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Abstract
Ti-6Al-4V alloy is characterised by having excellent mechanical properties and corrosion resistance combined with low 
specific weight and biocompatibility. This material is ideal for many high-performance engineering applications. It is increas-
ingly used in additive manufacturing (AM) thanks to the possibility of producing very complex lightweight structures, often 
not achievable with conventional manufacturing techniques, as well as to easily customise products according to specific 
customer requirements. In powder bed fusion (PBF) processes, only a small percentage of the powder is actually melted 
and solidified to achieve the final part while most is left after the build. Since the surface morphology and chemistry, the 
shape and size distribution of the un-melted particles are inevitably modified during the process, and this may affect the 
resulting properties of the final products, many companies tend to use virgin powders for AM builds to keep compliance 
with manufacturing requirements and minimise risk. From both an economic and environmental point of view, it results 
crucial to develop recycling methods to reuse the metal powder as many times as possible while maintaining compliance 
with manufacturing standards. In this work, the effect of Ti-6Al-4V powder reuse on the evolution of powder characteristics 
and mechanical properties of final products additively manufactured is investigated through a systematic approach based on 
design of experiments.

Keywords  Additive manufacturing (AM) · Powder bed fusion (PBF) · Powder reuse · Ti-6Al-4V · Design of experiments 
(DOE)

1  Introduction

Although early use of additive manufacturing in the form 
of rapid prototyping was almost limited to the production of 
visualisation models, it is nowadays being used to fabricate 

end-use products in many different fields, spreading from 
aerospace and automotive, to the production of biomedical 
implants and biological tissues, and even fashion goods. AM 
allows not only to reduce the delivery time and total cost of 
complex components, but also to enhance the performance, 
weight and functionality of the components themselves [1, 2].

Direct metal laser sintering (DMLS) is based on the laser 
powder bed fusion technique and uses a Yb (Ytterbium) fiber 
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laser to locally melt a powdered metal to build up highly com-
plex solid structures additively layer by layer [3–5].

Along with the well-known repeatability, reproducibility 
[6] and anisotropy [7, 8] issues, a drawback of all PBF pro-
cesses is that only a small percentage of the powder is actu-
ally melted and solidified to achieve the final part while most 
is left after the build. However, the surface morphology and 
chemistry, the shape and size distribution of the un-melted 
particles are inevitably modified during the process, so that 
the resulting properties of the final products may be nega-
tively affected [9–11]. Therefore, many companies tend to 
use virgin powders for AM builds to keep compliance with 
manufacturing requirements and minimise risk, thus result-
ing in a huge amount of out-of-spec powder, either stored or 
wasted. This policy contributes to higher costs and a larger 
environmental footprint of AM processes, so it results cru-
cial to develop qualified methods to reuse the metal powder 
as many times as possible while maintaining compliance 
with manufacturing standards [12–14].

Both academic and industrial research works have faced 
this issue, focusing on the most widely used materials, from 
steels [15–26] and aluminium alloys [15, 27–32] to Inconel 
[29, 33–40] and titanium alloys [29, 33–35, 39, 41–55]. Gen-
erally speaking, some of the results obtained for the effects 
of metal powder reusing seem to be inconsistent across the 
studies. This is ascribable to the large number of side fac-
tors involved, such as the specific AM equipment or brand 
of powder used, the process parameters, the procedure for 
reuse, etc. [56].

This work addresses the effect of EOS Ti64 (Ti-6Al-
4V) powder reuse on the evolution of powder characteris-
tics and mechanical properties of final products additively 
manufactured. A systematic approach based on design of 

experiments (DOE) and analysis of variance (ANOVA) was 
used to ensure effectiveness and reliability of the experimen-
tal results [57–61].

2 � Materials and methods

2.1 � Virgin powder and powder reusing method

All the specimens for mechanical characterisation were pro-
duced on an EOSINT M280 using the optimised processing 
parameters provided by the producer, the EOS Part Property 
Profile Ti64 Performance 30 � m, and heat treated at 650 ◦ C 
for 3 hours. Both DMLS process and heat treatment were 
performed in Argon inert atmosphere.

