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Abstract
The Fourth Industrial Revolution, or Industry 4.0, aims at automating traditional manufacturing and industrial practices using 
modern smart technology. Autonomous mobile robots equipped with different sensors and employing different techniques 
have been proposed in the literature in the logistics and inventory warehouse management contexts. Efficient robot motion 
and planning depend on precise localization, mapping, and awareness of the environment. To properly localize items, recent 
attempts have been made employing radio frequency identification (RFID) in a 3D environment. This manuscript introduces 
four least mean squares methods to estimate the 3D positions of tags employing synthetic apertures and phase unwrapping. 
The proposed methods approach the localization problem solving a system of equations typical of multilateration methods 
to find the intersections of multiple hyperboloids. The novelty introduced here is the use of unwrapped phase distances to 
compute pseudo ranges for the multilateration problem. The use of such a technique is feasible thanks to precise mobile robot 
localization and custom navigation policies. All the analyzed methods are suitable for online localization due to reduced 
computation timings and have been tested on three different datasets. Two of them contain virtual data that has been generated 
by simulation, while the other one comes from an indoor experimental setup. Simulated tests show that combined antenna 
motions in 3D space (including Z-axis) improve the localization obtaining errors under the centimeter for 3D localization. 
Experimental tests obtained results as low as 13 cm of mean accuracy for 3D localization and 0.21 cm for 2D localization.

Keywords Radio frequency identification (RFID) · Industry 4.0 · Mobile robot · Phase unwrapping · Warehouse logistics

1 Introduction

Nowadays, many industries employ mobile robots to move 
goods and products efficiently from storage areas to the pro-
duction lines within the warehouses. This kind of machine 
serves as an alternative to the customary belt-based trans-
portation system. The increase of global export activity has 
led to a transformation from human performed activities 
to machine activities and the demand for quick delivery 
due to increasing e-commerce volumes and online trade. 
The Fourth Industrial Revolution, or Industry 4.0, aims at 

automating traditional manufacturing and industrial prac-
tices using modern smart technologies. Some of the pillars 
are machine-to-machine communication (M2M) or Inter-
net of Things (IoT) to improve communication and self-
monitoring, technologies enabling remote operations [1], or 
autonomous and intelligent systems for automatizing some 
human tasks like bin picking [2, 3] and quality inspection 
[4, 5] that make use of computer vision or artificial intel-
ligence techniques even though a lot of industries perceive 
them as black-boxes [6].

Complex and dynamic industrial environments need to 
move and locate goods from storage units in warehouses 
passing through production facilities for manufacturing to 
arrive in retail stores. The localization and tracking of both 
autonomous systems and products in the whole produc-
tion chain demands accurate estimations of the full pose of 
machines and production items.

Logistics robots can be used to carry heavy payloads, 
increasing the safety of human workers and reducing possi-
ble product damages. The introduction of autonomous robots 
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in the production line led to a reduction in the cost of labor 
and an increase in efficiency compared to manual work. The 
use of novel sensing technologies along with intelligent 
machines enables further interesting applications that, for 
instance, allow human personnel or robots to identify and 
localize items and products easily [7] or update retail store 
inventory in real time [8].

The localization problem in industries could be catego-
rized in outdoor localization [9, 10] considering logistics 
applications between plants and within plant facilities, or 
in indoor localization [11–13] that considers more com-
mon applications regarding the motion and storage of 
items within production plants. In the last decades, many 
approaches employing different sensing elements have been 
presented in the literature. Machine vision is probably the 
most used technology for the navigation of autonomous sys-
tems and recognition of objects [14–16]. Such approaches 
detect and identify features in the environment and therefore 
need stable and uniform lighting conditions. However, in 
real scenarios, such methods suffer from the presence of 
light interferences such as shadows or changing illumination 
characteristics if considering outdoor environments or the 
traversal of different locations or facilities. An additional 
issue comes from object similarities that pose difficulty in 
distinguishing between objects of the same type easily. The 
most promising solutions based on light detection are based 
on laser imaging detection and ranging (LIDAR) due to their 
flexibility and robustness. These approaches make use of the 
LIDAR to perceive and produce accurate maps of the envi-
ronments and localize the robot motion as a consequence 
[17–19]. The same technology has been applied to identify 
and localize objects in applications that require considerable 
computing power and under specific environment setups 
[20, 21]. Lately, wireless techniques fostered the adoption 
of effective IoT solutions leveraging on different sources of 
information like Wi-Fi or Bluetooth signal strength indi-
cator of radio frequency communications [22, 23], time of 
flight measurements [24], ultrasonic [25], or ultra wide band 
(UWB) communications [26]. Radio frequency identifica-
tion (RFID) is one of the most promising technologies of the 
Internet of Things, and it has been widely applied in industry 
and retail applications due to its low cost. Moreover, com-
pared to machine vision approaches, it is not affected by 
lighting conditions allowing its usage even in dark environ-
ments, and it has the advantage of uniquely identifying each 
tag by its associated ID.

