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Abstract
With the increasing adoption of Industry 4.0, optical metrology has experienced a significant boom in its implementation, 
as an ever-increasing number of manufacturing processes are overhauled for in-process measurement and control. As such, 
optical metrology for digital manufacturing is currently a hot topic in manufacturing research. Whilst contact coordinate 
measurement solutions have been adopted for many years, the current trend is to increasingly exploit the advantages given 
by optical measurement technologies. Smart automated non-contact inspection devices allow for faster cycle times, reducing 
the inspection time and having a continuous monitoring of process quality. In this paper, a review for the state of the art in 
optical metrology is presented, highlighting the advantages and impacts of the integration of optical coordinate and surface 
texture measurement technologies in digital manufacturing processes. Also, the range of current software and hardware 
technologies for digital manufacturing metrology is discussed, as well as strategies for zero-defect manufacturing for greater 
sustainability, including examples and in-depth discussions of additive manufacturing applications. Finally, key current 
challenges are identified relating to measurement speed and data-processing bottlenecks; geometric complexity, part size 
and surface texture; user-dependent constraints, harsh environments and uncertainty evaluation.
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1  Introduction

The latest industrial revolution is characterised by the trans-
formation of individual activities (such as design, manufac-
turing, assembly, quality control and supply) into advanced, 
interconnected, highly efficient, flexible and automated pro-
duction flows. In this setting, digital manufacturing refers 
to the application of integrated computer-based systems for 
the design and realisation of high-value products, as well as 
the management of complex manufacturing operations [1]. 
The last decade has seen a transformation of manufacturing 
industries, with a move towards the digitisation of routine 
tasks within their processes, and integration of such opera-
tions with external partners along the value chain [2]. Manu-
facturing activities are moving from conventional methods 
towards knowledge-driven processes, utilising information 
sharing and digital technologies, and innovative infrastruc-
tures that link systems across all areas of production [3]. 

The transformation into digitisation applies across many 
high-value sectors, including aerospace, automotive, medi-
cal instrumentation, precision optics and, more recently, 
construction. Productivity and quality are enhanced via the 
adoption of adaptive sensors and advanced technologies, 
by which all aspects of the manufacturing process (i.e. the 
whole life cycle of a product, from its design, manufactur-
ing, assembly, testing and maintenance) are modelled, simu-
lated and stored [4]. Due to these numerous innovations, 
the role of metrology (i.e. the science of measurement and 
its application [5]) within the manufacturing process chain 
has changed significantly. The use of optical measurement 
technologies for automation in research and on the manu-
facturing shop floor has been considered since significantly 
prior to the advent of the fourth industrial revolution. How-
ever, Industry 4.0 has allowed for the creation of optimised 
measurement procedures allow for quality control operations 
of every product by targeting critical measurements and met-
rological analyses to run in real-time. However, there is still 
a lack of confidence in the data that is captured and managed 
within those processes. As for any existing manufacturing 
infrastructure, confidence in data is the key enabler for adop-
tion of novel Industry 4.0 methodologies in manufacturing. 
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Good data enables right-first-time manufacture, reduces 
waste, scrap and energy consumption; and facilitates effec-
tive business decisions. Through metrological traceability, 
metrology solutions can be used to establish such confidence 
[6], reducing unnecessary scrap rates, inefficient processes 
and wasted production time.

1.1 � Contents of the review

There are numerous existing reviews on manufacturing 
within the context of Industry 4.0 [7–11], mainly focused 
on related technologies that respond to the fundamental chal-
lenges of modern factory automation and their future frame-
work and perspectives. Based on the principles presented 
in [2], with a greater focus into the implications of optical 
metrology within the context of digital manufacturing, the 
following research questions were posed:

1.	 Has the role of metrology (specifically optical co-ordinate 
and surface texture metrology) changed significantly inside 
the manufacturing flow over the last few years?

2.	 What are the major challenges given by the integration 
of metrology in digital manufacturing?

3.	 What are the latest trends for uncertainty and traceabil-
ity, especially in the context of a digital manufacturing 
setup?

To answer those questions, an overview of coordinate and 
surface texture measurement solutions integrated into manu-
facturing processes is presented, alongside the challenges 
and limitations encountered when implementing these 
solutions. Here, the focus on coordinate and surface texture 
metrology is based on several considerations. Particularly, 
surface texture and coordinate measurement are perhaps the 
most critical parameter contributing to the quality and func-
tionality of a manufactured part and the measurement of 
shape and surface texture represents a significant challenge 
for current measurement technologies.

Challenges include speed and data bottlenecks associated 
with software and hardware solutions; complexities result-
ing from variation in the size, shape, and texture of fabri-
cated products; the user-dependency limitation of numerous 
quality inspection and verification processes; and issues that 
occur when measuring in harsh environments. The review 
ends with implications for uncertainty in measurement, par-
ticularly addressing the latest developments in methods for 
the uncertainty evaluation of optical instruments (for exam-
ple, development of virtual instruments) and the uncertainty 
associated with three-dimensional (3D) point clouds and 
surface texture measurements.

This literature review was performed using the 
main scientific databases (Scopus, Google Scholar). A 

comprehensive initial search for extracting literature on the 
themes of optical metrology in digital manufacturing and its 
integration into Industry 4.0 context included publications 
from 2000 through 2021. Due to the high volume of avail-
able contents, the focus of the review targeted specific key-
words such as “optical metrology”, “digital manufacturing”, 
“industry 4.0”, “zero-defect manufacturing”, “measurement 
uncertainty”. Moreover, selected publication ranged from 
2015 through 2021, with only a few examples from the early 
2000s. Papers were primarily selected if the contents of the 
study contributed towards answering any of the above ques-
tions through a three-stage evaluation process: (a) literature 
search based on specific keywords, (b) literature analysis and 
synthesis based on title/abstract screening, and (c) full-text 
screening of selected articles. The result of this process is a 
systematically collected set of sources that were then pro-
cessed into the discussion presented throughout this paper.

Among 145 of the selected studies for review, 118 articles 
are journal publications, 17 papers are taken from confer-
ence and symposia proceedings, ten are books and book 
chapters; and eight publications are international standard 
certifications and good practice guides. Of these publica-
tions, 20 are dated between 2000 and 2014, nine in 2015, 
twelve in 2016, 20 in 2017, 27 in 2018, 16 in 2019, 31 in 
2020 and ten in 2021.

2 � Integrated metrology for Industry 4.0

In recent decades, due to innovations such as smart multi-
sensor systems, virtual metrology and metrology-driven 
operations, the role of metrology inside the manufacturing 
flow has significantly changed. Previously, measurement 
solutions were generally employed for quality checks as the 
final step of a product’s conformity verifications, typically 
operating as post-processing activities. As a result of the lat-
est “industrial revolution”, a large variety of measured data 
required for management, monitoring and diagnostic activi-
ties is now available in real-time and can be used to facilitate 
inspections and analysis [2, 7]. Highly digitised factories 
continuously collect and share data through inter-connected 
devices, machines, and production processes. In this envi-
ronment, in-process metrology solutions and non-contact 
optical measurement systems, often mounted on industrial 
robots, offer fully automated and fast control and verification 
solutions. Optical metrology solutions easily fit into Industry 
4.0 processes and metrology can promote true data-driven 
production. Image processing and vision systems, operating 
next to assembly and production cells, are able to acquire 
inspection data during/alongside the assembly/verification 
processes, automatically storing information associated with 
each manufactured product. As such, all relevant knowl-
edge regarding the quality of a workpiece can be obtained 
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while the part is being measured. Feedback-based control 
solutions are then performed using intelligent connection 
mechanisms linked to a central manufacturing system [12]. 
The practice of concentrating multiple production tasks in 
a single, connected, smart, automated and data-driven pro-
cess infrastructure is known as “closed-loop manufacturing” 
[13]. Closed-loop manufacturing can deliver high production 
performances, reducing costs and improving product quality 
through the combination of digital technologies, manufac-
turing and measuring operations based on inspection and 
consumer feedback. The schematic workflow of this concept 
is presented in Fig. 1.

2.1 � Data connectivity

Closed-loop manufacturing is linked to the concept of 
data connectivity, which represents the foundation of digi-
tal manufacturing [8, 9]. In closed-loop operation, data 
is collected, turned into usable information and shared 
to promote fast and reliable action [10]. For information 
to flow in real-time, current measuring instruments are 
linked together using cyber networks (i.e. instruments 
are integrated as cyber-physical systems, defined as “sys-
tems which link real – physical – objects and processes to 
information-processing – virtual – objects and processes 
via open, partly global information networks which can be 
connected together at any time” [2, 14]).

Due to the adoption of new enabling technologies, such 
as cloud data management, measuring machines can act 
as their own interfaces, directly connecting and communi-
cating with each other and to external actors. As an inter-
connected virtual architecture, cloud data management pro-
vides intelligent organisational capabilities and services to 
the manufacturing line. Cloud data management allows the 
line to become a networked unit of implemented tools for 
continuous communication of processes and machines [4]. 
Additionally, to enable real-time decision-making mecha-
nisms, data is directly shared across companies and supply 
chains [15]. Enhanced connectivity increases the visibility 
of shop-floor processes, while simultaneously maximising 
production efficiency.

The sharing and exchange of data within communicat-
ing systems creates “on-demand” digital storage solutions 
and processing resources connected to a general digital 
industrial network, allowing for the trusted transmission of 
data, as well as traceability to cyber and physical reference 
standards to assure part provenance [16]. Essentially, every 
piece is connected, traced, tracked, measured and conse-
quently improved, and every stage of the manufacturing 
line is controlled by self-monitoring mechanisms (i.e. built-
in sensors integrated into machine operational functions). 
These intuitive components allow exchange of data between 
equipment, synchronising each task on the shop floor (for 
example, initiation of production, assembly, replacements 
and corrections) and improving decision-making through 

Fig. 1   The production workflow starts from the design and manu-
facturing of products employing digital technologies, followed by 
measuring operations and inspection. The data collected from the 

consumer feedback is then linked back to product development 
departments, allowing rapid enhancement of the product design
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context-driven recommendations [17]. The collected data 
can then be employed to redesign and improve systems, 
as well as to aid production planning and management of 
operations [18–20].

The standardisation of metrology data and integration of 
metrology data with other parts of manufacturing processes 
is an important matter that ISO Committee has been try-
ing to address. The development of new data model stand-
ards based on ISO 10303 Standard for Exchange of Product 
Model (STEP) data [21] and ISO 14649 STEP-Numerical 
Controllers (STEP-NC) [22] provide product information 
from all steps of the manufacturing chain. Kubota et al. 
[23] presented a framework in which a STEP-NC model 
data combined with machine tool digital twin (MTDT) 
is employed to deliver rich structured information about 
the machining process. This combination allows both the 
application of the digital twin concept on machine tools and 
knowledge for the optimisation of the machining process. 
Zhao and Xu [24] developed a cognitive process planning 
system based on ISO STEP/STEP-NC standardisation that 
integrates machining, inspection, and feedback in a manufac-
turing system. In a later publication [25], the same authors 
proposed an integrated process planning system architecture 
for combined machining and inspection, able to carry out 
on-machine inspections in between machining operations 
and provide feedback in real-time. Rodriguez and Alvares 
[26] described an approach for the implementation of the 
STEP-NC standard in additive manufacturing. The geomet-
ric information of the built layers was converted as input 
data to generate the STEP-NC data model. A verification 
process was carried out through toolpath simulation within 
the STEP-NC Machine software environment, including the 
configuration of the machine’s kinematic 3D model and the 
tool shape geometry.

