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Abstract
Additive manufacturing is often used in rapid prototyping and manufacturing, allowing the creation of lighter, more com-
plex designs that are difficult or too expensive to build using traditional manufacturing methods. This work considers the 
implementation of a novel digital twin ecosystem that can be used for testing, process monitoring, and remote management 
of an additive manufacturing–fused deposition modeling machine in a simulated virtual environment. The digital twin eco-
system is comprised of two approaches. One approach is data-driven by an open-source 3D printer web controller applica-
tion that is used to capture its status and key parameters. The other approach is data-driven by externally mounted sensors 
to approximate the actual behavior of the 3D printer and achieve accurate synchronization between the physical and virtual 
3D printers. We evaluate the sensor-data-driven approach against the web controller approach, which is considered to be the 
ground truth. We achieve near-real-time synchronization between the physical machine and its digital counterpart and have 
validated the digital twin in terms of position, temperature, and run duration. Our digital twin ecosystem is cost-efficient, 
reliable, replicable, and hence can be utilized to provide legacy equipment with digital twin capabilities, collect historical 
data, and generate analytics.
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1 Introduction

Digital twin (DT) technology is one of the fastest-growing 
concepts of Industry 4.0. According to a 2018 Gartner study 
conducted, 75% of organizations implementing IoT already 
use DT or plan to do so within a year [1]. The DT concept 
refers to a digital informational construct that mirrors the 
behavior of an observable physical or cyber-physical sys-
tem in a real-time simulation environment [2]. The digital 
information is a “twin” of the information contained in the 
physical system and can be connected to the observable 

system throughout its lifecycle [3]. According to a recent 
study, the DT market was valued at $3.8 billion in 2019 and 
is expected to increase to $35.8 billion by 2025 [4]. The 
research in DT technology has been a hot area in both aca-
demia and industry, and a variety of tools, frameworks, and 
architectures have been proposed and built for accelerating 
DT applications [5–10]. Moreover, with the emergence of 
DTs in different industries, efforts have been made to review 
and categorize DTs by domain expertise [11, 12] or algo-
rithms [13] for better understanding and developing DTs. As 
our awareness of the benefits of a DT grows and the tools 
for constructing a DT improve, the definition of the term DT 
continues to evolve. In this paper, DT is described as a fully 
connected functional digital representation of an observable 
manufacturing asset that runs in real-time (or near real-time) 
mode and is driven by data and a set of attributes from the 
physical system [2].

The DT market is being driven by the growth of Indus-
try 4.0 technologies (e.g., IoT [14], cloud computing, 
additive manufacturing, modeling, and simulation [15], 
extended reality, artificial intelligence [16]) and the desire 
to reduce costs and shorten product development time [17]. 
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Additionally, DTs can assist with process monitoring, vir-
tual commissioning, predictive maintenance, lifecycle 
management, process diagnosis, and production responses 
[18–23]. DTs also provide information interfaces between 
humans and machines to improve operators’ capability and 
productivity in manufacturing [24–26]. Moreover, DTs can 
address the difficulties of productivity and quality control 
in industrial processes and allow organizations to act on a 
digital model for testing, and optimization [27]. Executing 
testing and optimization can accelerate prototyping, gener-
ate optimal decisions, eliminate instabilities caused to the 
real system, and assess a system’s performance and efficacy.

At the same time, additive manufacturing (AM) is 
quickly growing, while also improving scalability and stra-
tegic options. Leaders in manufacturing are implementing 
AM across their organizations and taking advantage of the 
increased flexibility this technology provides. AM is con-
sidered an emerging and disruptive Industry 4.0 technology 
that offers superior customization and flexibility in design-
ing and manufacturing complex products, greatly improves 
the competitiveness of manufacturing, and reduces lead 
time and material waste [28]. Manufacturers that desire 
to benefit from AM initiatives may discover that success 
requires cross-functional engagement and a willingness to 
move beyond the status quo in terms of product and process 
design, and in support of novel and innovative approaches. 
Utilizing a 3D real-time development platform for generat-
ing a DT for an AM process facilitates design and operation 
for highly customized and low-volume production. Fused 
deposition modeling (FDM) [29], also known as material 
extrusion or fused filament fabrication, is the most widely 
used AM process in prototyping, low-volume production for 
non-critical parts, training, and education. This can be attrib-
uted to its low risk, convenience, low cost, and friendly user 
interface [30–33]. An FDM AM machine typically heats fila-
ment of thermoplastic material (e.g., acrylonitrile butadiene 
styrene), extrudes it through a nozzle onto a movable build 
platform, and builds a 3D product in a layer-wise manner 
based on digital 3D models [32]. This process creates lay-
ers of material that adhere to one another. Layer bonding is 
controlled through pressure, temperature control, and chemi-
cal agents [28].

Interconnectivity and interoperability of industrial 
machinery are improving [34]. The wide adoption of data 
semantic standards (e.g., MTConnect [35]) further acceler-
ates these changes. However, not every manufacturer has the 
resources or incentive to upgrade to a contemporary solution 
and therefore continue to utilize their trusted and consist-
ent legacy equipment. Small and medium-sized enterprises 
(SMEs) in particular could greatly benefit from solutions 
that bring legacy equipment to the digital era. Such solutions 
should undoubtedly be reliable, straightforward, inexpen-
sive, and require minimum technical expertise.