In the following, multilateration techniques that employ 
time-of-arrival measurements will be applied to RFID phase 
signals to obtain estimations of the localization of passive 
RFID tags. The novel contribution of this research is to 
explore the possibility offered by multilateration and phase 
unwrapping for RFID tags 3D localization employing least-
squares optimization methods and mobile robot navigation. 

Precise localization and ad hoc motion of a mobile robot 
allow reconstructing without discontinuities an unwrapped 
phase distance to be used as a pseudo range in the multi-
lateration problem. Four methods are proposed, and their 
performance is assessed using three different datasets. The 
first two datasets contain virtual data that has been gener-
ated by simulation. The third one comes from an indoor 
experimental setup. According to the latest trends in RFID 
localization, the proposed algorithms show competitive per-
formances concerning recent solutions in the literature.

Section 2 will discuss in detail recent findings in radio 
frequency communication applications for the localization 
and tracking of goods in warehouses and retail stores. Sec-
tion 3 will introduce four different methods employing the 
least mean square optimization to solve the multilateration 
problem. Section 4 will present and discuss the experimen-
tal tests performed to assess the accuracy of the methods. 
Finally, Sect. 5 will conclude this manuscript.

2  Recent findings in radio frequency 
applications

A first consideration could emerge by analyzing the world-
wide interest in radio frequency technologies in the latest 
years. Fig. 1 shows the comparison in the occurrence of 
some research terms in recent years obtained by Google 
trends. The search acronyms taken into account in the com-
parison are RFID, UWB, BLE (Bluetooth Low Energy), and 
IoT. As can be seen, RFID technology founds a large audi-
ence, and its results are comparable with the more general 
IoT term, especially in the last year.

Passive RFID tags require few electronic elements and no 
power source and thus are the preferred solutions for their 
reduced costs that allow their employment in applications 

Fig. 1  Trends of the interest in the research keywords related to recent 
and promising radio frequency technologies in a span of 5 years 
(reported by Google)
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requiring a large number of them. Each time a reader antenna 
interrogates a passive tag, it generates a backscatter signal 
at a certain strength in dBm referred to as received signal 
strength (RSS). The signal can be modeled with a standard 
radio frequency propagation model in free space [27]. The 
strength can be employed to obtain a rough estimation of the 
distance between the tag and the reader antenna. It is known 
as received signal strength indicator (RSSI), and its value 
is related to RSS but can differ depending on the specific 
radio chip manufacturer. However, this signal is affected by 
reflection, interference (constructive and destructive), and 
absorption. Anyway, it is possible to describe the signal 
attenuation as a function of the distance by considering uni-
form radiation patterns typical of omnidirectional antennas. 
Unfortunately, antennas of tags and readers are directional 
in practice introducing another source of disturbance that, 
along with the multipath effects, may invalidate the distance 
estimation. For such a reason, this kind of solution is limited 
to open space environments with low reflections. In order 
to efficiently estimate distances based on RSS only, there is 
the need to properly characterize several parameters like the 
antenna gains of both the reader and the tag, the alignment 
of the antennas, and others. As a consequence, the use of 
the RSS measurement has been limited to an extra source of 
information in the recent literature approaches [28].

RFID phase-based distance methods exploit consecutive 
measurements of the RFID signal phase over a short time. 
The method used to measure the distance can be either the 
phase difference of arrival (PDOA), the angle of arrival 
(AOA), or the time difference of arrival (TDOA). AOA 
techniques require specific setups to obtain good accuracy, 
and they are useful to determine the direction of traveling of 
tags. However, the need to have specific setups and knowl-
edge of the antenna characteristics reduce their usage in 
industrial applications. TDOA methods need synchroniza-
tion between the tags and the reader, and the backscattered 
signal lacks proper synchronization. On the contrary, PDOA 
allows having measurements that are less sensitive to reflec-
tions and multipath and could be obtained from equipment 
already adopted in industries for logging items.

