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Abstract
The increasing demand for machining non-rotational optical surfaces requires capable and flexible cutting tool path genera-
tion methods for ultra-precision diamond turning. Furthermore, the recent interest in on-machine metrology and corrective 
machining requires efficient as well as accurate algorithms capable to handle point cloud based surface data. In the present 
work, a new computation method for the tool path generation is proposed that focuses on three-axes corrective machining. 
It is based on the principle of defining the surface to be machined by a point cloud of given density, since surface measure-
ment data is usually available as point cloud. Numeric approximation techniques are used to compute the surface normal 
vectors and calculate the resulting positions of the cutting tool path preserving a uniform radial axis motion for face turning. 
Investigations are performed in order to quantify the error between the calculated tool path and the exact analytical solu-
tion. The error dependencies are analyzed regarding the local surface slope and numerical parameters. Error values below 1 
nm are achieved. In addition, form deviation results prove the method’s capability for corrective diamond turn machining.

Keywords Ultra-precision machining · Freeform machining · Tool path generation · Diamond turning · Corrective 
machining
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1 Introduction

Diamond turning and ultra-precision machining technolo-
gies today in general offer the capabilities to machine sur-
faces with form deviations from the nominal surface in the 
range of 100 nm and roughness values below 5 nm. Besides 
the use of ultra-precision machine tools, whose structure 
and components offer high level movements in terms of both 
precision and accuracy, cutting tools made of single crystal 
diamonds are employed to achieve the mentioned surface 
quality. Hence, ultra-precision machining is often referred 
to as diamond machining [1].

Recently, the popularity of three-axes diamond turning 
increased in machining of non-rotational symmetric geom-
etries including complex aspheres, lens arrays and free-
forms in general. Freeform optics enable new possibilities 
for designers of optical systems for example in terms of a 
reduced number of optical elements and an increased optical 
performance [2]. This leads to a growing demand for preci-
sion freeform surfaces and thus forces diamond machining 
technologies to comply with this request. Corrective machin-
ing in combination with on-machine surface metrology is a 
promising approach for increasing diamond turning capabili-
ties [3]. In view of these developments effective tool path 
generation is of high importance, especially for corrective 
machining.

Within the tool path generation the tool geometry, con-
sisting of the nose radius and the rake angle, as well as the 
machining parameters like feed rates and NC point resolu-
tion need to be taken into consideration. Figure 1 shows 
the generalized steps of machining an optical surface and 
the accuracy losses throughout the process. Regarding the 
tool path generation, the aim is to minimize its related 
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accuracy loss in order to decrease the overall accuracy 
loss along all processing steps. For different surface defini-
tion methods or surface data available as measured point 
cloud in case of corrective machining additional format 
transformations, e.g., fitting operations, may be necessary.

For the common use case of machining surfaces for opti-
cal applications by face turning, the tool path topography 
mainly follows a spiral. Regarding the tool nose radius 
compensation, Gong et  al. [4] distinguish and discuss 
two different ways of projecting the spiral tool path onto 
the surface to be machined. The first is called oscillating-
X method, since it can cause oscillating movements in 
X-direction having the potential to negatively affect the 
machining process due to high dynamic movements. The 
second leads to a constant feed in the radial direction and is 
named as steady-X method. Since constant or slowly chang-
ing feed rates prevent the process from any high dynamic 
movements, the steady-X method is generally preferred, 
but also more complex in terms of the tool-surface contact 
points calculation based on a predefined spiral tool path. 
Several publications discuss the issues in this context and 
present diverse approaches for the tool path generation for 
freeform machining. Gong et al. [4] give a comprehensive 
review of tool path generation techniques in ultra-precision 
diamond turning. Besides, Brinksmeier et al. [5] focus on 
tool path generation strategies for freeform surfaces.

A widely used method to describe freeforms is using non-
uniform rational B-splines (NURBS), as described in [6, 7]. 
NURBS offer a framework to represent freeforms in a stand-
ardized way and to get an analytical description between given 
sampling points. However, Gong et al. [4] point out that there 
is no obvious correspondence between the parameter of the 
NURBS and the coordinate parameters and that analytic 
parameter conversion is often impossible. Moreover, also 
stated in [8], the NURBS approximation may not reach the 
desired accuracy. To overcome the problem it is possible to 
sample the surface and use a function fitting to obtain an ana-
lytical formula, see Scheiding et al. [9]. This process may suf-
fer from accuracy and time consumption, especially in case of 
sampling noise or uneven point distribution, see [10] and refer-
ences therein. In [4] it is noted that a similar algorithm is used 
in NANOCAM 2.0, but which may lead to accuracy losses.

To overcome the drawback of accuracy losses when 
approximating an analytic surface description by NURBS, 
Gong et al. [8] present a tool path generation method using 
symbolic computation for the calculation of the surface nor-
mals. However, the finding of the tool-surface contact point 
still requires numerical computation, since this usually can-
not be done analytically for a given spiral path [8].

Moreover, there are machining applications which are 
forced to handle the surface to be machined defined by(non-
uniform or uniform) point clouds. An example is machining 
related to reverse engineering, where surface information 
typically consists of coordinate points gained by 3D scan-
ning (as stated in [11, 12]). Masood et al. [11] present a 
direct machining concept for three-axes milling using ball-
end tools, which avoids the traditional surface fitting pro-
cess in reverse engineering applications. The point cloud is 
divided into fields which correspond to one of the parallel 
oriented milling paths. Each path is then obtained by fit-
ting a curve to the tool center points of the respective field, 
which are obtained using the normals of the triangulated 
surface data. The accuracy of the employed 3D scanning 
equipment is stated to be ±, 0.018 mm. However, no analysis 
is presented regarding the tool path accuracy compared to 
the point cloud accuracy and to the method using surface 
fitting processes.

Chui et al. [12] also present a direct machining approach 
tailored to milling using ball-end tools. It focuses on the 
applicability to both regularly and irregularly distributed 
point clouds. After subdividing the points into fields, whose 
width depends on the step-over of two adjacent milling 
paths, the tool radius center points are obtained by geomet-
ric calculations determining the contact points between a 
surface point and the tool. A discussion of the resulting tool 
path accuracy is not part of their work.

