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Abstract
The quality control of plastic products is an essential aspect of the plastic injection molding (PIM) process. However, the 
warpage and shrinkage deformations continue to exist because the PIM process is easily interfered with by several related 
or independent process parameters. Thus, great efforts have been devoted to optimizing process parameters to minimize 
the warpage and shrinkage deformations of products during the last decades. In this review, we begin by introducing the 
manufacturing process in PIM and the cause of warpage and shrinkage deformations, followed by the mechanism about 
how process parameters, like mold temperature, melt temperature, injection rate, injection pressure, holding pressure, hold-
ing and cooling duration, affect those defects. Then, we summarize the recent progress of the design of experiments and 
four advanced methods (artificial neural networks, genetic algorithm, response surface methodology, and Kriging model) 
on optimizing process parameters to minimize the warpage and shrinkage deformations. In the end, future perspectives of 
quality control in injection molding machines are discussed.
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1 Introduction

Plastic injection molding (PIM) is one of the most widely 
used manufacturing techniques for producing plastic prod-
ucts with various shapes and complex geometries. A large 
quantity of medical protective equipment, such as medical 
goggles [1], protective clothing [2, 3], and disinfection medi-
cine barrels, is produced to protect people from viruses by 
this technology during the period of COVID-19. However, 
the manufacture of these injection products mainly relies on 
traditional manual operations and trial-and-error methods 

[4–6], which has disadvantages in the part quality [7] and 
influences the efficiency and energy consumption [8, 9] of a 
company. Therefore, many scientists are devoted to finding 
a more scientific method in the PIM process.

Recently, much attention has been focused on the mini-
mization of the warpage and shrinkage deformations, 
which represents the most common problem scientists have 
encountered in the PIM process. It runs through every link in 
the selection of materials [10, 11], the design of plastic parts 
and molds [12–14], the settings and optimization of process 
parameters [15]. The warpage and shrinkage minimization 
relies on a more balanced physical mechanical polymer 
property, a more even contraction and cooling condition, and 
a better edge angle effect in the runner and the wall of the 
mold. Through the comprehensive modification of the prod-
uct’s shape or 3D model, the optimal design of the injection 
molding machine’s pouring system, cooling system, ejection 
mechanism, and the adjustment of process parameters, the 
quality of the injection products can be guaranteed and the 
extra cost can be saved.

During the PIM process, designs of the product and 
injection machine are usually determined in the initial stage 
of product manufacture, which cannot be easily changed. 
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However, the warpage and shrinkage deformations will be 
more sensitive to the change in process parameters, so it will 
be more feasible and reasonable to systematically optimize 
process parameters for plastic products. Process parameters 
consist of the mold and melt temperature, the injection rate, 
the injection pressure, the holding pressure, etc. By the real-
time detection of process parameters in the PIM production 
[16], we can further diagnose and guide the PIM process 
to reduce the warpage and shrinkage deformations of the 
product.

Traditionally, setting process parameters is mainly based 
on the experience of a skilled plastic engineer, which can-
not ensure the optimum value of process parameters. For 
the analytical approach, a series of advanced optimal design 
methods have been proposed for deriving proper process 
parameters of PIM [17]. The optimization approach has the 
advantages to improve the injection machine’s production 
efficiency, reliability, and consistency [18] and can reduce 
the overall cost and reliance on existing experience, which 
positively promotes the development and improvement of 
the injection molding field.

In this paper, the recent advance relating to the study of 
the optimization design in PIM is summarized and reviewed. 
It focuses on the mechanism of the warpage and shrinkage 
deformations, the introduction of process parameters, and 
the optimization design methods in PIM so that readers can 
obtain useful information and an overview of the optimiza-
tion design appearing in the injection machine. This paper is 
outlined as follows. Section 1 provides a general background 
of PIM. Then, Section 2 gives a specific description of the 

warpage and shrinkage deformations. And Section 3 dis-
cusses the effects of process parameters in the PIM process. 
At last, we synthesize the recent research about the optimiza-
tion approaches of process parameters for the warpage and 
shrinkage deformations of plastic parts in PIM in Section 4.

2  Warpage and shrinkage deformations 
in plastic injection molding

2.1  Plastic injection molding process

As an extremely complex process, PIM can be divided into 
the following five stages: filling, packing, holding, cooling, 
and ejecting (Fig. 1a). During the whole process, the poly-
mer undergoes complex dynamic changes in temperature 
and pressure [19] in an injection machine (Fig. 1b). The 
polymer is first transported and heated in the injection unit. 
Later, the molten polymer is injected into the mold cavity 
with a constant volumetric rate and the holding process is 
performed to prevent the influence of the reduction in spe-
cific volume. After cooling and ejecting, a reliable molded 
part is obtained if everything runs normally.

2.2  Warpage and shrinkage deformations

Warpage [20–22] and shrinkage [23–25] deformations are 
two major challenges in the PIM process. They are inevita-
ble in many cases, especially for productions with complex 
geometries [26, 27], thin-walled parts [28–30], micro-parts 

Fig. 1  (a) Injection molding flow chart (b) A simplified model of an injection modeling machine
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[31, 32], certain materials [33, 34], etc. They cause the loss 
of economic and waste of materials in industries and are 
extremely unfriendly to industrial manufacturing, which 
needs to be resolved urgently. The specific performance of 
the acceptable product and parts with severe warpage and 
severe volumetric shrinkage is shown in Fig. 2.

Warpage is a kind of defect of the injected part that usu-
ally presents a bend-like shape deviation from the designed 
geometry along a certain direction [35]. Once the internal 
stress appears during the molding process in a plastic part, 
the deformation occurs. When the shape of an injection-
molded article deviates from the shape of the mold cavity, 
it is called the warpage deformation, which is one of the 
main defects of the plastic part (Fig. 2b). This frequently 
encountered defect has adverse impacts on the appearance, 
assembly and performance of the product.

Shrinkage is used to evaluate the part volume decline 
when the polymer cools from melt condition to room tem-
perature (Fig. 2c). Volumetric shrinkage reflects the dif-
ference between the actual volume and the volume after 
ejecting from the mold cavity of a product. The final vol-
ume can be calculated by the density and the mass of the 
product. Jansen [24] has classified the shrinkage into three 
types: (a) in mold shrinkage, which occurs at the mold and 
is extremely rare, (b) mold shrinkage, which is a type of 
shrinkage that shows after the mold is opened, (c) post-
shrinkage, which happens during the storage of the material.

2.3  The cause of warpage and shrinkage 
deformations

The cause of the warpage and shrinkage deformations can 
be classified into four categories: (a) Molecular flow orienta-
tion: the orientation of the polymer molecule has effect on 
unbalanced physical mechanical properties in the plastic part 
internally, resulting in a poorer strength in the vertical direc-
tion than that in the parallel direction of the molecular chain 
[36]. It is possible that the plastic part will warp or crack 
when this difference reaches a critical value; (b) Uneven 
contraction: the temperature difference in different regions 
of the plastic part makes contributions to various shrinkage 
ratios. Because of the different shrinkage ratio along the 
thickness direction of the article, it leads to the warpage 
deformation [37]; (c) Uneven cooling: when pre-cooled 

polymer molecules are already solidified with small shrink-
age, some molecules have not yet cooled. After ejecting 
from the mold, molecules continue cooling and will warp on 
the side where the cooling rate is relatively slow without the 
holding effect of the cavity [36]; (d) Edge effect: this effect 
needs to consider both the cooling effect and the molecular 
orientation together [38].

More specifically, the selection of materials [10, 11], 
the structure of plastic parts [12, 14], the structure of the 
machine [13], and the determination of process parameters 
[15] can affect the warpage and shrinkage of products. In 
general, the deformation of semi-crystalline materials is 
greater than that of crystalline and amorphous materials 
because of the different densities of each product part [10]. 
As for the different shapes and structures of plastic parts, it 
can lead to the different orientations of the internal molecu-
lar, resulting in the different directions of internal stress. 
Some parts of the stress can cancel each other out, and thus 
it can resist the deformation [12]. Meanwhile, the influence 
of the gating system on the deformation of the plastic part 
is mainly reflected in the length of the runner in an injection 
machine [14]. A longer length will produce greater internal 
stress and more serious deformation. Also, problems in the 
design of the cooling system can cause uneven cooling of 
all parts of the mold [36]. If the design of the demolding 
mechanism is inappropriate, the ejection starts when the 
temperature of the plastic part is still high. If the injection 
pressure and the injection speed are too slow, or the pres-
sure holding time and the injection cycle are too short under 
over-filling conditions during the debugging operation of 
the PIM process, the melt will not be plasticized uniformly, 
eventually causing the plastic parts to warp and shrink [39].

3  The role of process parameters 
in influencing warpage and shrinkage 
deformations

Main strategies to reduce warpage and shrinkage deforma-
tions in production are shown as follows: (a) Modify the 
shape or 3D model of the product [40]. If the product struc-
ture is unreasonable, we can modify the product shape. If 
the product cannot be modified, the 3D model of the product 
should be adjusted by reverse deformation. (b) Optimize the 

Fig. 2  (a) Acceptable product 
(b) Product with severe warpage 
(c) Product with severe volu-
metric shrinkage [86]
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design of pouring system, cooling system, ejection mecha-
nism, etc. in the injection molding machine [41, 42], which 
is also an effective approach to avoid warpage. (c) Adjust 
process parameters [43], such as the mold temperature, hold-
ing pressure, cooling time and so on, according to the actual 
production situation.

Among those methods, the designs of products and injec-
tion machines are usually determined in the initial stage 
of product manufacture, which cannot be easily changed. 
However, the warpage and shrinkage deformations are more 
sensitive to change in process parameters, so it is more fea-
sible and reasonable to systematically optimize the process 
parameters for some products with micro-scale geometry, 
a high ratio of length to diameter, and high local precision 
[16]. It is an important issue to predict and optimize the 
warpage and shrinkage deformations before manufacturing 
in PIM. The role of process parameters playing in PIM will 
be introduced in the following section.