Further information about the implementation of ISO 
data models STEP/STEP-NC for process planning, machin-
ing and inspection are comprehensively reviewed elsewhere 
[24].

2.2 � In‑line measurements for zero‑defect 
manufacturing

Digital manufacturing and smart measuring technologies 
enable the development of zero-defect manufacturing strat-
egies, moving from off-line metrology and dedicated meas-
uring equipment to in-line measurements and automated 
inspection systems (see the definitions of in-line and off-line 
metrology and classification, as discussed in [27, 28]). Meas-
uring in-line presents several benefits over conventional, off-
line methods, including the minimisation of the inspection 
time (removing some of the more time-consuming tasks), 
the continuous monitoring of process quality, faster cycle 
times and the creation of fully automated manufacturing 

cells [29]. Qualitative faults and imperfections that may 
affect functional properties or subsequent assembly opera-
tions are detected in advance, reducing the chances of poten-
tial reworks and delays and addressing the possible issues 
while the part is still being manufactured [30]. Further, 
measuring in-line requires that the technology/instrument 
employed must be feasible for the production line (where the 
measurement of dynamic objects is often required), whist 
guaranteeing accurate results in short measurement times. 
As an example, the measurement system (either mounted 
on a robot-arm or placed in the measuring cell [11]) should 
be placed on a conveyor or roller table and moved along 
synchronously with the workpiece (i.e. the two coordinate 
reference frames must translate with one another).

In addition to robot-mounted measurement devices that 
can address a range of tasks autonomously, the latest trend 
has seen a majority of verification tasks concentrated into 
a single instrument performing on-machine or, more spe-
cifically, in-process inspection. The shape and surface tex-
ture information of a measured part are representative of 
the process characteristics and the actual performances of 
the machine tool employed. As such, as reported by Gao 
et al. [27], the integration of manufacturing and measuring 
operations is beneficial to the production process. Conse-
quently, commercially available measurement instruments 
have seen a significant improvement in multiple manufac-
turing industries, not only in their intrinsic measurement 
performances, but also in terms of design and planning of 
measurement procedures [7, 9]. Numerous instrument sup-
pliers are marketing their products for their specific use in 
quality control and in-process verification of machined parts, 
driven by the common objectives of covering customer’s 
needs and meeting new market demands [2, 31]. Proprietary 
software platforms for virtual simulation of the measurement 
environment, i.e. virtual measuring room (VMR) and opti-
cal sensors mounted on industrial robotic-based systems or 
directly integrated within the machine tool, are increasingly 
employed as solutions for in-line manufacturing scenarios. 
At present, there are several commercial (or close to com-
mercial) sensors that can be employed for integrated metrol-
ogy with a list of current, manufacturer agnostic, software 
and hardware configurations for in-line (and off-line) meas-
urements presented in Table 1. While these solutions are 
numerous, their full integration into digital manufacturing 
processes is still characterised by a large number of barriers 
yet to be overcome (see detailed discussion in Sect. 3).

In the following subsections, an overview of the latest 
measurement technologies for in-line integration into man-
ufacturing processes is presented. Here, examples of geo-
metrical and dimensional analysis of workpieces and detec-
tion of surface defects with a particular focus on in-process 
monitoring for additive manufacturing (AM) are included. 
While this paper is manufacturing process-agnostic, here, 
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the AM focus is provided because the wide variety of chal-
lenges present in AM part measurement broadly represent 
the set of challenges present in digital manufacturing, sum-
marised as a series of appropriate case studies.

2.2.1 � Geometrical and dimensional inspection

Currently, the majority of inspection devices for the meas-
urement of geometrical and dimensional features available 
on the market for industrial applications (such as automo-
tive assembly and aerospace inspections) use optical tech-
nologies, most commonly laser-based instruments. Kiraci 
et al. [32] developed an industrial demonstrator (Fig. 2a) 

used to assess the performances of a laser radar solution for 
in-line dimensional inspection in the context of body-in-
white (BIW) automotive applications. The authors aimed 
to understand the effects of the robot re-positioning error 
by mounting the sensor on a robot-arm moving on a trail 
(shown in schematic form in Fig. 2b) and examining the 
measurement accuracy and repeatability, compared to con-
tact measurements. The results showed a significant reduc-
tion in measurement cycle-time, allowing a rapid detection 
and correction of assembly defects in real-time.

Later, the same authors [33] evaluated the capability 
of three measurement systems (i.e. a contact co-ordinate 
measuring machine and a single-line laser triangulation as 

Table 1   Current software and hardware solutions for in-line (and off-line) measurements and relative applications

Category Technology/type Application

Software suite • Module
• Library
• Virtual measuring room (VMR)

➢ Visual product quality inspection and connection in 
a cloud of all production systems

➢ Digital twin environment
➢ Robotic control, improving absolute positioning and 

performance
Robot-mounted sensors (collaborative robot, 

inside an enclosed measuring cell or next to the 
conveyor)

• Fringe projection
• Laser-based
• X-ray (parts positioning via an 

automated door, robots loading/
unloading from conveyors)

• Coherence scanning  
interferometry

➢ In-line (and off-line) automated inspections (e.g. 
inspection of shape and surface texture, critical 
dimensions, defects, scratches, flatness, deformations, 
etc.)

Mobile measuring stations • Fringe projection
• Laser-based

➢ In-line (and off-line) automated inspections (e.g. 
inspection of shape and surface texture, critical 
dimensions)

On-machine devices • Fringe projection
• Electron imaging
• High speed infra-red cameras
• Deflectometry

➢ On-machine inspections for real-time measurement
➢ In-process monitoring (for full traceability and 

layer-by-layer quality assurance)

Multi-sensor devices • Multiple measurement 
technologies (combination of 
coordinate and surface texture 
measurement)

➢ Direct integration into machine tools or combination 
with tactile coordinate measuring machines

Hand-held devices • Fringe projection
• Laser-based

➢ Dimensional inspections (e.g. gap/flush, critical 
features)

➢ Surface defect detection

Fig. 2   In-line dimensional 
inspections using laser radar: 
industrial demonstrator 
developed by Kiraci et al. [32]: 
a experimental setup (1, work-
piece; 2, robot; 3, trail; 4, tool-
ing balls; 5, laser radar sensor; 
6, tactile coordinate measuring 
system); b the four positions of 
the robot moving along the trail
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off-line measurement solutions; and laser radar as an in-
line solution), determining their feature-specific suitability 
for automotive inspection. A calibrated artefact, representa-
tive of common automotive features, was selected as a test 
case. Kiraci et al. found that the laser radar provided results 
comparable to the off-line systems in terms of accuracy. 
Tran and Ha [34] proposed a high-resolution camera and 
a multi-line, laser-based sensor for the measurement of 
gap/flush in assembly of automotive vehicles (Fig. 3). The 
measurement system showed its capability for measuring 
complex surfaces at high speed within an in-line vehicle 
assembly environment. Zhou et al. [35] presented a method 
based on laser scanning technologies for the automated fast 
inspection of freeform shapes, with the aim of developing 
an instrument for in-line dimensional inspection in the auto-
motive and aerospace sectors. Long et al. [36] proposed a 
framework for automatic gap/flush measurement based on 
unstructured point cloud analysis. The cross-sections needed 
for the analysis of the gap/flush profiles were extracted based 
on point cloud segmentation methods. The framework was 
tested using two commercial optical instruments; a laser-
based portable device and a fringe projection system, for 
the inspection of aircraft skin surfaces and the gap of a 
car door, respectively. Kosmopoulos et al. [37], proposed 
a stereo camera-based system for automated dimensional 
inspection in automotive production. Their measurement 
setup consisted of two calibrated stereo cameras and two 
infrared LED lamps, used for highlighting the edges of gaps 
and recessed features via specular reflection. The proposed 
method has significant advantages, in being fully automated 
and independent to colour variation.

Despite the latest developments, in most assembly lines 
and quality control stations, some of the inspection tasks (for 
example, the inspection of critical features in an automotive 
body shell, gap/flush measurements and aircraft skin sur-
face defects detection) are still performed manually. Manual 
measurement often involves employing handheld devices or 

is carried out as a separate activity, moving the parts away 
from the production line to an independent department [38]. 
Generally, handheld devices show obvious limitations in the 
rapid and continuous collection and storage of data. Addi-
tionally, because of their portable configuration, they gener-
ally require the intervention of highly qualified operators. 
Furthermore, moving a manufactured workpiece in and out 
of the production line increases time delays and interrupts 
the continuous monitoring of processes/part quality. There-
fore, the rapid detection and correction of part quality issues 
and assembly defects are increasingly desired in real-time.

2.2.2 � Surface defect detection

The presence of defects on the surfaces of fabricated work-
pieces (for example, on the paint finish of an automotive 
panel, such as scratches, orange peel, colour mismatches 
[39], or in the internal structures of a manufactured part, 
such as porosity, internal cracks and thermal/internal stress 
[40, 41]) is one of the key factors directly affecting efficiency 
and profitability in industrial manufacturing. Along with 
geometrical and dimensional issues, surface defects can sig-
nificantly alter the quality, aesthetic, mechanical properties 
and safety of fabricated parts. With the rapid development 
of machine vision, image processing and pattern recogni-
tion methods, manual approaches for defect detection are 
being overturned by advanced optical solutions combined 
with machine learning technologies. In other words, current 
instruments are designed, trained and integrated to predict 
surface texture defects of fabricated parts autonomously, 
minimising the intervention of operators [42]. Further, in 
closed-loop manufacturing scenarios, developed on-machine 
measurement solutions for in-process monitoring of fabri-
cated parts are becoming increasingly appealing, particularly 
in the case of AM [43–46]. A schematic example of fringe 
projection technology applied to in-process surface metrol-
ogy in metal AM is shown in Fig. 4.

Fig. 3   Measurement of gap/flush in assembly of automotive vehicles: 
setup developed by Tran and Ha [34]. a Camera-laser module (high-
resolution camera and a multi-line laser-based sensor), b view of the 

entire setup, c three camera-laser modules attached to a robotic-arm 
for real application (i.e. vehicle assembly)
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2.2.2.1  In‑process monitoring  In-process monitoring is 
commonly aimed at detecting defects of the AM powder 
bed while the component is being built (i.e. direct inspec-
tion layer by layer), to find issues that might jeopardise the 
quality of the manufactured parts. As such, real-time mon-
itoring can lead to either corrective actions (for example, 
the re-deposition of the powder bed, the substitution of a 
worn recoating system) or to the immediate stoppage of the 
printing process [47]. On-machine measurement solutions 
offer the potential opportunity to either salvage or discard 
defective parts at an early stage of their production, avoiding 
wastage of time and resources encountered, particularly in 

the case of high value-added parts in low production vol-
umes.

Optical instruments have become an appealing solu-
tion for the direct imaging of the powder bed [48], and 
instruments are now preferably designed by implementing 
machine learning algorithms for the automated assessment 
of the quality of 3D printed parts [49–52]. Along with co-
axial [53], off-axis [46] melt pool monitoring systems and 
thermal imaging [54], several authors have proposed in situ 
monitoring methods employing optical measurement tech-
nologies (for instance, the analysis of the powder bed via 
the use of a line scanner mounted on the recoater blade [55, 
56] or digital fringe projection [57–65]), specifically for the 
acquisition of the surface height information. In particular, 
multi-view fringe projection configurations (Fig. 5) have 
been proposed by Kalms et al. [64] and Dickins et al. [65], 
achieving improved results compared to single-view pro-
jection configurations. Additionally, image segmentation 
approaches have been employed for high-resolution imag-
ing of each printed layer to detect powder recoating errors, 
as well as surface texture and geometrical defects [48, 66, 
67]. These solutions allow for the capture of topographi-
cal information of surface features more easily than melt 
pool monitoring or traditional imaging methods. General 
aspects about optical in-process surface topography meas-
urements and in situ process monitoring for AM parts have 
been extensively reviewed elsewhere [47, 68–71].