Corrective machining of surfaces is an application, 
where the actual measured surface form is mainly avail-
able as point cloud. In this context, Xiao et al. [13] pre-
sent an algorithm providing direct tool path generation 
for the repair machining of aero-engine blades based on 
a measured point cloud. The approach avoids surface fit-
ting operations as well as the usage of CAM software 
and is designed to feature five-axes milling. Hence, it is 

Fig. 1  Processing steps of 
diamond machining a surface 
and the related accuracy loss 
divided into two parts. Part one: 
Tool path accuracy loss arising 
out of the calculation of the NC 
points. Part two: Machining 
accuracy loss represented by 
the difference between the pro-
grammed path and the finally 
executed path of the axes
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concluded to be more efficient than traditional methods. 
The accuracy of the employed scanning measurement is 
able to reach a value of 30 � . Besides, algorithms are pre-
sented for the region separation of the blades and recog-
nition of damaged areas. The tool path accuracy is not 
explicitly analyzed, but is stated to be mainly influenced 
by the point cloud’s accuracy and density.

As mentioned before, corrective machining is also becom-
ing more popular in ultra-precision diamond turning and is 
strongly encouraged by the recent interest in on-machine 
surface metrology [3]. Although the use of a point cloud for 
the tool path generation is not further analyzed in [5], it is 
listed in the given overview as a possible strategy for ultra-
precision machining. The named fact that numeric compu-
tations cannot be avoided entirely for a given spiral path 
(see [8]) and point cloud form measurement data motivate 
a point cloud based surface representation throughout the 
tool path generation process, which, in contrast to a hybrid 
process according to [8] using both analytic and numeric 
computations, for example also allows to handle freeform 
point clouds exported from a CAD design software. These 
aspects together with the characteristics and benefits of the 
above-described applications of direct machining presented 
in [11–13] lead to the demand for a tool path generation 
method combining efficiency in processing point clouds and 
enhanced accuracy to the needs of diamond turning.

Therefore, this work presents a novel simplified method 
that uses a point cloud and numerical computations to cal-
culate the tool path for 3D diamond turning. It follows the 
explained and preferred steady-X method to maintain a uni-
form feed rate in radial direction, is capable to handle vari-
ous tool rake angles and offers the option to compensate the 
point cloud by measured form errors in case of corrective 
machining. Since this strategy implies a certain accuracy 
loss due to no gapless analytical surface description and 
the employment of numeric computation methods, a com-
prehensive accuracy loss analysis is presented as well. The 
analysis and the method in general follow the aim of calcu-
lating tool path points of highest accuracy. This is required 
for any tool path point in diamond machining, regardless 
of the point density with which a tool path is programmed.

As part of the analysis every calculation step of the pre-
sented approach accompanied by a numerical approximation 
is investigated regarding its accuracy. Thus, the present work 
supplements the important analysis, which compares the 
point cloud approach with the exact solution and hence miti-
gates the shortcomings in the analysis of [11–13]. In contrast 
to these, the selection of the computational methods and its 
parameters is deduced and justified by analyzing various con-
ditions regarding the accuracy demands in diamond turning.

Beyond, exemplary form error results prove the usability 
for freeform corrective machining in combination with the 
use of on-machine metrology.

2  Tool path generation

The configuration of the ultra-precision diamond turning 
machine used for this work is depicted in top view in Fig. 2. 
In contrast to the more usual configuration, the spindle is 
mounted on the Z-axis slide. The two horizontal linear axes 
are structurally separated and carry either the diamond 
tool or the workpiece spindle (dependent on the individual 
machine tool type), which operated as a controlled C-axis 
enables three-axes machining. Shown is also the station-
ary Cartesian machine tool coordinate system, in which the 
X-axis corresponds to the radial linear axis of the machine 
tool. It serves as the coordinate system used throughout the 
present work.

As a speciality of diamond turning machines, a move-
ment in Z-direction can be performed by two different 
modes, namely either by the Z-axis itself (referred to as 
slow slide servo machining), or by a fast tool servo device 
(referred to as fast tool servo machining). In this context it 
is noted that the tool path generation generally is independ-
ent of the Z-axis mode used for machining (slow slide or 
fast tool servo), because both modes move according to 
the Z-coordinates calculated with respect to the machining 
coordinate system. The selection of the Z-axis mode takes 
place when programming the tool path to the machine tool 
control using the control-specific syntax, but which is not 
part of the present work.

The machining kinematics in face turning and the typical 
cutting tool geometry of a circular arc with certain radius 
cause the contact point between the workpiece surface and 
the tool to move along the tool nose arc when machining 
curved geometries. This behavior requires to compensate the 
nominal spiral tool path in function of the tool nose radius 
and the surface normal vector at each tool path point. For 
that, the ability to calculate the surface normal vector at 

Fig. 2  Axes configuration of the used three-axes diamond turning 
machine consisting of two horizontal linear axes (X- and Z-axis) and 
one horizontal rotational axis (C-axis) with stationary right-handed 
Cartesian machine tool coordinate system. The configuration corre-
sponds to a typical one used in diamond turning
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each point of the surface to be machined is crucial. Figure 3 
illustrates the relation between a surface profile f and the 
associated tool path.

When calculating the surface normals by analytical meth-
ods, additional precomputation for each specific surface 
equation is necessary. This is avoided by representing the 
nominal surface by a point cloud as described in Sect. 1. 
The point cloud represents a flexible basis for the overall tool 
path generation and can be generated out of any nominal sur-
face description by an initial preprocessing step. Two further 
steps complete the path generation, namely the calculation of 
the tool center surface and of the tool path points.

2.1  Calculation of surface normals

By machining a general freeform surface using a circu-
lar radius cutting tool the tool’s radius center point has 
to move on a surface that has a constant distance to the 
surface to be machined. Hence, the first step of the tool 
path generation is the calculation of the normal vectors of 
the surface to be machined. The surface is considered as a 
point cloud P consisting of k points wwwi with the coordinates 
xi , yi and zi according to the definition given by Eq. (1).

(1)P = {wwwi = (xi, yi, zi) ∈ ℝ
3 | i = 1, 2,… , k} .

As already mentioned, the point cloud can be derived 
by an initial preprocessing step out of any surface descrip-
tion method. Its properties and the associated effects are 
discussed in Sect. 3 subsequently.

For the common case of an analytical surface descrip-
tion z = f (x, y) , the surface normal vectors nnn(x, y) can be 
derived using the known analytical formulas. Although 
this description method is common for example for aspher-
ical surfaces, it cannot be used for arbitrary freeform 
surfaces or for the correction of surfaces with measured 
points, which are usually available as point cloud. Using 
a point cloud as surface description method overcomes 
this drawback and represents the basis for a generalized 
surface normal calculation. Therefore, in a first step, the 
method described by Hoppe et al. [14] is utilized, where 
the normal vector to a point is computed using a plane fit-
ted to its neighbors, according to the following procedure:

Finding the kn nearest neighbor points: To accelerate the 
computational search of the kn nearest neighbor points a quadtree, 
i.e., a tree data structure in which each internal node has exactly 
four children, is used. For this, the implementation by Walker [15] 
is used, which is based on the work of Frisken and Perry [16].