3.1  Process parameters

It is a preferable solution to develop systematic and scien-
tific methods to determine a set of process parameters for 
ensuring a reliable product quality control in the practical 
application [44, 45]. The process of PIM contains dozens of 
process parameters like mold and melt temperature, injection 
rate, injection pressure, holding pressure, holding and cool-
ing duration [46]. Process parameters can affect the quality 
of the product to a large extent, especially for the problem of 
warpage and shrinkage deformations. However, the effects 
of these parameters are coupled to each other and rely heav-
ily on the long-term experience of skilled operators [47], 

which makes it difficult to set a proper process parameters 
combination.

3.2  The way to obtain process parameters

The measurement of process parameters relies on sensor 
technology. By introducing pressure sensors, displacement 
sensors or/and temperature sensors [45] for detecting the 
polymer melt behavior, injection molding conditions become 
a visible problem that can be analyzed scientifically [16, 48]. 
Recently, in-cavity sensors have been applied to gain the 
machine’s working data of each shot online, and the sensing 
information has been monitored to control the part quality. 
Depending on the installation location in injection molding, 
sensors can be divided into three categories: in-cavity sen-
sors [49], nozzle sensors [50, 51], and tie bar sensors [52] 
(Fig. 3).

For example, Lin et al. [49] designed an apparatus named 
as pressure sensor bushing module in the mold to evalu-
ate the melt viscosity during the injection process, which 
overcame difficulties while mounting or dismounting the 
pressure sensor and allowed us to perform pressure meas-
urements in PIM process more conveniently. Wang et al. 
[53] presented a novel online pressure–volume–tempera-
ture testing equipment to predict the service performance 
and service life of polymers (ABS, PS, LDPE, PA6, and 
PP) and optimized process parameters. Chen et al. [54] 
and Huang et al. [52] utilized strain sensors mounted on tie 
bars to reveal the dynamics of the mutative clamping force 
during injection molding. Based on the tie-bar elongation 
with various clamping force settings, they also developed a 
novel searching algorithm to identify the proper clamping 

Fig. 3  Tie bar sensors used in 
injection molding [54]
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force value to set, which could feasibly improve the injection 
molding quality.

3.3  The effect of process parameters

The arrangement of process parameters directly affects the 
deformation of the products. The warpage and shrinkage 
happen because of inappropriate settings of these param-
eters, which may change the resistance of the polymer and 
increase the difficulty of filling [55]. Figure 4a-d displays the 
optimization of process parameters of large thin-walled parts 
in whole stages of PIM and the effect of process param-
eters in minimizing the warpage is shown in Fig. 4d. In this 
regard, corresponding parameters should be adjusted sepa-
rately according to the specific situation. The specific effect 
of the parameters is presented as follows.

Mold temperature The mold temperature affects the pro-
duction efficiency and quality of the product. Adjusting and 
maintaining an appropriate mold temperature can effectively 
enhance the mechanical property, increase the dimensional 
accuracy, improve the surface quality, and reduce the warpage 
and shrinkage deformations of the products. In addition, it can 
shorten the cooling time and improve the production efficiency.

Melt temperature As the melt temperature increases, the 
viscosity of polymer melt decreases. Additionally, it can pro-
long the solidified time, which is conducive to the molecular 
orientation. However, if the melt temperature is too high, it 
is easy to overheat and degrade the material, and the part 

will shrink greatly after cooling to room temperature. In 
short, the melt temperature needs to be set in a suitable inter-
val to melt the plastic uniformly.

Injection rate By increasing the injection rate, the tendency 
of the product to generate deformation decreases. On the one 
hand, the material has a faster flow rate, resulting in a more 
intense shearing and a greater molecular orientation effect. 
But on the other hand, the filling time is greatly shortened 
under the same injection pressure, which makes the product 
denser and less likely to warp and shrink.

Injection pressure Excessive injection pressure can promote 
the difference in molecular orientation and formation of the 
residual stress, causing the occurrence of warpage.

Holding pressure The holding pressure can compensate the 
deformation of the product during the cooling process and 
can ensure the product’s dimensional stability. If the pres-
sure difference between the gate and the end of the injection 
unit is too large, the product deforms. The pressure in the 
mold cavity usually decreases from the end of the filling, 
causing a greater volume shrinkage of the polymer melt 
away from the gate than that around gate [22].

Holding time Extending the pressure holding time is beneficial 
to reduce the backflow of the melt to the gate, enhance the feed-
ing effect, and make the product denser. However, if the holding 
time is extended after the gate is frozen, it will only extend the 
cycle of the PIM process, and will not have a feed effect.

Fig. 4  (a) Warpage in injection molding (b) Warpage versus temperature difference (c) Warpage versus wall thickness (d) Influence of process-
ing parameters on total warpage ((A) mold temperature, (B) melt temperature, (C) packing pressure, (D) packing time and (E) cooling time) [72]
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Cooling time The melt in the cavity does not reach the 
ejection temperature if the cooling time is too short, and 
large deformation will occur after ejection. By contrast, if 
the cooling time is too long, the injection process will be 
inefficient.

How to ensure the coordination of process parameters 
and the quality of the product is indeed a problem that 
plagues so many people. It is difficult to ensure the consist-
ency of the product’s quality in injection molding process. 
Even if the system pressure for pushing the screw forward 
is accurate, an injection molding process performed under 
same machine condition settings will produce a varying 
cavity pressure curve and result in an inconsistent part qual-
ity [45]. Many researchers have worked tirelessly and many 
methods have been conducted for the purpose of obtain-
ing consistent quality molded parts (Table 1). The recent 
progress to optimize process parameters for solving the 
problem of warpage and shrinkage deformations will be 
explained in the next section.

4  Optimization methods

The warpage and shrinkage deformations are inevitably 
caused by parameters manipulation. It is a challenging 
but meaningful process for scientists and manufacturers to 
achieve better quality control in injection molding. Previ-
ously, the determination of process parameters greatly relied 
on the experience of operators, this is, the so-called trial 
and error methods. Trial and error methods are traditional 
approaches that highly depend on the operator’s “know-
how” and intuitive sense acquired from long-term practice 
[56]. Rather than through an analytical and theoretical com-
putation, setting process parameters by operators is really a 
skilled job. Nowadays, there are many efficient approaches 
such as the design of experiments and some intelligent algo-
rithms, which can greatly reduce the reliance on experience 
and are less time-consuming [57–62]. The following section 
will highlight the latest use of those methods for the optimi-
zation of process parameters to minimize the warpage and 
shrinkage deformations of the plastic part.

4.1  Design of experiments

To design a satisfactory quality of the molded part, the 
experiment conducts one process parameter at a time for an 
ad hoc experimental design approach [56]. Experiments and 
responses are performed to investigate characteristics and 
evaluate whether it has been reached to objectives, relatively. 
The purpose of DOE is to determine the allocation and ways 
of experiments to approach objectives. The common DOE 
process is illustrated in Fig. 5.

Compared to other trial and error methods, this method 
is relatively easy to apply and occupies less computation 
cost. It has been earned a large quantity of application in the 
field of biology, medicine, machinery, material, etc. Some 
researches that use this technique in PIM are presented 
following.

4.1.1  Taguchi method

The Taguchi design method is a well-proven statistical-based 
technique for the optimization of complex problems in many 
fields, including manufacturing, engineering, biotechnology, 
marketing and advertising [63–65]. It offers technology for 
improving the manufactured good through a systematic 
process of statistical analysis and experimental trials [66]. 
Importantly, the Taguchi method provides the maximum 
amount of information from a minimum number of experi-
mental runs and is hence extremely useful in optimizing 
complex processes with many interrelated variables, for 
which traditional trial-and-error approaches are inefficient, 
time-consuming and expensive [67]. In general, signal-to-
noise (S/N) and analysis of variance (ANOVA) approaches 
are commonly needed to assess the quality of the outcome 
acquired from each experimental run in implementing the 
Taguchi method [68]. The S/N ratio reflects both the aver-
age and the variation of the quality characteristic while the 
analysis-of-variance (ANOVA) contains the effect of all 
other sources not controlled or measured during the experi-
ment [69]. In this way, we can determine the final optimal 
process parameters.

To comprehensively explore the influence of process 
conditions on the shrinkage of three plastics: high-density 
polyethylene (HDPE), general-purpose polystyrene (GPS) 
and acrylonitrile-butadiene-styrene (ABS), the Taguchi 
method was utilized to systematically verify and validate 
the optimal conditions at the beginning of the 21st century 
[70]. The prediction value of GPS showed good consistency 
with the experiment. With the discovery of the dramatically 
continuous warpage of a large thin-walled workpiece during 
the free-cooling stage after ejection [71], Wen et al. [72] 
investigated the combined effect of processing parameters 
on warpage in injection and free-cooling stages of a type of 
motorcycle seat support made of polypropylene (PP) with 
the combination of the Taguchi method and finite element 
modeling (FEM) analysis. In the same way, an approach of 
manufacturing a hard mold with micro-features for micro-
plastic injection molding was proposed, which significantly 
reduced a new optical element development cycle time [73]. 
In order to raise the persuasiveness and confidence, multiple 
criteria including practicality, efficacy, ease of construction, 
and adequate accuracy were considered collectively to favor 
the Taguchi method. Azaman et al. [74] studied the effect 
of injection-molding parameters during the post-filling 
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stage (packing pressure, packing time, mold temperature, 
and cooling time) with the assistance of numerical simula-
tions, the Taguchi method, S/N ratio, and ANOVA. The 
study showed the reduction of trial molding times and 
the improvement of part quality and could serve as a ref-
erence in the further investigation of molding defects of 
thin-walled parts fabricated using lignocellulosic polymer 
composite. Additionally, a Taguchi method of L

9
 integrated 

with computer-aided engineering (CAE) simulations were 
generated to find variability of procedure parameters of the 
injection molding considering the birefringence effect, and 
eventually, minimize the residual stress within the molded 
Fresnel lens and hence reduce its birefringence [75]. The 
present study integrated the Taguchi design method with 
Moldex3D simulations [76] to determine optimal injection 
molding processing conditions in a more efficient and versa-
tile manner, which gave rise to a better aesthetic appearance 
of the final sintered product and an enhanced mechanical 
strength [67, 77]. Meanwhile, multi-response optimization 
of PIM process parameters of polystyrene and polypropyl-
ene to minimize surface roughness and shrinkage using an 
integrated approach of S/N ratio and composite desirabil-
ity function was put forward by Usman et al. [78]. Wang 
et al. [39] conducted the orthogonal experiment to analyze 
the influence of injection process parameters on the evalu-
ation index and employed the Taguchi method to obtain 
an signal-to-noise ratio. The final minimum warpage was 
acquired as 6.405 mm, significantly reduced compared with 
other tests.Ta
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Fig. 5  General DOE process [56]
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4.1.2  Orthogonal array design

Orthogonal array design is another type of method. It is a frac-
tional factorial design that allows experimenters to study main 
effects and desired interaction effects in a minimum number 
of trials or experimental runs. Generally, 2k−p is presented 
in the design, where k is the number of factors and (1∕2)p 
represents the fraction of the full factorial 2k . Take 25−2 as an 
example, it is a 1/4th fraction of a 25 full factorial experiment, 
which means it is enough to study five factors at two levels in 
just eight experimental trials rather than 32 trials [56].