Fig. 4   Schematic example of in-process fringe projection setup in 
laser powder bed fusion (LPBF) (from Gao et al. [27])

Fig. 5   Example setups of multi-view configurations for the acquisi-
tion of topographical information of surface texture: a two-camera 
fringe projection system installed inside a laser beam melting (LBM) 

building chamber (from Kalms et al. [64]); b four-camera fringe pro-
jection system installed inside a mock-up of powder bed fusion (PBF) 
chamber (from Dickins et al. [65])
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On-machine measurement solutions allow for the moni-
toring of each fabricated layer, inspection of the powder bed, 
and the capture of melt pool dynamics [72, 73]. Neverthe-
less, direct integration of measurement solutions must con-
sider the effects on the measurement results given by the 
high temperatures and random disturbances due to volatili-
ties [74]. It is also important to ensure that the manufactur-
ing process itself is not disturbed by the measurement. Addi-
tionally, the integration of measurement solutions within the 
factory line may positively affect the speed of production, 
significantly reducing the time rates needed for the fabrica-
tion and inspection of workpieces. However, numerous chal-
lenges remain. Speed bottlenecks, along with other advan-
tages and limitations of integrated measurement solutions 
are further discussed in Sect. 3.

3 � The challenges of integrated metrology

Various challenges exist in integrated metrology, which 
can be separated broadly into a series of research areas. For 
the purposes of this review, the challenges discussed are 
separated into those relating to speed and data bottlenecks, 
including the physical limits of both hardware and soft-
ware especially for in-line measurements; those related to 
shape complexity, size and surface texture; those related to 
user-dependent constraints, which are still present in many 
inspection tasks; and those related to measurement in harsh 
environments.

3.1 � Measurement speed and data bottlenecks

For in-process measurement (where high speeds are often 
a requirement), one of the most significant barriers is bot-
tlenecks in the physical measurement process and data pro-
cessing pipeline [69, 75]. The presence of bottlenecks in data 
handling pipelines often dominate manufacturing process 
cycle times and can significantly impact the frequency at 
which measurements can take place. Such bottlenecks are 
often caused by software limitations, such as maximum data 
transfer or data processing speeds, or by hardware limita-
tions, such as camera framerates. As discussed in Sect. 2, 
the application of advanced optical coordinate and surface 
texture measurement technologies in an industrial scenario 
is still characterised by numerous challenges [20], due to the 
high speeds of production on the shop floor, the large vari-
ety of product designs, and sudden changes of part surface 
textures which magnify the difficulties encountered while 
performing routine inspection tasks [68]. For instance, Syam 
et al. [69] split the challenges of in-line measurements into 
(a) dynamic spatial range issues (i.e. the property of the 
sensors to achieve sufficient resolution and range), and (b) 
temporal range issues (i.e. the speed of the sensors).

Conventional co-ordinate measurement commonly takes 
minutes to hours to acquire a relatively small number of 
data points [76], and, as such, it is generally assumed that 
contact measurement is unviable as an integrated metrol-
ogy solution. Optical technologies, however, are more easily 
applicable in integrated scenarios, as their inherent speed 
advantages make fast measurement possible. Significant 
challenges remain, however, and hardware limits, such as 
those discussed in the following paragraph, often make true 
real-time measurement difficult or impossible. Particularly, 
while fast measurement of static objects is possible in a few 
seconds, fringe projection techniques cannot realistically be 
applied for the measurement of dynamic objects, such as 
those moving along the production line, as these systems 
generally require at least a few seconds to acquire measure-
ment data and require calibration to provide useful data [77].

Fringe projection and other camera-based optical systems 
are hardware-limited by the camera framerate. As such, they 
generally require measured objects to remain static for the 
time taken to acquire a few camera exposures. Changes to 
the measurement environment (such as temperature fluctua-
tions) also significantly alter the conditions of the system, 
which often prevents or voids any meaningful calibration. 
To reach high-speed 3D shape measurement, the structured 
fringe patterns must be switched rapidly, and captured in 
a short period of time. Zhang [78] states that the low level 
of automation in advanced 3D shape measurement is one 
of the major challenges. Particularly, the determination of 
the desired optimal camera exposure rapidly without human 
intervention is a significant issue. To address this issue, 
Zhang developed a rapid auto-exposure technique for 3D 
shape measurement using fringe projection, proving that the 
proposed method is appropriate for real-time applications.

Due to high measurement speed, Fourier transform pro-
filometry (FTP) methods have been demonstrated success-
ful for fast motion capture applications, such as measuring 
vibrations or capturing flapping wing robots [79]. Su and 
Zhang [80] and Wang [81] reviewed the state of the art in 
real-time 3D shape measurement techniques capable of 
reconstructing dynamic objects. In particular, these authors 
noted that some preliminary attempts at dynamic measure-
ment have been performed by keeping the projected pattern 
fixed (for example, by using a dot pattern instead of vary-
ing fringes) and/or using a multi-view approach [82, 83]. 
The multi-view approach is still in its infancy for in-line 
measurement applications, where robot-mounted sensors are 
generally preferred.

Photogrammetry has been employed for the measurement 
of dynamic objects in combination with an additional light 
source (i.e. flash illumination), which is used to decrease the 
exposure time needed for the measurements and to speed up 
data acquisition [84]. An example use of photogrammetry for 
automatic in-line inspections is shown in Fig. 6, where the  
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use of an additional source of homogenous light can poten-
tially decrease the generation of occlusions and shadowing 
in correspondence to hidden and difficult to access geo-
metric features [77]. Another example is given by Sjödahl  
et  al. [85] who developed an industrial demonstrator 
designed for in-line inspection of metal sheet components 
based on close-range photogrammetry. For this case, in addi-
tion to the redesign of the required illumination system, the 
measurement device used information derived from the 
computer-aided design model of the part to detect features 
in the images and perform reconstruction. The authors dem-
onstrated that the system was able to measure in real-time 
on a conveyor belt that moves at about 1 m/s at a frequency 
of approximately 0.5 Hz without fixturing.

Data transfer and data processing are also significant 
barriers to the implementation of in-process measurement. 
Particularly, the adoption of integrated metrology is often 
prohibited by the vast amount of data that can be produced 
with high-resolution fast sensing technologies, and the asso-
ciated challenges of handling big data. Optical technolo-
gies may be able to acquire data in a matter of seconds, but 
if processing that data requires hours of computation per 
measurement and creates large volumes of data that must 
be stored for extended periods of time, an initially enticing 
measurement solution can quickly become unviable. While 
these challenges clearly exist, big data can also represent an 
opportunity, provided advanced data handling, analysis and 
learning methods are employed to deal with the challenges 
they present [86]. Big data problems are ideal for machine 
learning, which is increasingly being applied to measure-
ment cases to improve the capabilities of measurement 

instruments [87]. Examples include the employment of 
machine learning methods to understand surface orienta-
tions [88], automatically segment 3D point clouds [89], infer 
surface information from missing data using a priori infor-
mation [90] and automatically segment objects, especially 
for machine vision applications [91].

3.2 � Geometric complexity, part size and surface 
texture variation

In digital manufacturing, there are various challenges for 
optical measurement that relate to part complexity, size and 
geometry: different considerations are required for small 
parts, large parts, complex parts and parts with varying sur-
face textures. The impacts of these issues must be included 
as part of a measurement plan, particularly regarding how 
data coverage (i.e. the proportion of non-measured points) 
and measurement time are affected.

When measuring small parts, the key concerns are gener-
ally instrument resolution and depth of field, as well as the 
trade-off between these two considerations [92]. For exam-
ple, when performing photogrammetry, to prevent diffrac-
tion effects limiting the measurement system a low f-number 
(the ratio of the camera’s focal length to the diameter of the 
entrance pupil-a property of all optical systems) lens can 
be used, though doing so will limit the depth of field of the 
camera. However, a large depth of field is desirable as the 
working range of the instrument is dictated by the depth of 
field. This problem can be overcome by using, for example, 
image stacking [93] or by altering the optical setup entirely 
using plenoptic setups [94], but doing so comes at the cost 
of increasing measurement time or decreasing resolution, 
respectively. Similarly, a resolution limit always exists when 
performing any kind of optical measurement. In all optical 
setups, there exists a maximum theoretical physical limit 
for any system (the diffraction limit) [95] that limits the 
resolution of the system in the absence of any other lim-
iting factor. However, in optical coordinate measurement, 
systems are more commonly limited by some other issue, 
such as imperfections in the construction of the system (for 
example, errors in measurement scales). In fringe projection, 
for example, system resolution can be limited by the spa-
tial resolution of the projector used to generate the pattern 
of fringes [96]. Achievable resolutions are generally on the 
order of a few tens of micrometres in the best case scenarios 
[97]. While the depth of field and resolution issues exist for 
parts of all sizes, their effects become increasingly signifi-
cant the smaller the parts being measured become, and con-
sideration of their effects becomes increasingly important 
when performing measurement of smaller parts (or, indeed, 
small part features).

While the biggest issues in optical measurement of small 
parts are most commonly depth of field and resolution, large 

Fig. 6   Photogrammetry for in-line inspection. The setup proposed by 
Bergstrom et al. [84] consists of two cameras, a flash light, and a trig-
gering device. The sensor is placed on one end of the conveyor belt: a 
picture of the setup; b schematic of the design
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parts elicit a different set of considerations. The main con-
sideration that must be accounted for when measuring large 
parts is the total measurement volume (or field of view) of 
the instrument, and any associated stitching that may be 
required to combine multiple measurements together [98, 
99]. Many optical systems do not have physical limita-
tions on their total measurement volume, in that they are 
often free roaming and not attached to stationary hardware 
(such as a co-ordinate measurement machine base). When 
increasing volume size and larger numbers of stitched 
fields of view, measurement errors stack and the quality of 
measurement data can quickly become poor. Larger scale 
measurement systems now commonly employ some form 
of robotic manipulation of a measurement sensor as well 
as in-measurement tracking of the measurement head [100, 
101], designed to minimise the errors created by stitching 
together many single-view measurements over a large area. 
Such systems then commonly incorporate information from 
an additional secondary tracking system into the main meas-
urement setup to improve the quality of the measurement. 
Different methods of incorporating that information exist, 
and the optimum solution for doing so will vary in different 
measurement scenarios. As such, tracking of measurement 
sensors remains an open research question and is commonly 
the topic of many publications. Another consideration of 
large parts is the effect of environmental changes, which are 
exaggerated as parts increase in size. For example, thermal 
fluctuations can result in large changes to dimension, and 
warping due to gravity and fixturing errors becomes a sig-
nificant problem [99].