Fitting of the plane: For every point wwwi = (xi, yi, zi)
T ∈ P 

a set of nearest neighbor points wwwj ∈ P,   j ∈ Ki 
⊂ {1, 2,… , k} , where Ki is a set of neighbor points indices, 
are defined. By computing the centroid ccci of the neighbor 
points wwwj the 3 × 3 matrix AAAi can be calculated using Eq. 
(2). AAAi is symmetric and positive semidefinite, thus the 
eigenvalue decomposition can be determined by Eq. (3), 
where DDDi = diag(�1

i
, �2

i
, �3

i
) and VVVi = (vvv1

i
,vvv2

i
,vvv3

i
) contains the 

corresponding eigenvectors.

Assuming that the eigenvalues are arranged in decreasing 
order, then nnni ∶= ±vvv3

i
 represents the normal vector of the fit-

ted plane to the nearest neighbor points of wwwi . The sign of the 
vector is then chosen according to the machining orientation 
within the machine tool coordinate system: Following the 
definition in Fig. 2 the Z-component of the normal vector is 
chosen to be positive.

In this way, for the point cloud P a set of normal vectors 
NP , one for each point wwwi , is obtained according to Eq. (4).

It may be noticed, that this computation of the normal 
vectors for a point cloud is already implemented in some 
commercial software, e.g., in the Computer Vision System 

(2)AAAi =
∑
j∈Ki

(wwwj − ccci) ⋅ (wwwj − ccci)
T .

(3)AAAi = VVViDDDiVVV
T
i

(4)NP = {nnni ∈ ℝ
3 | i = 1, 2,… , k} .

Fig. 3  Relations between a nominal surface profile f, its normal vec-
tors nnn , the tool nose radius rT and the tool path
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Toolbox of MATLAB or open3D for Python. Since the com-
putation of the normals plays a crucial role in the computa-
tion of the trajectory, in particular for big tool radii, also a 
modified version of [14] and additionally the method from 
[17] are considered. The latter is based on a weighted aver-
age of the normals to the neighboring triangles obtained by 
a Delaunay triangulation. However, as it will become clear 
in Sect. 3, using an equally distributed point cloud leads to 
almost optimal accuracy1 for a suitable point density.

2.2  Calculation of tool center surface

Once the normal vector of each surface point is calculated, 
the surface on which the tool center point moves can be 
computed. The most common cutting tools used in diamond 
turning, especially for machining freeforms, have a circular 
cutting edge defined by the nose radius rT and the geometri-
cal center point coordinates cccT = (xT, yT, zT) in the machine 
tool coordinate system. The tool modeling assumes an ide-
ally sharp cutting edge, which together with the tool center 
point defines the rake face plane ET with the corresponding 
normal vector nnnT according to the definition given by

where uuu are the points on the plane and the vector nnnT in 
the surface reference system is given by

Here � and C are the rake and the C-Axis angle, respec-
tively. For the general situation, the tool rake face is not 
always parallel to the XZ-plane but tilted by the tool’s rake 
angle.

For a given point wwwi ∈ P , i.e., a point on the surface to be 
machined, the corresponding tool center point is computed 
by projecting the surface normal vector nnni onto the plane 
ET , accordingly scaling its length and adding the resulting 
vector ñnni to the surface point. The according mathematical 
procedure is described in the following and corresponds to 
the depiction in Fig. 4.

The surface normal vector component in direction of nnnT is 
subtracted from nnni and scaled according to Eq. (7).

(5)E = {uuu ∈ ℝ
3 � ⟨uuu,nnnT⟩ = 0} ,

(6)nnnT =

⎛⎜⎜⎝

− cos � sinC

− cos � cosC

sin �

⎞⎟⎟⎠
.

(7)ñnni ∶=
n̂nni

‖n̂nni‖
, n̂nni ∶= nnni − ⟨nnni,nnnT⟩ ⋅ nnnT .

Finally, the surface (or the point cloud) PT on which the 
tool center point moves is computed by extending the sur-
face points wwwi along the obtained vectors according the defi-
nition given in Eq. (8).

2.3  Calculation of the trajectory

Usually, the basis tool trajectory in face turning of optics is 
supposed to be an Archimedean spiral defined in the XY-
plane. Equation (9) defines the spiral T2D in the Cartesian 
machine tool coordinate system in function of the time t 
using the cylindrical coordinates consisting of a parametri-
zation � of the C-axis angle and the radial coordinate r. The 
radial coordinate r corresponds to the distance to the spindle 
axis C.

Once PT is determined, the 2D trajectory is projected onto 
it along the Z-direction. By interpolating the Z-values within 
PT the tool path points are generated. The position of the 
trajectory points in the XY-plane remains unchanged during 
this operation. As a byproduct, using the mapping vvvi ↦ wwwi 
the cutter contact points are obtained.

By choosing the type of interpolation it is possible to 
improve the accuracy, see e.g., Theorem 4.4.20 in [18], 
where estimations of the interpolation error depending on 
the differentiability of the surface, the degree of the interpo-
lation polynomial and the size of the mesh are given. Since 
for every point the neighbor points were already determined 
in order to compute the normals (see Sect. 2.1), it is further 
possible to interpolate only locally to improve the memory 
management during the computations.

(8)PT = {vvvi ∈ ℝ
3 |vvvi = wwwi + rT ñnni , i = 1, 2,… , k}

(9)T2D(t) =

(
r(t) cos�(t)

r(t) sin�(t)

)
.

nnii

nnii

Contact point

Tool center point

Rake face plane ET

~~

nnTT

rrTT

Fig. 4  Vectors arising from the tool definition and corresponding pro-
jections

1 This is apparently in contrast with the results from [17], but there 
the goal is to reconstruct a surface from unorganized points. The pre-
sent case has organized points from a smooth surface. This allows the 
use of less neighbor points to estimate the plane for the normal.
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3  Analysis of accuracy loss

In this section, the different error sources that affect the tool 
path accuracy loss as defined in Fig. 1 are analyzed for vari-
ous surfaces. In a first study, only the calculation of the nor-
mal vectors for a point cloud, see Sect. 2.1, is considered and 
the results are compared with the exact normal vectors. The 
influence of the definition of the point cloud P, the number 
of nearest neighbors kn and the used methods are discussed. 
In a second study, the interpolation error when interpolat-
ing the Z-values of the tool path points onto the tool center 
surface PT is analyzed and the trajectories resulting from a 
point cloud and from the corresponding analytical calcula-
tion are compared.

3.1  Accuracy of the normals calculation

First, a freeform surface defined by Eq. (10) is considered, 
see also Fig. 5.