The objective of this research is to provide insight to 
integrate real-time development platform capabilities, data 
acquisition, analytics, and advanced modeling and simulation 
techniques into developing DTs of various manufacturing 
processes and systems. Specifically, in this work, we present 
a digital twin ecosystem (DTE) for an FDM AM machine, a 
Lulzbot Taz Workhorse 3D printer. We describe the imple-
mentation and assessment of a DTE in a simulated virtual 
environment using a real-time development platform (Unity 
3D). The DTE is comprised of two different approaches. 
The first approach uses data collected by Octoprint,1 an 
open-source printer host software. The second approach is a 
replicable sensor-data-driven approach, that can be general-
ized and assist in the digitalization of legacy machines. We 
verify and validate our sensor-data-driven approach against 
the Octoprint-data-driven approach, which we consider as 
ground truth, as Octoprint has direct access to the firm-
ware of the printer. Both approaches rely on state-of-the-art 
open-source and free-of-charge software. The sensor-driven 
approach utilizes widely available, reliable, and cost-efficient 
sensors, mounted externally, in a non-disruptive manner. It 
also enables communication and synchronization with other 
devices and sharing of process data via a local network. Both 
approaches result in a novel data-driven soft-real-time DTE 
of the 3D printer, implemented with the Unity 3D real-time 
game development platform. The simulated virtual environ-
ment is configurable and allows remote access to machine 
information such as key process parameters, operational con-
ditions, built-in sensor data, and user-added sensor signals. It 
also provides on-demand reports of tracked process variables 
and can collect and store historical data. We assess the real-
time mimicking ability of the sensor-data-driven DT module 
in terms of extruder position and temperature in static and 
dynamic conditions, by comparing it to the Octoprint-data-
driven DT module. We also evaluate the DTE in terms of 
3D printer task duration and status. The response time of 
the DTE is also assessed. To the authors’ knowledge, the 
developed DTE is at the frontier of FDM DT research. We 
developed a digital replication of an FDM physical system in 
a real-time development platform, synchronized the activi-
ties between the physical process and its digital twin, and 
established an ecosystem with bidirectional information flow.

The rest of this paper is structured as follows: In Sect. 2, 
we provide an overview of the current state of research 
regarding DTs for manufacturing and explore the differ-
ent approaches to build a DTE. In addition, we highlight 
the benefits and limitations of existing DT approaches and 
define the scope of our research in terms of the published 
literature. In Sect. 3, we describe the implementation of the 
DTE and give a detailed explanation of our methodology. 

1 https:// octop rint. org/
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In Sect. 4, we evaluate the developed DTE and report the 
results. Finally, in Sect. 5, we discuss our conclusions and 
future research directions.

2  Related work

2.1  Digital twin background

DTs have been heralded as a major milestone towards the 
transition to Industry 4.0, where advanced digitalization 
drives informed decision-making. Manufacturing benefits 
from such a system in multiple ways (e.g., flexibility in 
design and manufacturing, dynamic recalibration of equip-
ment, insights into performance aspects of the production 
line and manufacturing process, and energy footprint reduc-
tion). As such, new production models have emerged, where 
ubiquitous connectivity of components provides data flow 
from product conceptualization and design to production 
and distribution [36].

The definition of a DT within AM is still controversial 
[37], with some researchers defining it as a virtual system 
that mimics a physical system [38–41], while others adopt 
a simulation-centric approach [42–45]. The physical behav-
ior of FDM involves heat transfer, materials phase changes, 
and machine mechanics that complicate the development of 
DTs [46, 47]. Moreover, existing works about FDM mainly 
focus on individual parts of the FDM process (e.g., the cool-
ing down of the deposited filament, the flow in the nozzle, 
the bond between layers [48–51]) instead of examining the 
process as a whole.

There is a consensus of thought regarding the importance 
of incorporating sensor data into DTs, as a means towards 
the acquisition of real or near-real-time data from physi-
cal processes [52–55]. However, this concept is still in its 
development stage. “DTs” developed with this concept only 
have sensor data from the physical FDM machine, but lack 
the digital replication of the physical system in the virtual 
space; therefore, they are somewhat difficult to be differenti-
ated from the traditional sensor-based process monitoring, 
such as [14, 32, 56].

In legacy equipment that does not inherently implement 
closed-loop control with networking capabilities, integration 
of digitalization poses a bigger challenge. Installing exter-
nal sensors and networking solutions seems like a promising 
direction [57, 58]. Another body of research explores side-
channels (e.g., acoustics, energy footprint), as a non-intrusive 
way to reveal information about the state and behavior of 
physical entities [59]. However, such an approach would be 
out of the scope of this work.

A DTE system typically consists of two major compo-
nents. The first component collects data from physical 
assets, processes, optionally stores locally or on the cloud, 

and serves them continuously (e.g., streaming), or when que-
ried, via a network. This component also has access to the 
machine; therefore, it can potentially intervene in the process. 
This component can be split into multiple sub-components, 
as described in the work of [57] and [60]. In [57], the authors 
use five different layers: (i) embedded devices, (ii) data acqui-
sition and control, (iii) local data storage, (iv) networking, 
(v) cloud storage. In [60], the authors use the 5C structure, 
which consists of five layers: (i) connection, which describes 
data acquisition; (ii) conversion, which refers to transform-
ing raw data to a useful format; (iii) cyber, which describes 
the generation of analytics, (iv) cognition, meaning self-
awareness, and autonomous failure detection; and (v) con-
figuration, referring to self-adaption to improve efficiency. 
These layers provide functionality that is beneficial to the 
operation of the DT. However, an effective DTE could omit 
certain layers of the referenced architectures, depending on 
system requirements, the scale of the data being processed, 
and its level of maturity. At its basic form, this component 
should communicate with a machine, process data, and make 
them available via a network. Therefore, in our work, we 
refer to this component as the data acquisition-processing-
distribution component (APDC). Section 3 describes APDC 
in more detail.

The second major component of a DTE is a system that 
utilizes available data to conduct a real-time simulation of 
the physical entity, presents the algorithmically extracted 
insight to users, and could be also used for optimization 
studies and “what-if” analysis. This component is referred 
to as layer vi emulation and simulation in the work of [57]. 
In this research, we use the term virtual representation com-
ponent (VRC), further described in Sect. 3.