With the increasing adoption of modern manufacturing 
technologies (and of AM in particular), recent years have 
seen a drastic increase in the number of products coming to 
market that have shape complexity that has not previously 
been achievable [102]. While other technologies also pro-
vide parts with complex shape, this issue is most prominent 
within AM, so this subsection is focussed primarily on parts 
produced using that technology. Such complex parts bring 
new opportunities for lightweighting, mass customisation, 
etc., but with the removal of tool access requirements that 
AM technologies provide, comes the side effect of measure-
ment probe access no longer being possible. Modern parts 
commonly exhibit complex freeform geometries, hollow 
shapes, internal and inaccessible features, as well as a mix 
of random and deterministic surface features [103].

As an example, a frequent issue is represented by the 
inherent limitation requiring optical solutions to operate suc-
cessfully within the line-of-sight, making the acquisition of 
large and/or complex structures from a single measurement 
position impossible [88, 104] (see Fig. 7). This complication 
is usually minimised by placing the part on a rotary table and 
performing multiple measurements at incremented angles 
[105]. However, maximising the acquisition of the part 

surface using such expensive and time-consuming manual 
methods is often undesirable, particularly in large production 
volume environments. A common solution, in the current 
industrial market, to overcome such limitation is the use of 
optical robot-mounted automated sensors, programmed and 
movable around the part [100, 106, 107].

In their recent review, Leach et al. [108] go into signifi-
cant depth discussing the challenges of AM part measure-
ment, noting great difficulty in measuring complex parts 
where probe access is not possible. It should be noted that 
“probe access” does not solely refer to whether a physical 
probe can contact a part, but also whether there is an unob-
structed optical path between the part and the measurement 
sensor.

In the measurement of surface texture, significant chal-
lenges exist because of features present on measured parts 
that make optical measurement of modern manufactured 
parts difficult. In metal AM, for example, surface features 
such as a large range of scales of interest, step-like tran-
sitions, overhangs, highly reflective and opaque surface 
regions cause significant difficulty for a variety of measure-
ment instruments [103, 109, 110]. Polymer AM surfaces 
exhibit similar difficulties in measurement [111], with the 
added complexity of material translucency. While AM 
surfaces arguably exhibit the widest plethora of difficult-
to-measure surface features simultaneously, many modern 
manufacturing processes come with their own challenges. 
Composite materials are another commonly problematic 
surface, as the dark colours and material translucency 
often present can similarly make optical measurement dif-
ficult, and there is a lack of research published that directly 
focusses on the measurement of composite surfaces. In 
2016, Duboust et al. [112] and Geier and Pereszlai [113] 
performed measurements of composite materials using 
focus variation and contact stylus instruments, noting the 

Fig. 7   Example complex AM part containing features that are prob-
lematic for optical measurement systems, because of a lack of line-of-
sight resulting from occlusion
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difficulties related to measuring composite surfaces. These 
studies involved comparisons of profile and areal surface 
texture parameters, as well as qualitative examinations of the 
features present on these surfaces. To the authors knowledge, 
no inter-technology comparison of composite surfaces has 
yet been performed using other optical surface measurement 
technologies.

The effects of surfaces are not limited to surface texture 
measurement, as coordinate measurements are also com-
monly affected by modern manufactured surfaces. For exam-
ple, smooth finished surfaces with highly reflective proper-
ties cause ineffective inspections, forcing the inconvenient 
employment of markers, coating sprays and retroreflectors 
combined with the selected optical solutions [114] that limit 
fully automated measurement. Conversely, rough surfaces 
have been shown to cause significant deviations between 
coordinate measurements made using contact systems, 
optical systems and X-ray computed tomography systems, 
making measurement comparability and measurement trace-
ability difficult to establish [108].

Difficulties related to shape complexity, size and sur-
face texture variation can often be overcome by optimis-
ing measurements using advanced measurement functions 
(for example, lighting conditions and software corrections 
[115, 116]). However, such exercises often result in longer 
measurement times as many advanced measurement func-
tions come with some process time increase. The difference 
made by these additional functions is often to fill in many of 
the non-measured points that occur in their absence (essen-
tially making the measurement result viable), with a time 
penalty on the order of a few seconds to a few minutes. 
While these novel functions can allow measurement where 
it was not previously possible; in an integrated metrology 
scenario these time increases can be the difference between 
an appropriate solution and an intolerable speed decrease. 
Ongoing research and development are required to further 
optimise the amount of time required to take appropriate 
data, but as discussed in Sect. 3.1, measurement speeds can 
be a significant bottleneck.

3.3 � User‑dependent constraints

It has long been established that measurement system users 
themselves represent a significant challenge in the digital 
manufacturing ecosystem [117]. Operator expertise and 
experience always has some effect on any manufacturing 
process, and within measurement and characterisation that 
effect is evident in the setup of a measurement and char-
acterisation pipeline. Particularly, the setup of any one 
measurement will differ between users and a measurement 
result will ultimately vary by some amount as a result of 
any operator input. The development of good practice guid-
ance (for example, see [76]) is performed to mitigate these 

effects through the sharing of appropriate methods to opti-
mise measurement and characterisation procedures. How-
ever, good practice will always be limited by the skill of the 
measurement instrument operator. Indeed, there will always 
be some inherent discrepancy between one skilled opera-
tor and another, and while international standardisation (for 
example, verification procedures, such as those described in 
the ISO 10360 series of standards [118]) aims to eliminate 
such variation, complete removal of operator discrepancy is 
difficult. As such, the high level of user-dependency in most 
of the inspection tasks [87], including the iterative review 
and re-processing of the measuring plan until a satisfying set 
of measurements is taken, presents a complex challenge. To 
address this issue, there exists a requirement for autonomous 
actions for measurement and data processing, capable of 
implementing appropriate measurement and characterisation 
optimisation without the need for a skilled operator.

In recent years, machine learning algorithms have been 
developed to optimise the measuring procedure, not only 
by improving the acquisition and processing of the data, 
but also by giving the opportunity to automate non-contact 
instruments, allowing sensors to be repositioned without the 
need for recalibration of the extrinsic parameters [119]. An 
example is shown in Fig. 8. After a measurement is car-
ried out, a large amount of data is generated and collected 
implying excess/redundant surface sampling information, 
which severely augments the data processing computational 
time and jeopardises the correct assessment of whether a 
part conforms to dimensional and geometric specification 
requirements [120]. Thus, algorithms for the optimisation 
of data acquisition and simplification that can preserve unal-
tered the properties and the main features of a measurement 
are required.

3.4 � Measurement in harsh environments

Improvement in the speed, accuracy and information density 
of sensor technologies is a clear requirement in the advance-
ment of integrated metrology. The ability to obtain higher 
quality data at a faster rate is a common goal for many sec-
tors of industry. More specific to integrated metrology is 
the ability to use sensors in harsh environments where is 
has not been previously possible to make measurements. 
Harsh environments, such as those with high temperatures, 
are common in manufacturing, particularly close to the tool/
part interaction, and obtaining measurements at these loca-
tions can be difficult. In their recent review, French et al. 
[121] addressed measurement in harsh environments, not-
ing that measurement systems must often be constructed 
using alternate design strategies, for example using materi-
als that are suitable for the intended harsh environment, or 
housing measurement devices within protective casings or 
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coatings. To function, such systems must be adjusted in the 
harsh environment, which provides an additional challenge.

For example, the implementation of compact distance 
sensors in the machining environment is difficult due to the 
hostile operating conditions. However, low coherence inter-
ferometry has shown promise for operating in challenging 
environments, with a small footprint due to integration into 
fibre optic systems [122]. Similarly, in their recent work, 
Remani et al. [74] designed a fringe projection sensor for 
integration directly into a metal AM machine, shielding it 
from the surrounding environment by housing the measure-
ment sensors inside a protective casing. Future developments 
of sensors are expected to address the current limitations 
of these harsh environments, enabling sensors to be used 
in-situ [20].

4 � The implication of measurement 
uncertainty

Uncertainty in optical measurement of both coordinate and 
surface texture remains a complex, open research ques-
tion. As highlighted throughout this paper and in others 
(for example, see [108]), establishing traceability for opti-
cal measurement systems in a digital manufacturing setup 
is often complicated by both the measurement technology 
and the objects being measured. However, there is research 
ongoing that is aimed at addressing uncertainty evalua-
tion, and various groups are working towards traceability. 
In their recent paper, Ferucci and Ametova [123] discuss 
the move towards traceability in X-ray computed tomogra-
phy measurement, proposing a framework for model-based 
uncertainty assessment via Monte Carlo simulation and 
instrument scale calibration. Similarly, Gayton et al. [124] 

have recently proposed a virtual-instrument calibration 
method for fringe projection systems based on Monte Carlo 
simulation. This approach mirrors methods of uncertainty 
evaluation developed for contact measurement that are now 
relatively well established in contact co-ordinate metrology 
[125]. Current developments in measurement uncertainty are 
also discussed, divided approximately by their association 
to coordinate measurement (particularly in relation to point 
clouds) and surface texture measurement, respectively.

In the next 10 years, there is an expectation that meth-
ods of traceability and calibration will be incorporated into 
in-line and on-machine measurement processes [27]. Com-
mon solutions will include the use of calibration artefacts to 
achieve reliability [6] and self-calibration methods within 
manufacturing [27, 126], to better accommodate the specific 
setup and environment in which the equipment is operat-
ing. Additionally, standardised procedures and methods are 
expected to be developed for integrated, metrology-specific 
data processing applications, such as sampling strategy [127, 
128], defect identification and handling [129–131], and data 
acquisition and analysis.

A thorough review of uncertainty evaluation within the 
context of co-ordinate measurement is a rich and deep topic 
in and of itself, and to complete this review is significantly 
beyond the scope of this paper. Such a review would repre-
sent an interesting topic for a future review paper.

4.1 � Uncertainty associated with point clouds

3D point clouds are the outcome of a chain of events and 
physical phenomena that define a measurement process. 
In particular, optical technologies for the inspection and 
verification of shapes are centred around the acquisition 

Fig. 8   Automation of measuring instruments with machine learning: sensor repositioning without the need for recalibration of the extrinsic 
parameters (from Zhang et al. [119]). a Outline of the method, b camera pose parameterisation, and c experimental setup
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and manipulation of this kind of data, and evaluating its 
uncertainty is far from trivial.

Generally, each digital point is associated with an 
uncertainty in its position in 3D space (i.e. defined as 
positional uncertainty-the uncertainty in where the point 
should actually be located in the absence of measurement 
error [132]). Measurement error propagates through typi-
cal data processing pipelines (for example, simplification, 
filtering, partitioning, datum fitting and registration), ulti-
mately affecting the results of the characterisation process 
[133]. Essentially, any dimensional or geometric assess-
ment extracted from a point cloud is associated with an 
uncertainty in the variation of the points’ positions in 3D 
space. Additional error sources can also be introduced by 
the processing methods and algorithms selected [133]. As 
an example, concerning the uncertainty evaluation in form 
error characterisation, Forbes and Minh [134–136] inves-
tigated the relationship between measurement uncertainty 
and fitting. Pauly et al. [137] discussed the error associ-
ated with surface reconstruction from a point cloud and 
included an adaptive re-sampling method, an algorithm 
for reconstructing surfaces in the presence of noise and 
a technique for robustly registering a set of scans into a 
single point-based representation. Pauly et al. assumed the 
point cloud to be a finite set of noisy samples that provide 
incomplete information about the underlying reconstructed 
surface. To capture uncertainty, they introduced a statis-
tical representation that quantifies the likelihood that a 
surface fitting the data passes through that point for each 
point in space. Uncertainty in registration and fusion of 
point clouds has been widely explored in literature [138, 
139]. Particularly, the uncertainty of global matching 
algorithms for pairwise correspondences has been evalu-
ated via statistical means [140–143]. Another example of 
implication of uncertainty in the data processing pipeline 
is given using different filtering methods for point clouds. 
Han et al. [144] evaluated to what extent the choice of the 
filtering algorithm affects the measured data contributing 
to uncertainty, additionally including in their experimental 
evaluation the robustness and computational efficiency of 
the chosen methods.