Phase measurements could be achieved employing time 
domain, frequency domain, or spatial domain techniques 
[29]. The frequency-domain technique can be efficiently 
used for estimating the distance of tags and sampling the 
phase at different frequencies [30]. The spatial domain 
technique allows the computation of accurate directions 
of travel of tags and requires multiple antennas [31]. The 
time-domain approach allows both the computation of tags 
velocities and their direction of travel, enabling not only the 
localization but also the tracking of tags’ motion [32].

To avoid the need for multiple antenna systems and to 
increase the accuracy of localization, strategies in which a 
single antenna is moved in the environment to emulate a 

synthetic aperture radar (SAR) have been presented in the 
last years [33]. Given the grid-based structure of such algo-
rithms, SAR approaches require large computation steps 
and were initially meant for offline reconstruction [34], but 
lately, online estimation results have been obtained employ-
ing optimization algorithms [35]. The antenna can be moved 
in the environment by means of a mobile robot allowing the 
sorting of RFID tags in libraries, manufacturing lines, or 
offices [36] or enabling robot localization strategies [37].

An approach to RFID tags localization by combining 
both the RSSI and the phase signals acquired by two mov-
ing antennas with different orientations has been proposed 
in [38]. The signal strength values are used to estimate the 
heights of the tags in the environment and also to compen-
sate for the orientations and the materials on which the tags 
are attached. The lateral location of the tag is obtained from 
the phase information employing a matching function that 
considers the signal-to-noise ratio of each phase sample. An 
alternative SAR model based on multiple baseline synthetic 
arrays has been proposed in [39], where phase samples are 
evaluated in couples, comparing them with a baseline to 
understand which samples are mostly affected by multipath 
interference. This method showed an advantage compared to 
traditional SAR in an indoor experiment. A different multi-
granularity SAR-based approach has been presented in [40] 
to obtain the high-probability region of the tag position by 
estimating the reflection coefficient. This method reduces 
the computational effort and has been proven in real experi-
ments showing a centimeter-level localization accuracy.

Whether the tag motion is greater than half of the wave-
length between two subsequent measurements, the computed 
phase difference exceeds 2� , and the antenna is unaware of 
how this can be determined. In order to efficiently use the 
phase difference measurement, the phase angle signal should 
be conveniently wrapped to become continuous in cases 
where the reader value presents jumps. The unwrapping 
technique has been recently introduced in RFID localization 
to eliminate the phase cycle ambiguity obtaining promis-
ing results [41]. Another approach to RFID localization is 
to exploit geometrical properties by computing hyperbolic 
intersections [42, 43]. A hyperbola is the locus of points 
where the difference of the distance to the two foci is con-
stant. Therefore, placing the antennas on the foci, the target 
tag lies on the hyperbola curve, and the hyperbolic intersec-
tion may solve the localization problem.

Many RFID localization techniques focus on bidimen-
sional localization since, given the knowledge of the ware-
house environments and where the goods are stored, 2D 
solutions provide an efficient way to localize the products 
on shelves or boxes. However, lately, some approaches to 
3D localization for warehouse logistics can be found in 
the literature. Motroni et al. [44], for instance, employ two 
RFID reader antennas on a mobile robot to estimate the 3D 
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location of passive RFID tags exploiting synthetic apertures 
and the backscattered signal phase. The method does not 
require any reference tags or large phased array antennas. 
Real-time 3D positioning has been obtained on SAR-based 
methods with the application of the particle swarm optimiza-
tion with a two-antenna setup [45]. Tzitzis et al. [46] recently 
proposed a novel method for 3D RFID tags localization by 
moving an antenna attached to a mobile robot and forcing a 
non-straight path motion. Results present a mean error of 35 
cm in a scenario involving tags placed on different vertical 
planes. An optimized interferometric SAR-based 3D locali-
zation has been presented by Liang et al. [47] allowing fast 
estimations with a median accuracy of 18.4 cm on a moving 
single-antenna setup. All these recent findings confirm the 
RFID technology as one of the most promising solutions for 
warehouse logistics and goods tracking that will enable new 
scenarios in the upcoming industry of the future.