In the last decade, a substantial body of research utilized 
3D development platforms, such as Unity 3D and Epic 
Unreal game engines to conduct simulation studies and 
develop DT applications for various case studies, ranging 
from industrial simulation studies [61–63] to robotics [64, 
65], autonomous vehicles [66], smart cities [67], and remote 
surgery [68]. 3D real-time development platforms feature 
a certain set of characteristics (e.g., networking, rendering 
engine, physics engine, event system, animation system, 
custom logic design) that makes them particularly suitable 
candidates for DTs. This work utilizes the Unity 3D develop-
ment platform to implement the VRC of a DT for an FDM 
AM machine and open-source software and cost-efficient 
hardware for the APDC.

2.2  Additive manufacturing background

Additive manufacturing (also known as rapid prototyping 
or 3D printing) is a manufacturing technique that involves 
building up layers of a material to form a solid product. 
Figure 1 illustrates a 3D printing process. While there are 
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several 3D printing technologies (e.g., direct metal laser 
sintering, stereolithography, selective laser sintering, digi-
tal light process), here, we concentrate on the process of 
fused deposition modeling (FDM), which is one of the most 
popular and accessible AM processes. During the COVID-
19 pandemic, hundreds of FDM machines at different loca-
tions in the USA provided nearly one million pieces of safe 
personal protective equipment for local medical providers 
through the 3D Printing COVID-19 Rapid Response Ini-
tiative. It has great potential to be deployed in distributed 
manufacturing and to act as a catalyst for ubiquitous manu-
facturing in the USA [69, 70].

The general approach remains the same across all these 
AM methods, whether the end product is a rapid prototype or 
a fully functional part. The initial stage in the AM process is 
to create a digital model. The digital model is most typically 
created using computer-aided design (CAD) tools. Through 
3D or structured light scanning, reverse engineering can also 
be employed to create a digital model. When designing for 
AM, there are various factors to consider such as geometry 
limits, structural requirements, and orientation.

An important step in the AM process that differentiates it 
from subtractive manufacturing methods is the requirement 
to convert a CAD model into a stereolithography file (STL). 
An STL file describes an object's surfaces using triangles 
(polygons). Once an STL file has been created the file is 
imported into a slicer program (e.g., Cura LulzBot Edition) 
and is converted to G-code. G-code is a programming lan-
guage for numerical control (NC), which is used to control 

automated machine tools in computer-aided manufactur-
ing (CAM) including 3D printers, and CNC machines. The 
G-code commands are tailored for the printer’s firmware 
and dictate all aspects of the printing process (e.g., initial 
calibration, temperature levels, acceleration, feed rate, extru-
sion rate, movement coordinates). Therefore, a G-code file 
is the most essential component of the printing process and 
an indirect way to monitor the system. It is worth noting that 
slicing engines can also generate estimates of the amount of 
time needed to print the 3D object. These estimates often 
lack accuracy but can be further improved with plug-ins 
available for most printer host software solutions.

Since most FDM 3D printing machines are composed 
of many small, delicate components, proper maintenance, 
and regular calibration are essential for producing accurate 
prints. After the print has started, most AM machines do not 
need monitoring. The machines operate autonomously, with 
problems occurring usually when the machine runs out of 
material or there is a software issue.

3  Methodology

This section describes the methodology that we followed to 
develop a novel DTE using an open-source 3D printer web 
controller application and Unity 3D real-time development 
platform. We implement the DTE in a modular manner so 
that each component is a self-reliant entity while being able 
to work as part of the ecosystem. The two major compo-
nents of the DTE architecture are (i) the data acquisition-
processing-distribution component (APDC), and (ii) the 
virtual representation component (VRC). The orchestrated 
interweaving of the above components enables the DTE for 
continuous synchronization between the physical system 
and its digital counterpart. The use of only open-source and 
free-of-charge technologies was one of the main principles 
behind our design and implementation. We strongly believe 
that DT enabling technologies should be widely accessible 
to the public so that the Technology Readiness Level (TRL) 
of these tools further matures. A high-level diagram of the 
DTE is illustrated in Fig. 2. The following sections describe 
the different components of our methodology in further 
detail.

3.1  Data acquisition‑processing‑distribution 
component

The data acquisition-processing-distribution component 
(APDC) consists of a digital interface that hosts Octoprint 
and implements a Representational State Transfer (REST) 
Application Programming Interface (API) to serve exter-
nal sensor data. The APDC collects, processes, and dis-
tributes data collected both from Octoprint and from 

Fig. 1  Image captured during the 3D printing process. The 3D printer 
extrudes layers of filament to produce a solid object
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external sensors. Data collected from Octoprint are used 
to build a stateful and detailed DT approach, as well as 
verify and validate our sensor-data-driven DT approach. 
The external sensors are used to build a sensor-data-
driven DT approach, meant for legacy equipment, with 
no inherent interconnectivity capabilities. The following 
sections introduce the subcomponents of the APDC and 
describe them in detail. A high-level view of the APDC 
architecture is illustrated in Fig. 3. The left rectangle 
area illustrates the APDC component which consists of 
the Octoprint web controller and the Sensor data REST 
API. The right rectangle area represents the 3D printer 
module that contains Marlin firmware, and the externally 
mounted sensors (thermocouple and IR distance sensors). 
The relationship of data exchange between Octoprint and 
Marlin is bidirectional, while the user-attached sensors 
are utilized to monitor the system through the Sensor data 
REST API.

3.1.1  Acquisition‑processing‑distribution component

To build the APDC, we use Raspberry Pi 3, because of its 
small size, low cost, and adequate computational power. The 
Raspberry Pi is a bare printed circuit board (PCB) equipped 
with all the building components of a typical computer, 
including the most common I/O, CPU, GPU, RAM, SD 
card support, and Wi-Fi connectivity to name a few. The 
operating system of our Raspberry Pi 3 is Raspberry Pi OS, 
previously known as Raspbian. We developed the sensor 
API using the Flask2 framework. Flask is a Python-based 
microweb framework that excels at rapid prototyping and 
easy maintenance. The sensor data become available once 
the sensor API is queried from an external service.