Concerning the evaluation of uncertainty associated 
with point clouds, conventional approaches (such as [145, 
146]) are not suitable, due to the multitude of possible error 
sources and the complexities of their interactions. These 
issues can lead to significant difficulties in the mathemati-
cal modelling of the aggregated errors failing to produce a 
comprehensive analytical representation of uncertainty.

Approaches devoted to the understanding and modelling 
of the uncertainty associated with the individual points of 
the point cloud are still in their infancy and the current state 
of the art in this respect is addressed elsewhere [120]. The 
two most diffuse approaches are expressed in probabilistic 
terms and illustrated in Fig. 9, as reported in [120]. The first 
configuration (in Fig. 9a) shows a random variable as only 
associated with a displacement in the direction defined by 
the local surface normal; in Fig. 9b, a full 3D probability 
ellipsoid (tri-variate random variable) is associated with 
each digital point. Univariate random variables associated 
with local surface normals have been explored, for exam-
ple by Thompson et al. [147], specifically as a means of 
addressing measurement uncertainty. Random variables may 
be defined as independent between points or spatial depend-
ency can be captured by modelling co-variance [148]. Senin 
et al. [133] developed a statistical model based on fitting 
Gaussian random fields to high-density point clouds pro-
duced by measurement repeats to capture the variability of 
points along the direction defined by the local normal.

4.2 � Uncertainty in surface texture measurement

The current state of the art in uncertainty for surface texture 
measurement is elsewhere [149]. In this work, the authors 
review the metrological characteristics approach to evalu-
ation of uncertainty in surface texture measurement [150] 
(see Fig. 10), discussing the quantification of the different 
characteristics required to make an uncertainty evaluation. In 
particular: amplification coefficients and linearity deviations 
in the x, y and z axes, flatness deviation, measurement noise, 
topographic spatial resolution, x–y mapping deviations and 
topography fidelity. Leach et al. noted that the metrologi-
cal characteristics approach is generally employed when 

Fig. 9   Models of point positional uncertainty: a random variable associated to a displacement in the direction defined by the local surface nor-
mal, b full three-dimensional probability ellipsoid (tri-variate random variable) associated to each point (from Catalucci and Senin [120])
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quantification of individual uncertainty influence factors 
(i.e. the GUM method [151]) is deemed to be too great a 
task. Often, in surface texture measurement instruments, the 
influence factors are too complex to be easily quantified in 
a majority of measurement setups. The metrological char-
acteristics approach simplifies the GUM method and inher-
ently double counts some influence factors but is used as a 
trade-off between double-counting influence factors and the 
difficulty in performing the evaluation.

Leach et  al. also noted that quotation of uncertainty 
alongside surface topography measurements remains rare 
in the literature, attributed in [149] to the complexity of 
doing so. However, the base science and general ground-
work now exists, and there are an increasing number of 
worked examples and good practice guides, such as [152], 
that provide end users with appropriate methods of work-
ing through a surface texture uncertainty evaluation. Leach 
et al. also noted that there is still research to do in the crea-
tion of virtual instruments for uncertainty modelling, though 
some work has recently been published to that end [153]. 
Unsolved problems remain with the metrological charac-
teristics approach to uncertainty evaluation. The most nota-
ble of these problems is the incorporation of topographic 
resolution and topography fidelity into uncertainty budg-
ets, the evaluation of which remains a challenge in many 
applications.

5 � Conclusions and future work

In this review, the various challenges associated with per-
forming optical measurement within a digital manufactur-
ing context have been discussed. Through assessment of 
the state of the art, a number of common threads can be 
pulled through to form these conclusions, which are summa-
rised here, alongside appropriate related avenues for future 

research. To summarise, the questions from Sect. 1.1 are 
readdressed here:

1.	 Has the role of metrology (more specifically optical co-
ordinate and surface texture metrology) changed signifi-
cantly inside the manufacturing flow over the last few 
years?

	   The pressing need for optimisation of the manufac-
turing process is starting to gain a new importance and 
quality control is becoming a vital part of the process. 
To reach this point, there has been a significant revolu-
tion in the manufacturing shop floor that has changed 
the role of metrology. A range of current software and 
hardware solutions exist for in-line and off-line meas-
urement, with existing solutions being increasingly 
applied to in-line scenarios. Many of these solutions 
remain proprietary, however, and the lack of transpar-
ency in their algorithms provides a significant barrier 
that can prevent many of these solutions from being 
fully integrated into digital manufacturing processes. 
Future work in this area will include iterative efforts to 
better integrate existing solutions into the digital manu-
facturing research ecosystem, as well as more disrup-
tive approaches to developing new solutions for prob-
lems that the current solutions cannot solve. Thanks to 
innovations such as smart multi-sensor systems, virtual 
metrology and metrology-driven operations, the role of 
metrology on the manufacturing shop floor has signifi-
cantly changed. Previously, measurement operations for 
inspection were run as post-process activities during 
the final step of a product’s conformity verifications. 
Now, as reported by Gao et al. [27], the integration of 
manufacturing operations and measurement activities is 
possible during the production process: metrology inte-
grated into the manufacturing flow provides significant 
benefits over conventional, off-line methods, including 

Fig. 10   Illustration of the 
metrological characteristics 
framework to estimate measure-
ment uncertainty. (a) to (i) are 
influence quantities and MC1 
to MC4 are metrological char-
acteristics (from Leach et al. 
[149])
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speeding up the inspection rates, allowing for continu-
ous monitoring of process quality and promoting fully 
automated manufacturing cells.

	   Zero-defect manufacturing strategies have been 
made possible in recent years because of the applica-
tion of in-line measurement and in-process monitor-
ing. Measurement instruments have seen significant 
improvement, both in their intrinsic performance and 
in terms of design and planning of measurement pro-
cedures. Through review of the existing literature, it is 
clear that most currently available inspection devices 
for co-ordinate measurement in industrial applications 
use optical technologies. The most common of these 
technologies are laser-based instruments; examples 
are reported in [32–37]. Despite the latest develop-
ments, some of inspection tasks are still performed as 
separate activities using hand-held devices. Aiming at 
minimising the direct intervention of human operators, 
on-machine measurement solutions for in-process mon-
itoring of fabricated parts are becoming increasingly 
appealing, particularly in the case of AM [48–52, 55–
67]. Open challenges still remain: on-machine inspec-
tion allows for the monitoring of each fabricated layer, 
but direct integration of measurement solutions must 
consider the effects on the results from high processing 
temperatures and random process variations.

	   To summarise, this area of research is far from com-
plete and many avenues of future research exist that 
will further facilitate zero-defect manufacturing includ-
ing development of intelligent and adaptive integrated 
inspection devices (tailor-made measuring cells able to 
address multiple tasks autonomously with minimum 
human intervention); enhancement of decision-making 
processes (machine learning algorithms for prediction 
of errors and correction of operations); promotion of 
knowledge-driven solutions (use of a priori information 
of parts, instruments and procedures for enhanced real-
time process control). Notably, there is a lack of research 
focussed on correlating in-process phenomena with part 
function, as a means to identifying which defects can be 
ignored and which require some process intervention to 
correct. To further establish zero-defect manufacturing 
approaches, these correlations should be established.

2.	 What are the major challenges given by the integration 
of metrology in digital manufacturing?

	   A number of key challenges exist in performing inte-
grated measurements and, in this review, the challenges 
discussed are separated into those relating to speed and 
data bottlenecks, including the physical limits of both 
hardware and software; those related to shape com-
plexity, size and surface texture; those related to user-
dependent constraints; and those related to measurement 
in harsh environments.

	   Limitations resulting from measurement and data 
processing speed, particularly in the case of in-process 
measurement, are often caused by software limita-
tions, such as maximum data transfer or data process-
ing speeds, or by hardware limitations, such as camera 
framerates. Commonly, contact measurement is recog-
nised as unviable as an integrated metrology solution. 
Conversely, optical non-contact technologies are more 
easily applicable in integrated scenarios. Still, hardware 
limitations often make true real-time measurement dif-
ficult to achieve, despite recent attempts made to over-
come such barrier [79–85].

	   Different issues may be found when measuring small 
parts, large parts, complex parts and parts with variable 
surface texture. Currently, a wealth of active research is 
being devoted to addressing these limitations [93, 94, 
100, 101, 106, 107, 115, 116]. When measuring small 
parts, the key concerns are generally instrument resolu-
tion and depth of field, while for the measurement of 
large parts, the main issues are identified by limitations 
relating to the instrument field of view and any asso-
ciated measurement stitching procedure. To minimise 
the latter problem, larger scale measurement systems 
employ robotic manipulation as well as in-measurement 
tracking solutions. Parts with complex shape, mostly 
produced with AM, exhibit freeform geometries, hollow 
shapes, internal and inaccessible features that strongly 
affect access of the measurement probe, both contact 
and non-contact. The commonly adopted solution is to 
place the part on a rotary table and perform multiple 
measurements at incremented angles, whereas the most 
modern solutions use robot-mounted automated optical 
sensors, programmed and movable around the part. In 
surface texture measurement, significant challenges exist 
because of features present on measured parts, mate-
rial translucency, dark colours, smooth finished sur-
faces with highly reflective properties that make optical 
measurement difficult. For example, there is a lack of 
research published that directly focusses on the measure-
ment of composite surfaces. In general, due to the high 
production speeds on the shop floor, the large variety of 
product designs and sudden changes of manufactured 
workpieces magnify the difficulties encountered while 
performing routine inspection tasks.

	   Future work is likely to include iterative improvement 
of software and hardware limitations, aimed at decreas-
ing measurement and data processing times. While 
many processes can capture data in near-real time, data 
processing in particular remains a complex problem that 
will ease over time as processing technologies improve 
with regard to speed. Current solutions are given by 
the implementation of machine learning approaches 
applied effectively to the entire measurement pipeline 
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and real-time 3D shape measurement techniques. Pre-
liminary attempts at dynamic measurements have been 
performed by enhancing the existing measuring tech-
nologies using for instance advanced configurations (i.e. 
multi-view approaches), as reported in [79–83]. How-
ever, their implementation into the pipeline is still in 
its infancy. Good practice guides and machine learning 
algorithms have been developed to optimise measuring 
procedure and overcome the constraints relating to the 
user-dependence of many measurement and characteri-
sation protocols [76, 119, 120]. Further developments 
are expected to address the current limitations given by 
measurements held into harsh environments. The solu-
tion is to enable instruments to be used in situ, for exam-
ple shielding sensors from the surrounding environment 
by housing protective casings, as presented, for example, 
in [74].

3.	 What are the latest trends for uncertainty and traceabil-
ity, especially in the context of a digital manufacturing 
setup?

	   Uncertainty remains a difficult active area of research 
that continues to present a series of complex challenges 
[6, 27, 123–131]. In the future, methods of traceability 
and calibration are expected to be incorporated into in-
line and on-machine measurement processes. Common 
solutions will include the use of calibration artefacts to 
achieve reliability and self-calibration methods within 
manufacturing. Additionally, standardised procedures 
and methods are expected to be developed for integrated, 
metrology-specific data processing applications.

