry (FVO)
and dense visual odometry (DVO). The FVO, such as PTAM
[8], RGB-D SLAM [9], and ORB-SLAM [10], generate
sparse 3D maps for posture estimation based on feature point
extraction and matching by minimizing geometric reprojec-
tion errors. Recently, the DVO [10, 11] has become prevalent.
This method acts directly on the original pixel intensity by
minimizing photometric errors. According to Akinlar and
Topal [12], a dense or semi-dense map can be generated with
more image information, and the heavy geometric projection
error of the key points is usually robust to the image noise
and the larger geometric distortion and motion. However, the
existing SLAM algorithms suffer from poor robustness, the
low-texture environment as there are only a few significant
features. Generated sparse or semi-dense maps convey little
information about motion planning. Although some studies
use a plane or scene to regularize the map, they need to get
good state estimation from other sources. Li et al. [13] pre-
sents a semantic-assisted visual inertial odometry (VIO) sys-
tem for low-texture scenes and highly dynamic environments.

 * Feng Pan
 pan_feng_63@163.com

1 Key Laboratory of Advanced Process Control for Light
Industry (Ministry of Education), Jiangnan University, Wuxi,
China

2 Key Laboratory of Advanced Perception and Intelligence
Control of High-End Equipment (Ministry of Education),
Anhui Polytechnic University, Wuhu, China

/ Published online: 25 May 2022

The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

http://crossmark.crossref.org/dialog/?doi=10.1007/s00170-022-09219-8&domain=pdf

1 3

The trained U-shaped mesh will be used to detect moving
objects, and its performance in dynamic environments is
improved by removing feature points on dynamic objects.
The joint optimization of IMU measurement error and repro-
jection error ensures that the system obtains good pose calcu-
lation results in low-texture environments, but the semantic
segmentation process leads to system speed reduction. In
Engel et al. [14], a direct and sparse model was proposed in
the form of a single-order vision-theodolite algorithm, but the
3D model was denser, and the complexity was increased. Ban
et al. [15] demonstrated a learning visual odometry (L-VO)
and dense 3D mapping, where the system trains deep neu-
ral networks in a supervised or self-supervised manner to
achieve end-to-end estimation of pose states.

In Costante and Ciarfuglia [16], a new monocular camera
ego-motion estimation network architecture LS-VO is pro-
posed. This architecture consists of two branches that jointly
learn the potential spatial representation of field inputs and
camera motion estimation. The method was tested on data-
sets KITTI and Malaga, optimizing the robustness of domain
transform appearance and dynamic range, but the performance
degradation due to excessive fitting limited the entire network.

Despite the advantages of these methods, the dynamic
object can still cause a large depth error in the actual envi-
ronment, preventing the existing methods to estimate camera
pose effectively. Researchers have conducted studies towards
detecting, recognizing, and eliminating moving objects to
solve this problem. For example, Sun et al. [17] detected the
edges of moving objects by the variation of pixel intensity
between two frames. In this approach that they proposed,
the dynamic object points were divided by the clustering of
the depth map. The performance of this method was stable
in dynamic scenarios, but the real-time performance was
rather poor. Wei et al. [18] proposed GMSK-SLAM, which
innovatively combines a grid-based motion statistics (GMS)
feature point matching method with a K-means clustering
algorithm to distinguish dynamic regions from images and
retain static information from dynamic environments; it can
effectively increase the number of reliable feature points and
retain more environmental features; the method can achieve
a high improvement of localization accuracy in dynamic
environments. However, it can be disturbed by environmen-
tal factors such as ambient brightness, weather conditions,
and dynamic target density. Importantly, as the line features
are more abundant in the structured environment and less
affected by the dynamic object, the algorithms based on line
features [19, 20] attracted more attention. Yang and Scherer
[21] implemented direct monocular odometry using points
and lines. They used line features to eliminate dynamic
targets in the scene, thus improving the accuracy of visual
odometry in the dynamic scene. Kim and Kim [22] built
the static background environment by utilizing the depth
disparity of previous frames. In a dynamic environment, the