3.1.2  Octoprint web controller

The APDC hosts Octoprint, an open-source extendable web 
interface used to monitor and control consumer 3D printing 
machines. Apart from a web interface, Octoprint also pro-
vides a REST API that can be queried via hypertext transfer 
protocol (HTTP) requests. Octoprint provides information 
regarding (i) job operations, (ii) file operations, and (iii) 
printer operations. Below, we provide more details on how 
we combine and utilize parts of these three information cat-
egories to collect data that enable the Octoprint data-driven 
DT module.

• Job operations are used to receive information related to 
the currently loaded file, its name, its size, and upload 
date. Job operations are also used to receive and verify 
the estimated printing time (calculated by the slicing 
engine), the type of printing filament, the current G-code 
line being interpreted as a percentage of the total file 
lines (print completion percentage), the current G-code 
file line, printing time elapsed, and remaining printing 
time.

• File operations are used to retrieve a full list of uploaded 
files, along with their metadata, as well as statistics 
related to successful and failed prints for each loaded file.

• Printer operations are used for verification and validation 
(V&V) purposes as well as to retrieve current printer 
states and historical temperature data for the extruder 
head and the printing bed.

3.1.3  External sensors

A critical factor in a 3D printing process is to appropriately 
set up and maintain temperature, both for the printer head 
and the printing bed. The sensor-data-driven DT approach 

Data acquisition-processing-
distribution component (APDC)

Data distribution

Data processing

Data acquisition

Monitoring

Extended Reality

Reports3D simulation

Virtual representation component
(VRC)

"What if" analysis

Data storage

Fig. 2  High-level diagram of the DTE. The two major components 
are (i) the virtual representation component (VRC), and (ii) the data 
acquisition-processing-distribution component (APDC)

Octoprint

Sesnor data REST API

Data acquisition-processing-
distribution component (APDC)

IR distance sensors

Thermocouple sensor

3D printer

Marlin firmware

Fig. 3  The data acquisition-processing-distribution component (APDC) 
of the DTE. This component collects data directly from the printer and 
the externally mounted sensors 2 https:// flask. palle tspro jects. com/ en/2. 0.x/
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utilized external sensors for the following reasons: (i) to 
verify and validate the integrity of our architecture and its 
capability to be applied to legacy equipment, and (ii) to pro-
vide an environment for rapid prototyping and reduced data 
collection downtime. Replacing an internal sensor can be 
time-consuming. Therefore, we configured the system in a 
plug-and-play fashion, which simplified replacing a sensor 
in our pipeline. To receive real-time temperature data, we 
used the Yocto-Thermocouple USB temperature sensor. The 
sensor provides two inputs for thermocouples. We utilized 
one input for the printer head, and the other for the printing 
bed. The sensor also features internal flash memory, which 
can be used to store and retrieve historical temperature data. 
The response time of the sensor is less than 30 ms, with a 
temperature range between −75 and 260 °C, which makes it 
a good option for our sensor-data-driven DT. Another vital 
component of the printing process is the precise movement 
of the various parts involved. Our FDM AM machine has 
two different moving parts, namely the extruder head and 
the printing bed. To monitor the movement of the aforemen-
tioned parts, we installed and tested infrared (IR) distance 
sensors, namely Adafruit VL53L0X Time of Flight Micro-
LIDAR. An isometric view of our 3D printer that shows 
the sensor positions is illustrated in Fig. 4. The temperature 
sensors are shown with a triangle symbol and the IR distance 

sensors with a circle. Figure 5 illustrates an image compila-
tion of a real 3D printer that showcases the different posi-
tions of the externally mounted sensors.

3.2  Virtual representation component

Unity is a popular 3D real-time development platform, 
used in various applications ranging from virtual humans 
[71] and automotive showcases to training agents with 
Deep Reinforcement Learning [72]. It provides a realistic 
physics engine, a robust event system, animation system, 
advanced lighting settings, and the ability to implement 
custom logic using a programming language (e.g., C#). 
This platform was utilized to implement the virtual rep-
resentation component (VRC) of the DTE. A 3D model 
of the printer was imported into the 3D development 
platform. First, we fixed orientation issues, changed the 
pivot point, and grouped the related parts of the printer. 
For example, all parts of the extruder head were grouped 
under a new game object called Extruder. Game objects 
act as containers for components, which accomplish the 
real functionality. For example, the “Extruder” object is 
a self-contained modeling construct that allows defining 
that construct's characteristics, data, behavior, user inter-
face, and animation. Creating a new game object also helps 

Fig. 4  Taz Workhorse 3D 
printer model that highlights 
external sensor installation 
position
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reorient the model, since the new object’s pivot point can 
be altered without visual modifications to the original 
model’s meshes. Unity’s animation system was not only 
used for visualization purposes but also for V&V of dif-
ferent 3D printer processes. The Octoprint-data-driven 
approach is stateful, meaning that it keeps track of the 
current state of the printer, using data directly from its 
firmware. The sensor-data-driven approach is stateless and 
utilizes our external sensors to drive the DT, without keep-
ing track of the current state of the printer. The different 
approaches are explained in Sects. 3.2.1 and 3.2.2.