	   Ongoing research in evaluating uncertainty in point 
clouds represents an interesting new method of uncer-
tainty evaluation [120, 132–148], particularly within 
the scope of optical in-line measurement. Future work 
will investigate how error in 3D point clouds may 
propagate through the algorithmic procedures com-
monly applied at the industrial level, to verify whether 
workpieces conform to geometric and dimensional 
specifications. Solutions for the accurate estimation of 
uncertainty associated to the verification process will be 
investigated, thus providing a fundamental contribution 
towards the development of the manufacturing solutions 
of the future.

	   Similarly, the metrological characteristics approach to 
uncertainty evaluation that has recently been standard-
ised within the surface texture measurement framework 
provides a useful solution for evaluation of uncertainty 
not just for surface texture but potentially also in the 
coordinate measurement world [149, 150, 152, 153]. 
However, significant challenges remain relating an 
understanding of fidelity and resolution into the model 
and further research is required to apply this framework 
to the measurement of shapes.

	   While it is clear that there have been numerous signifi-
cant developments in the field of optical measurement 
within digital manufacturing, it is equally clear that sig-
nificant further work is required to take full advantage 
of the available technologies, particularly in the areas 
outlined above.

Author contribution  Resources: Sofia Catalucci and Adam Thompson. 
Supervision: Samanta Piano, David T Branson III, Richard K Leach. 
Writing—original draft: Sofia Catalucci and Adam Thompson. Writing—
review and editing: Sofia Catalucci, Adam Thompson, Samanta Piano, 
David T Branson III, Richard K Leach.

Funding  The authors would like to thank the UKRI Research England 
Development (RED) Fund for funding this work via the Midlands Cen-
tre for Data-Drive Metrology.

Availability of data and material  Not applicable.

Code availability  Not applicable.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Conflict of interest  The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Simeone A, Caggiano A, Boun L, Deng B (2019) Intelligent 
cloud manufacturing platform for efficient resource sharing in 
smart manufacturing networks. Procedia CIRP 79:233–238

	 2.	 Imkamp D, Berthold J, Heizmann M, Kniel K, Manske E, Peterek 
M, Schmitt R, Seidler J, Sommer KD (2016) Challenges and 
trends in manufacturing measurement technology – the “Indus-
trie 4.0” concept. J Sens Sens Syst 5:325–335

	 3.	 Tao F, Qi Q, Liu A, Kusiak A (2018) Data-driven smart manu-
facturing. J Manuf Syst 48:157–169

4286 The International Journal of Advanced Manufacturing Technology (2022) 120:4271–4290

http://creativecommons.org/licenses/by/4.0/


1 3

	 4.	 Lee J, Bagheri B, Kao HA (2015) A Cyber-Physical Systems 
architecture for Industry 4.0-based manufacturing systems. 
Manuf Lett 3:18–23

	 5.	 BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, OIML (2012) 
International Vocabulary of Metrology—Basic and General Con-
cepts and Associated Terms (Bureau International des Poids et 
Mesures) JCGM 200

	 6.	 Carmignato S, De Chiffre L, Bosse H, Leach RK, Balsamo A, 
Estler WT (2020) Dimensional artefacts to achieve metrological 
traceability in advanced manufacturing. Ann CIRP 69:693–716

	 7.	 Zhong RY, Xu X, Klotz E, Newman ST (2017) Intelligent manu-
facturing in the context of Industry 4.0: a review. Engineering 
3:616–630

	 8.	 Alcácer V, Cruz-Machado V (2019) Scanning the Industry 4.0: 
a literature review on technologies for manufacturing systems. 
Eng Sci Technol an Int J 22:899–919

	 9.	 Zheng P, Wang H, Sang Z, Zhong RY, Liu Y, Liu C, Mubarok 
K, Yu S, Xu X (2018) Smart manufacturing systems for Industry 
4.0: conceptual framework, scenarios, and future perspectives. 
Front Mech Eng 13:137–150

	 10.	 Oztemel E, Gursev S (2020) Literature review of Industry 4.0 
and related technologies. J Intell Manuf 31:127–182

	 11.	 Dotoli M, Fay A, Miśkowicz M, Seatzu C (2019) An overview of 
current technologies and emerging trends in factory automation. 
Int J Prod Res 57:5047–5067

	 12.	 Tseng M, Lim M, Wong WP (2015) Sustainable supply chain 
management: a closed-loop network hierarchical approach. Ind 
Manag Data Syst 115:436–461

	 13.	 Winkler H (2011) Closed-loop production systems-a sustainable 
supply chain approach. CIRP J Manuf Sci Technol 4:243–246

	 14.	 Berthold J, Imkamp D (2013) Looking at the future of manufac-
turing metrology: roadmap document of the German VDI/VDE 
Society for Measurement and Automatic Control. J Sens Sens 
Syst 2:1–7

	 15.	 Mourtzis D, Vlachou E (2018) A cloud-based cyber-physical 
system for adaptive shop-floor scheduling and condition-based 
maintenance. J Manuf Syst 47:179–198

	 16.	 Wu D, Rosen DW, Wang L, Schaefer D (2015) Cloud-based 
design and manufacturing: A new paradigm in digital manufac-
turing and design innovation. CAD Comput Aided Des 59:1–14

	 17.	 Alexopoulos K, Makris S, Xanthakis V, Sipsas K, Chryssol-
ouris G (2016) A concept for context-aware computing in man-
ufacturing: the white goods case. Int J Comput Integr Manuf 
29:839–849

	 18.	 Caggiano A, Segreto T, Teti R (2016) Cloud manufacturing 
framework for smart monitoring of machining. Procedia CIRP 
55:248–253

	 19.	 Caggiano A, Segreto T, Teti R (2018) Cloud Manufacturing on-
demand services for holistic quality assurance of manufactured 
components. Procedia CIRP 67:144–149

	 20.	 Caggiano A (2018) Cloud-based manufacturing process moni-
toring for smart diagnosis services. Int J Comput Integr Manuf 
31:612–623

	 21.	 ISO 10303 series (2021) Industrial automation systems and integration 
— product data representation and exchange (International Organi-
zation for Standardization)

	 22.	 ISO 14649 series (2003) Industrial automation systems and 
integration — physical device control — Data model for com-
puterized numerical controllers (International Organization for 
Standardization)

	 23.	 Kubota T, Hamzeh R, Xu X (2020) STEP-NC enabled machine 
tool digital twin. Procedia CIRP 93:1460–1465

	 24.	 Zhao YF, Xu X (2010) Enabling cognitive manufacturing through 
automated on-machine measurement planning and feedback. Adv 
Eng Informatics 24:269–284

	 25.	 Zhao YF, Xu XW (2012) Integration of machining and inspec-
tion. Int J Comput Aided Eng Technol 4:1–31

	 26.	 Rodriguez E, Alvares A (2019) A STEP-NC implementation 
approach for additive manufacturing. Procedia Manufacturing 
38:9–16

	 27.	 Gao W, Haitjema H, Fang FZ, Leach RK, Cheung CF, Savio E, 
Linares JM (2019) On-machine and in-process surface metrology 
for precision manufacturing. Ann CIRP 68:843–866

	 28.	 Leach RK (2020) Integrated Metrology 10-Year Roadmap for 
Advanced Manufacturing (HVM Catapult)

	 29.	 Takaya Y (2013) In-process and on-machine measurement of 
machining accuracy for process and product quality manage-
ment: a review. Int J Autom Technol 8:4–19

	 30.	 Goch G, Schmitt R, Patzelt S, Stürwald S, Tausendfreund A 
(2013) In-situ and in-process metrology for optical surfaces. In: 
Brinksmeier E, Riemer O, Gläbe R Fabrication of Complex Opti-
cal Components (Springer: Berlin, Heidelberg), 161–178

	 31.	 Zhou K, Liu T, Zhou L (2016) Industry 4.0: Towards future 
industrial opportunities and challenges. Proc. 12th  FSKD, 
Zhangjiajie, China, Aug. 2147–2152

	 32.	 Kiraci E, Franciosa P, Turley GA, Olifent A, Attridge A,  
Williams MA (2017) Moving towards in-line metrology: evalu-
ation of a Laser Radar system for in-line dimensional inspec- 
tion for automotive assembly systems. Int J Adv Manuf Technol 
91:69–78

	 33.	 Kiraci E, Palit A, Donnelly M, Attridge A, Williams MA (2020) 
Comparison of in-line and off-line measurement systems using a 
calibrated industry representative artefact for automotive dimen-
sional inspection. Measurement 163, 108027

	 34.	 Tran TT, Ha CK (2018) Non-contact gap and flush measurement 
using monocular structured multi-line light vision for vehicle 
assembly. Int J Control Autom Syst 16:2432–2445

	 35.	 Zhou S, Xu J, Tao L, An L, Yu Y (2018) Automated inspection of 
gaps on the free-form shape parts by laser scanning technologies. 
Proc SPIE 10621:1062116

	 36.	 Long K, Xie Q, Lu D, Wu Q, Liu Y, Wang J (2021) Aircraft skin 
gap and flush measurement based on seam region extraction from 
3D point cloud. Measurement 176:109169

	 37.	 Kosmopoulos D, Varvarigou T (2001) Automated inspection of 
gaps on the automobile production line through stereo vision and 
specular reflection. Comput Ind 46:49–63

	 38.	 Goh YM, Micheler S, Sanchez-Salas A, Case K, Bumblauskas 
D, Monfared R (2020) A variability taxonomy to support auto-
mation decision-making for manufacturing processes. Prod Plan 
Control 31:383–399

	 39.	 Peres RS, Barata J, Leitao P, Garcia G (2019) Multistage quality 
control using machine learning in the automotive industry. IEEE 
Access 7:79908–79916

	 40.	 Echeta I, Feng X, Dutton B, Leach R, Piano S (2020) Review of 
defects in lattice structures manufactured by powder bed fusion. 
Int J Adv Manuf Technol 106:2649–2668

	 41.	 Chen Y, Peng X, Kong L, Dong G, Remani A, Leach R (2021) 
Defect inspection technologies for additive manufacturing. Int J 
Extrem Manuf 3:022002

	 42.	 Qi S, Yang J, Zhong Z (2020) A review on industrial surface 
defect detection based on deep learning technology. Proc. ICPS, 
MLMI ’20, Hangzhou China, Sept. 24–30

	 43.	 Lane B, Mekhontsev S, Grantham S, Vlasea M, Whiting J, Yeung 
H, Fox J, Zarobila C, Neira J, McGlauflin M, Hanssen L (2016) 
Design, developments, and results from the NIST additive manu-
facturing metrology testbed (AMMT). Proc. SFF, Austin, USA, 
Aug. 1145–1160

	 44.	 Bidare P, Maier RRJ, Beck RJ, Shephard JD, Moore AJ (2017) 
An open-architecture metal powder bed fusion system for in-situ 
process measurements. Addit Manuf 16:177–185

4287The International Journal of Advanced Manufacturing Technology (2022) 120:4271–4290



1 3

	 45.	 Zhao C, Fezzaa K, Cunningham RW, Wen H, De Carlo F, Chen 
L, Rollett AD, Sun T (2017) Real-time monitoring of laser pow-
der bed fusion process using high-speed X-ray imaging and dif-
fraction. Sci Rep 7:3602

	 46.	 Leung CLA, Marussi S, Atwood RC, Towrie M, Withers PJ, 
Lee PD (2018) In situ X-ray imaging of defect and molten pool 
dynamics in laser additive manufacturing. Nat Commun 9:1335