3  Methods

This manuscript focuses on the application of multilateration 
algorithms for RFID tag localization.

Given a mobile robot equipped with a reader antenna 
and a tag positioned in the surrounding environment, at any 
robot motion, the relative distance r between the tag and the 
antenna varies along the path. A phase observation sequence 
can be acquired as the tag is interrogated multiple times by 
the moving reader antenna, and a relative phase history of 
the complex signal is obtained from the signal phase vari-
ation. The equation that relates the phase difference to the 
distance is given by:

where the Δ operator represents the difference of the values 
at two consecutive time steps, �n is the phase signal at time 
instant n, and � is the free-space wavelength of the radiated 
field. It has to be noted that, by using a differential reading, 
there is no need to estimate the phase offset �0 that depends 
upon tags and antenna electronic circuits characteristics (see 
Fig. 2).

Solving a multilateration problem is equivalent to com-
puting the intersection of two-sheeted hyperboloids (quadric 
surfaces) in the 3D space. The tag location can be found on 
the hyperboloid surface by knowing the pose of the robot at 
two different time instants and the phase difference between 
the two measurements. Figure 3 shows a two-sheet hyperbo-
loid in classic form, while Fig. 4 shows the locus of the pos-
sible tag positions (one sheet of the hyperboloid) generated 
by moving the antenna from position 1 to position 2. The 
tag position can be found at the intersection between two 
hyperboloids by adding a third measurement. With a fourth 

(1)Δ�n =

(
2�

�
2Δr

)
mod 2�

reading, it is possible to determine the precise location of 
the tag. Furthermore, it is possible to increase the estimation 
accuracy of the localization procedure by using additional 
measurements.

Naming P = [x, y, z] the position and coordinates of a tag, 
and Pi = [xi, yi, zi] the i-th position of the moving antenna, 
the distance ranges can be computed as:

Without losing generality, it is possible to consider the 
measurements referred to the first reading r1 and define:

In the TDOA literature, mi are pseudo ranges representing 
the time difference of a traveling wavefront touching each 
antenna position.

It is worth noticing that the ambiguity generated by the 
phase cycle has been addressed by using an unwrapping 
algorithm to efficiently use the presented method. This 
method adjusts the phase angles by adding multiple cycles 
when absolute jumps between consecutive phase samples are 
greater than or equal to the jump tolerance � . Naming the 
unwrapped phase �u , the procedure is equivalent to:

3.1  Least mean squares method 1

A least mean squares (LMS) method can be applied to find 
a 3D estimation of the tag pose. The procedure involves the 
definition of a system of equations that represent the squares 
of the ranges Eqs. (2) and (3).

(2)ri = ‖Pi − P‖ =

�
(xi − x)2 + (yi − y)2 + (zi − z)2

(3)mi = ri − r1 , i = (2, 3, 4,… , n)

(4)�u
0
= �0

(5)�u
i
= �i − 2� ∗

⌊
�i − �u

i−1

2�
+

1

2

⌋

Fig. 2  Schematics of the RFID communication. r is the distance 
between the reader and tags antennas. �TX , �RX , and �Tag depend upon 
the electronic circuits and compose the phase offset �0
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Subtracting the first row from the others, it follows:

(6)

⎧⎪⎨⎪⎩

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = r2

1

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 = (r1 + m2)

2

…

(x − xn)
2 + (y − yn)

2 + (z − zn)
2 = (r1 + mn)

2

(7)(P − Pi)2 − (P − P1)
2 = r1mi + m2

i

After a few passages

the following matrix form is obtained:

with

and d = [−m2 ,−m3 ,… ,−mn]
T  which LMS solution is 

obtained as:

(8)(P − Pi)
2 − (P − P1)

2 =

(9)= [(P − Pi) − (P − P1)][(P − Pi) + (P − P1)]

(10)= (P − Pi − P + P1)(P − Pi + P − P1 + P1 − P1)

(11)= − (Pi − P1)2(P − P1) + (Pi − P1)
2

(12)2A(P − P1) = c + r1d

(13)A =

⎡⎢⎢⎢⎣

(P2 − P1)
T

(P3 − P1)
T

…

(Pn − P1)
T

⎤⎥⎥⎥⎦
, c =

⎡⎢⎢⎢⎣

‖P2 − P1‖2 − m2

2‖P3 − P1‖2 − m2

3

…

‖Pn − P1‖2 − m2
n

⎤⎥⎥⎥⎦

(14)(P − P1) =
1

2
A+(c + r1d), A

+ = (ATA)−1AT

Fig. 3  Two-sheeted hyperboloid 
in canonical form

Fig. 4  Moving the antenna from position 1 to position 2 the RFID tag 
lays on a hyperboloid
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A solution in the quadratic form of r1 can be obtained by 
assigning C =

