Skip to main content
Log in

The brazing of Al2O3 ceramic and other materials

  • Critical Review
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

Al2O3 ceramic has a series of excellent properties such as small dielectric constant, large specific volume resistance, and high thermal impact strength. The joining of Al2O3 ceramic and other materials can bring into full play the advantages of Al2O3 ceramic. Because of the different coefficient of thermal expansion (CTE) and Young’s modulus between Al2O3 ceramic and other materials, the joining of Al2O3 ceramic and other materials is difficult. The most commonly used method for joining Al2O3 ceramic and other materials is brazing. Besides, transient liquid phase (TLP) bonding is also an appropriate method to realize the bonding of Al2O3 ceramic. However, several challenges must be overcome to get reliable joints. In this paper, the brazing processes of Al2O3 ceramic and other materials are discussed and analyzed. The characteristics of bonding between Al2O3 ceramic and other materials are mentioned. In addition, a particular emphasis has been put on the main problems of the Al2O3 ceramic joining process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Similar content being viewed by others

Availability of data and materials

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

References

  1. Asthana R, Singh M (2008) Joining of partially sintered alumina to alumina, titanium, Hastealloy and C-SiC composite using Ag–Cu brazes. J Eur Ceram Soc 28(3):617–631. https://doi.org/10.1016/j.jeurceramsoc.2007.06.017

    Article  Google Scholar 

  2. Kar A, Mandal S, Ghosh RN, Ghosh TK, Ray AK (2007) Role of Ti diffusion on the formation of phases in the Al2O3–Al2O3 brazed interface. J Mater Sci 42(14):5556–5561. https://doi.org/10.1007/s10853-006-1092-6

    Article  Google Scholar 

  3. Meir S, Kalabukhov S, Frage N, Hayun S (2015) Mechanical properties of Al2O3\Ti composites fabricated by spark plasma sintering. Ceram Int 41(3):4637–4643. https://doi.org/10.1016/j.ceramint.2014.12.008

    Article  Google Scholar 

  4. Luan XG, Wang JQ, Zou Y, Cheng LF (2016) A novel high temperature adhesive for bonding Al2O3 ceramic. Mat Sci Eng a-Struct 651:517–523. https://doi.org/10.1016/j.msea.2015.11.008

    Article  Google Scholar 

  5. Jarman JD, Fahrenholtz WG, Hilmas GE, Watts JL, King DS (2021) Characterization of fusion welded ceramics in the SiC-ZrB2-ZrC system. J Eur Ceram Soc 41(4):2255–2262. https://doi.org/10.1016/j.jeurceramsoc.2020.10.067

    Article  Google Scholar 

  6. Koehler G, Thurm B, Fischer B (1989) Diffusion welding of graphite with ceramics 38:162–163

    Google Scholar 

  7. DebRoy T, David S (1995) Physical processes in fusion welding. Rev Mod Phys 67(1):85

    Article  Google Scholar 

  8. Chen H, Li LJ, Kemps R, Michielsen B, Jacobs M, Snijkers F, Middelkoop V (2015) Reactive air brazing for sealing mixed ionic electronic conducting hollow fibre membranes. Acta Mater 88:74–82. https://doi.org/10.1016/j.actamat.2015.01.029

    Article  Google Scholar 

  9. Mattia D, Desmaison-Brut M, Tetard D, Desmaison J (2005) Wetting of HIP AlN-TiB2 ceramic composites by liquid metals and alloys. J Eur Ceram Soc 25(10):1797–1803. https://doi.org/10.1016/j.jeurceramsoc.2004.12.012

    Article  Google Scholar 

  10. Raju K, Muksin KS, Song KS, Yu JH, Yoon DH (2016) Joining of metal-ceramic using reactive air brazing for oxygen transport membrane applications. Mater Design 109:233–241. https://doi.org/10.1016/j.matdes.2016.07.068

    Article  Google Scholar 

  11. Ohuchi FS, Kohyama M (1991) Electronic structure and chemical reactions at metal-alumina and metal-aluminum nitride interfaces. J Am Ceram Soc 74(6):1163–1187. https://doi.org/10.1111/j.1151-2916.1991.tb04086.x

    Article  Google Scholar 

  12. Tillmann W, Lugscheider E, Xu R, Indacochea JE (1996) Kinetic and microstructural aspects of the reaction layer at ceramic/metal braze joints. J Mater Sci 31(2):445–452. https://doi.org/10.1007/bf01139163

    Article  Google Scholar 

  13. Naka M, Tsuyoshi M, Okamoto I (1990) Ti-precoating effect on wetting and joining of Cu to SiC. ISIJ Int 30(12):1108–1113. https://doi.org/10.2355/isijinternational.30.1108

    Article  Google Scholar 

  14. Naidich JV (1981) The wettability of solids by liquid metals. In: Progress in surface and membrane science, vol 14. Elsevier, pp 353–484

  15. Nicholas MG, Mortimer DA (1985) Ceramic/metal joining for structural applications. Mater Sci Tech-Lond 1(9):657–665. https://doi.org/10.1179/mst.1985.1.9.657

    Article  Google Scholar 

  16. Ning HL, Lan LF, Wang L, Peng JB, Peng ZJ, Ma JS (2014) Interface reaction thermodynamics of AgCuTi brazing filler metal and alumina ceramic. Advanced Materials Research 936:1239–1246. https://doi.org/10.4028/www.scientific.net/AMR.936.1239

    Article  Google Scholar 

  17. Paulasto M, Kivilahti J (2011) Metallurgical reactions controlling the brazing of Al2O3 with Ag–Cu–Ti filler alloys. J Mater Res 13(2):343–352. https://doi.org/10.1557/jmr.1998.0046

    Article  Google Scholar 

  18. Mandal S, Rao V, Ray AK (2004) Characterization of the brazed joint interface between Al2O3 and (Ag-Cu-Ti). J Mater Sci 39(16–17):5587–5590. https://doi.org/10.1023/B:Jmsc.0000039295.03229.25