3.2.1  Octoprint data‑driven digital twin

The VRC accesses Octoprint (hosted in the APDC) using an 
open-source C# wrapper class of the Octoprint REST API. 
Any class that “wraps” or “encapsulates” the functionality of 
another class or component is referred to as a wrapper class. 
This is useful because it provides a level of abstraction from 
the underlying class or component's implementation. The C# 
project was compiled into a single Dynamic Link Library  
(DLL) file using MS Visual Studio. The DLL file is a  
library that contains code and data that can be used by many 

a)

b)

c)

d)

e)

f)

Fig. 5  a Printer front view, b Printer back view with y distance IR sensor, c Printer top view, d Z distance sensor from below, e Thermocouple 
sensor attached to the nozzle of the printer head, f x distance IR sensor
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programs at the same time. Thus, we imported the DLL file  
into the Unity project’s assets folder to enable access to 
the Octoprint REST API using high-level C# routines. To 
achieve synchronization between the LulzBot Workhorse  
and its stateful DT, a combination of event-based and peri-
odic logic execution is used. Octoprint is queried multiple 
times per second to determine the printer state and the values 
of various variables of interest, such as current G-code com-
mand, extruder temperature, bed temperature, and estimated 
time of print completion. The G-code is loaded in a buffer, 
and the currently executed command is identified based on 
the feedback from Octoprint. The concept is that the stateful  
DT of the printer is engaged in some specific kind of action 
at any given time. The available actions depend on the type 
of actions the real 3D printer performs, such as idling, print-
ing, translating on XYZ, etc. These actions are referred to as 
states, in the sense that the DT model is in a “state” where it 
is printing or idling, just to name a few. In general, the DT 
will have restrictions on proceeding to the next state rather 
than being able to switch immediately from one state to 
another. When a defined event occurs and certain conditions  
are met, a transition between two states is triggered. For 
example, an animation can only occur when the DT is print-
ing and not when it is in the idle state. Thus, it should never 
switch straight from the idle state to the animation state. The 
options for the next state that our DT model can enter from 
its current state are referred to as state transitions. Taken 
into consideration, the set of states, the transitions, and the 
variables of interest involved with the current state, comprise 
a finite state machine (FSM). We used a unified modeling  
language (UML), which is a general-purpose, developmental 
modeling language that is designed to provide a standard 
way to depict a system’s architecture. Figure 6 illustrates a  

UML state chart that is used to model the dynamic nature 
of the different DT states of the FSM. The most important  
states are the following: “Connected,” which is when a suc-
cessful connection is established with the printer; “Opera-
tional,” which means that the printer is ready to execute the 
printing process; “Printing,” which means that the printer 
is currently in the printing process; and “Paused,” which 
means that the print has paused for some reason. The most 
critical state is the “Printing” state, where the DT remains 
for most of the print. When a new G-code command is 
received, the DT enters the “Animating” state. After the 
physical coordinates are mapped to virtual space, the move-
ment animation curves per axis are generated in real-time 
before the animation is triggered. Animation curves provide 
the option to model movement more accurately (e.g., linear, 
constant, and ease-in–out movement). To simulate realistic 
animations, we identify the coordinate limits of the physical 
machine for each axis and translate them to limits within 
virtual space. Both the physical and the virtual position lim-
its are displayed in Table 1 under columns “Physical limit” 
and “Virtual limit” respectively. The formula that converts 
physical to virtual coordinates is shown in (1). It receives 

Fig. 6  UML state chart that describes the logic executed in the Octoprint-data-driven Unity DT

Table 1  Position limits for the physical machine and the unity DT

Type Physical limit Sensor val Virtual limit

X min −49.9 386 −1.15
X max 295 0 1.15
Y min −16.64 −20.0 −1.17
Y max 308 301 0.88
Z min 0 351 −1.24
Z max 299 1 1
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a coordinate in physical space ( coord
p
 ), and, given physi-

cal and virtual coordinate minimum and maximum values 
( min

p
,max

p
,min

v
,max

v
 ), maps the physical coordinate to 

virtual space ( coord
v
) . This equation is common for all three 

axes (X, Y, and Z). Physical and virtual limits are denoted by  
subscripts p and v respectively. Figure 7 illustrates the DT 
of the AM FDM, as it is displayed in the Unity 3D develop-
ment platform.

3.2.2  Sensor data‑driven digital twin

The sensor-data-driven DT utilizes signals from the exter-
nally-mounted sensors. The VCR accesses real-time sen-
sor data using our sensor REST API (hosted in the APDC). 
External sensors can be mounted in several ways depending 
on various criteria, such as sensor specifications and dura-
bility, a possible collision with moving parts, and the avail-
ability of mounting space. The external sensor mounting 
affects the position sensor values. Therefore, the relationship 
between position sensor values and coordinates is not fixed 
but varies depending on the installation setting.

To estimate the equivalent physical coordinate value 
given sensor readings, we devised approximation func-
tions. These functions are calculated by fitting the curves 

(1)������ = ���� +
(������ −����)(���� −����)

���� −����

generated by plotting the empirical data of the physical coor-
dinate values over sensor values for each axis. The approxi-
mation functions for all axes appear to be linear and are 
illustrated in Eqs. (2) to (4).

where X�������� , Y�������� , and Z�������� are the physical coordi-
nates for X-axis, Y-axis, and Z-axis respectively, and X������ , 
Y������ , and Z������ are the sensor values for each axis.

A raw sensor value is given as input to the correspond-
ing approximation function (i.e., Eqs. (2) to (4)), and the 
result is a physical coordinate. The physical coordinate is 
then mapped to virtual space using (1). Consequently, the 
DT adjusts its moving components, according to the new 
virtual coordinate. Regarding temperature, no manipulation 
is required. The temperature value in the DT comes from 
the temperature sensor reading. The sensor-data-driven DT 
does not utilize an FSM approach, but is stateless, meaning 
that the DT always monitors the position and temperature 
of the 3D printer, without identifying the current state of 
the machine.