approach enhances the stability of visual odometry. How-
ever, when the moving object is parallel to the camera plane,
as it was the border of the moving object that is recognized,
the impact of the moving object cannot be totally erased.
Cheng et al. [23] have leveraged the recent success of deep
neural networks for detecting the moving objects, offering a
label for each identified object and calculating pre-dynamic
weights to account for the possibility of object mobility.
Despite its good performance, this method still has the prob-
lem of tracking loss. In a low-texture environment, where
the dynamic regions take up the majority of the image, the
lack of information will cause the tracking process to crash.
The reprojection information of feature points is utilized to
create an adaptive index for distinguishing dynamic points in
Cheng et al. [24], which presented a visual SLAM technique
integrating optical flow with semantic masking; it performs
well in highly dynamic surroundings, but there is a limita-
tion; if all scenes are dynamic and lack static features, this
method cannot obtain accurate results.

In current algorithms research, the three sets of feature
points in computing the fundamental matrix may contain
mis-matched or dynamic feature points by using the P3P
algorithm [25] to estimate the camera and cause the P3P
algorithm [25] to fail. In this work, we presented a new
framework of RGB-D visual odometry using image geo-
metric information dynamic targets that were eliminated by
calculating the similarity between two sets of image match-
ing points. It improved the P3P algorithm [25] and made
it suitable for dynamic scenarios. Our method significantly
shrinks the errors in the frame tracking and enhances the
precision and robustness of the visual odometer when com-
pared to current approaches based on ORB [26].

The rest of this paper is structured as follows. Section 2
briefly describes the related work on visual odometry. Sec-
tion 3 gives the proposed methodology and makes a specific
analysis. The experimental results are shown and analyzed in
Sect. 4. Finally, we present a brief discussion and conclusion
of this paper in Sect. 5.

2 Methodology

Our algorithm is an RGB-D SLAM based on ORB feature
points. In this section, we first introduced feature match-
ing based on triangular geometric constraints and then
tracked the keyframes using the P3P algorithm [25] to
improve RGB-D SLAM’s [4] tracking and mapping ability
in dynamic scenarios.

2.1 Feature matching algorithm

In our study, we use ORB [26] feature points to extract features
from the image and then match the two contiguous keyframes.

236 The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

In the image matching of dynamic scenarios, there may be some
feature points of dynamic objects that could greatly affect the
estimation of camera pose. The dynamic target matching is
shown in Fig. 1. There are moving objects (people) in the figure.
To prevent these dynamic points from affecting the accuracy of
camera estimation, we designed a way to exclude these dynamic
points by using the spatial information of the image.

No matter how the camera moves, the triangle formed
by any three fixed points in space is fixed, so the triangles
formed by these three points in different camera coordi-
nate systems are similar, as shown in Fig. 2, where the
cube represents the camera coordinate systems and the
triangle represents the imaging in the camera. Through
RGB-D images, we can get partial 3D feature points and
2D feature points (Kinect camera may lose part of the
depth information). Therefore, in this paper, we evaluated
the nature of feature points (dynamic or static) by compar-
ing the similarity of the triangle enclosed by three sets of
feature points in two keyframes.

2.2 Tracking algorithm

Tracking is used to solve the problem of camera pose estima-
tion. RGB-D SLAM [4] uses multiple sets of 3D matching

points in the two images to estimate the movement of the
camera. But it can calculate the ideal pose only if the match-
ing point is completely accurate. The problem is more criti-
cal in dynamic scenarios, so we used spatial geometric con-
straints to restrict these dynamic points. In this work, we
used the similarity of triangles to determine that all three
feature points are static points to improve the accuracy of
the P3P algorithm [25], as shown in Fig. 3.

In Fig. 3, o and ô represent the origin of the camera’s
coordinate system in different poses, and q1, q2, and q3 are
three points in space. R and t represent the motion transfor-
mation from o coordinate system to ô coordinate system,
where R is the rotation transformation matrix and t is the
translation transformation matrix. We know the spatial
position of three points in the o coordinate system and the
space coordinate system, and we also know their 2D posi-
tion in the ô coordinate system. When the position of three
spatial points remains unchanged, the P3P algorithm [25]
can be used to obtain their accurate 3D coordinates in the ô
coordinate system. At this stage, the triangle formed by the
three points in the two-camera coordinate systems is similar.
However, when the position of the feature point is changed,
the triangle in the ô coordinate system will be simultane-
ously changed so that the two sets of triangles are no longer
similar.