The study investigates the accuracy of the surface nor-
mals calculation, is conducted using b = 3 and is independ-
ent of the machine tool and the cutting tool. It is assumed 
that the unit of the coordinates is mm. The normal vectors 
are calculated for points (xi, yi) lying within a circle of radius 
10 mm, for a number of points k ∈ {1E6, 4E6} and differ-
ent numbers of neighbor points kn between 3 and 20, for 
both a Cartesian mesh and quasi-random points from the 
Halton sequence. The first grid distribution is motivated by 
the fact that some measuring devices, e.g., a Fizeau interfer-
ometer, return values on a Cartesian mesh, while the second 

(10)z1(x, y) = b cos
�x

8
cos

�y

8
, b ∈ ℝ

distribution because of its low discrepancy, i.e., the points 
are random but evenly distributed.

Then, motivated by on-machine metrology two additional 
methods are considered, both relying on surface data from 
a spiral distribution, as if it were generated by a spiral scan-
ning measurement. Taking an exemplary but usual configu-
ration, the spiral points have a maximal arc distance ds of 8.7 
� m or 10◦ angular distance, while the distance dr between 
every C-axis turn is set to be 8.7 � m, resulting approxima-
tively 4E6 points lying within a circle of radius 10mm. Once 
the data is interpolated on a Cartesian grid the new grid 
points are used to compute the normal vectors. In the second 
case the method from [17] is directly applied to the spiral 
points to obtain the normal vectors. In this case, the number 
of neighbors is determined automatically for each point (the 
user cannot control it) using a Delaunay triangulation and 
each normal vector is computed using a weighted average of 
the normals to the faces surrounding the point.

To calculate the error of the used methods for computing 
the surface normals, the angle eang

i
 between the estimated 

normal vector nnni and the analytical formula nnn(xi, yi) is cal-
culated according to Eq. (11).

The resulting mean values of the error angles 
fork ∈ {1E6, 4E6} in function of the number of neighbor 
points kn are shown in Fig. 6. The main observation is that 
in the case of a Cartesian mesh the mean error has local 
minima at kn = 5, 9 and 13, which show an improved error 
behavior in comparison to all other configurations. In the 
way the search for the neighbor points is defined, the actual 
point is considered as its own neighbor, meaning that the 
real numbers of neighbors for the above-mentioned amounts 
are 4, 8 and 12. The resulting neighbor points configurations 
within the regular grid are depicted in Fig. 7. For these spe-
cial configurations, independently of the surface, the minima 
are a consequence of the approximation property of the cen-
tral finite difference, which is of second order with respect 
to the mesh width, see Appendix 1.

The approximation of a function’s derivative depends on 
the distance of the points used to compute it. Thus, by increas-
ing the distance of the neighbor points, the accuracy of the 
proposed method may decrease, as it can be seen by compar-
ing the curves with 1E6 and 4E6 points in Fig. 6. In contrast 
to the Cartesian grid, the quasi-random mesh (Halton set) 
does not show these local minima because the second-order 
approximation property is not valid for quasi-random points.

In case of the interpolated spiral data, the local min-
ima are observed again, with the difference that the best 
approximation is for kn = 13 points. This level of accuracy 
is reached also by the method from [17] applied directly to 
the spiral points, as shown in Table 1.

(11)e
ang

i
= arccos(nnni ⋅ nnn(xi, yi))

Fig. 5  Freeform surface from definition (10), with b = 3
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In this first attempt to study the approximation of normal 
vectors it is noted that the choice of the grid points play an 
essential role in the determination of the normal vectors. 
First, the best results are obtained on a Cartesian mesh with 
suitable value kn . Second, in the case of the spiral it turned 
out during the computations that the spiral points should be 
chosen to be well distributed, namely the arc length between 
the points should be approximatively equal to the distance 
of the spiral turns, as it can be observed in Table 1. The case 
of the table’s last row is computed to show how the form of 
the triangles affects the precision of the method from [17].

3.2  Accuracy of the tool path points

Since not only the angle error resulting from the surface 
normals calculation contributes to the tool path accuracy 
loss, also the contribution of the interpolation of the tool 
trajectory points needs to be taken into account. Therefore, 
this section considers the error sum due to the interplay of 
approximation of the normal vectors and the interpolation 
in order to quantify the tool path accuracy loss according 
to Fig. 1.

The trajectory for this investigation is an Archimedean 
spiral with a maximal radius Rout = 10 mm where the spiral 
points have a maximal arc distance of 1 mm or 1 ◦ angular 
distance, while the distance between every C-axis turn is 
set to be 10 � m. The cutting tool is supposed to have a nose 
radius of 1 mm and a rake angle of 0 ◦ . The XY-coordinates 
of the point cloud lie on a regular Cartesian grid. To com-
pute the surface normals 5 neighbor points according to 
Fig. 7 are used.

For this study two surfaces are considered. The first is 
defined by Eq. (12), see Fig. 8. The second is defined by z1 
according to Eq. (10).

(12)z0(x, y) = a x , a = tan � , � ∈ ℝ ,

Fig. 6  Mean angle error as 
a function of the number of 
neighbor points for the freeform 
surface z1 calculated using a 
Cartesian mesh and a Halton 
point set as well as two different 
numbers of surface points. The 
error improvement for the sym-
metric stencils is clear

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of neighbor points

10-5

10-4

10-3

10-2

10-1

100

101

102

Er
ro

r [
°]

1E6 points,cartesian mesh
4E6 points,cartesian mesh
1E6 points, Halton set
4E6 points, Halton set
4E6 points, interpolated from a spiral

5

9

13

Fig. 7  Configurations to calculate the surface normals by fitting a 
plane to various chosen numbers of neighbor points kn

6897The International Journal of Advanced Manufacturing Technology (2022) 120:6891–6907



1 3

The first surface z0 has zero curvature and the tool center 
trajectory is computable by analytic methods and therefore 
considered to be known. Since it is a plane, the surface nor-
mals calculation does not lead to any inaccuracies, allow-
ing to quantify the error contribution due to interpolation 
only for several angles � . This case needs particular atten-
tion, because since the surface z0 is tilted by � it cannot 
be machined in the center region without further attention. 
Therefore, the center region of r < 0.5 mm is not consid-
ered by this investigation. The second is a general freeform 
surface, but since the exact solution for the tool trajectory 
points using the steady-X method cannot be determined by 
using only analytic mathematics, it is proceeded in the fol-
lowing way: It is supposed that the tool center point moves 
on the surface according to Eq. (10) and a point cloud P̃T is 
computed using Eq. (10). Then the point cloud P, defining 
the surface to be machined, is computed using the tool center 
surface (given by P̃T ). In this way the tool center surface P̃T 
is analytically defined by the surface Eq. (10). Using the 
points P, the point cloud PT can then be calculated accord-
ing to the presented procedure. To evaluate the error the tool 
trajectory points interpolated within PT are compared to the 
exact values computed using Eq. (10).