4  Evaluation

In this section, we discuss our findings and evaluate the 
sensor-data-driven DT in terms of extruder position and 
temperature, by comparing it to the Octoprint-data-driven 
DT in static and dynamic conditions. We also evaluate the 
Octoprint-data-driven DT in terms of print duration against 
manually collected measurements. Finally, we assess the 
response time of the DTE. We assume that the true machine 
values for position and temperature are reported via Octo-
print as it has access to the printer firmware containing the 
instructions that tell the device how to interface with other 
computer hardware. Our experiments follow the methodol-
ogy presented in Fig. 8. To ensure the correctness of both 
DT approaches, we observe the behavior of the DTE through 
animation over time and compare it with the physical 3D 
printer. The sensor-driven DT properties match the actual 
3D printer properties during the simulation runtime. There-
fore, we conclude that twinning between the virtual and the 
physical asset has been successfully achieved and the DTE 
is valid. The successful twinning and validation of the DTE 
can be observed in our online demo3 video.

(2)X�������� = −0.8935 × X������ + 295

(3)Y�������� = 1.0113 × Y������ + 3.587

(4)Z�������� = −0.8544 × Z������ + 299.85

Fig. 7  The 3D printer and its stateful DT in unity engine

3 https:// www. youtu be. com/ watch?v= Q- HI- AuiK7c
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4.1  Position assessment

To evaluate the position-mimicking capability of the sen-
sor-data-driven DT, we compare position data retrieved from 
our sensor API against data acquired by Octoprint. First, we 
examine the success of the twinning in static conditions, 
which is detailed in Sect. 4.1.1. Then, we examine the posi-
tion data in a transitory regime, explained in Sect. 4.1.2.

4.1.1  Position assessment in static conditions

To evaluate the position-mimicking capability of the 
sensor-data-driven DT in static conditions, we placed the 
extruder head and bed on (X, Y, Z) = (50, 53, 19) in physi-
cal space. Values are measured in millimeters. We then 
utilize our sensor data rest API to compare the data from 
the sensor-data-driven DT against Octoprint data. We col-
lected sensor readings and physical position approxima-
tion values in 30 replications. Table 2 presents the mean 
and standard deviation for sensor values. Table 3 shows 
the mean and standard deviation for physical coordinate 
approximations. For the X coordinate, which was initially 
set to 50, we get a mean of 47.31. For the Y coordinate, 

which was initially set to 53, we get a mean of 52.94. For 
the Z coordinate, which was initially set to 19, we get a 
mean of 22.2. After 30 replications, the DT is on average 
2.69 mm off on the X-axis, 0.06 mm off on the Y-axis, and 
3.2 mm off on the Z-axis. These differences were expected 
due to the limitations of the currently installed IR dis-
tance sensors, which usually operate over a range of 50 to 
1200 mm and can generally achieve between 3 and 12% 
ranging accuracy depending on the operational conditions 
and environmental factors (i.e., measurement distance, 
light conditions, angle). To verify and validate the virtual 
extruder and bed position and assess the correctness of our 
code and whether the DT behaves reasonably compared to 
the real 3D-printer, we applied an Agent-Based Modeling 
graphical representation technique [73]. Figure 9 presents 
a graphical representation of the position approximation 
experiments. Blue circles correspond to the approximated 
physical coordinate. The solid line is the mean of the 
measurements, and the dashed line is the true physical 
coordinate (Octoprint coordinate). As it is observed from 
the face validity [74] of the graphical representation, we 
conclude that the DT component positioning behaves suf-
ficiently accurately.

Query the Octoprint API

Approximate Octoprint coordinates
from sensor X, Y, and Z axis values

Sensor X, Y, and Z
axis values

Identify printer state

Octoprint coordinates

i) 
Po

si
tio

n

Sensor temperatures

Octoprint temperatures

ii)
 T

em
pe

ra
tu

re

Generate descriptive 
statistics and perform 

statistical tests
to compare the datasets

iii)
 D

ur
at

io
n Keep track of elapsed time

in "Printing" State

Manually time print duration

Query the Sensor  API

Query the Octoprint API

Query the Sensor  API

Query the Octoprint API

Each experiment is run for 30 replications. V&V

Fig. 8  Methodology used for DT verification and validation. The DT is evaluated in terms of: i) position, ii) temperature, and iii) print duration

Table 2  Mean and standard deviation of sensor readings for constant 
physical coordinates (X = 50, Y = 53, Z = 19)

Sensor X-axis Sensor Y-axis Sensor Z-axis

Mean SD Mean SD Mean SD

277.2 2.565 48.8 1.827 325 3.5

Table 3  Mean and standard deviation of physical coordinate approxi-
mations for constant physical coordinates (X = 50, Y = 53, Z = 19)

Xphysical approx Yphysical approx Zphysical approx

Mean SD Mean SD Mean SD

47.31 2.292 52.94 1.848 22.2 2.993
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4.1.2  Position assessment in a transitory regime

To evaluate the 3D linear movement position-mimicking 
capability of the sensor-data-driven DT in a transitory 
regime, we place the extruder head and bed on (X, Y, Z) = (0, 
0, 30) in physical space. Values are measured in millimeters. 
We then issue G-Code commands to increment the position 
of all axes by two millimeters simultaneously until the axes 
reach (X, Y, Z) = (200, 200, 230). In essence, we obtain 100 
consecutive position samples while recording data from 
Octoprint and our sensor API. The experiment results are 
illustrated in Fig. 10. The dashed line corresponds to the 
true physical coordinate (Octoprint coordinate). The solid 
line corresponds to readings taken from the sensor-data-
driven DT, after the respective axis approximation functions 
(i.e., Eqs. (2) to (4)) are applied. As can be seen in Fig. 10, 
the approximated coordinates closely imitate the true physi-
cal coordinates. The best-performing IR sensor is the one 
that records the Y-axis, since it measures the surface with 
the largest area. The readings from the X-axis IR sensor 
improve as the extruder head reaches the sensor mounting 
position. Readings from the Z-axis IR sensor appear to fluc-
tuate the most, which is attributed to unoptimized sensing 
settings (surface area and material of the measured object, 
and ambient lighting).