In the experiment, we evaluated the similarity of two tri-
angles by the ratio of three sides. In the o coordinate system,
the three sides of the triangle are respectively:

Also, in the ô coordinate system, the three sides of
another triangle are respectively:

(1)|
|q1q2

|
| =

√(
xq

2

− xq
1

)2

+

(
yq

2

− yq
1

)2

+

(
zq

2

− zq
1

)2

(2)|
|q2q3

|
| =

√(
xq

3

− xq
2

)2

+

(
yq

3

− yq
2

)2

+

(
zq

3

− zq
2

)2

(3)|
|q3q1

|
| =

√(
xq

1

− xq
3

)2

+

(
yq

1

− yq
3

)2

+

(
zq

1

− zq
3

)2

(4)|
|q̂1q̂2

|
| =

√
(
xq̂

2
− xq̂

1

)2
+

(
yq̂

2

− yq̂
1

)2

+

(
zq̂

2

− zq̂
1

)2

(5)|
|q̂2q̂3

|
| =

√
(
xq̂

3
− xq̂

2

)2
+

(
yq̂

3

− yq̂
2

)2

+
(
zq̂

3
− zq̂

2

)2

(6)|
|q̂3q̂1

|
| =

√
(
xq̂

1
− xq̂

3

)2
+

(
yq̂

1

− yq̂
3

)2

+
(
zq̂

1
− zq̂

3

)2

Fig. 1 ORB feature point extraction on TUM dynamic dataset

Fig. 2 Triangular structure. The change of the triangle formed by any
three points in space in different camera coordinates

237The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

Finally, by finding out whether two triangles are similar,
we can distinguish whether three feature points are dynamic
or static.

where e1 and e2 represent the conversion errors of q
2
q
3
 and

q
3
q
1
 from the o coordinate system to the ô coordinate system

respectively, and the total error is:

When e is less than the set similarity threshold, it is
considered that the two groups of triangles are similar,
and all the feature points are static; otherwise, the feature
points contain dynamic points and need to be selected
again.

In this way, we can effectively ensure that the feature
points used in every calculation of camera pose are fixed
points, thus improving the accuracy of RGB-D SLAM [4]
in dynamic scenarios.

3 Experimental results

We conducted our experiments on TUM public dynamic
dataset [27]. In the Sitting_xyz dataset and Walking_
xyz dataset, the camera keeps facing the desk. The
mutual movement of the camera and the person was
different from the mimic typical datasets of dynamic
scenarios.

(7)
q
1
q
2

q̂
1
q̂
2

=
q
2
q
3

q̂
2
q̂
3

+ e
1
=

q
3
q
1

q̂
3
q̂
1

+ e
2

(8)e = e
1
+ e

2

3.1 The selection of the similarity threshold

For dynamic scene sequences, we used the ORB algorithm
to describe and match feature points, as shown in Fig. 4.

Figure 4a, b show the matching of feature points in the mov-
ing scene, in which the triangles formed by two fixed points (3
points) are similar; on the contrary, the triangles formed by two
groups of moving points (3 points) are not similar. To facilitate
the calculation, we respectively selected 5 sets of matching fea-
ture points with depth information to generate 10 different trian-
gles in the two scenarios, four matching points for the fixed point,
and the remaining for the dynamic matching points. So, we had
four triangles surrounded by fixed points, and one vertex of the
remaining six triangles was a dynamic point. The experimental
results are shown in Tables 1 and 2.

Table 1 shows that the similarity error of two groups of
triangles was less than 0.5 m without dynamic vertices. How-
ever, in Table 2, the two sets of triangle errors with dynamic
vertices were mostly greater than 0.5. Moreover, the similarity
error of the low dynamic scene was smaller than that of the high
dynamic scene because of the small change of moving objects in
the low dynamic scenario. Finally, we used 0.5 as the similarity
threshold to distinguish whether the two triangles were similar.

3.2 Comparison to the prior feature extraction
methods

In the selection of feature points, the distance between any
two points should be greater than a certain range to avoid
three points on the same object.