Different strategies can be used to recycle metal powder 
in PBF processes. In this work, the same procedure imple-
mented by the authors in [16] was executed. It consists in 
producing a first DMLS build using virgin powder only, 
after which the un-melted powder left over in the build 

Fig. 1   Characteristics of Ti-6Al-4V powder over number of reuses: a D10, D50 and D90 of particle diameter, b Chemical composition

Table 1   One-way ANOVA results for the effect of number of reuses

Variable Source DOF Adj SS f-value p-value

YS0.2% Number of Reuses 9 17988 26.67 0.000
Error 50 3747
Total 59

UTS Number of Reuses 9 12874.6 85.17 0.000
Error 50 839.8
Total 59

A Number of Reuses 9 5.066 1.02 0.440
Error 50 27.681
Total 59
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volume and the overflow compartment is collected, sieved 
and then loaded above the residual powder in the feeding 

compartment to start the subsequent run, and so on for each 
DMLS run up to the last one.

Fig. 2   Main Effects Plots for the effect of number of reuses on Ti-6Al-4V tensile properties: a yield strength, b ultimate tensile strength and c 
elongation at break

Fig. 3   Stress-strain curves of 
Ti-6Al-4V samples produced 
with virgin and reused powder
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2.2 � Samples and testing standards 
for the evaluation of powder characteristics 
and mechanical properties

Before starting each DMLS run, powder samples were col-
lected, in compliance with ASTM B215-15 [62], from the 
feeding compartment to undergo physical/chemical charac-
terisation, as suggested in [63].

Particle size distribution (PSD) was determined accord-
ing to ASTM B822-17 [64] using a Malvern MS2000 laser 
diffraction analyser, while powder chemical composition 
was evaluated through inductively coupled plasma, infrared 
absorption and inert gas fusion techniques (depending on 
the chemical elements to be detected) according to ASTM 
E2371-13 [65] and ASTM E1019-11 [66].

To evaluate the mechanical properties of parts additively 
manufactured with virgin and reused powder, ten subsequent 
DMLS builds were produced according the aforementioned 
procedure. Each build hosted six cylindrical bars to be 
used for the tensile tests and six near net shape samples for 
the high cycle fatigue (HCF) tests. Downstream of DMLS 
process, all specimens were machined to comply with ISO 

6892-1:2016 [67] and DIN EN 6072:2011 [68] testing 
standards.

Tensile tests were executed at room temperature on an 
Instron 1185, with a cross head speed of 0.45 mm/min, 
according to ASTM E8/E8M-16a [69], while HCF tests were 

Fig. 4   Wohler curves of the Ti-6Al-4V HCF samples produced with virgin and reused powder: a virgin, b reused 4 times and c reused 9 times

Fig. 5   Chemical composition of additively manufactured material 
belonging to DMLS builds produced with powder reused 1, 6 and 7 
times
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executed on a MTS Load Frame Model 312.21 with Kt=1 
and R=0.1, according to ASTM E466-15 [70], and termi-
nated at 107 cycles. The corresponding Wohler curves were 
obtained according to ASTM E739-10 [71].

3 � Results and discussion

The 10th, 50th and 90th percentiles of the particle diam-
eter (referred to as D10, D50 and D90, respectively) are 

Fig. 6   SEM-EPMA analysis: a Fe- and Cr-rich precipitate in the Ti-6Al-4V matrix, b distribution of Cr (orange), Fe (yellow) and Ti (blue) in 
the precipitate, c distribution of Ti in the precipitate, d distribution of Fe in the precipitate, e distribution of Cr in the precipitate
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reported in Fig. 1a, showing how the variability of particle 
size distribution over the number of reuses can be considered 
substantially physiological. Conversely, Fig. 1b points out an 
anomalous variation of chemical composition, in particular 
in terms of iron content, in the last reuse cycles.

The Minitab®18 software was used to perform one-way 
ANOVA, with a significance level � = 0.05 , on tensile prop-
erties, after diagnostic check of residuals. Once the ANOVA 
has been performed, the effect of a source of variability can 
be defined as statistically significant with respect to a par-
ticular response variable if the corresponding p-value results 
lower than � [57, 72].

The obtained results for yield strength (YS0.2%), ulti-
mate tensile strength (UTS) and elongation at break (A) are 
reported in Table 1: the effect of powder resuse resulted 
to significantly affect yield strength and ultimate tensile 
strength (p-value ≪ 𝛼 ), but negligible with respect to elon-
gation at break (p-value ≫ 𝛼).