4.2  Temperature assessment

To assess the temperature-mimicking capability of the 
sensor-data-driven DT, we compare temperature data 
retrieved from our sensor API against data acquired 
by Octoprint. First, we design an experiment to assess 
the temperature readings in the steady state (i.e., when 
the temperature has stabilized), which is described in 
Sect. 4.2.1. Subsequently, we conduct another experiment 
to examine temperature in-between two consecutive tem-
perature tracks, which is discussed in Sect. 4.2.2.

4.2.1  Temperature assessment in steady state

In this experiment, we observe the embedded extruder head 
sensor readings at the steady state. Polylactic acid (PLA) 
is one of the most common materials used in 3D printing 
and our filament material of choice. PLA works well when 
printing between 180 and 230 °C, which is typically the 
printer’s operation temperature. We performed two experi-
ments, one at 180 °C and another one at 230 °C, with 30 
replications for each temperature level. The results are 
illustrated in Table 4. The manufacturer specifies a ± 2.2 °C 
error limit for the Yocto-thermocouple sensor. The observed 
sensor values are within machine specifications. Figure 11 

Fig. 9  Physical coordinate 
approximations from sensor 
values
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graphically illustrates the experiment replications. Blue cir-
cles correspond to the temperature values acquired by the 
external sensors. The solid line corresponds to the mean 
temperature across the experiments, while the dashed line 
is the true temperature (Octoprint temperature). As it is 
observed from the face validity of the graphical represen-
tation and the mean and standard deviation of Table 4, 
we conclude that the DT temperature behaves sufficiently 
accurately.

4.2.2  Temperature assessment in between two consecutive 
temperature tracks

In this experiment, we initially set the temperature to 180 °C. 
When the temperature stabilizes, we start recording data from 
both the Octoprint and the sensor-data-driven DT. Then, we 
increase the temperature to 230 °C and record the tempera-
ture transition. The results of this experiment are illustrated in 
Fig. 12. The dashed line corresponds to the true temperature 
(Octoprint temperature), while the solid line corresponds to the 
temperature retrieved from the sensor-data-driven DT. Notice 
how the temperature initially rises beyond the 230 °C mark, 
which is recorded both by Octoprint and our externally mounted 
temperature sensor. Once a temperature change is issued, the 
temperature does not directly reach the new temperature value, 

but oscillates around the new value with the amplitude of the 
oscillation decreasing over time, until a steady state is reached. 
Instead of waiting for the temperature to stabilize again, we 
adjust the temperature to 180 °C. The temperature drop to 180 
°C lasts longer compared to the temperature increase to 230 
°C. This is an expected outcome, since the temperature rise is 
achieved by heating the nozzle of the printer, while the tem-
perature drop is achieved by exposure to ambient air and the 
active cooling from the extruder fans. Once the temperature 
starts oscillating around the 180 °C mark, we execute the tem-
perature sequence again (i.e., we increase the temperature to 
230 °C and then decrease it to 180 °C). As can be seen, the 
sensor-data-driven DT accurately and timely mimics the tem-
perature of the 3D printer.

Table 4  Mean and standard 
deviation of the temperature 
sensor readings at two different 
temperature levels

180 °C 230 °C

Mean SD Mean SD

181.82 0.191 230.89 0.092
Fig. 11  Temperature readings at two different levels (180 and 230 °C)

Fig. 10  Octoprint and 
sensor-DT position coordinates 
recorded during a 3D linear 
translation
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4.3  Printer state duration assessment

To confirm that the state durations are accurately reflected 
in the Octoprint-data-driven DT, we wrote a custom G-code 
file that describes a print with no temperature adjustments 
and executed 30 print repetitions. We manually measure the 
duration of the print by observing the printer and comparing 
it against the print duration generated in the Octoprint-data-
driven DT. Figure 13 shows side-by-side plots, one for each 
measurement method. Blue circles correspond to the meas-
ured values across the replications, and the solid line repre-
sents the mean of the measurements. The results, in tabular 
format, are illustrated in Table 5. The manually measured 
duration for the print has a mean of 25.7133 s and a stand-
ard deviation of 0.157. The Octoprint-data-driven DT dura-
tion for the print has a mean of 25.9865 s and a standard 
deviation of 0.219. Thus, we conclude that the print duration 
mimicking capability of the DT is sufficiently accurate.

4.4  Extruder speed assessment

The current DTE setup allows the movement speed to be 
directly estimated from position feedback. If we know 
two consecutive positions, we can deduce speed by divid-
ing the distance traveled by the elapsed time. However, if 
feedback is not available, speed estimation becomes a much 
harder task. For speed to be successfully estimated with-
out feedback from the machine, one needs to know the feed 
rate setting of the printer, the acceleration setting, and the 
translation distance. As such, experiments were designed 
to determine and evaluate the effect of the aforementioned 
variables on the average speed. The results of our experi-
ments are discussed below.

Initially, the acceleration was set to 500 mm/s2. Perform-
ing 100-mm translations with a feed rate of 3000 the extruder 
can reach an average speed of 118.34 mm/s. However, when 
performing 250-mm translations with the same settings, 
it can reach an average speed of 171.23 mm/s. Given the 
above, we determine that a higher speed can be achieved 
when the extruder head travels for a longer distance.