To quantify the error of the trajectory, first the spiral 
points (x

�
, y

�
) , � = 1,… ,N are computed, then the interpo-

lation of the points in PT is used to obtain the values of the 
Z-axis Z

�
 . These are then compared with the exact values 

z
�
= z(x

�
, y

�
) , where z is the surface to be machined and 

chosen according to the Eqs. (13) and (14).

– Planar surface z0

– Freeform surface z1

By computing the two quantities

the differences in Z-direction between the trajectory com-
puted by the proposed method and the exact trajectory are 
obtained.

In the Figs. 9 and 10 the local errors ei are plotted in 
function of the coordinate in C-direction over one rotation 
for different inclination angles � and two different radial 
positions r. A sinusoidal behavior of the error with the 
amplitude gradually increasing with the tool moving closer 
to the rotation center can be observed. This is supposed 
to be related to the decreasing wavelength of the sinusoi-
dal changes of the Z-values when machining the inclined 
planar surface towards the center. The global error values 
depending on the inclination angle are given in Table 2, 
where, as expected, increasing error values for a more 
inclined planar surface are observed. The given maximal 
values emax are throughout < 4 nm and except the maximal 
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Table 1  Comparison of the 
mean angle error for the 
freeform surface z1 for several 
methods, in particular the 
method from [17]. In the last 
line the parameters in order to 
have very skewed triangles are 
chosen

Method Grid Number of 
grid points

Neighbors dr [mm] ds [mm] Mean error [ ◦]

Plane fitting Cartesian 4E6 4 - - 4.1599E-5
Plane fitting Cartesian 4E6 5 - - 2.7813E-2
Plane fitting Halton set 4E6 4 - - 9.1058E-2
Plane fitting Cartesian 

(interp. from 
spiral)

4E6 13 0.0087 0.0087 1.5988E-3

Method from [17] Spiral grid 4E6 - 0.0087 0.0087 3.2871E-3
Method from [17] Spiral grid 2E6 - 0.15 0.001 4.7944E-2

Fig. 8  Surface from definition (12) with a = tan(5◦)
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value of 3.9002 nm even < 1 nm. However, it should be 
noted that with an increasing inclination angle also other 
difficulties when machining the surface, for example a suf-
ficient tool clearance angle, arise.

To study the approximation properties for the surface z1 
it is proceeded as already explained at the beginning of this 
section. Starting from the definition that z1,tool represents the 
tool center surface, the surface to be machined is computed 
by using analytical formulas to calculate the surface nor-
mals. Based on that, the tool center surface can be computed 
once more using the numerical method presented in the 
Sects. 2.1 and 2.2. This way, two point clouds for the tool 
center surface are derived, one by using exact mathematics 

and the other by using the presented numerical method. In 
addition, it should be noted that the analyzed error values 
may be greater than usual due to the repeated computation 
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Fig. 9  Using 1E6 surface points for a surface size of Rout = 10 mm : 
Error between analytical and computed trajectory using the proposed 
method in the case of the planar surface z0 with inclination � of 2◦ , 
5◦ and 10◦ evaluated for a single spiral loop at the radii 2 mm (a) and 
0.5 mm (b). The numerical experiment shows the dependence of the 
error on the slope and on the radius from the spindle axis
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Fig. 10  Using 4E6 surface points for a surface size of Rout = 10 mm: 
Error between analytical and computed trajectory using the proposed 
method in the case of a planar surface z0 with inclination � of 2◦ , 5◦ , 
and 10◦ evaluated for a single spiral loop at the radii 2 mm (a) and 0.5 
mm (b). Again the dependence of the error on the slope and on the 
radius can be observed

Table 2  Comparison of the error values for the surface z0 (inclined 
planar surface) using a regular grid with 4E6 surface points and linear 
interpolation. Due to a singularity, which appears near the center as 
a consequence of the constant surface slope, the error has not been 
considered for r < 0.5 mm

Surface Plane angle 
� [ ◦]

emax [nm] emean [nm] � [nm]

z0 2 0.1051 0.0015 0.0005
z0 5 0.6611 0.0096 0.0304
z0 10 3.9002 0.0390 0.1302
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of the normal vectors. The results are summarized in Table 3 
for different values for the amplitude b. As can be seen, the 
error values emax grow linearly as a function of the used 
number of surface points, which can be justified with the 
application of linear interpolation. Because of high slope 
angles and a certain variation of the Z-values depending on 
the amplitude b, a higher number of surface points is needed 
to achieve a reasonable small maximal error value along the 
trajectory. The surface with an amplitude of 3 mm ( b = 3 ) 
is viewed rather as an example to prove the accuracy of the 
proposed method, since the maximal surface slope angle 
exceeds the typical available cutting tool clearance angles. 
Even for the surface with an amplitude of 1 mm ( b = 1 ) the 
maximal error value can be reduced to about 1 nm by using 
a number of surface points of 16E6.

All of the previous calculations are performed using 
linear interpolation. However, it is possible to achieve 
greater accuracy by increasing the interpolation order. To 
illustrate the changes in the error values due to a higher 
interpolation order, the computation and analysis for the 
surface z1 with b = 3 are performed additionally applying 
cubic interpolation. The results given in Table 4 show a 
significant improvement by means of greatly reduced error 
values to almost 20 % compared to the values given in 
Table 3 using linear interpolation. It can be emphasized 
that even for the chosen case of b = 3 the result of emax is 
of sub-nanometer range for 16E6 surface points.

In Sect. 3.1 it is observed how much the method used 
to determine the normals affects the angle error defined by 
Eq. (11). To quantify their influence on the final trajectory 
the surface z1 with b = 3 is considered with normal vectors 
obtained with different computation methods. To better 
show the effect of the normals cubic interpolation is used. 
As it can be seen in Table 5, the trajectory resulting from 

the quasi-random point cloud (Halton set) is at least two 
orders of magnitude less accurate than that computed with 
the Cartesian grid, while with the grid interpolated from a  
spiral distribution a similar maximal error is obtained. In 
the latter case, the mean error is increased remarkably, but 
remains below 1 nm. Also the tool path computed with 
the method from [17] shows an increased mean error, but 
still below 1 nm. The maximal error is slightly better than 
for the Cartesian grid. Investigations identified that this is 
caused by the double computation of the tool center points 
to obtain the exact solution, as explained at the begin-
ning of this section. However, the standard deviation of 
the error as well as the mean error are smaller in the case 
of the Cartesian grid.