Fig. 3 triangle constraint. The
state of a moving object in dif-
ferent camera coordinates

Ô

ẑ

ŷ

x̂

q̂1 q̂2

q̂3

q1 q2

q3

p1 p2

p3
p̂1

p̂2p̂3

R , t

238 The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

To demonstrate the performance of the proposed algo-
rithm in dynamic scenarios, we used the relative trajectory
error as the evaluation index to compare this method with
the ORB point feature method and line feature method. The
experimental results are displayed in Fig. 5.

Figure 5 shows that the feature point matching algorithm
based on spatial triangle constraint had outperformed better
than the ORB point feature method in dynamic scenarios.

3.3 TUM dataset evaluation

In order to further prove that the proposed algorithm can
effectively improve the robustness and accuracy of SLAM
algorithm in dynamic sequences, the experimental results
before and after the algorithm improvement are shown in
Fig. 6. Figure 6a, b are the comparison diagrams of the
real trajectory before the algorithm’s improvement and the

Fig. 4 Feature point matching. ORB characteristics match on TUM dynamic dataset

Table 1 The similarity error of the triangle without dynamic points

Similarity error (m) Error 1 Error 2 Error 3 Error 4

Walking_xyz 0.246 0.339 0.273 0.286
Sitting_xyz 0.327 0.259 0.192 0.247

Table 2 The similarity error of
the triangle with dynamic points

Similarity error (m) Error 1 Error 2 Error 3 Error 4 Error 5 Error 6

Walking_xyz 0.831 0.749 0.624 0.726 0.663 0.547
Sitting_xyz 0.659 0.497 0.528 0.447 0.594 0.601

239The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

experimental trajectory. The red line represents the real
pose curve and the blue line represents the pose curve esti-
mated by the algorithm. Figure 6c, d show the comparison
between the improved real trajectory of the algorithm and

the experimental trajectory. The red line represents the real
pose curve and the green line represents the estimated pose
curve of the algorithm. Experimental results show that
the improved algorithm can effectively reduce the error
of camera pose estimation and improve the accuracy of
the algorithm in both low dynamic environment and high
dynamic environment.

The error in the frame tracking process was signifi-
cantly reduced, and the accuracy was improved. Figure 7
shows the comparison between the experimental trajectory
and the real trajectory tested by the algorithm in this paper
on the real scene, demonstrating that the proposed algo-
rithm can better estimate the camera’s track in dynamic
scenarios.

3.4 Evaluation on the complexity

The geometric prior algorithm proposed in this paper
ensures that the mis-matching and dynamic feature points
in the three sets of feature points are eliminated, and then
the P3P algorithm [25] is used when estimating. Compared
with the traditional P3P algorithm [25], a total of eight
steps from Eqs. (1) to (8) are added for dynamic point
filtering, so the computational complexity O is:

(9)O = O(P3P) + 8

Fig. 5 Error comparison on fr3/Walking_xyz sequence. The blue line
represents the visual odometer error using ORB feature matching,
The red line represents the visual odometer error using line features
and the yellow line represents the visual odometer error of ORB char-
acteristics with triangular structural constraints

Fig. 6 Comparison of experi-
mental trajectories and real
trajectories of the algorithm
before the improvement in
different datasets. a fr3/Sitting_
xyz. b fr3/Walking_xyz. c fr3/
Sitting_xyz. d fr3/Walking_xyz

zyx_gniklaw/3rf)b(zyx_gnittis/3rf)a(

zyx_gniklaw/3rf)d(zyx_gnittis/3rf)c(

240 The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

Despite the increased complexity, it does not seriously affect
the real-time performance and greatly improves the accuracy of
the visual odometer for subsequent map construction.

4 Discussion

In this paper, we have developed an algorithm using spa-
tial triangle constraints to restrict moving feature points
in space. We verified that the triangle formed by three
fixed points in space in different camera coordinates was
close to similar. This method used ORB feature points
for initial matching, and during the calculation of camera
pose, we eliminated the dynamic points based on whether
the triangles in the two camera coordinate systems were
similar. We used two sets of image sequences on the TUM
common dataset [27]. In the experiment, we extracted fea-
ture points from the RGB images and calculated the actual
depth position of feature points with depth images. Finally,
dynamic feature points were eliminated by structural con-
straints between feature points. Experimental results on
the common dataset showed that the proposed approach
reduces errors and effectively improves accuracy in the
dynamic environment compared to the existing ORB point
feature method. Therefore, the method proposed in this
paper greatly decreases the effect of moving objects during
camera pose estimation while also improving the accu-
racy and robustness of the visual odometer in dynamic
environments.