When the translation distance is not large enough, 
increasing the feed rate does not increase the average speed. 
The maximum speed of the printer is 300 mm/s; however, 
this is not always achievable. The extruder must accelerate 
for a certain amount of time to reach the target speed. For 
example, reaching a speed of 300 mm/s with an accelera-
tion of 500 mm/s2 would take 0.6 s. The distance covered 
within this time is 90 mm. It is past the 90-mm point that 
the extruder head will travel at the maximum speed. The 
extruder must also decelerate before stopping. Deceleration 
requires some distance for which the printer does not operate 
at maximum speed. The longer the translation, the less accel-
eration, and deceleration affects the average speed. From the 
above, we determine that the average speed within a transla-
tion has a non-linear relationship with the feed rate for small 
translation distances and low acceleration settings. To deter-
mine how acceleration affects the relationship between feed 
rate and extruder speed, we set the acceleration to the maxi-
mum allowed value of 9000 mm/s2 and perform the same 
experiment with the new acceleration setting. The results 
are presented in Fig. 14. The solid line corresponds to the 
experiment with acceleration set to 500 mm/s2 and distance 
to 100 mm. The dashed line corresponds to acceleration set 

Fig. 12  Temperature readings in-between two consecutive tempera-
ture tracks (180 and 230 °C)

Fig. 13  Print duration measured manually (left) and in the DT (right)

Table 5  Print duration mean and standard deviation. Measurements 
are taken manually for the machine, and automatically from inside the 
Unity DT

Print duration (manual) Print duration (dt)

Mean SD Mean SD

25.71333 (sec) 0.1571 25.98651 (sec) 0.219
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to 500 mm/s2 and distance to 250 mm. The dotted line cor-
responds to acceleration equal to 9000 mm/s2 and a distance 
100 mm. The dashed-dotted line corresponds to acceleration 
equal to 9000 mm/s2 and translation distance 250 mm. We 
can observe that the relationship between feed rate and aver-
age speed approximates a linear curve as translation distance 
and acceleration increase, with acceleration having the most 
significant effect.

4.5  Response time assessment

Response time assessment considers measurements of the 
amount of time it takes for a server to respond to client 
requests. In our DTE, we define response time as the amount 
of time that passes between a request from the VRC and a 
response from the Sensor data REST API of the APDC over 
a WiFi network. For example, if the VRC requests data to 
update the virtual extruder temperature of the AM DT, the 
response time is how long it takes for the sensor data REST 
API to fulfill that request.

To assess the response time of our DTE, we conduct a 
response time experiment by performing 100 consecutive 
requests and calculating the time interval from the moment 
the request is sent until the response is received. Then, 
we record our results. For all 100 requests, we receive a 
successful response and no errors. The response time test 
results are illustrated in Fig. 15. Blue circles represent the 
different response time measurements, and the solid line 
corresponds to the mean response time. The mean response 
time of our DTE is calculated as 265.94 ms and the stand-
ard deviation as 4.08 ms. The mode is 263 ms, and the 
minimum and maximum response times are calculated as 
258.87 ms and 280.21 ms respectively. The response time 
is adequate to monitor incoming telemetry and could be uti-
lized to detect anomalies in a timely manner. Furthermore, 
the mean response time of our DTE successfully facilitates 

the software and hardware requirements to create a near-
real-time DT of an AM processes.

5  Conclusions and future work

In this paper, we described the development of a novel digi-
tal twin ecosystem that can be used for testing, process mon-
itoring, and remote management of an AM FDM machine 
in a simulated virtual environment. The developed DTE can 
capture the overall operation and performance of the FDM 
machine and therefore could be used for in-process analysis 
and optimization. To develop a realistic DTE, one needs to 
study, identify, and model the internal physics that govern 
the operation of the machine. In our work, we applied a 
DTE architecture, composed of two key components: the 
data acquisition-processing-distribution component (APDC) 
and the virtual-representation component (VRC). Using the 
APDC and VRC we were able to coordinate and interconnect 
the components that comprise the Digital Twin Ecosystem 
(DTE) and achieve continuous synchronization between the 
physical asset and its digital system, with a mean response 
time of 265.94 ms. We verified and validated the DTE and 
its mimicking capabilities using sensor data against internal 
real-time machine data and we evaluated the twinning of 
the virtual and physical assets statically and dynamically. 
We examined and evaluated the 3D linear position of the 
extruder in static and transitory regime conditions, the tem-
perature in steady-state and in between two consecutive 
temperature tracks and the impact of acceleration, trans-
lation distance, and feed rate on the average speed of the 
extruder. The developed DTE allows for automatic detec-
tion of incoming telemetry in near real-time. In particular, 
the mean response time of the DTE is 265.94 ms. Notably, 
the response time that can be achieved is highly reliant on 
the implementation. The utilized hardware, software, and 

Fig. 14  Impact of acceleration, translation distance, and feed rate on 
the average speed of the extruder Fig. 15  Response time of the DTE for 100 consecutive samples
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communication method can be further optimized to reduce 
response time. In the future, we plan to examine more vari-
ables, such as the relationship between feed rate, accelera-
tion, and translation distance, as well as the temperature rise 
and drop rate. In addition, we plan to explore environmental 
factors (e.g., atmospheric temperature, humidity, light con-
ditions), as well as the relationship between different fila-
ments, extrusion speeds, and print quality. Our overall future 
goal is to use this DTE to predict the product quality even 
before it is printed, reduce the time and cost in experimen-
tal testing of optimal printing conditions, and assist in the 
optimization of part printing and tool path.

IR distance sensors have a higher accuracy the closer they 
are placed to the measured object. Furthermore, according 
to the manufacturer, ambient lighting and the material of the 
measured object affect the quality of the readings. Best read-
ings are obtained from shiny objects, in good lighting condi-
tions. The environmental conditions during the experiments 
were not fully controlled. More specifically, printer surfaces 
and room lighting have not been adjusted to optimize sensor 
reading accuracy. Such modifications will be implemented 
and studied in future research endeavors.

Another future research direction is to augment the 
developed DT with extended reality (XR) capabilities. The 
transformation is straightforward since Unity 3D real-time 
development platform offers extensive XR support. An XR 
version of the 3D printer’s DT has the potential to serve 
remote educational purposes. Schools, universities, and 
SMEs could benefit from such a system. For example, a 
remote augmented reality DT can be utilized when the envi-
ronment is not suitable for machinery, or there are financial 
constraints. Furthermore, the interconnectivity capabilities 
of modern head-mounted displays (HMDs) allow for col-
laborative work between individuals and teams.
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