    Article  Google Scholar 

  19. Janickovic D, Sebo P, Duhaj P, Svec P (2001) The rapidly quenched Ag-Cu-Ti ribbons for active joining of ceramics. Mat Sci Eng a-Struct 304:569–573. https://doi.org/10.1016/S0921-5093(00)01536-7

    Article  Google Scholar 

  20. Santella ML, Horton JA, Pak JJ (1990) Microstructure of alumina brazed with a silver-copper-titanium alloy. J Am Ceram Soc 73(6):1785–1787. https://doi.org/10.1111/j.1151-2916.1990.tb09835.x

    Article  Google Scholar 

  21. Tressler RE, Moore TL, Crane RL (1973) Reactivity and interface characteristics of titanium-alumina composites. J Mater Sci 8(2):151–161. https://doi.org/10.1007/bf00550662

    Article  Google Scholar 

  22. Guo W, She Z, Xue H, Zhang X (2020) Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation. Ceram Int 46(4):5430–5435. https://doi.org/10.1016/j.ceramint.2019.10.301

    Article  Google Scholar 

  23. Hao HQ, Jin ZH, Wang XT (1994) The influence of brazing conditions on joint strength in Al2O3/Al2O3 bonding. J Mater Sci 29(19):5041–5046. https://doi.org/10.1007/bf01151094

    Article  Google Scholar 

  24. Dandapat N, Ghosh S, Guha BK, Datta S, Balla VK (2016) Effect of processing parameters on thermal cycling behavior of Al2O3-Al2O3 brazed Joints. Metall Mater Trans B 47(5):2946–2953. https://doi.org/10.1007/s11663-016-0731-9

    Article  Google Scholar 

  25. Kassam TA, Nadendla HB, Ludford N, Buisman I (2016) The effect of post-grinding heat treatment of alumina and Ag-Cu-Ti braze preform thickness on the microstructure and mechanical properties of alumina-to-alumina-brazed joints. J Mater Eng Perform 25(8):3218–3230. https://doi.org/10.1007/s11665-016-2070-z

    Article  Google Scholar 

  26. Ali M, Knowles KM, Mallinson PM, Fernie JA (2015) Microstructural evolution and characterisation of interfacial phases in Al2O3/Ag–Cu–Ti/Al­2O3 braze joints. Acta Mater 96:143–158. https://doi.org/10.1016/j.actamat.2015.05.048

    Article  Google Scholar 

  27. Yu MH, Zhou B, Bi DB, Shaw D (2010) Preparation of graded multilayer materials and evaluation of residual stresses. Mater Design 31(5):2478–2482. https://doi.org/10.1016/j.matdes.2009.11.047

    Article  Google Scholar 

  28. He YM, Zhang J, Sun Y, Liu CF (2010) Microstructure and mechanical properties of the Si3N4/42CrMo steel joints brazed with Ag–Cu–Ti+Mo composite filler. J Eur Ceram Soc 30(15):3245–3251. https://doi.org/10.1016/j.jeurceramsoc.2010.07.005

    Article  Google Scholar 

  29. Lin GB, Huang JH, Zhang H, Liu HY (2013) Microstructure and mechanical performance of brazed joints of Cf/SiC composite and Ti alloy using Ag–Cu–Ti–W. Sci Technol Weld Joining 11(4):379–383. https://doi.org/10.1179/174329306x113235

    Article  Google Scholar 

  30. Lin GB, Huang JH (2013) Brazed joints of Cf–SiC composite to Ti alloy using Ag–Cu–Ti–(Ti + C) mixed powder as interlayer. Powder Metall 49(4):345–348. https://doi.org/10.1179/174329006x113454

    Article  Google Scholar 

  31. Lin GB, Huang JH, Zhang H, Zhao XK (2006) Joints of Cf/SiC composite to Ti-alloy with in-situ synthesized TiCx improved brazing layers. Mater Trans 47(4):1261–1263. https://doi.org/10.2320/matertrans.47.1261

    Article  Google Scholar 

  32. Galli M, Cugnoni J, Botsis J, Janczak-Rusch J (2008) Identification of the matrix elastoplastic properties in reinforced active brazing alloys. Compos Part a-Appl S 39(6):972–978. https://doi.org/10.1016/j.compositesa.2008.03.007

    Article  Google Scholar 

  33. Blugan G, Kuebler J, Bissig V, Janczak-Rusch J (2007) Brazing of silicon nitride ceramic composite to steel using SiC-particle-reinforced active brazing alloy. Ceram Int 33(6):1033–1039. https://doi.org/10.1016/j.ceramint.2006.03.010

    Article  Google Scholar 

  34. Yang JG, Fang HY, Wan X (2005) Al2O3/Al2O3 joint brazed with Al2O3-particulate-contained composite Ag-Cu-Ti filler material. J Mater Sci Technol 21(5):782–784

    Google Scholar 

  35. Xiong J, Huang J, Wang Z, Lin G, Zhang H, Zhao X (2013) Joining of Cf/SiC composite to Ti alloy using composite filler materials. Mater Sci Tech-Lond 25(8):1046–1050. https://doi.org/10.1179/174328408x378889

    Article  Google Scholar 

  36. Zhu M, Chung DDL (1994) Active brazing alloy containing carbon fibers for metal-ceramic joining. J Am Ceram Soc 77(10):2712–2720. https://doi.org/10.1111/j.1151-2916.1994.tb04666.x

    Article  Google Scholar 

  37. Zhu M, Chung DDL (1997) Improving the strength of brazed joints to alumina by adding carbon fibres. J Mater Sci 32(20):5321–5333. https://doi.org/10.1023/a:1018666827969

    Article  Google Scholar 

  38. Lin G, Huang J, Zhang H (2007) Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers. J Mater Process Technol 189(1–3):256–261. https://doi.org/10.1016/j.jmatprotec.2007.01.031

    Article  Google Scholar 

  39. Xu JA, Li ZY, Zhu WH, Liu ZL, Liu WJ (2007) Investigation on microstructural characterization of in situ TiB/Al metal matrix composite by laser cladding. Mat Sci Eng a-Struct 447(1–2):307–313. https://doi.org/10.1016/j.msea.2006.10.057