The relatively research of the orthogonal array design is 
also significant. The multistage experimentation [79], with 
Taguchi’s experimentation stage for classifying important 
factors and a full-factorial design of experiments stage that 
analyzed both main and interaction effects, was conducted 
to assist the modeling shrinkage and warpage up to an 
error value of 0.23 and 0.07mm, respectively. L

9
 [75], L

18
 

[80], L
25

 [81], L
27

 [82] orthogonal arrays were generated 
for multi-response optimization of PIM process param-
eters to reduce the cycle time and warpage. Huang and 
Lin [80, 83] offered an innovative searching method to 
achieve robust injection molding quality based on a regres-
sion model. By minimizing the volumetric shrinkage as 
a goal of the light-guided plate (LGP), the experimental 
results demonstrated that this searching method was prac-
tical indeed. At the same time, with the help of orthogo-
nal experiment design, the Taguchi method [72, 74, 84], 

BPNN/GA [57] was interfaced with this predictive model 
to improve the warpage significantly by optimizing design 
parameters, and the results showed that those combina-
tion approaches were effective methods for the warpage 
optimization of PIM process. The outline of the com-
bined (BPNN) / GA optimization algorithm is explained 
in Fig. 6.

There are many other DOE methods such as Central 
composite design (CCD) [85, 86], Box–Behnken design 
(BBD) [87, 88], and Latin hypercube design (LHD) [61]. 
These methods are less common in the optimization of 
PIM process parameters. Thus, we will not give a detailed 
introduction to the limitation of this article.

4.2  Advanced models

In terms of industrial manufacturing processes, the PIM 
process is particularly qualified for data-driven optimiza-
tion because of its high non-linear process behavior and 
complex relationship between machine, process, and qual-
ity parameters [89]. The PIM process is multivariable and 
involves large time delays, time variations, nonlinearity. 
An accurate description of the process behavior based on 
physical modeling is not possible, e.g., due to the viscoe-
lastic thermoplastic material characteristics. Thus, a math-
ematical approximation algorithm seems to be the most 
appropriate method to establish the relationship mentioned 

Fig. 6  Flowchart of BPNN / 
GA [57]
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above. Common mathematical approximation algorithms 
include artificial neural networks (ANN), genetic algo-
rithm (GA), response surface methodology (RSM), and 
Kriging model.

4.2.1  Artificial neural network

Artificial neural network (ANN) is a widespread method 
which emulates the neural reasoning behavior of biological 
neural systems. The system is consisted by three layers: the 
input, the hidden and the output layer. But in the most situ-
ation, more than one hidden layer is employed to fit a more 
reliable model. After methodically examining a series of 
input values and their associated outputs (supervised learn-
ing method), we can get a required trained neural network 
system. A trained ANN system can transform nonlinear 
mathematical modeling into a simplified black-box struc-
ture that is able of generalizing the set of previously learned 
instances [90].

Owning to the excellent performance, it is extremely 
popular to apply the ANN algorithm to control the quality 
of products in the injection molding and the results always 
show how remarkable this model is. Usually, the mold 
temperature, melt temperature, holding time, cooling time, 
injection rate, holding pressure and injection pressure are 
taken in account as input parameters, while the maximum 
shear stress served as an evaluation parameter in the com-
ponent, as this is the main origin for warpage. The detailed 
configuration of ANN is shown in Fig. 7.

Shi et  al. [91] mainly focused on process operating 
parameters, such as mold temperature, melt temperature, 
injection time and injection pressure and used ANN as a 
surrogate model to develop an offline optimization approach, 
which greatly reduced the expensive computation required 

during the period of underdeveloped computing ability. 
Later, the forward and reverse mapping of artificial neu-
ral networks were put forward by Manjunath et al. [92] to 
predict dimensional shrinkage and an appropriate set of 
process parameters respectively with an error level of less 
than ten percent. Alejandro et al. [93] constructed a predic-
tive model for warpage based on artificial neural networks 
and finite element analysis software Moldflow. A combined 
artificial neural network and particle swarm optimization 
(PSO) algorithm method to describe the process-induced 
warpage and the mechanical behavior of product correctly 
[60]. The parameter of valve gate open timing [61] was 
added in the optimization, promoting a structural optimiza-
tion on the oil cooler cover cooling and a cooling channel 
improvement. Compared with other regression algorithms, 
Nagorny et al. [94] concluded that ANN always had better 
predictions scores. Chen et al. [95] integrated an ANN-based 
expert system to injection molding process to detect some 
unavoidable shrinkage and uncontrollable process condi-
tion variations, and the result showed that a high prediction 
accuracy of 98.34% with the coefficient of determination R2 
of 91.37% was achieved. Recently, induced network-based 
transfer learning has been used to reduce the necessary 
amount of PIM process data for the training of an artificial 
neural network to conduct a data-driven machine parameter 
optimization for PIM processes by Lockner and Hopmann 
[96].

4.2.2  Genetic algorithm

Genetic algorithm (GA) is a category of evolutionary algo-
rithms. Without the prior information on PIM, we can 
obtain the optimum parameters settings with the aid of GA. 
Selection, crossover, and mutation operators are used in the 

Fig. 7  Configuration of the 
ANN model [60]
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process of function optimization to enhance the global opti-
mization ability and improve the precision of convergence 
in GA. Similar to natural evolution, solution candidates and 
the set of selection are called individuals and population 
respectively. In the selection process, either stochastic or 
completely deterministic, unqualified individuals are aban-
doned while excellent individuals are reproduced. The so-
called fitness is applied to assess the quality of an individual 
with respect to the optimization task. New solutions within 
the search space by the variation of existing ones are pro-
duced by crossover and mutation. Recent studies tend to con-
nect this approach with other methods to optimize process 
parameters in the injection molding machine.

Zhao et al. [62] developed a two-stage framework consist-
ing of the improved efficient global optimization (IEGO) algo-
rithm to improve optimization iterations in the first stage and 
the non-dominated sorting-based genetic algorithm II (NSGA-
II) algorithm to find a much better spread of design solution 
and better convergence near the true Pareto optimal front in 
the second stage. By considering process and fiber param-
eters on the effect of part quality, Li et al. [97] systematically 
studied the warpage defect and proposed a combined Tagu-
chi, response surface methodology, and non-dominated sorting 
genetic algorithm II (NSGA-II) approach. SVM-BP-GA [30], 
a model combined with support vector machine (SVM), back-
propagation (BP) neural network, and GA, was an effective 
method for injection molding to reduce warpage and volume 
shrinkage of thin-walled parts. The gate position and the gate 
size were introduced with GA to minimize both the stress and 
deformation in medical suction device components by Byon 
et al. [98]. There were also other methods like control vol-
ume finite element method (CVFEM) [99], Gaussian process 
(GP) [100], response surface methodology (RSM) [101], CAE 
[102], Moldflow [103], ANN [91, 104, 105], DOE [104, 105] 
to combine with GA, which helped effectively to reduce the 
warpage and shrinkage of injection parts.

4.2.3  Response surface methodology

As a set of statistical and applied mathematical technology, 
response surface methodology (RSM) plays a role to estab-
lish empirical models between objective characteristics and 
design variables. It usually generates polynomial formulas 
as response surface (RS) models to express the relationship 
of input and output. RSM can save the expensive analysis 
cost that happened in finite element calculation and reduce 
the associated numerical noise as well. The mathematical 
relationship used in the RSM is a complete second-order 
polynomial model, as expressed in Eq. (1).

(1)Y = 𝛽
0
+

4
∑

i=1

𝛽ixi +

4
∑

i=1

𝛽iix
2

ii
+

4
∑

i<j=1

𝛽ijxixj

where �o , �i , �ii and �ij are constant value, linear effect, sec-
ond effect and reciprocal effects of the regression coefficient, 
respectively. xi and xj are independent coded variables [106].

Heidari et al. [85] used RSM, based on the central com-
posite design (CCD), to explore the effect of process fac-
tors on the PLA-based bone screws. Coolant temperature, 
mold temperature, melt temperature, packing time, injection 
time, and packing pressure were investigated to minimize the 
shrinkage and warpage of three polylactic acid (PLA) mate-
rials. At the same time, the design of experiment (DOE) - 
response surface methodology (RSM) with central composite 
design (CCD) having three factors namely mold temperature, 
melt temperature and injection rate was designed to optimize 
tensile properties of injection molded �-nucleated polypro-
pylene to decrease the amount of warpage [107]. Rosli et al. 
[108] found that the “H” branching cavity layout could get 
small differences error value between solution and simu-
lation, nearly 0.31% for volumetric shrinkage and 0.126% 
for warpage by using RSM. Among the scientific research 
based on RSM in optimization of injection parameters, we 
could also find the usage of the grey wolf optimization [106], 
the Taguchi Method [109], and the non-dominated sorting 
genetic algorithm II (NSGA II) [58]. However, unlike the 
genetic algorithm as a global optimization way, sometimes, 
RSM was trapped in the local extremum. Thus, most authors 
utilized other methods to enhance the model or to compare 
the conclusion with each other. Gradient-based optimization 
techniques were always applied to be in conjunction with 
RSM in many pieces of research the most of the time [110].