	 47.	 Grasso M, Colosimo BM (2017) Process defects and in situ mon-
itoring methods in metal powder bed fusion: a review. Meas Sci 
Technol 28:044005

	 48.	 Caltanissetta F, Grasso M, Petrò S, Colosimo BM (2018) Char-
acterization of in-situ measurements based on layerwise imaging 
in laser powder bed fusion. Addit Manuf 24:183–199

	 49.	 Delli U, Chang S (2018) Automated process monitoring in 
3d printing using supervised machine learning. Proc Manuf 
26:865–870

	 50.	 Scime L, Beuth J (2018) A multi-scale convolutional neural net-
work for autonomous anomaly detection and classification in a 
laser powder bed fusion additive manufacturing process. Addit 
Manuf 24:273–286

	 51.	 Gobert C, Reutzel EW, Petrich J, Nassar AR, Phoha S (2018) 
Application of supervised machine learning for defect detection 
during metallic powder bed fusion additive manufacturing using 
high resolution imaging. Addit Manuf 21:517–528

	 52.	 Liu M, Fai Cheung C, Senin N, Wang S, Su R, Leach R (2020) 
On-machine surface defect detection using light scattering and 
deep learning. J Opt Soc Am A 37:B53–B59

	 53.	 Zhang B, Liu S, Shin YC (2019) In-Process monitoring of poros-
ity during laser additive manufacturing process. Addit Manuf 
28:497–505

	 54.	 Boone N, Zhu C, Smith C, Todd I, Willmott JR (2018) Thermal 
near infrared monitoring system for electron beam melting with 
emissivity tracking. Addit Manuf 22:601–605

	 55.	 Barrett C, MacDonald E, Conner B, Persi F (2018) Micron-level 
layer-wise surface profilometry to detect porosity defects in pow-
der bed fusion of Inconel 718. JOM 70:1844–1852

	 56.	 Tan Phuc L, Seita M (2019) A high-resolution and large field-of-
view scanner for in-line characterization of powder bed defects 
during additive manufacturing. Mater Des 164:107562

	 57.	 Zhang B, Land W S, Ziegert J, Davies A (2015) In situ moni-
toring of laser powder bed fusion additive manufacturing using 
digital fringe projection technique. Proc ASPE 2015 Spring Topi-
cal Meeting

	 58.	 Zhang B, Ziegert J, Farahi F, Davies A (2016) In situ surface 
topography of laser powder bed fusion using fringe projection. 
Addit Manuf 12:100–107

	 59.	 Land WS, Zhang B, Ziegert J, Davies A (2015) In-situ metrology 
system for laser powder bed fusion additive process. Procedia 
Manuf 1:393–403

	 60.	 Li Z, Liu X, Wen S, He P, Zhong K, Wei Q, Shi Y, Liu S (2018) 
In situ 3D monitoring of geometric signatures in the powder-
bed-fusion additive manufacturing process via vision sensing 
methods. Sensors 18:1180

	 61.	 Liu Y, Blunt LA, Gao F, Jiang X, Zhang Z, Saunby G, Dawes J, 
Blackham B, Rahman HA, Smith C (2018) In-situ areal inspec-
tion of powder bed for electron beam fusion am system based on 
fringe projection. Proc ASPE/euspen Advancing Precis in Addit 
Manuf Berkeley, USA, July

	 62.	 Liu Y, Blunt L, Zhang Z, Rahman HA, Gao F, Jiang X (2020) 
In-situ areal inspection of powder bed for electron beam 
fusion system based on fringe projection profilometry. Addit 
Manuf 31:100940

	 63.	 Southon N, Stavroulakis P, Goodridge R, Leach R (2018) In-
process measurement and monitoring of a polymer laser sintering 
powder bed with fringe projection. Mater Des 157:227–234

	 64.	 Kalms M, Narita R, Thomy C, Vollertsen F, Bergmann RB 
(2019) New approach to evaluate 3D laser printed parts in 
powder bed fusion-based additive manufacturing in-line within 
closed space. Addit Manuf 26:161–165

	 65.	 Dickins A, Widjanarko T, Sims-Waterhouse D, Thompson A, 
Lawes S, Senin N, Leach R (2020) Multi-view fringe projection 
system for surface topography measurement during metal powder 
bed fusion. J Opt Soc Am A 37:B93–B105

	 66.	 Foster BK, Reutzel EW, Nassar AR, Hall BT, Brown SW, Dickman  
CJ (2020) Optical, layerwise monitoring of powder bed 
fusion. Proc 26th Annual Int Solid Freeform Fabr Symp, Austin,  
USA, August

	 67.	 Imani F, Gaikwad A, Montazeri M, Rao P, Yang H, Reutzel E 
(2018) Process mapping and in-process monitoring of porosity 
in laser powder bed fusion using layerwise optical imaging. J 
Manuf Sci Eng Trans ASME 140:101009

	 68.	 Everton SK, Hirsch M, Stavroulakis P, Leach RK, Clare AT 
(2016) Review of in-situ process monitoring and in-situ metrol-
ogy for metal additive manufacturing. Mater Des 95:431–445

	 69.	 Syam WP (2020) In-process surface topography measurements. 
In: Leach R K Advances in Optical Surface Texture Metrology 
(IOP Publishing), Chap. 7

	 70.	 Mani M, Lane BM, Donmez MA, Feng SC, Moylan SP (2017) 
A review on measurement science needs for real-time control of 
additive manufacturing metal powder bed fusion processes. Int 
J Prod Res 55:1400–1418

	 71.	 Grasso MLG, Remani A, Dickins A, Colosimo BM, Leach 
RK (2021) In-situ measurement and monitoring methods 
for metal powder bed fusion – an updated review. Meas Sci 
Technol 32:112001

	 72.	 Mazzoleni L, Demir AG, Caprio L, Pacher M, Previtali B (2020) 
Real-time observation of melt pool in selective laser melting: 
spatial, temporal, and wavelength resolution criteria. IEEE Trans 
Instrum Meas 69:1179–1190

	 73.	 Yadav P, Rigo O, Arvieu C, Le Guen E, Lacoste E (2020) In situ 
monitoring systems of the SLM process: On the need to develop 
machine learning models for data processing. Curr Comput-
Aided Drug Des 10:524

	 74.	 Remani A, Williams R, Thompson A, Dardis J, Jones N, Hooper 
P, Leach R (2021) Design of a multi-sensor measurement sys-
tem for in-situ defect identification in metal additive manufactur-
ing. Proc ASPE/euspen Advancing Precis in Addit Manuf

	 75.	 Wollschlaeger M, Sauter T, Jasperneite J (2017) The future of 
industrial communication: Automation networks in the era of 
the internet of things and industry 4.0. IEEE Ind Electron Mag 
11:17–27

	 76.	 Flack DR (2001) Good Practice Guide No. 41 CMM measure-
ment strategies (National Physical Laboratory)

	 77.	 Chen R, Xu J, Zhang S (2020) Digital fringe projection profilom-
etry. In: Leach RK Advances in Optical Form and Coordinate 
Metrology (IOP Publishing), Chap. 5

	 78.	 Zhang S (2020) Rapid and automatic optimal exposure control for 
digital fringe projection technique. Opt Lasers Eng 128:106029

	 79.	 Zhang S (2018) High-speed 3D shape measurement with struc-
tured light methods: A review. Opt Lasers Eng 106:119–131

	 80.	 Su X, Zhang Q (2010) Dynamic 3-D shape measurement method: 
a review. Opt Lasers Eng 48:191–204

	 81.	 Wang Z (2020) Review of real-time three-dimensional shape 
measurement techniques. Measurement 156:107624

	 82.	 Wang Y, Laughner JI, Efimov IR, Zhang S (2013) 3D absolute 
shape measurement of live rabbit hearts with a superfast two-
frequency phase-shifting technique. Opt Express 21:5822–5832

	 83.	 Deetjen ME, Lentink D (2018) Automated calibration of multi-
camera-projector structured light systems for volumetric high-
speed 3D surface reconstructions. Opt Express 26:33278–33304

4288 The International Journal of Advanced Manufacturing Technology (2022) 120:4271–4290



1 3

	 84.	 Bergström P, Fergusson M, Folkesson P, Runnemalm A, Ottosson 
M, Andersson A, Sjödahl M (2016) Automatic in-line inspection 
of shape based on photogrammetry. 7th Swedish Prod Symp 1–9

	 85.	 Sjodahl M, Bergstrom P, Fergusson M, Soderholm K, Andersson A 
(2021) In-line quality control utilizing close-range photogrammetry 
and a CAD-model. Eng Res Express In Press

	 86.	 Razvi SS, Feng S, Narayanan A, Lee YTT, Witherell P 
(2019) A review of machine learning applications in additive 
manufacturing.  Int Des Eng Tech Conf Comput Inf in Eng 
Conf 59179:V001T02A040

	 87.	 Eastwood J, Sims-Waterhouse D, Piano S (2020) Machine learn-
ing approaches. In: Leach R K Advances in Optical Form and 
Coordinate Metrology (IOP Publishing), Chap. 6

	 88.	 Stavroulakis PI, Leach RK (2016) Review of post-process optical 
form metrology for industrial- grade metal additive manufactured 
parts. Rev Sci Instrum 87:041101

	 89.	 Monti F, Boscaini D, Masci J, Rodoì E, Svoboda J, Bronstein 
MM (2017) Geometric deep learning on graphs and manifolds 
using mixture model CNNs. Proc IEEE Conf on Comput Vis 
Pattern Recognit, Honolulu, USA, July. 5115–5124

	 90.	 Senin N, Leach R (2018) Information-rich surface metrology. 
Procedia CIRP 75:19–26

	 91.	 Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 
521:436–444

	 92.	 Sims-Waterhouse D, Leach R, Piano S (2020) Close range photo-
grammetry. In: Leach R K Advances in Optical Form and Coor-
dinate Metrology (IOP Publishing), Chap. 4

	 93.	 Gallo A, Muzzupappa M, Bruno F (2014) 3D reconstruction of 
small sized objects from a sequence of multi-focused images. J 
Cult Herit 15:173–182

	 94.	 Zeller N, Quint F, Stilla U (2014) Calibration and accuracy analy-
sis of a focused plenoptic camera 2:205

	 95.	 Born M, Wolf E (2013) Elements of the theory of diffraction. 
In: Born M, Wolf E Principles of Optics (Cambridge University 
Press), Chap. 8

	 96.	 Lei S, Zhang S (2009) Flexible 3-D shape measurement using 
projector defocusing. Opt Lett 34:3080

	 97.	 Hu Y, Chen Q, Feng S, Zuo C (2020) Microscopic fringe projec-
tion profilometry: a review. Opt Lasers Eng 135:106192

	 98.	 Cuypers W, Van Gestel N, Voet A, Kruth JP, Mingneau J, Bleys 
P (2009) Optical measurement techniques for mobile and large-
scale dimensional metrology. Opt Lasers Eng 47:292–300

	 99.	 Harding KG (2020) Large part metrology challenges and lessons 
learned. Proc SPIE 11397:113970I

	100.	 Du H, Chen X, Xi J, Yu C, Zhao B (2017) Development and veri-
fication of a novel robot-integrated fringe projection 3D scanning 
system for large-scale metrology. Sensors 17:2886

	101.	 Summan R, Pierce SG, Macleod CN, Dobie G, Gears T, Lester 
W, Pritchett P, Smyth P (2015) Spatial calibration of large vol-
ume photogrammetry based metrology systems. Measurement 
68:189–200