    Article  Google Scholar 

  40. Yang M, Lin T, He P (2012) Microstructure evolution of Al2O3/Al2O3 joint brazed with Ag–Cu–Ti+B+TiH2 composite filler. Ceram Int 38(1):289–294. https://doi.org/10.1016/j.ceramint.2011.07.005

    Article  Google Scholar 

  41. Kim MD, Muhamad FRW, Raju K, Kim S, Yu JH, Park CD, Yoon DH (2018) Efficacy of Ag-CuO filler tape for the reactive air brazing of ceramic-metal joints. J Korean Ceram Soc 55(5):492–497. https://doi.org/10.4191/kcers.2018.55.5.05

    Article  Google Scholar 

  42. Si X, Cao J, Kiebach R, Xu Y, Xu H, Talic B, Feng J (2018) Joining of solid oxide fuel/electrolysis cells at low temperature: a novel method to obtain high strength seals already at 300 °C. J Power Sources 400:296–304. https://doi.org/10.1016/j.jpowsour.2018.08.046

    Article  Google Scholar 

  43. Le S, Shen Z, Zhu X, Zhou X, Yan Y, Sun K, Zhang N, Yuan Y, Mao Y (2010) Effective Ag–CuO sealant for planar solid oxide fuel cells. J Alloy Compd 496(1–2):96–99. https://doi.org/10.1016/j.jallcom.2010.01.131

    Article  Google Scholar 

  44. Scott Weil K, Coyle CA, Kim JY, Hardy JS (2011) The effect of composition on the wetting behavior and joint strength of the Ag-CuO reactive air braze. MRS Proceedings 756. https://doi.org/10.1557/proc-756-ff4.4

  45. Singh RN (2006) High-temperature seals for solid oxide fuel cells (SOFC). J Mater Eng Perform 15(4):422–426. https://doi.org/10.1361/105994906x117224

    Article  Google Scholar 

  46. Si XQ, Cao JA, Song XG, Qu Y, Feng JC (2017) Reactive air brazing of YSZ ceramic with novel Al2O3 nanoparticles reinforced Ag-CuO-Al2O3 composite filler: Microstructure and joint properties. Mater Design 114:176–184. https://doi.org/10.1016/j.matdes.2016.10.062

    Article  Google Scholar 

  47. Luo Y, Song XG, Hu SP, Xu ZQ, Li ZH, Lei Y (2021) Reactive air brazing of Al2O3 ceramic with Ag-CuO-Pt composite fillers: microstructure and joint properties. J Eur Ceram Soc 41(2):1407–1414. https://doi.org/10.1016/j.jeurceramsoc.2020.10.008

    Article  Google Scholar 

  48. Kohama K (2020) Joining of alumina ceramics using silicon–magnesium composite filler for high-temperature applications. Sci Technol Weld Joining 25(5):383–390. https://doi.org/10.1080/13621718.2020.1714874

    Article  Google Scholar 

  49. Li YX, Chen C, Yi RX, Ouyang YW (2020) Review: special brazing and soldering. J Manuf Process 60:608–635. https://doi.org/10.1016/j.jmapro.2020.10.049

    Article  Google Scholar 

  50. Xiao Y, Zhang YQ, Zhao K, Li S, Wang L, Xiao J, Liu L (2017) Ultrasound-assisted soldering of alumina using Ni-foam reinforced Sn-based composite solders. Ceram Int 43(16):14314–14320. https://doi.org/10.1016/j.ceramint.2017.07.185

    Article  Google Scholar 

  51. Lu Y, Zhu MX, Zhang Q, Hu T, Wang J, Zheng KH (2020) Microstructure evolution and bonding strength of the Al2O3/Al2O3 interface brazed via Ni-Ti intermetallic phases. J Eur Ceram Soc 40(4):1496–1504. https://doi.org/10.1016/j.jeurceramsoc.2019.11.066

    Article  Google Scholar 

  52. Maciel T, Chang I, Strangwood M, de, (2006) Castro WB Brazing of Al2O3 with rapidly solidified melt spun Ni-Cr-P alloy ribbons. Materials science forum. Trans Tech Publ, pp 473–477

    Google Scholar 

  53. Chen ZB, Bian H, Niu CN, Song XG, Lei YZ, Jin C, Cao J, Feng JC (2018) Wetting and brazing of chromium film-deposited alumina using AgCu filler metal. J Mater Eng Perform 27(10):5470–5477. https://doi.org/10.1007/s11665-018-3557-6

    Article  Google Scholar 

  54. Ma BY, Tan ZX, Qi XB, Li RB, Li GY, Shang HL (2020) Direct brazing of Al2O3 without reaction layer by self-removing oxide film aluminum foil solder. J Ceram Soc Jpn 128(6):305–309. https://doi.org/10.2109/jcersj2.19223

    Article  Google Scholar 

  55. Bengisu M, Fahrenholtz W (2004) Reactive joining of alumina by oxidation of Al interlayers. Key Engineering Materials. Trans Tech Publ, pp 655–658

    Google Scholar 

  56. Voytovych R, Robaut F, Eustathopoulos N (2006) The relation between wetting and-interfacial chemistry in the CuAgTi/alumina system. Acta Mater 54(8):2205–2214. https://doi.org/10.1016/j.actamat.2005.11.048

    Article  Google Scholar 

  57. Laik A, Mishra P, Bhanumurthy K, Kale GB, Kashyap BP (2013) Microstructural evolution during reactive brazing of alumina to Inconel 600 using Ag-based alloy. Acta Mater 61(1):126–138. https://doi.org/10.1016/j.actamat.2012.09.040

    Article  Google Scholar 

  58. Li JQ, Xiao P (2002) Joining alumina using an alumina/metal composite. J Eur Ceram Soc 22(8):1225–1233. https://doi.org/10.1016/S0955-2219(01)00428-9

    Article  Google Scholar 

  59. He F, Cheng J-s, Deng D-w, Wang J (2010) Structure of Bi2O3-ZnO-B2O3 system low-melting sealing glass. J Cent South Univ Technol 17(2):257–262. https://doi.org/10.1007/s11771-010-0039-x