4.2.4  Kriging model

Geologist Krige first proposes the Kriging model, which is 
based on structural analysis and variation function theory 
and can unbiasedly optimize the design of regionalized vari-
ables [111]. The Kriging model was used in the estimation 
of the reserve distribution of mineral deposits in the early 
years and gradually applied in the optimized design. An 
approximation relationship between input (process parame-
ters) and output (molding quality), thus preventing the time-
consuming finite element reanalysis in the complicated, non-
linear, implicit and multimodal engineering progress. The 
input variable and the response value of the Kriging model 
are decided by Eq. (2):

where f(x) is a fixed item of the known polynomial func-
tion x, �(x) is an approximate random function reflecting 
the local difference. Under the condition of a few samples, 
a certain fitting accuracy can be guaranteed by the applica-
tion of the Kriging model. Through the effect of the cor-
relation function, the optimization design can be defined as 

(2)y(x) = f (x) + �(x)
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Fig. 8  Complete process of the optimization algorithm based on the Kriging model [112]
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a local estimation problem, which has been well applied to 
the reducing of the warpage.

Wang et al. [59] performed the optimization of warpage 
by employing dynamic filling and packing process param-
eters for the first time. The Kriging model was utilized to 
approximately characterize the unclear relationship between 
the objective (maximum warpage) and process parameters. 
By using the expected improvement (EI) and the finite ele-
ment method (FEM) to balance local and global search and 
simulate the micro-injection molding process of polymer 
stent respectively, an adaptive optimization method based 
on the kriging surrogate model was proposed to reduce the 
residual stress and warpage of stent during its injection 
molding [112], as shown in Fig. 8. Zhou et al. [113] pro-
posed a differential sensitivity fusion method for product 
quality and productivity improvement. Some classical meth-
ods, like the Kriging model, were conducted to compare the 
performance and prediction accuracy of the method. Li et al. 
[114] established the Kriging model to map the nonlinear 
function relationship between the warpage and some valu-
able factors in order to reduce the warpage of transparent 
parts.

In addition, particle swarm optimization (PSO) [60, 61, 
73, 104, 115–119], model-free optimization (MFO) [120, 
121], support vector machines (SVM) [122], simulated 
annealing, and hill-climbing are all advanced and effective 
ways to conduct the optimization design of process param-
eters. These models can be used to construct a mathematical 
approximation to replace expensive finite element analyses. 
They have similar effects in optimization and will not be 
specifically listed here.

5  Conclusions

As presented in the above sections, great achievements have 
been made in the minimization of the warpage and shrink-
age deformations using optimal design approaches in the 
past decades. Also, the selection of materials, the design of 
plastic parts and molds, and the settings and optimization of 
process parameters can significantly reduce the generation 
of warpage and shrinkage deformations in injection mold-
ing. More importantly, the advanced approaches have great 
potential in optimizing process parameters for their sensitiv-
ity in the product’s warpage and shrinkage deformations.

However, there remain many challenges in the quality 
control of injection molding, such as (1) develop a perfect 
polymer plasticization model, which is difficult owing to the 
simplification of the complex plasticization process. (2) pre-
cisely and/or programmably control the mold clamping and 
injection process and (3) combine micro-electro-mechanical 
system (MEMS), the advanced sensing technology, and the 
autonomous learning driven by big data. We believe that 

with continuous improvements and breakthroughs in injec-
tion molding, more and more high-quality polymer products 
will be manufactured and applied in many engineering fields 
like the aerospace industry, biomedical application and envi-
ronmental protection.

Acknowledgements The author is grateful to Mr. Liu, J.F.; Mr. Xue, 
B.; Mr. Huang X.; Mr. Chen, X.Y.; Mr. Bi, M.C. and other colleagues 
from ZheJiang University for sharing their parameters optimization 
knowledge and expertise and providing the figures, design examples 
included in this paper.

Author contributions Nan-yang Zhao  contributed to writing—original 
draft, methodology, and conceptualization.  Jiao-yuan Lian  performed 
writing—review and editing. Peng-fei Wang  performed writing—
review and editing. Zhong-bin Xu performed supervision and project 
administration.

Funding information This work was supported by National Natu-
ral Science Foundation of China (No. 52073247) and by Institute of 
Robotics at Zhejiang University under (Grant K12105).

It declares that codes are not available for this research.

Declarations 

Consent to publish All the authors consent to publish the research. 
There are no potential copy-right/plagiarism issues involved in this 
research.

Consent to participate All the authors consent to participate in this 
research and contribute to the research.

Ethical approval The authors claim that there are no ethical issues 
involved in this research.

Conflicts of interest The authors declare that they have no conflicts 
of interest.

Competing interests The authors declared that they have no conflicts 
of interest within the last 3 years of beginning the work.

References

 1. Huang XL, Yang JR, Sun YX, Chen YW, Wang XM, Du SM, 
Hua ZK (2021) Novel combined shield design for eye and face 
protection from COVID-19. Adv Manuf 9:130–135. https:// doi. 
org/ 10. 1007/ s40436- 020- 00333-y

 2. Singh SK, Khawale RP, Chen H, Zhang H, Rai R (2021) Personal 
protective equipments (PPEs) for COVID-19: a product lifecycle 
perspective. Int J Prod Res 2021:1–22. https:// doi. org/ 10. 1080/ 
00207 543. 2021. 19155- 11

 3. Vahabi H, Wu H, Saeb MR, Koo JH, Ramakrishna S (2021) 
Electrospinning for developing flame retardant polymer materi-
als: current status and future perspectives. Polymer 2021:123466. 
https:// doi. org/ 10. 1016/j. polym er. 2021. 123466

 4. Abdul R, Guo G, Chen JC, Yoo JJW (2020) Shrinkage prediction 
of injection molded high density polyethylene parts with taguchi/
artificial neural network hybrid experimental design. Int J Inter-
active Design Manuf (IJIDeM) 14:345–357. https:// doi. org/ 10. 
1007/ s12008- 019- 00593-4

97The International Journal of Advanced Manufacturing Technology (2022) 120:85–101

https://doi.org/10.1007/s40436-020-00333-y
https://doi.org/10.1007/s40436-020-00333-y
https://doi.org/10.1080/00207543.2021.19155-11
https://doi.org/10.1080/00207543.2021.19155-11
https://doi.org/10.1016/j.polymer.2021.123466
https://doi.org/10.1007/s12008-019-00593-4
https://doi.org/10.1007/s12008-019-00593-4


1 3

 5. Haidiezul A, Hazwan M, Lee WS, Najihah NF, Fadhli I (2020) 
Shrinkage optimisation on the 3D printed part using Full Fac-
torial Design (FFD) optimisation approach. IOP Conference 
Series: Materials Science and Engineering 932:012109. https:// 
doi. org/ 10. 1088/ 1757- 899X/ 932/1/ 012109

 6. Mehat N, Kassim SM, Kamaruddin S (2017) Investigation on 
the effects of processing parameters on shrinkage behaviour 
and tensile properties of injection moulded plastic gear via the 
Taguchi method. J Phys: Conf Ser 908:012049. https:// doi. org/ 
10. 1088/ 1742- 6596/ 908/1/ 012049

 7. Zhou X, Zhang Y, Mao T, Zhou H (2017) Monitoring and 
dynamic control of quality stability for injection molding pro-
cess. J Mater Process Technol 249:358–366. https:// doi. org/ 10. 
1016/j. jmatp rotec. 2017. 05.0- 38

 8. Lu NY, Gong GX, Yang Y, Lu JH (2012) Multi-objective 
process parameter optimization for energy saving in injection 
molding process. J Zhejiang Univ, Sci, A 13:382–394. https:// 
doi. org/ 10. 1631/ jzus. A1100 250

 9. Peng YG, Wang J, Wei W (2014) Model predictive control of 
servo motor driven constant pump hydraulic system in injec-
tion molding process based on neurodynamic optimization. J 
Zhejiang University Science C 15:139–146. https:// doi. org/ 10. 
1631/ jzus. C1300 182

 10. Dizon JRC, Valino AD, Souza LR, Espera AH, Chen Q, Advincula 
RC (2019) Three-dimensional-printed molds and materials for injec-
tion molding and rapid tooling applications. MRS Communications 
9:1267–1283. https:// doi. org/ 10. 1557/ mrc. 2019. 147

 11. Huszar M, Belblidia F, Davies HM, Arnold C, Bould D, Sienz 
J (2015) Sustainable injection moulding: The impact of materi-
als selection and gate location on part warpage and injection 
pressure. Sustain Mater Technol 5:1–8. https:// doi. org/ 10. 1016/j. 
susmat. 2015. 07. 001

 12. Sun BF, Yang SJ, Zhang R (2019) Analysis of Mobile Phone 
Support Fixed for Injection Molding Process Design Based on 
Moldflow. Proceedings of the 2019 4th International Conference 
on Intelligent Information Processing 2019:200–204. https:// doi. 
org/ 10. 1145/ 33780 65. 33781 04

 13. Walale A, Chauhan AS, Satyanarayana A, Venkatachalam 
G, Pradyumna R (2018) Analysis of shrinkage & warpage in 
ceramic injection molding of HPT vane leading edge core of 
a gas turbine casting. Materials Today: Proceedings 5:19471–
19479. https:// doi. org/ 10. 1016/j. matpr. 2018. 06. 308

 14. Wang D, Sun J, Dong A, Shu D, Zhu G, Sun B (2018) An optimi-
zation method of gating system for impeller by RSM and simula-
tion in investment casting. Int J Adv Manuf Tech 98:3105–3114. 
https:// doi. org/ 10. 1007/ s00170- 018- 2474-z

 15. Mohan M, Ansari M, Shanks RA (2017) Review on the effects 
of process parameters on strength, shrinkage, and warpage of 
injection molding plastic component. Polym-Plast Technol Eng 
56:1–12. https:// doi. org/ 10. 1080/ 03602 559. 2015. 11- 32466