3.3  Analysis of machine tool interpolation

According to Fig. 1 the accuracy loss between the surface 
definition and the machined surface can be divided into two 
parts. The first is caused throughout the tool path genera-
tion and the second consists of the deviation resulting from 
the interpolation the machine tool controller applies on the 
programmed points as well as of the following error occur-
ring in the position control loop of the axes drives. Whereas 
the first is analyzed and quantified in the previous Sects. 3.1 
and 3.2, the second part addressing the accuracy loss related 
to the execution of the tool path points by the machine tool is 
not addressed so far. Hence, it is necessary to assess how the 
deviations of the tool path points compared to the exact cal-
culation affect the execution by the machine tool. Although 

Table 3  Comparison of the error values for the surface z1 with differ-
ent amplitude values b. The values are calculated using several num-
bers of surface points and linear interpolation

Surface No. of points emax [nm] emean [nm] � [nm]

z1 , b = 3 2.5E5 209.3377 70.3936 49.6146
1E6 52.2725 17.7716 12.4963
4E6 13.0668 4.3925 3.0956
16E6 3.2657 1.0981 0.7736

z1 , b = 1 2.5E5 69.7992 24.2664 16.8613
1E6 17.4218 6.1277 4.2409
4E6 4.3554 1.5153 1.0514
16E6 1.0885 0.3789 0.2628

z1 , b = 0.1 2.5E5 6.9807 2.5928 1.7739
1E6 1.7422 0.6543 0.4452
4E6 0.4355 0.1618 0.1106
16E6 0.1089 0.0405 0.0277

Table 4  Comparison of the error values for the surface z1 with b = 3 
for several numbers of surface points in the case of cubic interpola-
tion

Surface No. of points emax [nm] emean [nm] � [nm]

z1 , b = 3 2.5E5 47.3583 0.9630 3.3561
1E6 11.8068 0.1399 0.6386
4E6 2.8261 0.0206 0.1206
16E6 0.6407 0.0032 0.0232

Table 5  Comparison of the error values for the surfacez1withb = 3 . 
The influence of the computation of the normal vectors is investigated 
in the case of cubic interpolation with 4E6 surface points

Grid & normals emax[nm] emean[nm] �[nm]

Cartesian grid 2.8261 0.0206 0.1206
Halton set 834.7151 2.0949 2.9579
Cartesian grid interpolated  

from spiral
3.0878 0.8819 0.5720

Spiral grid (method from [17]) 1.8476 0.2421 0.2433
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the execution quality is supposed to be also influenced by 
the individual employed diamond turning machine tool as 
well as chosen parameters (NC point resolution, cutting 
speed, feed rates), the following analysis is assumed to rep-
resent common conditions of diamond turning. The analysis 
is divided into two parts, whereas the first investigates the 
tool path of the surface z0 and the second the one of z1 . 
Both utilize a diamond turning machine of the type LT-Ultra 
MTC 650 having a POWER PMAC control.

3.3.1  Analysis of the surface z
0

For the first investigation Z-axis positions following a sine 
function with the C-axis positions as arguments are pro-
grammed to the machine tool and executed. Subsequently, 
the resulting path interpolated by the control is analyzed. 
A nearly sinusoidal movement in Z-direction in function 
of the C-axis angle corresponds to machining an inclined 
planar surface (see geometry z0 according to Eq. (12)). 
However, for the present study the small differences to 
a real sine due to the radial feed rate in case of a spiral 
machining path and the tool nose radius compensation are 
neglected. The tested sine wave has a period of 4s and an 
amplitude of 15 tan(5◦)mm corresponding to a planar sur-
face with an inclination of 5◦ at a radius of 15mm.

To investigate the effect caused by the numeric inac-
curacies elaborated in Sect. 3.2, the Z-values of the pro-
grammed sine are overlaid with a Gaussian noise and 
the resulting axes movements are recorded by reading 
out the position signal of the machine tool’s scales. As 

interpolation mode the spline mode of the POWER PMAC 
control is chosen, which interpolates programmed points 
by generating non-rational B-splines and is popular for 
executing curved paths represented by a multitude of 
points. It has the advantage of smooth axes movements, 
but the interpolated path does not exactly go through the 
programmed points. Hence, the interpolated sine wave 
commanded to the axes drives shows a slightly smaller 
amplitude compared to the initially programmed points. 
Figure 11 depicts one sine period consisting of points gen-
erated by the machine tool control based on programmed 
points without an overlaid noise and its deviations to a 
least squares sine fit. To exclude the effect of the reduced 
amplitude as far as possible the fitted sine function is sup-
posed to represent the nominal movement for the analysis. 
This assumption is confirmed by the maximum deviation 
of just about 2E−4nm shown in Fig. 11.

The small standard deviations stated in Table 2 being 
in the sub-nm range are expected to result by the fact that 
the normals calculation for the flat surface z0 is free of 
numerical inaccuracies. In this context it is expected that 
values below 1 nm barely affect the tool path execution. 
Therefore, the standard deviation �n of the overlaid Gauss-
ian noises are chosen according to the values for the free-
form surface z1 given in Tables 3 and 4. With the value of 
3.5nm all values of Table 4 are covered, while the value 
of 5nm covers most of the values in Table 3. Their effect 
is determined by the difference of the resulting movement 
path and the nominal sine function. Figure 12 shows the 
resulting movement errors over one sine period, which 

Fig. 11  Commanded sine wave 
(interpolated points by the 
machine tool control) and devia-
tion compared to a fitted sine 
function using the least squares 
method
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standard deviations lie within a range of about 1nm and 
are 5.8138nm (no overlayed noise; Fig. 12a), 6.4822nm 
( �n = 3.5nm ; Fig.  12b) and 6.7533nm  ( �n = 5nm ; 
Fig. 12c).

Considering these results, it can be observed that the 
overlaid Gaussian noises barely affect the movement of the 
machine tool’s Z-axis, since the standard deviations of the 
movement errors increase only by about 1nm compared 
to no overlaid noise. Due to the fact that the computation 
accuracy of the presented method can be increased even 
to values of emax = emean = 𝜎 < 1nm (see Tables 2, 3 and 
4), the movement error and therefore also the tool path 
accuracy loss according to Fig. 1 resulting out of numeric 
inaccuracies can be assumed to be negligible.

3.3.2  Analysis of the surface z
1

The second investigation addresses the tool path of the free-
form surface z1 by analyzing the tool path execution of one 
C-axis rotation at a radius of as shown by the exact Z-values 
in Fig. 13. Therefore, the exact solution and the tool path cal-
culated by the proposed method are executed on the diamond 
turning machine while the actual axes positions are recorded 
from the axes’ scales. By calculating the differences of the 
Z-coordinates between the two path executions the influ-
ence of the numeric inaccuracies is evaluated. Similar to 
the analysis in Sect. 3.2 the maximum error eMmax , the mean 
eMmean and the corresponding standard deviation �M over 
all recorded position points are calculated. The NC points 
programmed to the machine tool control have a spacing in 

C-direction of 0.1◦ and a feed rate in X-direction per rota-
tion of 10�m.