    Article  Google Scholar 

  60. Bale S, Rahman S, Awasthi A, Sathe V (2008) Role of Bi2O3 content on physical, optical and vibrational studies in Bi2O3–ZnO–B2O3 glasses. J Alloys Compd 460(1–2):699–703

    Article  Google Scholar 

  61. Fernie JA, Drew RAL, Knowles KM (2009) Joining of engineering ceramics. Int Mater Rev 54(5):283–331. https://doi.org/10.1179/174328009x461078

    Article  Google Scholar 

  62. Casalegno V, Kondo S, Hinoki T, Salvo M, Czyrska-Filemonowicz A, Moskalewicz T, Katoh Y, Ferraris M (2018) CaO-Al2O3 glass-ceramic as a joining material for SiC based components: a microstructural study of the effect of Si-ion irradiation. J Nucl Mater 501:172–180. https://doi.org/10.1016/j.jnucmat.2018.01.033

    Article  Google Scholar 

  63. Geetha K, Umarji AM, Kutty TRN (2000) Ceramic joining through reactive wetting of alumina with calcium aluminate refractory cements. B Mater Sci 23(4):243–248. https://doi.org/10.1007/Bf02720077

    Article  Google Scholar 

  64. Zhu WW, Chen JC, Jiang CH, Hao CY, Zhang JS (2013) Joining of porous alumina with a CaO-Al2O3-SiO2 glass-ceramic. J Am Ceram Soc 96(6):1738–1744. https://doi.org/10.1111/jace.12310

    Article  Google Scholar 

  65. Zhu W, Chen J, Hao C, Zhang J (2014) Microstructure and strength of Al2O3/Al2O3 joints bonded with ZnO–Al2O3–B2O3–SiO2 glass–ceramic. J Mater Sci Technol 30(9):944–948. https://doi.org/10.1016/j.jmst.2014.01.011

    Article  Google Scholar 

  66. Zhu WW, Zhang H, Xue DH, Jiang HF, Ran X (2019) Joining alumina ceramic by using glass ceramic filler with high crystallinity for high temperature application. Ceram Int 45(16):20999–21003. https://doi.org/10.1016/j.ceramint.2019.06.285

    Article  Google Scholar 

  67. Wang C, Lin PP, Liu X, Li G, Lin TS, He P, Long WM, Liu HZ (2020) Microstructure evolution and cooperative reinforcement mechanisms of Al2O3/Al2O3 joints brazed by low-melting borosilicate glass. Ceram Int 46(1):186–195. https://doi.org/10.1016/j.ceramint.2019.08.247

    Article  Google Scholar 

  68. Guo W, Lin TS, He P, Wang T, Wang YN (2017) Microstructure evolution and mechanical properties of ZnAl2O4-reinforced Al2O3/Al2O3 joints brazed with a bismuth borate zinc glass. Mater Design 119:303–310. https://doi.org/10.1016/j.matdes.2017.01.053

    Article  Google Scholar 

  69. Guo W, Fu L, He P, Lin TS, Wan ML, Hou J, Wu YH, Liu XC, Shen ZK (2019) Air-brazed Al2O3 joint with a novel bismuth glass. Ceram Int 45(12):15213–15222. https://doi.org/10.1016/j.ceramint.2019.05.007

    Article  Google Scholar 

  70. Niu W, Chen Q, Lin P, Cui J, Lin T, Guo W, He P, Ai C, Zhuang Y, Chen L, Duan X (2020) The formation mechanism of pores and unbonding in the Al2O3/Al2O3 joints brazed by 50Bi2O3–35B2O3–15ZnO glass. Ceram Int 46(5):5575–5585. https://doi.org/10.1016/j.ceramint.2019.10.277

    Article  Google Scholar 

  71. Guo RS, Guo DL, Zhao D, Yang ZF, Chen YR (2002) Low temperature ageing in water vapor and mechanical properties of ZTA ceramics. Mater Lett 56(6):1014–1018. https://doi.org/10.1016/S0167-577x(02)00666-3

    Article  Google Scholar 

  72. Ganesh I, Olhero SM, Torres PMC, Alves FJ, Ferreira JMF (2009) Hydrolysis-induced aqueous gelcasting for near-net shape forming of ZTA ceramic composites. J Eur Ceram Soc 29(8):1393–1401. https://doi.org/10.1016/j.jeurceramsoc.2008.08.033

    Article  Google Scholar 

  73. Fukushima KA, Sadoun MJ, Cesar PF, Mainjot AK (2014) Residual stress profiles in veneering ceramic on Y-TZP, alumina and ZTA frameworks: measurement by hole-drilling. Dent Mater 30(2):105–111. https://doi.org/10.1016/j.dental.2013.10.005

    Article  Google Scholar 

  74. Wang N, Wang DP, Yang ZW, Wang Y, Liu XG (2017) Zirconia ceramic and Nb joints brazed with Mo-particle-reinforced Ag-Cu-Ti composite fillers: interfacial microstructure and formation mechanism. Ceram Int 43(13):9636–9643. https://doi.org/10.1016/j.ceramint.2017.04.133

    Article  Google Scholar 

  75. Zheng KH, Zhang Q, Wang J, Lu Y (2021) Microstructural characterization and mechanical properties of ZTA/ZTA joint brazed by Ni50Ti50 filler metal. Ceram Int 47(2):2758–2765. https://doi.org/10.1016/j.ceramint.2020.09.129

    Article  Google Scholar 

  76. Zheng KH, Zhang Q, Wang J, Lu Y (2021) Interfacial microstructure and mechanical properties of ZTA/ZTA joints brazed with Ni-Ti filler metal. J Eur Ceram Soc 41(3):2076–2084. https://doi.org/10.1016/j.jeurceramsoc.2020.10.073

    Article  Google Scholar 

  77. Esposito L, Bellosi A (2001) Joining of ceramic oxides by liquid wetting and capillarity. Scripta Mater 45(7):759–766. https://doi.org/10.1016/S1359-6462(01)01092-2