 16. Chen JY, Tseng CC, Huang MS (2019) Quality indexes design 
for online monitoring polymer injection molding. Adv Polym 
Technol 2019:3720127. https:// doi. org/ 10. 1155/ 2019/ 37201 27

 17. Dang XP (2014) General frameworks for optimization of plastic 
injection molding process parameters. Simul Model Pract Theory 
41:15–27. https:// doi. org/ 10. 1016/j. simpat. 2013. 11. 003

 18. Huang MS, Ke KC, Liu CY (2021) Cavity pressure-based hold-
ing pressure adjustment for enhancing the consistency of injec-
tion molding quality. J Appl Polym Sci 138:50357. https:// doi. 
org/ 10. 1002/ app. 50357

 19. Wang J, Mao Q (2013) A novel process control methodology based 
on the PVT behavior of polymer for injection molding. Adv Polym 
Technol 32:E474–E485. https:// doi. org/ 10. 1002/ adv. 21294

 20. Cho SH, Kim HK, Sohn JS, Ryu Y, Cha SW (2019) Effect of 
foaming processes on the reduction of warpage in glass fiber 

reinforced plastic composites. J Mech Sci Technol 33:4227–
4232. https:// doi. org/ 10. 1007/ s12206- 019- 0735-x

 21. Huang CT, Chu JH, Fu WW, Hsu C, Hwang SJ (2021) Flow-
induced Orientations of Fibers and Their Influences on Warpage 
and Mechanical Property in Injection Fiber Reinforced Plastic 
(FRP) Parts. Int J Prec Eng Manuf-Green Tech 8:917–934. 
https:// doi. org/ 10. 1007/ s40684- 020- 00226-2

 22. Nian SC, Wu CY, Huang MS (2015) Warpage control of thin-
walled injection molding using local mold temperatures. Int 
Commun Heat Mass Transfer 61:102–110. https:// doi. org/ 10. 
1016/j. ichea tmass tran- sfer. 2014. 12. 008

 23. Guliyev A (2020) Technological features of injection mould-
ing of dynamically vulcanized nanocomposites based on ran-
dom polypropylene, nitril butadiene rubber and bentonite. 
Kimya Problemleri 18:388–395. https:// doi. org/ 10. 32737/ 
2221- 8688- 2020-3- 388- 395

 24. Jansen K, Van Dijk D, Husselman M (1998) Effect of processing 
conditions on shrinkage in injection molding. Polym Eng Sci 
38:838–846. https:// doi. org/ 10. 1002/ pen. 10249

 25. Jeon DS (2021) A study on shrinkage deformation according to 
injection molding conditions of pipe (annular) shaped products. 
J Korea Soc Die Mold Eng 15:36–41

 26. Nejadebrahim A, Ebrahimi M, Allonas X, Croutx-Barghorn C, 
Ley C, Mtral B (2019) A new safranin based three-component 
photoinitiating system for high resolution and low shrinkage 
printed parts via digital light processing. RSC Adv 9:39709–
39720. https:// doi. org/ 10. 1039/ C9RA0 9170J

 27. Schilling A, Salscheider K, Rusche H, Jasak H, Fehlbier M, 
Kohlstdt S (2021) Approach on simulation of solidification and  
shrinkage of gravity cast salt cores. Simul Model Pract Theory 
107:102231. https:// doi. org/ 10. 1016/j. simpat. 2020. 102231

 28. Azad R, Shahrajabian H (2019) Experimental study of warpage 
and shrinkage in injection molding of HDPE/rPET/wood com-
posites with multiobjective optimization. Mater Manuf Processes 
34:274–282. https:// doi. org/ 10. 1080/ 10426 914. 2018. 15121- 23

 29. Chen Y, Zhu J (2019) Warpage analysis and optimization of thin- 
walled injection molding parts based on numerical simulation  
and orthogonal experiment. IOP Conf Ser: Mater Sci Eng 
688:033027. https:// doi. org/ 10. 1088/ 1757- 899x/ 688/3/ 033027

 30. Song Z, Liu S, Wang X, Hu Z (2020) Optimization and predic-
tion of volume shrinkage and warpage of injection-molded thin-
walled parts based on neural network. Int J Adv Manuf Tech 
109:755–769. https:// doi. org/ 10. 1007/ s00170- 020- 05558-6

 31. Masato D, Sorgato M, Lucchetta G (2021) A new approach to 
the evaluation of ejection friction in micro injection molding. J 
Manuf Process 62:28–36. https:// doi. org/ 10. 1016/j. jmapro. 2020. 
12. 032

 32. Wang MW, Arifin F, Huynh TTN (2019) Optimization of Molding 
Parameters for a Micro Gear with Taguchi Method. J Phys: Conf 
Ser 1167. https:// doi. org/ 10. 1088/ 1742- 6596/ 1167/1/ 012001

 33. Hrituc A, Nag G, Dodun O, Stineanu L (2019) Measuring the 
length of a spiral when evaluating the plastic processability by 
injection molding. IOP Conf Ser: Mater Sci Eng 2019:012025. 
https:// doi. org/ 10. 1088/ 1757- 899x/ 564/1/ 012025

 34. Zwicke F, Behr M, Elgeti S (2017) Predicting shrinkage and 
warpage in injection molding: Towards automatized mold design. 
AIP Conf Proc 1896:100001. https:// doi. org/ 10. 1063/1. 50081 19

 35. Li JQ, Li DQ, Guo ZY, Lv HY (2007) Single gate optimiza-
tion for plastic injection mold. J Zhejiang University-Science A 
8:1077–1083. https:// doi. org/ 10. 1631/ jzus. 2007. A1077

 36. Wang B, Cai A (2021) Influence of mold design and injec-
tion parameters on warpage deformation of thin-walled plastic 
parts. Polimery 66:283–292. https:// doi. org/ 10. 14314/ polim ery. 
2021.5.1

98 The International Journal of Advanced Manufacturing Technology (2022) 120:85–101

https://doi.org/10.1088/1757-899X/932/1/012109
https://doi.org/10.1088/1757-899X/932/1/012109
https://doi.org/10.1088/1742-6596/908/1/012049
https://doi.org/10.1088/1742-6596/908/1/012049
https://doi.org/10.1016/j.jmatprotec.2017.05.0-38
https://doi.org/10.1016/j.jmatprotec.2017.05.0-38
https://doi.org/10.1631/jzus.A1100250
https://doi.org/10.1631/jzus.A1100250
https://doi.org/10.1631/jzus.C1300182
https://doi.org/10.1631/jzus.C1300182
https://doi.org/10.1557/mrc.2019.147
https://doi.org/10.1016/j.susmat.2015.07.001
https://doi.org/10.1016/j.susmat.2015.07.001
https://doi.org/10.1145/3378065.3378104
https://doi.org/10.1145/3378065.3378104
https://doi.org/10.1016/j.matpr.2018.06.308
https://doi.org/10.1007/s00170-018-2474-z
https://doi.org/10.1080/03602559.2015.11-32466
https://doi.org/10.1155/2019/3720127
https://doi.org/10.1016/j.simpat.2013.11.003
https://doi.org/10.1002/app.50357
https://doi.org/10.1002/app.50357
https://doi.org/10.1002/adv.21294
https://doi.org/10.1007/s12206-019-0735-x
https://doi.org/10.1007/s40684-020-00226-2
https://doi.org/10.1016/j.icheatmasstran-sfer.2014.12.008
https://doi.org/10.1016/j.icheatmasstran-sfer.2014.12.008
https://doi.org/10.32737/2221-8688-2020-3-388-395
https://doi.org/10.32737/2221-8688-2020-3-388-395
https://doi.org/10.1002/pen.10249
https://doi.org/10.1039/C9RA09170J
https://doi.org/10.1016/j.simpat.2020.102231
https://doi.org/10.1080/10426914.2018.15121-23
https://doi.org/10.1088/1757-899x/688/3/033027
https://doi.org/10.1007/s00170-020-05558-6
https://doi.org/10.1016/j.jmapro.2020.12.032
https://doi.org/10.1016/j.jmapro.2020.12.032
https://doi.org/10.1088/1742-6596/1167/1/012001
https://doi.org/10.1088/1757-899x/564/1/012025
https://doi.org/10.1063/1.5008119
https://doi.org/10.1631/jzus.2007.A1077
https://doi.org/10.14314/polimery.2021.5.1
https://doi.org/10.14314/polimery.2021.5.1


1 3

 37. Poszwa P, Szostak M (2017) Deformation simulations of plas-
tic parts with consideration of assembly constraints. Mechanik 
90:1190–1192. https:// doi. org/ 10. 17814/ mecha nik. 2017. 12.2- 04

 38. Zhuang J, Wu DM, Xu H, Huang Y, Liu Y, Sun JY (2019) Edge 
effect in hot embossing and its influence on global pattern repli-
cation of polymer-based microneedles. Int Polym Proc 34:231–
238. https:// doi. org/ 10. 3139/ 217. 3726

 39. Wang G, Wang Y, Yang D (2021) Study on Automotive Back 
Door Panel Injection Molding Process Simulation and Process 
Parameter Optimization. Adv Mater Sci Eng 2021:9996423. 
https:// doi. org/ 10. 1155/ 2021/ 99964 23

 40. Fu J, Ma Y (2016) Mold modification methods to fix warpage 
problems for plastic molding products. Comput Aided Des Appl 
13:138–151. https:// doi. org/ 10. 1080/ 16864 360. 2015. 10592- 03

 41. Hong JM (2014) Optimum Design of Remote Controller Back 
Shell Injection Mould Based on Flow Simulation. Adv Mater Res 
852:567–572. https:// doi. org/ 10. 4028/ www. scien tific. net/A- MR. 
852. 567

 42. Weng FT (2018) Lu YY (2018) Parameter analysis of lift com-
ponent in injection molding. IEEE International Conference on 
Applied System Invention (ICASI) 2018:754–757. https:// doi. 
org/ 10. 1109/ ICASI. 2018. 83943 69

 43. Sudsawat S, Sriseubsai W (2018) Warpage reduction through 
optimized process parameters and annealed process of injection-
molded plastic parts. J Mech Sci Technol 32:4787–4799. https:// 
doi. org/ 10. 1007/ s12206- 018- 0926-x