	102.	 Gibson I, Rosen D, Stucker B (2015) Design for additive manu-
facturing. In: Gibson I, Rosen D, Stucker B Additive Manufactur-
ing Technologies (Springer), Chap. 17

	103.	 Senin N, Thompson A, Leach RK (2017) Characterisation of 
the topography of metal additive surface features with different 
measurement technologies. Meas Sci Technol 28:095003

	104.	 Shaheen A, Sims-Waterhouse D, Bointon P, Takushima S, Piano 
S, Leach RK (2020) Characterisation of a multi-view fringe pro-
jection system based on the stereo matching of rectified phase 
maps. Meas Sci Technol 32:045006

	105.	 Song LM, Gao YY, Zhu XJ, Guo QH, Xi JT (2016) A 3D meas-
urement method based on multi-view fringe projection by using 
a turntable. Optoelectron Lett 12:389–394

	106.	 Kinnell P, Rymer T, Hodgson J, Justham L, Jackson M (2017) 
Autonomous metrology for robot mounted 3D vision systems. 
Ann CIRP 66:483–486

	107.	 Rao MR, Radhakrishna D, Usha S (2018) Development of a 
robot-mounted 3D scanner and multi-view registration tech-
niques for industrial applications. Proc Comput Sci 133:256–267

	108.	 Leach RK, Bourell D, Carmignato S, Donmez A, Senin N, 
Dewulf W (2019) Geometrical metrology for metal additive 
manufacturing. Ann CIRP 68:677–700

	109.	 Senin N, Thompson A, Leach R (2017) Feature-based charac-
terisation of signature topography in laser powder bed fusion of 
metals. Meas Sci Technol 29:045009

	110.	 Townsend A, Senin N, Blunt L, Leach RK, Taylor JS (2016) 
Surface texture metrology for metal additive manufacturing: a 
review. Precis Eng 46:34–47

	111.	 de Pastre MA, Thompson A, Senin N, Quinsat Y, Albajez García 
JA, Leach RK (2019) Polymer powder bed fusion surface texture 
measurement. Meas Sci Technol 31:055002

	112.	 Duboust N, Ghadbeigi H, Pinna C, Ayvar-Soberanis S, Collis A, 
Scaife R, Kerrigan K (2017) An optical method for measuring 
surface roughness of machined carbon fibre-reinforced plastic 
composites. J Compos Mater 51:289–302

	113.	 Geier N, Pereszlai C (2020) Analysis of characteristics of sur-
face roughness of machined CFRP composites. Period Polytech 
Mech Eng 64:67–80

	114.	 Sims-Waterhouse D, Piano S, Leach R (2017) Verification of 
micro-scale photogrammetry for smooth three-dimensional 
object measurement. Meas Sci Technol 28:055010

	115.	 Gomez C, Su R, Thompson A, DiSciacca J, Lawes S, Leach R 
(2017) Optimisation of surface measurement for metal additive 
manufacturing using coherence scanning interferometry. Opt 
Eng 56:111714

	116.	 Newton L, Senin N, Gomez C, Danzl R, Helmli F, Blunt L, 
Leach R (2018) Areal topography measurement of metal addi-
tive surfaces using focus variation microscopy. Addit Manuf 
25:365–389

	117.	 Kang CW, Ramzan MB, Sarkar B, Imran M (2018) Effect of 
inspection performance in smart manufacturing system based 
on human quality control system. Int J Adv Manuf Technol 
94:4351–4364

	118.	 ISO 10360 series (2000) Geometrical product specifications 
(GPS) -- Acceptance and reverification tests for coordinate 
measuring systems (CMS) (International Organization for 
Standardization)

	119.	 Zhang H, Eastwood J, Isa M, Sims-Waterhouse D, Leach R, 
Piano S (2021) Optimisation of camera positions for optical 
coordinate measurement based on visible point analysis. Precis 
Eng 67:178–188

	120.	 Catalucci S, Senin N (2020) State-of-the-art in point cloud analy-
sis. In: Leach R K Advances in Optical Form and Coordinate 
Metrology (IOP Publishing), Chap. 2

	121.	 French P, Krijnen G, Roozeboom F (2016) Precision in harsh 
environments. Microsystems Nanoeng 2:1–12

	122.	 Hovell T, Matharu RS, Petzing JN, Justham L, Kinnell PK (2020) 
Lensless fiber-deployed low-coherence interferometer for in-situ 
measurements in nonideal environments. Opt Eng 59:014113

	123.	 Ferrucci M, Ametova E (2021) Charting the course towards 
dimensional measurement traceability by X-ray computed 
tomography. Meas Sci Technol 32:092001

	124.	 Gayton G, Su R, Leach RK (2019) Model-based uncertainty esti-
mation of uncertainty for fringe projection. Proc. 10th Int Symp 
on Meas Technol and Intell Instrum, Niigata, Japan, June

	125.	 Gąska A, Harmatys W, Gąska P, Gruza M, Gromczak K, 
Ostrowska K (2017) Virtual CMM-based model for uncertainty 
estimation of coordinate measurements performed in industrial 
conditions. Meas J Int Meas Confed 98:361–371

4289The International Journal of Advanced Manufacturing Technology (2022) 120:4271–4290



1 3

	126.	 Papananias M, McLeay TE, Mahfouf M, Kadirkamanathan V 
(2019) A Bayesian framework to estimate part quality and asso-
ciated uncertainties in multistage manufacturing Comput. Ind 
105:35–47

	127.	 Larsen L, Kim J, Kupke M, Schuster A (2017) Automatic 
path planning of industrial robots comparing sampling-based 
and computational intelligence Methods. Procedia Manuf 
11:241–248

	128.	 Lu W, Pagani L, Zhou L, Liu X, Wang J, Leach R, Jiang X (2019) 
Uncertainty-guided intelligent sampling strategy for high-efficiency 
surface measurement via free-knot B-spline regression modelling. 
Precis Eng 56:38–52

	129.	 Tolle I, Lee J, Salvador D, Saville B, Yong PB, Marcuccilli G 
(2019) Defect learning with predictive sampling for process 
improvement. Pro SPIE 10959:1095930

	130.	 Psarommatis F, May G, Dreyfus PA, Kiritsis D (2020) Zero 
defect manufacturing: state-of-the-art review, shortcomings and 
future directions in research. Int J Prod Res 58:1–17

	131.	 du Plessis A, Yadroitsava I, Yadroitsev I (2020) Effects of 
defects on mechanical properties in metal additive manufactur-
ing: A review focusing on X-ray tomography insights. Mater 
Des 187:108385

	132.	 Forbes A (2018) Uncertainties associated with position, size and 
shape for point cloud data. J Phys: Conf Ser 1065:142023

	133.	 Senin N, Catalucci S, Moretti M, Leach RK (2020) Statistical 
point cloud model to investigate measurement uncertainty in 
coordinate metrology. Precis Eng 70:44–62

	134.	 Forbes A (2006) Surface fitting taking into account uncertainty 
structure in coordinate data. Meas Sci Technol 17:553

	135.	 Forbes AB (2006) Uncertainty evaluation associated with fitting 
geometric surfaces to coordinate data. Metrologia 43:S282

	136.	 Forbes AB, Minh HD (2011) Form assessment in coordinate 
metrology. In: Georgoulis EH, Iske A, Levesley J. Approxima-
tion Algorithms for Complex Systems. (Springer), Chap. 4

	137.	 Pauly M, Mitra NJ, Guibas L (2004) Uncertainty and variability 
in point cloud surface data. Symp point-based Graph, June, 77–84

	138.	 Wang J, Leach R K, Jiang X (2015) Review of the mathematical 
foundations of data fusion techniques in surface metrology. Surf 
Topogr Metrol Prop 3:023001

	139.	 Li L, Wang R, Zhang X (2021) A tutorial review on point cloud 
registrations: principle, classification, comparison, and technol-
ogy challenges. Math Probl Eng 9953910

	140.	 Pu C, Li N, Tylecek R, Fisher B (2018) DUGMA: Dynamic 
uncertainty-based Gaussian mixture alignment. Proc 2018 Int 
Conf 3D Vis, September, Verona, Italy

	141.	 De Asís LF, Ordóñez C, Roca-Pardiñas J, García-Cortés S (2014) 
Point cloud comparison under uncertainty Application to beam 
bridge measurement with terrestrial laser scanning. Measurement 
51:259–264

	142.	 Brossard M, Bonnabel S, Barrau A (2020) A new approach to 3D 
ICP covariance estimation. IEEE Robot Autom Lett 5:744–751

	143.	 Wiens A, Kleiber W, Nychka D, Barnhart KR (2021) Nonrigid 
registration using gaussian processes and local likelihood estima-
tion. Math Geosci 53:1319–1337

	144.	 Han XF, Jin JS, Wang MJ, Jiang W, Gao L, Xiao L (2017) A 
review of algorithms for filtering the 3D point cloud. Signal Pro-
cess Image Commun 57:103–112

	145.	 Barchiesi D, Grosges T (2017) Propagation of uncertainties and 
applications in numerical modeling: tutorial. J Opt Soc Am A 
34:1602–1619

	146.	 Haitjema H (2018) Measurement uncertainty. In: Leach RK, 
Smith ST. Basics of Precision Engineering (CRC Press), Chap. 9

	147.	 Thompson A, Senin N, Giusca C, Leach R (2017) Topography 
of selectively laser melted surfaces: A comparison of different 
measurement methods. Ann CIRP 66:543–546

	148.	 Zhang M, Anwer N, Mathieu L, Zhao HB (2011) A discrete 
geometry framework for geometrical product specifications. Proc 
21st  CIRP Des Conf, Korea 2011: Interdiscip Des, Korea, 
November 20

	149.	 Leach RK, Haitjema H, Su R, Thompson A (2021) Metrological 
characteristics for the calibration of surface topography measur-
ing instruments: a review. Meas Sci Technol 32:032001

	150.	 ISO 25178 part 600 (2019) Geometrical product specifications 
(GPS) - surface texture: areal - part 600: metrological charac-
teristics for areal-topography measuring methods (International 
Organization for Standardization)

	151.	 JCGM 100 (2008) Evaluation of measurement data — guide to 
the expression of uncertainty in measurement (JCGM)

	152.	 Giusca CL, Leach RK (2013) Good Practice Guide No. 129: 
Calibration of the metrological characteristics of areal contact 
stylus instruments (National Physical Laboratory)

	153.	 Thomas M, Su R, Nikolaev N, Coupland J, Leach R (2020) Mod-
eling of interference microscopy beyond the linear regime. Opt 
Eng 59:034110

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

4290 The International Journal of Advanced Manufacturing Technology (2022) 120:4271–4290


	Optical metrology for digital manufacturing: a review
	Abstract
	1 Introduction
	1.1 Contents of the review

	2 Integrated metrology for Industry 4.0
	2.1 Data connectivity
	2.2 In-line measurements for zero-defect manufacturing
	2.2.1 Geometrical and dimensional inspection
	2.2.2 Surface defect detection
	2.2.2.1 In-process monitoring 



	3 The challenges of integrated metrology
	3.1 Measurement speed and data bottlenecks
	3.2 Geometric complexity, part size and surface texture variation
	3.3 User-dependent constraints
	3.4 Measurement in harsh environments

	4 The implication of measurement uncertainty
	4.1 Uncertainty associated with point clouds
	4.2 Uncertainty in surface texture measurement

	5 Conclusions and future work
	References