    Article  Google Scholar 

  78. Guo CH, Zhu WW, Shen YX, Sui Q, Liu YD, Ran X (2020) Joining ZTA ceramic by using Dy2O3-Al2O3-SiO2 glass ceramic filler. J Eur Ceram Soc 40(15):5819–5828. https://doi.org/10.1016/j.jeurceramsoc.2020.06.011

    Article  Google Scholar 

  79. Ma C, Ding W, Xu J, Fu Y (2015) Influence of alumina bubble particles on microstructure and mechanical strength in porous Cu–Sn–Ti metals. Mater Des 1980–2015(65):50–56. https://doi.org/10.1016/j.matdes.2014.09.002

    Article  Google Scholar 

  80. Zhao YX, Wang MR, Cao J, Song XG, Tang DY, Feng JC (2015) Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler. Mater Design 76:40–46. https://doi.org/10.1016/j.matdes.2015.03.046

    Article  Google Scholar 

  81. Mandal S, Ray AK, Ray AK (2004) Correlation between the mechanical properties and the microstructural behaviour of Al2O3–(Ag–Cu–Ti) brazed joints. Mater Sci Eng, A 383(2):235–244. https://doi.org/10.1016/j.msea.2004.06.002

    Article  Google Scholar 

  82. Kozlova O, Voytovych R, Eustathopoulos N (2011) Initial stages of wetting of alumina by reactive CuAgTi alloys. Scripta Mater 65(1):13–16. https://doi.org/10.1016/j.scriptamat.2011.03.026

    Article  Google Scholar 

  83. Lin T, Yang M, He P, Huang C, Pan F, Huang Y (2011) Effect of in situ synthesized TiB whisker on microstructure and mechanical properties of carbon–carbon composite and TiBw/Ti–6Al–4V composite joint. Mater Design 32(8–9):4553–4558. https://doi.org/10.1016/j.matdes.2011.04.028

    Article  Google Scholar 

  84. Yang Z, Zhang L, Tian X, Liu Y, He P, Feng J (2013) Interfacial microstructure and mechanical properties of TiAl and C/SiC joint brazed with TiH2–Ni–B brazing powder. Mater Charact 79:52–59. https://doi.org/10.1016/j.matchar.2013.02.010

    Article  Google Scholar 

  85. Wang Y, Yang ZW, Zhang LX, Wang DP, Feng JC (2015) Low-temperature diffusion brazing of actively metallized Al2O3 ceramic tube and 5A05 aluminum alloy. Mater Design 86:328–337. https://doi.org/10.1016/j.matdes.2015.07.112

    Article  Google Scholar 

  86. Gorjan L, Blugan G, Boretius M, De La Pierre S, Ferraris M, Casalegno V, Rizzo S, Graule T, Kuebler J (2015) Fracture behavior of soldered Al2O3 ceramic to A356 aluminum alloy and resistance of the joint to low temperature exposure. Mater Design 88:889–896. https://doi.org/10.1016/j.matdes.2015.09.067

    Article  Google Scholar 

  87. Zhang J, Zhang Q, Liu C, Wang G, Xuan Y (2015) Effect of brazing temperature on microstructure and mechanical properties of 2D Cf/SiC and Nb joints brazed with Co–Ti–Nb filler alloy. Mater Sci Eng, A 634:116–122. https://doi.org/10.1016/j.msea.2015.03.013

    Article  Google Scholar 

  88. Niu GB, Wang DP, Yang ZW, Wang Y (2017) Microstructure and mechanical properties of Al2O3/TiAl joints brazed with B powders reinforced Ag-Cu-Ti based composite fillers. Ceram Int 43(1):439–450. https://doi.org/10.1016/j.ceramint.2016.09.178

    Article  Google Scholar 

  89. Qiu Q, Wang Y, Yang Z, Wang D (2016) Microstructure and mechanical properties of Al2O3 ceramic and Ti6Al4V alloy joint brazed with inactive Ag–Cu and Ag–Cu + B. J Eur Ceram Soc 36(8):2067–2074. https://doi.org/10.1016/j.jeurceramsoc.2016.02.033

    Article  Google Scholar 

  90. Wang Y, Yang ZW, Zhang LX, Wang DP, Feng JC (2016) Microstructure and mechanical properties of SiO2-BN ceramic and Invar alloy joints brazed with Ag–Cu–Ti+TiH2+BN composite filler. Journal of Materiomics 2(1):66–74. https://doi.org/10.1016/j.jmat.2015.10.003

    Article  Google Scholar 

  91. Zhao Y, Wang Y, Yang Z, Wang D (2019) Relief of residual stress in Al2O3/Nb joints brazed with Ag-Cu-Ti/Cu/Ag-Cu-Ti composite interlayer. Archives of Civil and Mechanical Engineering 19(1):1–10. https://doi.org/10.1016/j.acme.2018.08.001

    Article  Google Scholar 

  92. Wang Y, Zhao YT, Yang ZW, Wang DP (2018) Microstructure, residual stress and mechanical properties of Al2O3/Nb joints vacuum-brazed with two Ag-based active fillers. Vacuum 158:14–23. https://doi.org/10.1016/j.vacuum.2018.09.028

    Article  Google Scholar 

  93. Zhu DY, Ma ML, Jin ZH, Wang YL (1999) The effect of molybdenum net interlayer on thermal shock resistance of Al2O3/Nb brazed joint. J Mater Process Technol 96(1–3):19–21

    Google Scholar 

  94. Yu ZS, Yang P, Li RF, Qi K (2006) Crack formation mechanisms in Al2O3/Kovar brazed joint. Mater Sci Tech-Lond 22(7):864–866. https://doi.org/10.1179/174328406x102435

    Article  Google Scholar 

  95. Yu ZH, Yang P, Qi K, Li RF (2008) Effects of Mo interlayer on suppressing cracks in Al2O3/Kovar brazed joint. Rare Metal Mat Eng 37(12):2118–2121. https://doi.org/10.1016/S1875-5372(10)60009-4