Our method requires the 3D coordinates of the spatial
points in the camera coordinate system. Due to the error
of the Kinect camera itself, the depth information may be
inaccurate or lost; thus, we need to re-estimate the depth of
these feature points. Moreover, when selecting three sets of
matched feature points, the dynamic points may be selected
multiple times. These options increase computing time and
reduce the running efficiency of SLAM. In the future, we
could eliminate the dynamic points directly, rather than rese-
lecting the initial points.

5 Conclusions

In order to improve the accuracy and robustness of visual
SLAM in dynamic environments and to solve the problem of
large deviations in pose estimation of visual SLAM systems
due to the presence of moving objects in dynamic scenes, in
this paper, we proposed a new visual odometry approach based
on the structural relations between feature points in an image.
This method used the spatial position information of feature
points to determine whether the object is moving or not, and
this approach could eliminate dynamic points when calculating
camera pose. In the process of drawing construction, this
method can get rid of the influence of dynamic objects in space,
thus reducing the tracking error and improving the accuracy
of drawing construction. We conducted our experiments
on TUM public dynamic dataset [27]. The results show that
the localization accuracy of our system is greatly improved
compared to the traditional method in a dynamic environment.

In the future, we plan to add a semantic segmentation
module to directly eliminate dynamic points and use the
results of semantic segmentation to construct a semantic
octree map, which improve the ability to avoid moving
obstacles in dynamic scenes and it is useful for high-level
robotic tasks.

Author contribution All named authors initially contributed a sig-
nificant part to the paper. Gang Xu designed the study. Experimental
model is built by Gang Xu and Ze Yu. Analyses were carried out by
Gang Xu and Xingyu Zhang. Organization of data was led by Gang
Xu and Guangxin Xing. Descriptions of text use were assisted by Ze
Yu and Feng Pan.

Funding This work was sponsored by the Natural Science Foundation
of Anhui Province of China (2108085MF197).

Availability of data and material The data used to support the findings
of this study are included within the article.

Declarations

Ethics approval Not applicable.

Fig. 7 The test results.
Comparison between the real
trajectory and experimental tra-
jectory. The blue line represents
the real trajectory and the red
line represents the experimental
trajectory

241The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

1 3

Consent to participate Not applicable.

Consent for publication Not applicable.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Wang C, Cheng J, Wang J et al (2018) Efficient object search
with belief road map using mobile robot. IEEE Robot Autom Lett
3(4):3081–3088

 2. Yang D, Bi S, Wang W et al (2019) DRESLAM: dynamic RGB-D
encoder SLAM for a differential-drive robot. Remote Sens
11(4):380

 3. Yang S, Scherer SA, Yi X, Zell A (2017) Multi-camera visual
SLAM for autonomous navigation of micro aerial vehicles. Robot
Auto Syst 93:116–134

 4. Endres F, Hess J, Sturm J et al (2014) 3-D mapping with an
RGB-D camera. IEEE Trans Rob 30(1):177–187

 5. Yin H, Ma Z, Zhong M et al (2020) SLAM-based self-calibration
of a binocular stereo vision rig in real-time. Sensors 20(3):621

 6. Du ST, Li YF, Li XY, Wu MH (2021) LiDAR odometry and map-
ping based on semantic information for outdoor environment.
Remote Sens 15(13):2864

 7. Bahraini MS, Bozorg M, Rad AB (2019) A new adaptive UKF
algorithm to improve the accuracy of SLAM. Int J Robot Theory
Appl 5:35–46

 8. Croce MD, Pire T, Bergero F (2018) DS-PTAM: distributed stereo
parallel tracking and mapping SLAM system. J Intell Robot Syst
95(2):365–377