From Fig. 2, that shows the trend of the mechanical prop-
erties over the number of reuses, it is possible to see how 
the effect of powder reuse is actually confined to the last 
three runs and how it involves a slight enhancement, rather 
than a decay, of material performance. However, it is worth 
noting that the differences highlighted by the ANOVA can 
be considered relatively small from a technological point 
of view. Indeed, the corresponding stress–strain curves 
resulted almost overlapable, as shown in Fig. 3. In addition, 
the measured values resulted all consistent with those guar-
anteed by the supplier and required by the company.

Figure 4 shows the Wohler curves of specimens pro-
duced with virgin and reused powder. The fatigue behaviour 
remained substantially stable, with minimum a high cycle 
fatigue strength ( Δ� ) of 400 MPa.

The abnormal mechanical properties of samples pro-
duced within the last DMLS runs are ascribable to the afore-
mentioned change in powder chemical composition. The 
observed increase of iron content was found to be caused by 

a steel contamination [73] of powder during sieving opera-
tions: the sieve used in this work was made of AISI 316L 
steel, that is characterised by a much lower hardness than 
titanium, and the continuous rubbing of the powder against 
sieve walls had caused a kind of erosion effect, resulting in 
the inclusion of steel powder in the titanium one. This is 
confirmed by both the increase of Fe content in the powder 
samples analysed (see Fig. 1b) and by the chemical analysis 
of additively manufactured material. Indeed, Fig. 5 shows 
the evident increase of Fe, Cr, and Ni concentrations in the 
alloy for the last DMLS runs. It is worth considering that 
these three elements, in which the AISI 316L is particularly 
rich, belong to the class of �-eutectoids with a very low 
solubility in �-Ti [74–76]. When these elements exceed this 
level of solubility, they form (Cr,Fe,Ni)2Ti intermetallics 
[77], which can significantly modify the resulting mechani-
cal properties of the alloy [78, 79]. Given that this is a con-
tamination, it is not surprising that the content of these ele-
ments does not exhibit a real trend upstream and downstream 
of the seventh run (where the first contamination probably 
occurred) but rather appears as a random fluctuation. In 
fact, what is nevertheless evident is a substantial shift in Fe 
content downstream of the sixth run. The presence of these 
intermetallics was further highlighted by scanning electron 
microscope-mounted electron probe X-ray microanalysis 
(SEM-EPMA) and energy dispersive X-ray spectrometry 
(EDS). Figure 6a shows the presence of a thin precipitate 
inside the Ti-6Al-4V lamellar matrix. It is worth noting that 
a thin shrinkage crack is also evident within the precipitate: 
this crack does not extend to the surrounding metal matrix, 
which is further evidence of the embrittlement effect due 
to the presence of Cr and Fe. The colour maps presented 
in Fig. 6b-e further confirm the higher concentration of Cr 
and Fe in the precipitate compared to the Ti-6Al-4V matrix. 
Finally, in the EDS spectrum of the precipitate, presented in 
Fig. 7a, both Fe (peak at 6.404 keV) and Cr (peak at 5.415 
keV) are clearly visible. Conversely, as shown in Fig. 7b, 

Fig. 7   EDS spectra: a Fe- and Cr-rich precipitate in the Ti-6Al-4V matrix, b Ti-6Al-4V matrix
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neither of these two peaks is detectable in the EDS spectrum 
of the Ti-6Al-4V matrix.

4 � Conclusions

Mechanical properties of titanium parts did not see a drastic 
variation due to powder reuse, which turned out to affect 
them only marginally, and in this specific case positively. 
The erosive effect of titanium powders on the walls of steel 
sieve, that caused the inclusion of steel powder in the tita-
nium one, suggests the use of a sieve of the same material 
as the powder to be processed, or at least a harder one. In 
the specific case analysed in this work, the number of reuses 
was small enough not to show such detrimental changes 
in mechanical properties, but a higher number of reuses 
could have caused more significant, and probably negative, 
variation.

Obtained results confirm the reusability of AM pow-
ders, at least for a certain number of cycles, while main-
taining compliance with manufacturing standards, con-
tributing to the possibility for AM processes to affirm 
themselves as more affordable and environmentally 
friendly. On the other hand, these results also suggest 
the use of measures to minimise the undesirable effect of 
external contaminants, especially in the case of material 
that are very susceptible to contamination, such as tita-
nium and titanium alloys.

The powder recycling strategy and the procedures for 
part quality assurance and data analysis proposed in this 
work can be adapted to other similar processes and other 
materials.
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