 44. Kulkarni S (2017) Robust process development and scientific 
molding: theory and practice. Munich, Germany

 45. Nian SC, Fang YC, Huang MS (2019) In-mold and machine sens-
ing and feature extraction for optimized IC-tray manufacturing. 
Polymers 11:1348. https:// doi. org/ 10. 3390/ polym 11081 348

 46. Kazmer DO, Velusamy S, Westerdale S, Johnston S, Gao RX 
(2010) A comparison of seven filling to packing switchover 
methods for injection molding. Polym Eng Sci 50:2031–2043. 
https:// doi. org/ 10. 1002/ pen. 21731

 47. Zhao P, Zhang J, Dong Z, Huang J, Zhou H, Fu J, Turng LS 
(2020) Intelligent injection molding on sensing, optimization, 
and control. Adv Polym Technol 2020:1–22. https:// doi. org/ 10. 
1155/ 2020/ 70236 16

 48. Michaeli W, Schreiber A (2009) Online control of the injection molding 
process based on process variables. Adv Polymer Tech: J Polymer 
Processing Institute 28:65–76. https:// doi. org/ 10. 1002/ adv. 20153

 49. Lin CC, Wang WT, Kuo CC, Wu CL (2014) Experimental and 
theoretical study of melt viscosity in injection process. Inter J 
Mech Mecha Eng 8:687–691. https:// doi. org/ 10. 5281/ zenodo. 
10940 10

 50. Gao RX, Tang X, Gordon G, Kazmer DO (2014) Online product 
quality monitoring through in-process measurement. CIRP Ann 
63:493–496. https:// doi. org/ 10. 1016/j. cirp. 2014. 03. 041

 51. Gordon G, Kazmer DO, Tang X, Fan Z, Gao RX (2015) Qual-
ity control using a multivariate injection molding sensor. Int 
J Adv Manuf Tech 78:1381–1391. https:// doi. org/ 10. 1007/ 
s00170- 014- 6706-6

 52. Huang MS, Lin CY (2017) A novel clamping force searching 
method based on sensing tie-bar elongation for injection mold-
ing. Int J Heat Mass Transf 109:223–230. https:// doi. org/ 10. 
1016/j. ijhea tmass trans fer.2- 017. 02. 004

 53. Wang J, Xie P, Ding Y, Yang W (2009) On-line testing equipment 
of PVT properties of polymers based on an injection molding 
machine. Polym Testing 28:228–234. https:// doi. org/ 10. 1016/j. 
polym ertes ting. 200-8. 09. 003

 54. Chen JY, Yang KJ, Huang MS (2020) Optimization of clamp-
ing force for low-viscosity polymer injection molding. Polym  
Testing 90:106700. https:// doi. org/ 10. 1016/j. polym ertes ting. 
202-0. 106700

 55. Wang ML, Chang RY, Hsu CHD (2018) Molding simulation: 
Theory and practice. Munich, Germany

 56. Fernandes C, Pontes AJ, Viana JC, Gaspar Cunha A (2018) 
Modeling and Optimization of the Injection-Molding Process: 
A Review. Adv Polym Technol 37:429–449. https:// doi. org/ 10. 
1002/ adv. 21683

 57. Li K, Yan S, Pan W, Zhao G (2017) Warpage optimization 
of fiber-reinforced composite injection molding by combin-
ing back propagation neural network and genetic algorithm. 
Int J Adv Manuf Tech 90:963–970. https:// doi. org/ 10. 1007/ 
s00170- 016- 9409-3

 58. Park HS, Nguyen TT (2014) Optimization of injection molding 
process for car fender in consideration of energy efficiency and 
product quality. J Comput Des Eng 1:256–265. https:// doi. org/ 
10. 7315/ JCDE. 2014. 025

 59. Wang X, Gu J, Shen C, Wang X (2015) Warpage optimization 
with dynamic injection molding technology and sequential opti-
mization method. Int J Adv Manuf Tech 78:177–187. https:// doi. 
org/ 10. 1007/ s00170- 014- 6621-x

 60. Xu Y, Zhang Q, Zhang W, Zhang P (2015) Optimization of injec-
tion molding process parameters to improve the mechanical per-
formance of polymer product against impact. Int J Adv Manuf 
Tech 76:2199–2208. https:// doi. org/ 10. 1007/ s00170- 014- 6434-y

 61. Zhang J, Wang J, Lin J, Guo Q, Chen K, Ma L (2016) Multi-
objective optimization of injection molding process parameters 
based on Opt LHD, EBFNN, and MOPSO. Int J Adv Manuf Tech 
85:2857–2872. https:// doi. org/ 10. 1007/ s00170- 015- 8100-4

 62. Zhao J, Cheng G, Ruan S, Li Z (2015) Multi-objective optimi-
zation design of injection molding process parameters based on 
the improved efficient global optimization algorithm and non-
dominated sorting-based genetic algorithm. Int J Adv Manuf 
Tech 78:1813–1826. https:// doi. org/ 10. 1007/ s00170- 014- 6770-y

 63. Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi  
methodology as a statistical tool for biotechnological applications:  
a critical appraisal. Biotechnol J: Healthcare Nutr Technol 3:510–
523. https:// doi. org/ 10. 1002/ biot. 20070 0201

 64. Rao RS, Prakasham R, Prasad KK, Rajesham S, Sarma P, Rao 
LV (2004) Xylitol production by Candida sp.: parameter optimi-
zation using Taguchi approach. Process Biochem 39:951–956. 
https:// doi. org/ 10. 1016/ S0032- 9592(03) 00207-3

 65. Rosa JL, Robin A, Silva M, Baldan CA, Peres MP (2009) Elec-
trodeposition of copper on titanium wires: Taguchi experimen-
tal design approach. J Mater Process Technol 209:1181–1188. 
https:// doi. org/ 10. 1016/j. jmatp rotec. 2008. 03.- 021

 66. Amin SYM, Muhamad N, Jamaludin KR (2013) Optimization 
of injection molding parameters for WC-Co feedstocks. Jurnal 
Teknologi 63:51–54. https:// doi. org/ 10. 11113/ jt. v63. 1454

 67. Lin CM, Wu JJ, Tan CM (2020) Processing Optimization for 
Metal Injection Molding of Orthodontic Braces Considering 
Powder Concentration Distribution of Feedstock. Polymers 
12:2635. https:// doi. org/ 10. 3390/ polym 12112 635

 68. Lee HH (2011) Taguchi Methods: Principles and Practices of 
Quality Design. New Taipei, Taiwan

 69. Montgomery DC (2017) Design and analysis of experiments. 
Hoboken, American

 70. Chang TC, Faison E III (2001) Shrinkage behavior and optimiza-
tion of injection molded parts studied by the Taguchi method. 
Polym Eng Sci 41:703–710. https:// doi. org/ 10. 1002/ pen. 10766

 71. Wen T, Chen X (2010) Deformation of Seat Support during Free-
Cooling after Ejection. Adv Mat Res 97:3290–3293. https:// doi. 
org/ 10. 4028/ www. scien tific. net/A- MR. 97- 101. 3290

 72. Wen T, Chen X, Yang C, Liu LT, Hao L (2014) Optimiza- 
tion of processing parameters for minimizing warpage of 
large thin-walled parts in whole stages of injection mold-
ing. Chin J Polym Sci 32:1535–1543. https:// doi. org/ 10. 1007/ 
s10118- 014- 1541-7

99The International Journal of Advanced Manufacturing Technology (2022) 120:85–101

https://doi.org/10.17814/mechanik.2017.12.2-04
https://doi.org/10.3139/217.3726
https://doi.org/10.1155/2021/9996423
https://doi.org/10.1080/16864360.2015.10592-03
https://doi.org/10.4028/www.scientific.net/A-MR.852.567
https://doi.org/10.4028/www.scientific.net/A-MR.852.567
https://doi.org/10.1109/ICASI.2018.8394369
https://doi.org/10.1109/ICASI.2018.8394369
https://doi.org/10.1007/s12206-018-0926-x
https://doi.org/10.1007/s12206-018-0926-x
https://doi.org/10.3390/polym11081348
https://doi.org/10.1002/pen.21731
https://doi.org/10.1155/2020/7023616
https://doi.org/10.1155/2020/7023616
https://doi.org/10.1002/adv.20153
https://doi.org/10.5281/zenodo.1094010
https://doi.org/10.5281/zenodo.1094010
https://doi.org/10.1016/j.cirp.2014.03.041
https://doi.org/10.1007/s00170-014-6706-6
https://doi.org/10.1007/s00170-014-6706-6
https://doi.org/10.1016/j.ijheatmasstransfer.2-017.02.004
https://doi.org/10.1016/j.ijheatmasstransfer.2-017.02.004
https://doi.org/10.1016/j.polymertesting.200-8.09.003
https://doi.org/10.1016/j.polymertesting.200-8.09.003
https://doi.org/10.1016/j.polymertesting.202-0.106700
https://doi.org/10.1016/j.polymertesting.202-0.106700
https://doi.org/10.1002/adv.21683
https://doi.org/10.1002/adv.21683
https://doi.org/10.1007/s00170-016-9409-3
https://doi.org/10.1007/s00170-016-9409-3
https://doi.org/10.7315/JCDE.2014.025
https://doi.org/10.7315/JCDE.2014.025
https://doi.org/10.1007/s00170-014-6621-x
https://doi.org/10.1007/s00170-014-6621-x
https://doi.org/10.1007/s00170-014-6434-y
https://doi.org/10.1007/s00170-015-8100-4
https://doi.org/10.1007/s00170-014-6770-y
https://doi.org/10.1002/biot.200700201
https://doi.org/10.1016/S0032-9592(03)00207-3
https://doi.org/10.1016/j.jmatprotec.2008.03.-021
https://doi.org/10.11113/jt.v63.1454
https://doi.org/10.3390/polym12112635
https://doi.org/10.1002/pen.10766
https://doi.org/10.4028/www.scientific.net/A-MR.97-101.3290
https://doi.org/10.4028/www.scientific.net/A-MR.97-101.3290
https://doi.org/10.1007/s10118-014-1541-7
https://doi.org/10.1007/s10118-014-1541-7