    Article  Google Scholar 

  96. Suenaga S, Koyama M, Arai S, Nakahashi M (2011) Solid-state reactions of the Ag–Cu–Ti thin film–Al2O3 substrate system. J Mater Res 8(8):1805–1811. https://doi.org/10.1557/jmr.1993.1805

    Article  Google Scholar 

  97. Xin CL, Yan JZ, Li N, Liu WB, Du JS, Cao YT, Shi HJ (2016) Microstructural evolution during the brazing of Al2O3 ceramic to kovar alloy by sputtering Ti/Mo films on the ceramic surface. Ceram Int 42(11):12586–12593. https://doi.org/10.1016/j.ceramint.2016.04.094

    Article  Google Scholar 

  98. Zhang J, Liu JY, Wang TP (2018) Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag-Cu-Ti/Cu/Ag-Cu multi-layered filler. J Mater Sci Technol 34(4):713–719. https://doi.org/10.1016/j.jmst.2017.07.001

    Article  Google Scholar 

  99. Wang Y, Jin CK, Yang ZW, Wang DP (2019) Effects of Cu interlayers on the microstructure and mechanical properties of Al2O3/AgCuTi/Kovar brazed joints. Int J Appl Ceram Tec 16(3):896–906. https://doi.org/10.1111/ijac.13147

    Article  Google Scholar 

  100. Qiao GJ, Wang HJ, Gao JQ, Jin ZH (2005) Brazing Al2O3 to Kovar alloy with Ni/Ti/Ni interlayer and dramatic increasing of joint strength after thermal cycles. Materials Science Forum. Trans Tech Publ, pp 481–484

    Google Scholar 

  101. Weng YC, Liu HX, Ji SP, Huang Q, Wu H, Li ZB, Wu ZZ, Wang HY, Tong LP, Fu RKY, Chu PK, Pan F (2018) A promising orthopedic implant material with enhanced osteogenic and antibacterial activity: Al2O3-coated aluminum alloy. Appl Surf Sci 457:1025–1034. https://doi.org/10.1016/j.apsusc.2018.06.233

    Article  Google Scholar 

  102. Hussein MA, Kumar M, Drew R, Al-Aqeeli N (2018) Electrochemical corrosion and In vitro bioactivity of nano-grained biomedical Ti-20Nb-13Zr alloy in a simulated body fluid. Materials 11(1):26. https://doi.org/10.3390/ma11010026

    Article  Google Scholar 

  103. Ozdemir Z, Ozdemir A, Basim GB (2016) Application of chemical mechanical polishing process on titanium based implants. Mater Sci Eng C Mater Biol Appl 68:383–396. https://doi.org/10.1016/j.msec.2016.06.002

    Article  Google Scholar 

  104. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci 54(3):397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  Google Scholar 

  105. Jiang G, Mishler D, Davis R, Mobley JP, Schulman JH (2005) Zirconia to Ti-6Al-4V braze joint for implantable biomedical device. J Biomed Mater Res B Appl Biomater 72(2):316–321. https://doi.org/10.1002/jbm.b.30161

    Article  Google Scholar 

  106. Yang M, Lin T, He P, Huang Y (2011) Brazing of Al2O3 to Ti–6Al–4V alloy with in situ synthesized TiB-whisker-reinforced active brazing alloy. Ceram Int 37(8):3029–3035. https://doi.org/10.1016/j.ceramint.2011.05.004

    Article  Google Scholar 

  107. Niu GB, Wang DP, Yang ZW, Wang Y (2016) Microstructure and mechanical properties of Al 2 O 3 ceramic and TiAl alloy joints brazed with Ag–Cu–Ti filler metal. Ceram Int 42(6):6924–6934. https://doi.org/10.1016/j.ceramint.2016.01.078

    Article  Google Scholar 

  108. Yang WQ, Yang XN, Dai W, Chen LT, Lin JC, Ao R, Ma XF, Xing LL (2019) In situ TiB-network-reinforced Al2O3/Ti6Al4V joints. Ceram Int 45(14):18119–18123. https://doi.org/10.1016/j.ceramint.2019.05.264

    Article  Google Scholar 

  109. Su CY, Zhuang XZ, Pan CT (2013) Al2O3/SUS304 brazing via AgCuTi-W composite as active filler. J Mater Eng Perform 23(3):906–911. https://doi.org/10.1007/s11665-013-0837-z

    Article  Google Scholar 

  110. Yang ZW, Lin JM, Wang Y, Wang DP (2017) Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag-Cu-Ti plus W composite filler. Vacuum 143:294–302. https://doi.org/10.1016/j.vacuum.2017.06.020

    Article  Google Scholar 

  111. Liu D, Niu HW, Zhou YH, Song XG, Tang DY, Feng JC (2015) Brazing continuous carbon fiber reinforced Li2O–Al2O3–SiO2 ceramic matrix composites to Ti–6Al–4V alloy using Ag–Cu–Ti active filler metal. Mater Design 87:42–48. https://doi.org/10.1016/j.matdes.2015.08.005

    Article  Google Scholar 

  112. Kar A, Ray AK (2007) Characterization of Al2O3–304 stainless steel braze joint interface. Mater Lett 61(14–15):2982–2985. https://doi.org/10.1016/j.matlet.2006.10.058

    Article  Google Scholar 

  113. Heo H, Kim G, Park YC, Jung K, Kang CY (2018) Effect of bonding temperature on crack occurrences in Al2O3/SS 430 joints using Cu-based brazing alloys. Metals-Basel 8(10):752. https://doi.org/10.3390/met8100752

    Article  Google Scholar 

  114. Zhao BR, Li GB, Gao P, Lei TQ, Song SC, Cao XJ (2005) Influence of nickel ion implantation on the inactive braze joining abilities of Al2O3 ceramics. Nucl Instrum Meth B 239(3):147–151. https://doi.org/10.1016/j.nimb.2005.03.289

    Article  Google Scholar 

  115. Chen X, Yan J, Gao F, Wei J, Xu Z, Fan G (2013) Interaction behaviors at the interface between liquid Al–Si and solid Ti–6Al–4V in ultrasonic-assisted brazing in air. Ultrason Sonochem 20(1):144–154