1

2
A+c and D =

1

2
A+d and squaring the Eq. 

(14) to obtain

It is worth noticing that if the z measure does not change 
during the antenna trajectory (e.g., during planar motion), 
the A matrix results degenerate and it is not possible to 
obtain a 3D estimation.

3.2  Least mean squares method 2

Starting again from (6), and analogously subtracting the first 
row from the others, it is possible to refactor Eq. (7) obtain-
ing the following formulation:

The system can be written in matrix form as:

with

and a LMS solution can be found solving for:

where r1 is equal to ‖P − P1‖ but is computed without any 
constraint.

3.3  Least mean squares method 3

The previous method could be extended to employ multiple 
antenna readings. The main problem with this approach is 
that the reference for the antenna readings cannot be related 
to the position P1 of the first reading but is unique for each 
antenna. In particular, considering the case when two anten-
nas have been placed on a mobile robot, calling U the first 
antenna (upper) and L the second one (lower), the following 
equations can be written:

(15)(‖D‖2 − 1)r2
1
+ 2CTDr1 + ‖C‖2 = 0

(16)−2(Pi − P1)
TP + ‖Pi‖2 − ‖P1‖2 = r1mi + m2

i

(17)2A

[
P

r1

]
= b

(18)A =

⎡⎢⎢⎢⎣

(P2 − P1)
T m2

(P3 − P1)
T m3

…

(Pn − P1)
T mn

⎤⎥⎥⎥⎦
, b =

⎡⎢⎢⎢⎣

‖P2‖2 − ‖P1‖2 − m2

2‖P3‖2 − ‖P1‖2 − m2

3

…

‖Pn‖2 − ‖P1‖2 − m2
n

⎤⎥⎥⎥⎦

(19)
[
P

r1

]
=

1

2
A+b

(20)2(PiU − P1U)
TP + r1UmiU = ‖PiU‖2 − ‖P1U‖2 − m2

iU

(21)2(PiL − P1L)
TP + r1LmiL = ‖PiL‖2 − ‖P1L‖2 − m2

iL

Moving to matrix form, an LMS solution can be found 
from

with

and

3.4  Least mean squares method 4

In this method, the intersection between two-sheet hyper-
boloids is computed starting from single-antenna readings.

Subtracting the first equation from the i-th equation, we 
obtain the equation of a hyperboloid and squaring the result 
it follows:

If we select the i-th and the k-th readings, and we compute 
the equation as above, it is possible to subtract the first from 
the second to obtain the equation of a plane where the inter-
section between two-sheet hyperboloids lays. Fig. 5 shows 
an example of intersection locus between two hyperboloids.

The resulting plane can be computed as:

(22)
⎡
⎢⎢⎣

P

r1U
r1L

⎤
⎥⎥⎦
=

1

2
A+b

(23)A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(P2U − P1U)
T m2U 0

(P3U − P1U)
T m3U 0

…

(PnU − P1U)
T mnU 0

(P2L − P1L)
T 0 m2L

(P3L − P1L)
T 0 m3L

…

(PnL − P1L)
T 0 mnL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖P2U‖2 − ‖P1U‖2 − m2

2U‖P3U‖2 − ‖P1U‖2 − m2

3U

…

‖PnU‖2 − ‖P1U‖2 − m2

nU‖P2L‖2 − ‖P1L‖2 − m2

2L‖P3L‖2 − ‖P1L‖2 − m2

3L

…

‖PnL‖2 − ‖P1L‖2 − m2

nL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

⎧⎪⎪⎨⎪⎪⎩

√
(x − x1)

2 + (y − y1)
2 + (z − z1)

2 = r1√
(x − x2)

2 + (y − y2)
2 + (z − z2)

2 = r2
…√
(x − xn)

2 + (y − yn)
2 + (z − zn)

2 = rn

(26)2PT (Pi − P1) − ‖P1‖2 − ‖Pi‖2 + m2

i
= −2mir1
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where the normal vector v is defined as

and the constant term c given by:

Considering all possible intersection planes, an estima-
tion of the best intersection point (tag location) could be 
obtained with an LMS procedure.