1 3

 73. Kuo JL, Chang MT (2015) Multi-objective design of turbo 
injection mode for axial flux motor in plastic injection mold-
ing machine by particle swarm optimization. Math Probl Eng 
2015:1–11. https:// doi. org/ 10. 1155/ 2015/ 974624

 74. Azaman M, Sapuan S, Sulaiman S, Zainudin E, Khalina A (2015) 
Optimization and numerical simulation analysis for molded thin 
walled parts fabricated using wood filled polypropylene compos-
ites via plastic injection molding. Polym Eng Sci 55:1082–1095. 
https:// doi. org/ 10. 1002/ pen. 23979

 75. Lin CM, Hsieh HK (2017) Processing optimization of Fresnel 
lenses manufacturing in the injection molding considering bire-
fringence effect. Microsyst Technol 23:5689–5695. https:// doi. 
org/ 10. 1007/ s00542- 017- 3375-z

 76. Bement TR (1989) Taguchi Techniques for Quality Engineering. 
Technometrics 31:253–255. https:// doi. org/ 10. 1080/ 00401 706. 
1989. 10488- 519

 77. Lin CM, Hung YT, Tan CM (2021) Hybrid Taguchi-Gray Rela-
tion Analysis Method for Design of Metal Powder Injection-
Molded Artificial Knee Joints with Optimal Powder Concentra-
tion and Volume Shrinkage. Polymers 13:865. https:// doi. org/ 10. 
3390/ polym 13060 865

 78. Usman Jan QM, Habib T, Noor S, Abas M, Azim S, Yaseen QM  
(2020) Multi response optimization of injection moulding pro-
cess parameters of polystyrene and polypropylene to minimize 
surface roughness and shrinkage using integrated approach of  
S/N ratio and composite desirability function. Cogent Eng 
7:1781424. https:// doi. org/ 10. 1080/ 23311 916. 2020. 17814- 24

 79. Barghash MA, Alkaabneh FA (2014) Shrinkage and warpage 
detailed analysis and optimization for the injection molding pro-
cess using multistage experimental design. Qual Eng 26:319–
334. https:// doi. org/ 10. 1080/ 08982 112. 2013. 852679

 80. Huang MS, Lin TY (2008) Simulation of a regression-model and 
PCA based searching method developed for setting the robust 
injection molding parameters of multi-quality characteristics. 
Int J Heat Mass Transf 51:5828–5837. https:// doi. org/ 10. 1016/j. 
ijhea tmass trans fer. 20- 08. 05. 016

 81. Wang Y, Yan Z, Shan X (2018) Optimization of process parameters 
for vertical-faced polypropylene bottle injection molding. Adv Mater 
Sci Eng 2018:2635084. https:// doi. org/ 10. 1155/ 2018/ 26350 84

 82. Singh G, Pradhan M, Verma A (2018) Multi response optimiza-
tion of injection moulding process parameters to reduce cycle 
time and warpage. Materials Today: Proceedings 5:8398–8405. 
https:// doi. org/ 10. 1016/j. matpr. 2017. 11. 534

 83. Huang MS, Lin TY (2008) An innovative regression model-
based searching method for setting the robust injection molding 
parameters. J Mater Process Technol 198:436–444. https:// doi. 
org/ 10. 1016/j. jmatp rotec. 2007. 07. 022

 84. Kc B, Faruk O, Agnelli J, Leao A, Tjong J, Sain M (2016) 
Sisal-glass fiber hybrid biocomposite: Optimization of injection 
molding parameters using Taguchi method for reducing shrink-
age. Compos A Appl Sci Manuf 83:152–159. https:// doi. org/ 10. 
1016/j. compo sitesa. 2015. 10-. 034

 85. Heidari BS, Oliaei E, Shayesteh H, Davachi SM, Hejazi I, Seyfi J, 
Bahrami M, Rashedi H (2017) Simulation of mechanical behav-
ior and optimization of simulated injection molding process for 
PLA based antibacterial composite and nanocomposite bone 
screws using central composite design. J Mech Behav Biomed 
Mater 65:160–176. https:// doi. org/ 10. 1016/j. jmbbm. 2016. 08. 008

 86. Mukras SM, Omar HM, Al-Mufadi FA (2019) Experimental-
based multi-objective optimization of injection molding process 
parameters. Arab J Sci Eng 44:7653–7665. https:// doi. org/ 10. 
1007/ s13369- 019- 03855-1

 87. Kitayama S, Miyakawa H, Takano M, Aiba S (2017) Multi-objective  
optimization of injection molding process parameters for short 
cycle time and warpage reduction using conformal cooling chan- 

nel. Int J Adv Manuf Tech 88:1735–1744. https:// doi. org/ 10. 1007/ 
s00170- 016- 8904-x

 88. Kitayama S, Yokoyama M, Takano M, Aiba S (2017) Multi-
objective optimization of variable packing pressure profile and 
process parameters in plastic injection molding for minimizing 
warpage and cycle time. Int J Adv Manuf Tech 92:3991–3999. 
https:// doi. org/ 10. 1007/ s00170- 017- 0456-1

 89. Rosato DV, Rosato MG (2012) Injection molding handbook. 
American, Boston

 90. Krse B, Krose B, van der Smagt P, Smagt P (1993) An introduc-
tion to neural networks. Amsterdam, Netherlands

 91. Shi F, Lou Z, Zhang Y, Lu J (2003) Optimisation of plastic injec-
tion moulding process with soft computing. Int J Adv Manuf 
Tech 21:656–661. https:// doi. org/ 10. 1007/ s00170- 002- 1374-3

 92. Manjunath PG, Krishna P (2012) Prediction and optimization of 
dimensional shrinkage variations in injection molded parts using 
forward and reverse mapping of artificial neural networks. Adv 
Mat Res 463:674–678. https:// doi. org/ 10. 4028/ www. scien tific. 
net/A- MR. 463- 464. 674

 93. Alvarado Iniesta A, Garcia Alcaraz JL, Rodriguez Borbn M (2013) 
Optimization of injection molding process parameters by a hybrid 
of artificial neural network and artificial bee colony algorithm. 
Revista Facultad de Ingeniera Universidad de Antioquia 67:43–51

 94. Nagorny P, Pillet M, Pairel E, Le Goff R, Loureaux J, Wali M, 
Kiener P (2017) Quality prediction in injection molding. IEEE 
International Conference on Computational Intelligence and Vir-
tual Environments for Measurement Systems and Applications 
(CIVEMSA) 2017:141–146. https:// doi. org/ 10. 1109/ CIVEM SA. 
2017. 7995- 316

 95. Chen JC, Guo G, Wang WN (2020) Artificial neural network-
based online defect detection system with in-mold temperature 
and pressure sensors for high precision injection molding. Int 
J Adv Manuf Tech 110:2023–2033. https:// doi. org/ 10. 1007/ 
s00170- 020- 06011-4

 96. Lockner Y, Hopmann C (2021) Induced network-based transfer 
learning in injection molding for process modelling and opti-
mization with artificial neural networks. Int J Adv Manuf Tech 
112:3501–3513. https:// doi. org/ 10. 1007/ s00170- 020- 06511-3

 97. Li K, Yan S, Zhong Y, Pan W, Zhao G (2019) Multi-objective optimi-
zation of the fiber-reinforced composite injection molding process 
using Taguchi method, RSM, and NSGA-II. Simul Model Pract 
Theory 91:69–82. https:// doi. org/ 10. 1016/j. simpat. 2018. 09. 003

 98. Byon SK, Choi HY (2020) A Study on Injection Mold Design 
Using Approximation Optimization. J Korean Soc Manuf Pro-
cess Eng 19:55–60. https:// doi. org/ 10. 14775/ ksmpe. 2020. 19. 06. 
055

 99. Kim BY, Nam GJ, Ryu HS, Lee JW (2000) Optimization of filling 
process in RTM using genetic algorithm. Korea-Australia Rheol-
ogy J 12:83–92. https:// doi. org/ 10. 1007/ s00170- 014- 5697-7

 100. Liao XP, Ruan T, Xia W, Ma JY, Li LL (2012) Multi-objective 
Optimization by Gaussian Genetic Algorithm and Its Application 
in Injection Modeling. Adv Mat Res 399:1672–1676. https:// doi. 
org/ 10. 4028/ www. scien tific. net/A- MR. 399- 401. 1672

 101. Ozcelik B, Erzurumlu T (2005) Determination of effecting 
dimensional parameters on warpage of thin shell plastic parts 
using integrated response surface method and genetic algorithm. 
Int Commun Heat Mass Transfer 32:1085–1094. https:// doi. org/ 
10. 1016/j. ichea tmass trans fer.2- 004. 10. 032

 102. Turng L, Pei M (2002) Computer aided process and design opti-
mization for injection moulding. Proc Inst Mech Eng B J Eng 
Manuf 216:1523–1532. https:// doi. org/ 10. 1243/ 09544 05023 21016 288

 103. Kurtaran H, Ozcelik B, Erzurumlu T (2005) Warpage optimiza-
tion of a bus ceiling lamp base using neural network model and 
genetic algorithm. J Mater Process Technol 169:314–319. https:// 
doi. org/ 10. 1016/j. jmatp rotec. 2005. 03.- 013