The procedure is carried out for all parameter sets 
included in Tables 3 (tool center points determined by linear 
interpolation) and 4 (tool center points determined by cubic 
interpolation). Additionally, each parameter set is carried out 
with two numbers of C-axis rotations per minute ( 20 rpm , 
40 rpm ) to study the influence of different path execution 
velocities. Besides the exact tool path, Fig. 13 also shows 
the differences over one C-axis rotation for the parameter 
set of b = 3 , 16E6 points for the tool path generation using 
linear interpolation and a C-axis rotation speed of 20 rpm.

Figure 14 shows the resulting path execution errors 
corresponding to the parameters listed in Table 3 for the 
case of linear tool path interpolation and Table 4 utiliz-
ing cubic path interpolation. The solid lines show the 
data for 20 rpm and the dashed lines the data for 40 rpm . 
There is a clear relation that higher numbers of points 
and smaller scaling factors b, which reduce the surface’s 
curvature, result in decreasing motion error values. Most 
of the magnitudes of the motion error values agree well 
with the data in Tables 3 and 4. However, towards their 
minimum values in Fig. 14 they reach a relatively constant 
level, whereas the tool path errors (Tables 3 and 4) further 
decrease to even sub-nm values. It is supposed that this 
indicates the limit of the machine tool’s motion accuracy, 
which is also confirmed by the standard deviations of the 
movement errors stated in Fig. 12 with about 6 nm being 
of the same order of magnitude as the minimum values in 
Fig. 14. The maximum error values eMmax do not fall below 

Fig. 12  Movement error calcu-
lated as the difference between 
the recorded Z-axis positions 
and the nominal sine func-
tion over one sine period. The 
programmed Z-coordinates are 
overlaid with a Gaussian noise 
having a standard deviation �n . 
(a) without overlaid noise; (b) 
�n = 3.5nm ; (c) �n = 5nm . The 
depicted movement errors itself 
show a standard deviation of 
5.8138nm (a), 6.4822nm (b), 
6.7533nm (c)
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20nm, which is explained to be caused by the outlier data 
points being part of the recorded position signal from the 
machine tool’s scale as shown in Figs. 12 and 13. Fur-
thermore, the experiments conducted with 40 rpm C-axis 
rotation speed show slightly lower error values for most 
of the tested parameter sets. This can be interpreted in the 
way that the increased motion accelerations to some extent 
inhibit the axes to follow the inaccuracies of the tool path 
calculated using the proposed method. Thus, the executed 
motion shows a slightly better agreement with the execu-
tion of the exact tool path with 40 rpm than 20 rpm.

4  Corrective machining results

The direct advantage of the proposed method lies in the  
corrective machining using point cloud based measure- 
ment data. Since the tool path generation is also point cloud 
based, no surface fitting operation needs to be applied to the 
measured data and it can be easily compared to the nominal 
surface definition by calculating the difference in Z-direction. 
Prior to this, a 2D robust Gaussian regression filter is applied 
to remove noise and outliers.

To test this functionality a tilted flat according to Fig. 8, 
whose Z-values follow the function zF = x tan(5◦) , is 
machined on a diameter of 20mm in oxygen-free copper 
using a spiral tool path towards the center (X = 0). This sur- 
face geometry is chosen, because its tilt requires three-axes  

machining similar to freeform surfaces while the flat’s form 
deviations can be verified using an external laser interferom-
eter, which unlike a freeform metrology device was available 
for this work. Figure 15 depicts the machining setup for the 
experiment utilizing a diamond turning machine of the type 
LT-Ultra MTC 650, a monocrystalline diamond cutting tool 
with a nose radius of 0.6 mm and an interferometric 1D dis-
tance probe system. Table 6 contains the parameters used for 
the tool path generation, machining process and on-machine 
measuring process. The number of surface points 4E6 and the 
linear interpolation mode for the numeric tool path genera-
tion are chosen, because this setting results in small motion 
errors near the obtained minimum values for the surface z1 
with b = 1 while requiring less computation effort than with 
using 16E6 surface points (see Fig. 14). Since the surface z1 
with b = 1 has stronger curvatures than the tilted flat used for 
the corrective machining experiment, even smaller motion 
errors can be expected, which justifies the chosen parameters.

One corrective pass is carried out based on an on-machine 
surface form measurement using the optical distance probe. 
Figure 16 shows the form error results of the first (Fig. 16a; 
without correction) and second (Fig. 16b; with correction) 
machining pass. The peak-to-valley form error has been 
reduced from 1.195 mm to 0.467 mm, which corresponds 
to a reduction of 61% . An analysis of the initial form error 
(Fig. 16a) results in a cutting tool offset in X-direction super-
imposed by a temperature deflection in Z-direction being the 
main reasons for the pattern of the form error. The correction 

Fig. 13  Exact Z-axis tool path 
coordinates over one C-axis 
rotation at a radius of 88 mm for 
the freeform surface z1 and the 
motion error corresponding to 
the conditions: 20 rpm , b = 3 , 
16E6 points for tool path gen-
eration and linear interpolation
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Fig. 14  Resulting path execu-
tion motion errors (maximum 
value eMmax , mean value eMmean , 
standard deviation �M ) calcu-
lated over one C-axis rotation 
at a radius of 88 mm of the 
machining path for the freeform 
surface z1 . Errors depicted 
in function of the parameter 
conditions (No. of points for 
tool path calculation, scaling 
factor b, interpolation mode) 
used in Tables 3 and 4 and for 
two C-axis rotation velocities 
( 20 rpm , 40 rpm)
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Table 6  Corrective machining experiment: used parameters for tool 
path generation, machining and on-machine measuring processes

Parameter Value

Tool path generation
No. of surface points 4E6

No. of neighbor points (for normals calculation) 5
Interpolation mode Linear
Machining process
Cutting depth 3 �m
Radial feed rate (stepover) 2.5 �m
C-axis rotations per minute 60 �m
Measuring process
Radial feed rate (stepover) 20 �m
C-axis rotations per minute 19 rpm

Fig. 15  Experimental setup for the corrective machining of the tilted 
flat
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of the characteristic step at the center (at X = 0; shown in 
the sectional view of Fig. 16a), which, as also stated by 
Preuss [19], is the result of a tool offset when machining 
a tilted flat, is impeccable. However, there seems to be a 
residual impact of a temperature deflection, which has not 
been part of the systematic errors influencing both machining 
passes in the same way. Besides, the surface’s roughness after 
the corrective pass of Sa = 3.0nm (according to ISO 25178 
and applying a Gaussian filter with cut-off wavelength of 80 
�m is of typical order of magnitude for diamond turning.