In the case of planar motion of the antenna, all the inter-
secting planes will be perpendicular to the motion path 
and no clue will be given about the z-coordinate of the 
intersection.

4  Experiments

Three different datasets have been employed to analyze the 
performances of the proposed methods. The first two data-
sets contain virtual data that has been generated by simula-
tion. The third dataset comes from an indoor experimental 
setup. All the datasets provide positions and respective phase 
signals of two moving antennas and fixed tags.

Synthetic datasets allowed the executions of multiple 
Monte Carlo simulations over different noise conditions con-
sidering signal reflections, multipath, electrical, and thermal 
noises. The real dataset shows the correspondence of the 

(27)PTv + c = 0

(28)v = 2[(Pk − P1)mi − (Pi − P1)mk]

(29)
c = mi(‖P1‖2 − ‖Pk‖2 + m2

k
) − mk(‖P1‖2 − ‖Pi‖2 + m2

i
)

estimated performance with actual data. The measured 2D 
and 3D errors on each experiment are defined as:

with (x, y, z) the exact location of a tag and (x̂, ŷ, ẑ) its esti-
mated position.

4.1  Synthetic dataset 1

The first dataset has been generated in MATLAB simulating 
the motion of two antennas on a free workspace measuring 
the phase signal of a tag positioned in Ptag = [−1,−0.5, 1.5] . 
The two antennas are distanced 0.25 cm from each other on 
the z-axis, and they are supposed to be mounted on top of a 
mobile robot, which moves along a path composed of three 
segments. The upper antenna starts at P1U = [0.5,−2.0, 1.2] , 
while the lower antenna is at P1L = [0.5,−2.0, 0.95] . 
Antenna 1 moves on a three-segment path: the first segment 
starts from P1U and moves on the x-axis for 100 steps of 5 
cm stride; in the second segment, the motion continues on 
the y-axis for other 100 steps; and in the last segment, the 
antenna moves back on the x-axis for 100 steps reaching 
the final position of P300U = [0.5, 3.0, 1.2] . Antenna 2 moves 
accordingly, and the resulting path is visible in Fig. 6. The 
z-coordinate of each antenna is generated with random noise 
of 1 mm for numerical stability of the algorithms.

In this simulation, no multipath effects are considered, 
and the generated phase signals are combined with a zero-
mean Gaussian noise with 0.1 rad standard deviation. 
The simulation has been repeated 100 times to verify the 

(30)2Derror =
√
(x − x̂)2 + (y − ŷ)2 ,

(31)3Derror =
√
(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2

Fig. 5  Intersection between two two-sheeted hyperboloids. The cyan 
line shows the intersection curve that lays on a plane

Fig. 6  Trajectory of the two simulated antennas in synthetic dataset 1. 
The position of a tag and the estimations obtained from the presented 
methods are shown according to the visible symbols legend
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methods’ robustness to varying conditions like not modeled 
thermal noise.

Concerning the 2D localization error, results show reli-
able estimations by all the methods since the highest 2D dis-
tance error has been obtained by method 1 and was equal to 
a 7-mm mean with a 4-mm standard deviation. The 3D posi-
tion estimations display larger errors as expected (Fig. 7). 
Method 4 resulted more sensible to the planar motion of the 
antennas showing a larger standard deviation. Methods 2 and 
3 are similar as expected, but method 3 presented a lower 
variability. Method 1 performs slightly better than the other 
methods in the 3D localization reversing the results obtained 
in 2D localization. It is worth noticing that the computa-
tional time for all the methods allows an online estimate of 
the tag positions since it is between 3 and 8 ms for a 300 
readings trajectory on an Intel Core i7 620M at 2.67 GHz 
running the methods as m-functions under Matlab 2018a.

4.2  Synthetic dataset 2

The second dataset has been generated attaching an antenna 
on a mobile robot simulated inside the Gazebo simulator 
under ROS and employing the RFID plugin presented in 
[48]. This plugin allows for the simulation of RFID phase 
signals according to the equation:

from which Eq. (1) can be obtained. The robot has been 
moved inside a free workspace on all the three axes to gen-
erate a synthetic aperture on the x, y, and z coordinates. A 
Monte Carlo simulation has been performed by analyzing 
100 test paths and random tag locations to obtain statistical 

(32)�n =

(
�0 +

2�

�
2D

)
mod 2�,

information about the localization performance of the 
methods. The phase signals have been generated consider-
ing a Gaussian noise with zero mean and 0.1 rad standard 
deviation.