100 The International Journal of Advanced Manufacturing Technology (2022) 120:85–101

https://doi.org/10.1155/2015/974624
https://doi.org/10.1002/pen.23979
https://doi.org/10.1007/s00542-017-3375-z
https://doi.org/10.1007/s00542-017-3375-z
https://doi.org/10.1080/00401706.1989.10488-519
https://doi.org/10.1080/00401706.1989.10488-519
https://doi.org/10.3390/polym13060865
https://doi.org/10.3390/polym13060865
https://doi.org/10.1080/23311916.2020.17814-24
https://doi.org/10.1080/08982112.2013.852679
https://doi.org/10.1016/j.ijheatmasstransfer.20-08.05.016
https://doi.org/10.1016/j.ijheatmasstransfer.20-08.05.016
https://doi.org/10.1155/2018/2635084
https://doi.org/10.1016/j.matpr.2017.11.534
https://doi.org/10.1016/j.jmatprotec.2007.07.022
https://doi.org/10.1016/j.jmatprotec.2007.07.022
https://doi.org/10.1016/j.compositesa.2015.10-.034
https://doi.org/10.1016/j.compositesa.2015.10-.034
https://doi.org/10.1016/j.jmbbm.2016.08.008
https://doi.org/10.1007/s13369-019-03855-1
https://doi.org/10.1007/s13369-019-03855-1
https://doi.org/10.1007/s00170-016-8904-x
https://doi.org/10.1007/s00170-016-8904-x
https://doi.org/10.1007/s00170-017-0456-1
https://doi.org/10.1007/s00170-002-1374-3
https://doi.org/10.4028/www.scientific.net/A-MR.463-464.674
https://doi.org/10.4028/www.scientific.net/A-MR.463-464.674
https://doi.org/10.1109/CIVEMSA.2017.7995-316
https://doi.org/10.1109/CIVEMSA.2017.7995-316
https://doi.org/10.1007/s00170-020-06011-4
https://doi.org/10.1007/s00170-020-06011-4
https://doi.org/10.1007/s00170-020-06511-3
https://doi.org/10.1016/j.simpat.2018.09.003
https://doi.org/10.14775/ksmpe.2020.19.06.055
https://doi.org/10.14775/ksmpe.2020.19.06.055
https://doi.org/10.1007/s00170-014-5697-7
https://doi.org/10.4028/www.scientific.net/A-MR.399-401.1672
https://doi.org/10.4028/www.scientific.net/A-MR.399-401.1672
https://doi.org/10.1016/j.icheatmasstransfer.2-004.10.032
https://doi.org/10.1016/j.icheatmasstransfer.2-004.10.032
https://doi.org/10.1243/095440502321016288
https://doi.org/10.1016/j.jmatprotec.2005.03.-013
https://doi.org/10.1016/j.jmatprotec.2005.03.-013


1 3

 104. Chen WC, Kurniawan D (2014) Process parameters optimiza-
tion for multiple quality characteristics in plastic injection mold-
ing using Taguchi method, BPNN, GA, and hybrid PSO-GA. 
Int J Precis Eng Manuf 15:1583–1593. https:// doi. org/ 10. 1007/ 
s12541- 014- 0507-6

 105. Cheng J, Liu Z, Tan J (2013) Multiobjective optimization of 
injection molding parameters based on soft computing and vari-
able complexity method. Int J Adv Manuf Tech 66:907–916. 
https:// doi. org/ 10. 1007/ s00170- 012- 4376-9

 106. Fuat T (2020) Experimental Investigation of Mechanical Prop-
erties for Injection Molded PA66+ PA6I/6T Composite Using 
RSM and Grey Wolf Optimization. El-Cezeri J Sci Eng 7:835–
847. https:// doi. org/ 10. 31202/ ecjse. 705212

 107. Rizvi S, Singh AK, Bhadu GR (2017) Optimization of tensile 
properties of injection molded �−nucleated polypropylene using 
response surface methodology. Polym Testing 60:198–210. 
https:// doi. org/ 10. 1016/j. polym ertes ting. 2017-. 03. 021

 108. Rosli M, Termizi SA, Khor C, Nawi M, Omar AA, Ishak MI 
(2020) Simulation Based Optimization of Thin Wall Injection 
Molding Parameter Using Response Surface Methodology.  
IOP Conf Ser: Mater Sci Eng 864:012193. https:// doi. org/ 10. 
1088/ 1757- 899x/ 864/1/ 012193

 109. Jou YT, Lin WT, Lee WC, Yeh TM (2014) Integrating the Tagu-
chi method and response surface methodology for process param-
eter optimization of the injection molding. Appl Math Info Sci 
8:1277. https:// doi. org/ 10. 12785/ amis/ 080342

 110. Mathivanan D, Parthasarathy N (2009) Prediction of sink 
depths using nonlinear modeling of injection molding variables. 
Int J Adv Manuf Tech 43:654–663. https:// doi. org/ 10. 1007/ 
s00170- 008- 1749-1

 111. Simpson TW, Poplinski J, Koch PN, Allen JK (2001) Metamod-
els for computer-based engineering design: survey and recom-
mendations. Eng Comput 17:129–150. https:// doi. org/ 10. 1007/ 
PL000 07198

 112. Li H, Liu K, Zhao D, Wang M, Li Q, Hou J (2018) Multi-objective 
optimizations for microinjection molding process parameters of 
biodegradable polymer stent. Materials 11:2322. https:// doi. org/ 
10. 3390/ ma111 12322

 113. Zhou H, Zhang S, Wang Z (2021) Multi-objective optimiza-
tion of process parameters in plastic injection molding using 
a differential sensitivity fusion method. Int J Adv Manuf Tech 
114:423–449. https:// doi. org/ 10. 1007/ s00170- 021- 06762-8

 114. Li S, Fan XY, Guo YH, Liu X, Huang HY, Cao YL, Li LL (2021) 
Optimization of Injection Molding Process of Transparent Com-
plex Multi-Cavity Parts Based on Kriging Model and Various 
Optimization Techniques. Arab J Sci Eng 2021:1–11. https:// doi. 
org/ 10. 1007/ s13369- 021- 05724-2

 115. Chen WC, Liou PH, Chou SC (2014) An integrated parameter 
optimization system for mimo plastic injection molding using 
soft computing. Int J Adv Manuf Tech 73:1465–1474. https:// 
doi. org/ 10. 1007/ s00170- 014- 5941-1

 116. Chen WC, Nguyen MH, Chiu WH, Chen TN, Tai PH (2016) 
Optimization of the plastic injection molding process using the 
Taguchi method, RSM, and hybrid GA-PSO. Int J Adv Manuf 
Tech 83:1873–1886. https:// doi. org/ 10. 1007/ s00170- 015- 7683-0

 117. Kramar D, Cica D (2017) Predictive model and optimization of 
processing parameters for plastic injection moulding. Materiali in 
Tehnologije 51:597–602. https:// doi. org/ 10. 17222/ mit. 2016. 129

 118. Xu G, Yang Z (2015) Multiobjective optimization of process 
parameters for plastic injection molding via soft computing and 
grey correlation analysis. Int J Adv Manuf Tech 78:525–536. 
https:// doi. org/ 10. 1007/ s00170- 014- 6643-4

 119. Li K, Yan SL, Pan WF, Zhao G (2017) Optimization of fiber-
orientation distribution in fiber-reinforced composite injection 
molding by Taguchi, back propagation neural network, and 
genetic algorithm-particle swarm optimization. Adv Mech Eng 
9:1–11. https:// doi. org/ 10. 1177/ 16878 14017 719221

 120. Johnston S, McCready C, Hazen D, VanDerwalker D, Kazmer D 
(2015) On line multivariate optimization of injection molding. 
Polym Eng Sci 55:2743–2750. https:// doi. org/ 10. 1002/ pen. 24163

 121. Yang Y, Yang B, Zhu S, Chen X (2015) Online quality optimi-
zation of the injection molding process via digital image pro-
cessing and model-free optimization. J Mater Process Technol 
226:85–98. https:// doi. org/ 10. 1016/j. jmatp rotec. 2015. 07-. 001

 122. Zhao P, Dong Z, Zhang J, Zhang Y, Cao M, Zhu Z, Zhou H, Fu J 
(2020) Optimization of injection-molding process parameters for 
weight control: converting optimization problem to classification 
problem. Adv Polym Technol 2020:7654249. https:// doi. org/ 10. 
1155/ 2020/ 76542 49

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

101The International Journal of Advanced Manufacturing Technology (2022) 120:85–101

https://doi.org/10.1007/s12541-014-0507-6
https://doi.org/10.1007/s12541-014-0507-6
https://doi.org/10.1007/s00170-012-4376-9
https://doi.org/10.31202/ecjse.705212
https://doi.org/10.1016/j.polymertesting.2017-.03.021
https://doi.org/10.1088/1757-899x/864/1/012193
https://doi.org/10.1088/1757-899x/864/1/012193
https://doi.org/10.12785/amis/080342
https://doi.org/10.1007/s00170-008-1749-1
https://doi.org/10.1007/s00170-008-1749-1
https://doi.org/10.1007/PL00007198
https://doi.org/10.1007/PL00007198
https://doi.org/10.3390/ma11112322
https://doi.org/10.3390/ma11112322
https://doi.org/10.1007/s00170-021-06762-8
https://doi.org/10.1007/s13369-021-05724-2
https://doi.org/10.1007/s13369-021-05724-2
https://doi.org/10.1007/s00170-014-5941-1
https://doi.org/10.1007/s00170-014-5941-1
https://doi.org/10.1007/s00170-015-7683-0
https://doi.org/10.17222/mit.2016.129
https://doi.org/10.1007/s00170-014-6643-4
https://doi.org/10.1177/1687814017719221
https://doi.org/10.1002/pen.24163
https://doi.org/10.1016/j.jmatprotec.2015.07-.001
https://doi.org/10.1155/2020/7654249
https://doi.org/10.1155/2020/7654249

	Recent progress in minimizing the warpage and shrinkage deformations by the optimization of process parameters in plastic injection molding: a review
	Abstract
	1 Introduction
	2 Warpage and shrinkage deformations in plastic injection molding
	2.1 Plastic injection molding process
	2.2 Warpage and shrinkage deformations
	2.3 The cause of warpage and shrinkage deformations

	3 The role of process parameters in influencing warpage and shrinkage deformations
	3.1 Process parameters
	3.2 The way to obtain process parameters
	3.3 The effect of process parameters

	4 Optimization methods
	4.1 Design of experiments
	4.1.1 Taguchi method
	4.1.2 Orthogonal array design

	4.2 Advanced models
	4.2.1 Artificial neural network
	4.2.2 Genetic algorithm
	4.2.3 Response surface methodology
	4.2.4 Kriging model


	5 Conclusions
	Acknowledgements 
	References