 9. Zhang S, Zheng L, Tao W (2021) Survey and evaluation of
RGB-D SLAM. IEEE Access 9:21367–21387

 10. Campos C, Elvira R, Rodríguez JJG, Montiel J, Tardós JD
(2021) ORB-SLAM3: an accurate open-source library for vis-
ual, visual–inertial, and multimap SLAM. IEEE Trans Robot
37(6):1874–1890

 11. Tetsu S, Michifumi Y, Katsufumi I (2020) Camera tracking
improvement for LSD-SLAM system with 360-degree camera.

IEEJ Transactions on Electronics, Information and Systems
140(7):800–809

 12. Akinlar C, Topal C (2011) EDlines: a real-time line segment
detector with a false detection control. Pattern Recogn Lett
32(13):1633–1642

 13. Li C, Kang Z, Yang J, Li F, Wang Y (2020) Research on semantic-
assisted SLAM in complex dynamic indoor environment. Int Arch
Photogramm Remote Sens Spat Inf Sci XLIII-B4–2020 353–359

 14. Engel J, Koltun V, Cremers D (2018) Direct sparse odometry.
IEEE Trans Pattern Anal Mach Intell 40(3):611–625

 15. Ban X, Wang H, Chen T, Wang Y, Xiao Y (2021) Monocular
visual odometry based on depth and optical flow using deep learn-
ing. IEEE Trans Instrum Meas 70:1–19

 16. Costante G, Ciarfuglia TA (2017) LS-VO: learning dense opti-
cal subspace for robust visual odometry estimation. IEEE Robot
Autom Lett 3(3):1735–1742

 17. Sun Y, Ming L, Meng QH (2017) Improving RGB-D SLAM in
dynamic environments: a motion removal approach. Robot Auton
Syst 89(Complete):110–122

 18. Wei H, & Zhang T, Zhang L (2021) GMSK-SLAM: a new RGB-D
SLAM method with dynamic areas detection towards dynamic
environments. Multimed Tools Appl 80(21–23):31729–31751

 19. Zou Y, Eldemiry A, Li Y, Chen W (2020) Robust RGB-D SLAM
using point and line features for low textured scene. Sensors
20(17):4984

 20. Zhang C (2021) PL-GM:RGB-D SLAM with a novel 2D and
3D geometric constraint model of point and line features. IEEE
Access 9:9958–9971

 21. Yang S, Scherer S (2017) Direct monocular odometry using points
and lines. IEEE Int Conf Robot Autom (ICRA) 2017:3871–3877

 22. Kim DH, Kim JH (2016) Effective background model-based
RGB-D dense visual odometry in a dynamic environment. IEEE
Trans Robot 32(6):1565–1573

 23. Cheng J, Wang C, Mai X, Min Z, Meng QH (2021) Improving
dense mapping for mobile robots in dynamic environments based
on semantic information. IEEE Sens J 21(10):11740–11747

 24. Cheng J, Wang Z, Zhou H, Li L, Yao J (2020) DM-SLAM: a
feature-based SLAM system for rigid dynamic scenes. ISPRS Int
J Geo Inf 9(4):202

 25. Guo K, Ye H, Gu J, Chen H (2021) A novel method for intrinsic
and extrinsic parameters estimation by solving perspective-three-
point problem with known camera position. Appl Sci 11(13):6014

 26. Bansal M, Kumar M, Kumar M (2021) 2D object recognition: a
comparative analysis of SIFT, SURF and ORB feature descriptors.
Multimed Tools Appl 80(12):18839–18857

 27. Sturm J, Engelhard N, Endres F, Burgard W, Cremers D (2012) A
benchmark for the evaluation of RGB-D SLAM systems. IEEE/
RSJ Int Conf Intell Robots Syst Vilamoura 573–580

Publisher's note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

242 The International Journal of Advanced Manufacturing Technology (2022) 122:235–242

http://creativecommons.org/licenses/by/4.0/

	Visual odometry algorithm based on geometric prior for dynamic environments
	Abstract
	1 Introduction
	2 Methodology
	2.1 Feature matching algorithm
	2.2 Tracking algorithm

	3 Experimental results
	3.1 The selection of the similarity threshold
	3.2 Comparison to the prior feature extraction methods
	3.3 TUM dataset evaluation
	3.4 Evaluation on the complexity

	4 Discussion
	5 Conclusions
	References