Figure 8 shows one example trajectory and two tags 
placed in the synthetic environment along with localization 
results by the proposed methods. It is visible that the error 
of the estimation for all the methods is of centimeter order. 
It could be explained by the trajectory motion involving all 
three axes, and consequently, the methods present no singu-
lar matrices and no evident numerical errors in the matrix 
inversions.

Figure 9 shows a bar plot of the mean error distances 
obtained in this dataset by the proposed methods.

Comparing the results obtained within this dataset with 
the results from dataset 1, it is evident that the antenna 
motion along the z-coordinate improves the estimation accu-
racy of an order of magnitude.

4.3  Experimental dataset

An experimental measurement campaign was carried out 
in an indoor environment employing a Pioneer 3-AT UGV 
manufactured by MobileRobots. Two UHF-RFID circularly 
polarized WANTENNAX019 antennas by C.A.E.N. RFID 
[49] and an Impinj Speedway Revolution R420 [50] reader 
were installed on top of the robot (Fig. 10). The upper and 
lower antennas have been placed at 125 cm and 75 cm in 
height, respectively.

The robot is skid-steering with a four-wheel drive and 
can rotate on the place with a zero radius. The robot has 
an array of 16 sonars arranged along the four sides and a 

Fig. 7  Boxplot of the 3D localization error of the methods in dataset 1

Fig. 8  Example trajectory performed by the virtual antenna on a sin-
gle run of the Monte Carlo simulation of the synthetic dataset 2. The 
plot shows the position of two tags and their estimated position by the 
presented methods
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computer connected to a microcontroller that interfaces 
with the motors and manages the odometer update and the 
obstacle detection by using the sonar sensors. Laser data 
have been captured employing a Hokuyo laser range finder 
(UTM-30LX). An Impinj Monza R6 chip tag with a sensi-
tivity of -22.1 dBm was placed inside an office. The reader 
input power was set to PTX = 27 dBm, and the measure-
ments were acquired at a frequency of f0 = 865.7 MHz 
(ETSI Channel 4).

The robot has been moved inside the indoor environment 
employing a joystick interface, and the antenna paths have 
been estimated by a simultaneous localization and map-
ping (SLAM) algorithm with a centimeter order accuracy 
[51]. Robot motion followed a curve path around the tag as 
shown in Fig. 11. To have statistical significance, this kind 
of movement has been repeated 10 times, and each time, a 
sample of 100 readings from the acquired measurements has 
been selected for comparison. In Fig. 11, one of the acquired 
motion is shown along with the obtained tag localization 
estimations from the proposed methods.

The experiments were run on an office presenting metal-
lic elements like structural beams, computers, electronic 

Fig. 9  Bar plot of the average tag position estimation distance error 
obtained from the presented methods on the synthetic dataset 2. Both 
2D and 3D distance errors are shown

Fig. 10  Hardware equipment employed for the experimental dataset. 
The mobile robot is a Pioneer3-AT with two RFID antennas mounted 
on a pole

Fig. 11  Trajectory performed by the antennas around an RFID tag 
during one motion of the mobile robot. The tag location, the antenna 
positions, and the proposed methods estimations are shown

Fig. 12  Localization errors of the proposed methods for 2D and 3D 
estimations
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devices that could cause electrical interference, reflec-
tive surfaces like walls, and office desks producing mul-
tipath phenomena. Despite these disturbances sources, the 
obtained 2D localization accuracy resulted promising, while 
3D localization is shown to be competitive concerning the 
most recent literature. Figure 12 shows the localization error 
obtained in the experimental dataset 3.

Concerning 2D localization, Table 1 shows a compari-
son with results from SOTA algorithms. In particular, recent 
methods employing the phase unwrapping strategies are 
reported, as well as the Tagoram [52] reference algorithm. 
Tagoram has been shown to achieve mm-level accuracy in 
well-known and laboratory structured environments, while 
it is reported to have a median error accuracy of 12.3 cm 
employing 4 antennas in a less controlled experiment and 
with a computation time of at least 2.5 seconds. As it is vis-
ible from the table, all four methods show good accuracy in 
2D localization in a real scenario.