    Article  Google Scholar 

  116. Xiao Y, Ji H, Li M, Kim J (2014) Ultrasound-induced equiaxial flower-like CuZn5/Al composite microstructure formation in Al/Zn–Al/Cu joint. Mater Sci Eng, A 594:135–139. https://doi.org/10.1016/j.msea.2013.11.063

    Article  Google Scholar 

  117. Ji H, Chen H, Li M (2017) Overwhelming reaction enhanced by ultrasonics during brazing of alumina to copper in air by Zn-14Al hypereutectic filler. Ultrason Sonochem 35(Pt A):61–71. https://doi.org/10.1016/j.ultsonch.2016.09.003

    Article  Google Scholar 

  118. Chen HY, Ren XW, Guo W, Shen ZK, Liu XC, Cao J (2020) Effects of glass composition and joining parameters on microstructural evolution and mechanical properties of Al2O3/Cu joints brazed with Bi2O3-B2O3-ZnO glass. J Manuf Process 56:735–745. https://doi.org/10.1016/j.jmapro.2020.05.035

    Article  Google Scholar 

  119. Fu W, Hu SP, Song XG, Jin C, Li JX, Zhao YX, Cao J, Wang GD (2017) Effect of Ti content on the metallization layer and copper/alumina brazed joint. Ceram Int 43(16):13206–13213. https://doi.org/10.1016/j.ceramint.2017.07.016

    Article  Google Scholar 

  120. Dobrovinskaya ER, Lytvynov LA, Pishchik V (2009) Sapphire: material, manufacturing, applications. Springer Science & Business Media

  121. Gurel K, Wittwer VJ, Hakobyan S, Schilt S, Sudmeyer T (2017) Carrier envelope offset frequency detection and stabilization of a diode-pumped mode-locked Ti:sapphire laser. Opt Lett 42(6):1035–1038. https://doi.org/10.1364/Ol.42.001035

    Article  Google Scholar 

  122. Liu S, Wang ZP, Cui W, Dai Y, Li DD (2014) Sealing of sapphire infrared windows by ultrasonic interfacial deposition soldering. Advanced Materials Research. Trans Tech Publ, pp 2074–2078

    Google Scholar 

  123. Lin ZQ, Wang GG, Tian JL, Wang LY, Zhao DD, Liu Z, Han JC (2018) Broad-band anti-reflective pore-like sub-wavelength surface nanostructures on sapphire for optical windows. Nanotechnology 29(5):055302. https://doi.org/10.1088/1361-6528/aa9d14

    Article  Google Scholar 

  124. Drozhzhin OA, Tereshchenko IV, Emerich H, Antipov EV, Abakumov AM, Chernyshov D (2018) An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries. J Synchrotron Radiat 25(Pt 2):468–472. https://doi.org/10.1107/S1600577517017489

    Article  Google Scholar 

  125. Horng RH, Chiang CC, Hsiao HY, Zheng X, Wuu DS, Lin HI (2008) Improved thermal management of GaN/sapphire light-emitting diodes embedded in reflective heat spreaders. Appl Phys Lett 93(11):111907. https://doi.org/10.1063/1.2983740

    Article  Google Scholar 

  126. Sarkisyan D, Sarkisyan AS, Guena J, Lintz M, Bouchiat MA (2005) Alkali-vapor cell with metal coated windows for efficient application of an electric field. Rev Sci Instrum 76(5):053108. https://doi.org/10.1063/1.1914780

    Article  Google Scholar 

  127. Saiz E, Cannon RM, Tomsia AP (2000) Reactive spreading: adsorption, ridging and compound formation. Acta Mater 48(18–19):4449–4462. https://doi.org/10.1016/S1359-6454(00)00231-7

    Article  Google Scholar 

  128. Stephens JJ, Hosking FM, Headley TJ, Hlava PF, Yost FG (2003) Reaction layers and mechanisms for a Ti-activated braze on sapphire. Metall Mater Trans A 34a(12):2963–2972. https://doi.org/10.1007/s11661-003-0195-9

  129. Ning HL, Geng ZT, Ma JS, Huang FX, Qian ZY, Han ZD (2003) Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal. Ceram Int 29(6):689–694. https://doi.org/10.1016/S0272-8842(02)00218-3

  130. Ali M, Knowles KM, Mallinson PM, Fernie JA (2016) Interfacial reactions between sapphire and Ag–Cu–Ti-based active braze alloys. Acta Mater 103:859–869. https://doi.org/10.1016/j.actamat.2015.11.019

    Article  Google Scholar 

  131. Cui B, Huang JH, Xiong JH, Zhang H (2013) Reaction-composite brazing of carbon fiber reinforced SiC composite and TC4 alloy using Ag–Cu–Ti–(Ti+ C) mixed powder. Mater Sci Eng, A 562:203–210

    Article  Google Scholar 

  132. Fan Z, Zhang K, Liu J, Hu M, Yang C (2020) Microstructure and mechanical properties of Ti6Al4V alloy and sapphire joint brazed with graphene-AgCuTi. Materials Research Express 6(12). https://doi.org/10.1088/2053-1591/ab6190

  133. Li C, Si XQ, Chen L, Qi JL, Liu ZG, Huang YX, Dong ZB, Feng JC, Cao J (2019) Non-destructive measurement of residual stress distribution as a function of depth in sapphire/Ti6Al4V brazing joint via Raman spectra. Ceram Int 45(3):3284–3289. https://doi.org/10.1016/j.ceramint.2018.10.237

    Article  Google Scholar 

  134. Feng KY, Mu DK, Liao XJ, Huang H, Xu XP (2018) Brazing sapphire/sapphire and sapphire/copper sandwich joints using Sn-Ag-Ti active solder alloy. Solid State Phenom 273:187–193. https://doi.org/10.4028/www.scientific.net/SSP.273.187

    Article  Google Scholar 

  135. Mu D, Feng K, Lin Q, Huang H (2019) Low-temperature wetting of sapphire using Sn–Ti active solder alloys. Ceram Int 45(17):22175–22182. https://doi.org/10.1016/j.ceramint.2019.07.239