Carried out investigations indicate that the outlet tem-
perature of the cooling mist nozzle causes the temperature 
deflections during the machining passes by cooling down 
the workpiece when streaming against it during machining. 
Figure 17 depicts recorded data showing that the mist outlet 
temperature is about 0.3 ◦ C lower than the ambient tempera-
ture. The dashed line part shows the temperature measured 
20mm in front of the mist nozzle while the mist is turned 
off, whereas the solid line part while the mist is turned on 
like it is during machining.

Figure 18 shows the relations between a decreasing tem-
perature during the machining process from the circum-
ference to the center and the resulting workpiece surface 
profile. For the sake of simplicity both profiles are depicted 
as linear function. The initial machining result is shown in 
Fig. 18a, where a temperature decrease ΔT1 leads to a posi-
tive surface form error ΔZW1a at the center, which is consist-
ent with Fig. 16a. Supposing the same temperature profile 
ΔT1 would occur during the corrective machining the surface 
form error profile would be compensated to the horizontal 
profile ΔZW1b . Because of slow temperature assimilations a 
more moderate decrease ΔT2 during the corrective machin-
ing can be assumed. This together with the correction based 
on the profile ΔZW1a leads to the final surface profile ΔZ2 , 
which corresponds to an over-correction.

The achieved form error reduction of 61% agrees with the 
reported values (between 57% and 61% ) recently published by 
Tong et al. [20], who focus on closed-loop freeform machin-
ing. The peak-to-valley values presented there lie between 
207nm and 384nm and are achieved over half of the diameter 
considered in the present work using a fast tool servo, imply-
ing a reduced machining duration compared to the present 
work. This, together with the identified thermal deflections, 
indicates potential for further improvements. Thus, a more 
detailed analysis of the process and the employed on-machine 
metrology setup including its calibration and an uncertainty 
analysis will be focused on in a subsequent publication.

Fig. 16  Form error results of corrective machining a flat tilted by 5 ◦ 
in oxygen-free copper. (a) Form error for the initial machining pass; 
(b) form error after one corrective pass. Depicted are the form error 
in XY-view and the corresponding sectional view at Y = 0

▸
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5  Conclusions and outlook

A new method for the computation of the cutting tool path 
in ultra-precision diamond turning, especially for three-
dimensional freeform and corrective machining using form 
measurement data, is presented and analyzed. It allows the 
handling of surfaces defined by equations and by point clouds 
without using symbolic computation methods. Instead, 
numeric tools are used for the computation of the surface 
normal vectors as well as the surface on which the center 
point of the cutting tool’s nose radius moves. Together with 
interpolation techniques, the generation of a spiral tool path 
in case of the steady-X method ensuring a uniform axis 
motion in X-direction is provided. By a comprehensive analy-
sis, the errors occurring throughout the computation steps are 
compared to the exact solutions for various geometries with 
diverse curvatures. Under realistic assumptions regarding 

the curvature of the surface to be machined and reasonable 
refinement of the applied numeric methods the results show 
errors < 1nm . Combined with an investigation of the effect 
of non-exact tool path points on the behavior of an exemplary 
diamond turning machine this allows to neglect the accuracy 
loss compared to the exact tool path. Besides providing a tool 
path of sufficient accuracy, the method offers to update the 
point cloud representing the surface to be machined by sur-
face form measurement data. Presented form error results of 
corrective machining a flat, which is tilted by 5 ◦ with regard 
to the XY-plane, showing a reduction of the peak-to-valley 
form error of 61% verify the ability of the proposed method 
for this application.

The results show the subtle interplay of grid, normal vec-
tors and interpolation in the accuracy of the computed tra-
jectory. While the role of interpolation is well known, addi-
tional points need to be addressed, e.g., the point distribution 
and the influence of noise in the computation of the normals. 
To the best of the authors’ knowledge, even in recent works, 
where point clouds are used, this is not investigated.

Appendix 1: Analysis of the plane fitting 
method

From the results depicted in Fig. 6, it is observed that for 
point symmetric stencils on a Cartesian grid, the angle error 
behaves a lot better than for other general stencils. This sug-
gests that it is depending on the surface, but this is because 
the plane approximation for point symmetric stencils deliv-
ers a second-order approximation of the normal vector. The 
aim of this appendix is to prove this claim for a smooth 
surface, or at least a three times continuously differentiable 
surface. Without loss of generality, the following configura-
tion for a small number h > 0 is considered

under the assumption that

Then it follows

where the missing entries are completed by symmetry. By letting

(17)XXX =

⎛⎜⎜⎝

h − h 0 0

0 0 h − h

f (h, 0) f (−h, 0) f (0, h) f (0,−h)

⎞⎟⎟⎠

(18)
1

4
(f (h, 0) + f (−h, 0) + f (0, h) + f (0,−h)) = 0 .

(19)

AAA = XXX ⋅XXXT = 2h2
⎛⎜⎜⎝

1 0 Δh,xf (0, 0)

0 1 Δh,xf (0, 0)

Δh,xf (0, 0) Δh,xf (0, 0)
F

2h2

⎞⎟⎟⎠
,

(20)F ∶= f (h, 0)2 + f (−h, 0)2 + f (0, h)2 + f (0,−h)2 ,
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Fig. 17  Recording of ambient temperature 20mm in front of the mist 
nozzle measured inside the machine tool housing. Dashed line: cool-
ing mist off; solid line: cooling mist turned on. Total recording time is 
about 67 minutes or ≈ , 4000s

Fig. 18  Relations between a temperature change ΔT  during machin-
ing from the circumference ( X = −10mm ) to the center ( X = 0mm ) 
and the resulting surface profile Z over X. Profiles simplified as lin-
ear functions. (a) initial machining: temperature profile ΔT1 , surface 
profile ΔZW1a ; (b) corrective machining: ΔZW1b as result of ΔT1 and 
over-corrected ΔZW2 as result of ΔT2
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which is the variance of the function for this stencil (see Eq. 
(19)), the following notations for the central finite difference 
equations can be used

Since f is differentiable and because of Eq. (19), the bound 
F ≤ Ch2 can be obtained. Thus, it is inferred that the third 
column of A is a linear combination of the first two columns 
up to an error proportional to h2 . This implies the stated claim. 
Since every point symmetric stencil can be expressed as the 
union of several 4-points symmetric stencils, the claim is valid 
for all the point symmetric stencils with the error being a finite 
sum of second-order errors, one for every stencil.
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