Concerning 3D localization, referring to Table 2, all the 
presented methods obtained a mean accuracy lower than 
34.8 cm as reported in [46], where the computation time is 
around 50 seconds, and not suitable for online estimation. 
Considering the results in [47], the methods 2 and 4 obtain 
comparable accuracy taking into account the variance of the 
estimation while, method 3, which employs a dual antenna 
setup, achieves a mean error of 13 cm, thus improving on 
the result obtained by such method.

5  Conclusion

The ongoing industrial revolution demands efficient logis-
tics and inventory management in warehouses. The mobile 
robotics sector is growing more and more, intending to 
satisfy such demands. Efficient robot motion and planning 
depend on precise localization, mapping, and awareness of 
the environment. The overall efficiency mainly relies on spe-
cialized sensing technologies to track the robot’s motion and 
measure the positions of the items with accuracy. Recent 
attempts employing radio frequency identification (RFID) 
in a 3D environment have been made to localize the items 
properly. This manuscript addresses the problem of RFID 
tag localization by using multilateration techniques that 
employ time-of-arrival measurements on RFID phase sig-
nals to obtain estimations of the localization of passive RFID 
tags. Given a mobile robot equipped with a reader antenna 
and a tag positioned in the surrounding environment, the 
motion of the antenna generates a synthetic aperture. The 
system receives the phase measurements from the RFID tags 
and generates a distance model through phase unwrapping. 
Solving a multilateration problem is equivalent to comput-
ing the intersection of two-sheeted hyperboloids in the 3D 
space. By knowing the pose of the robot at two different 
time instants and the phase difference between the two meas-
urements, the tag location can be found on the hyperboloid 
surface. The tag position can be found at the intersection 
between two hyperboloids by adding a third measurement. 
With a fourth reading, it is possible to determine the precise 
location of the tag. Furthermore, it is possible to increase the 
estimation accuracy of the localization procedure by using 
additional measurements.

Formulating the system of equations that represent the 
squares of the ranges between the tag coordinates and the 
varying position of the moving antennas, the least-squares 
optimization method is applied to explore four methods. 
Three approaches are based on single-antenna reading, while 
the other one leverages multiple antenna readings to estimate 
the position of passive RFID tags. Such methods are tested 
using three different datasets. The first two datasets contain 
virtual data that has been generated by simulation. The third 
one comes from an indoor experimental setup. Synthetic 
datasets allowed the executions of multiple Monte Carlo 
simulations over different noise conditions considering sig-
nal reflections, multipath, electrical, and thermal noises.

It has to be noticed that the motions that involve a syn-
thetic aperture on all the 3D coordinates improve the meth-
ods estimations. Additionally, in the case of environmen-
tal noises, like multipath, reflections, unmodelled antenna 
properties, and thermal disturbances, the use of multiple 
antennas shows better accuracy. Limitation to the usabil-
ity of the proposed techniques comes from the maximum 

Table 1  A comparison with state-of-the-art methods concerning the 
2D localization error

Method 2D localization 
error: mean (std)

Unwrapped in [41] 9.96 cm (9.6 cm)
Hyperbolic in [43] 1.76 cm (0.4 cm)
Tagoram [52] 12.3 cm (5.0 cm)
Method 1 0.68 cm (0.58 cm)
Method 2 0.25 cm (0.05 cm)
Method 3 0.54 cm (0.1 cm)
Method 4 0.21 cm (0.04 cm)

Table 2  A comparison with state-of-the-art methods concerning the 
3D localization error

Method 3D localization 
error: mean (std)

Work in [46] 34.8 cm (28.2 cm)
Work in [47] 20.27 cm (26.0 cm)
Method 1 28.5 cm (20.0 cm)
Method 2 23.7 cm (12.1 cm)
Method 3 13.0 cm (6.3 cm)
Method 4 26.3 cm (6.0 cm)
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feasible motion between two antenna readings that depends 
on the lambda parameter and should be satisfied to obtain 
smooth unwrapped phase distances. If this constraint is not 
guaranteed, the reconstructed phase distance could show 
holes compromising the accuracy of the reconstruction. It 
is recommendable to design the antenna motion accordingly, 
and, if a mobile robot is used for the antenna motion as in 
the experimental tests, the robot localization and navigation 
algorithm should satisfy such constraints.
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