    Article  Google Scholar 

  136. Xin CL, Li N, Yan JZ (2017) Microstructural evolution in the braze joint of sapphire to Kovar alloy by Ti-Cu metallization layer. J Mater Process Technol 248:115–122. https://doi.org/10.1016/j.jmatprotec.2017.05.016

    Article  Google Scholar 

  137. Guo W, Fu L, Lin TS, He P, Wang CY, Wang T, Liu HZ (2019) New design of sapphire joints brazed with bismuth-borate glass. Ceram Int 45(4):5036–5049. https://doi.org/10.1016/j.ceramint.2018.11.205

    Article  Google Scholar 

  138. Guo W, Hou J, Wan ML, Fu L, Lin TS, He P (2021) Microstructural evolution, mechanical properties, and FEM analysis of the residual stress of sapphire joints brazed with a novel borate glass. Ceram Int 47(5):6699–6710. https://doi.org/10.1016/j.ceramint.2020.11.010

    Article  Google Scholar 

  139. Guo W, Hou J, Wan M, Fu L, Lin T, He P (2021) Crystallization behaviour of 25Bi2O3–75B2O3 glass braze and strengthening mechanism of crystallization-reinforced sapphire/25Bi2O3–75B2O3/sapphire joints. J Market Res 10:538–551. https://doi.org/10.1016/j.jmrt.2020.12.001

    Article  Google Scholar 

  140. Guo W, Wang T, Lin TS, Guo S, He P (2018) Bismuth borate zinc glass braze for bonding sapphire in air. Mater Charact 137:67–76. https://doi.org/10.1016/j.matchar.2018.01.002

    Article  Google Scholar 

  141. Guo W, Wang T, Lin T, He P (2018) Bonding sapphire in air by using Bi2O3–B2O3 glass braze. Mater Lett 210:117–120. https://doi.org/10.1016/j.matlet.2017.09.019

    Article  Google Scholar 

  142. Komarov SV, Kuwabara M, Abramov OV (2005) High power ultrasonics in pyrometallurgy: Current status and recent development. ISIJ Int 45(12):1765–1782. https://doi.org/10.2355/isijinternational.45.1765

    Article  Google Scholar 

  143. Yao Y, Pan Y, Liu S (2020) Power ultrasound and its applications: a state-of-the-art review. Ultrason Sonochem 62:104722. https://doi.org/10.1016/j.ultsonch.2019.104722

    Article  Google Scholar 

  144. Vianco P, Hosking F, Rejent J (1996) Ultrasonic soldering for structural and electronic applications. Welding Journal-Including Welding Research Supplement 75(11):343s

    Google Scholar 

  145. Tsujino J, Ueoka T, Hasegawa K, Fujita Y, Shiraki T, Okada T, Tamura T (1996) New methods of ultrasonic welding of metal and plastic materials. Ultrasonics 34(2–5):177–185. https://doi.org/10.1016/0041-624x(96)81780-x

    Article  Google Scholar 

  146. Xu Y, Ma X, Tang H, Yan J (2020) Mechanism of the interfacial reaction between sapphire and Sn-3.5Ag-4Ti solder at a low temperature in air by ultrasound. Ceram Int 46(4):4435–4443. https://doi.org/10.1016/j.ceramint.2019.10.169

  147. Xu Y, Ma X, Xiu Z, Yan J (2021) Bonding and strengthening mechanism on ultrasonic-assisted soldering of sapphire using Sn-3.5Ag-4Al solder. J Mater Process Technol 288:116893. https://doi.org/10.1016/j.jmatprotec.2020.116893

  148. Cui W, Li S, Yan J, He J, Liu Y (2015) Ultrasonic-assisted brazing of sapphire with high strength Al–4.5 Cu–1.5 Mg alloy. Ceram Int 41 (6):8014–8022

  149. Cui W, Li SQ, Yan JC, Zhang X (2018) Microstructure and mechanical performance of composite joints of sapphire by ultrasonic-assisted brazing. J Mater Process Technol 257:1–6. https://doi.org/10.1016/j.jmatprotec.2018.02.011

    Article  Google Scholar 

  150. Shalz M, Dalgleish B, Tomsia A, Glaeser AJJoms (1994) Ceramic joining II Partial transient liquid-phase bonding of alumina via Cu/Ni/Cu multilayer interlayers. 29(12):3200–3208

  151. Paulasto M, Ceccone G, Peteves SJSm (1997) Joining of silicon nitride via a transient liquid. 36 (10)

  152. Hong SM, Glaeser AM (2006) Reduced-temperature transient-liquid-phase bonding of alumina using a Ag-Cu-based brazing alloy. In, 2006. Proceedings of the 3rd International Brazing & Soldering Conference, ASM International, San Antonio, Texas, pp 181–188

  153. Hong SM, Reynolds TB, Bartlow CC, Glaeser AM (2010) Rapid transient-liquid-phase bonding of Al2O3 with microdesigned Ni/Nb/Ni interlayers. Int J Mater Res 101(1):133–142. https://doi.org/10.3139/146.110249

    Article  Google Scholar 

  154. Valenza F, Muolo ML, Passerone A, Glaeser AM (2013) Wetting and interfacial phenomena in relation to joining of alumina via Co/Nb/Co interlayers. J Eur Ceram Soc 33(3):539–547. https://doi.org/10.1016/j.jeurceramsoc.2012.10.009

    Article  Google Scholar 

  155. Chang LS, Huang CF (2004) Transient liquid phase bonding of alumina to alumina via boron oxide interlayer. Ceram Int 30(8):2121–2127. https://doi.org/10.1016/j.ceramint.2003.11.018

    Article  Google Scholar 

  156. Lo PL, Chang LS, Lu YF (2009) High strength alumina joints via transient liquid phase bonding. Ceram Int 35(8):3091–3095. https://doi.org/10.1016/j.ceramint.2009.04.019

    Article  Google Scholar 

  157. Dehkordi OB, Hadian AM (2013) Transient liquid phase bonding of alumina to alumina via bismuth oxide interlayer. Adv Mater Res 829:136–140. https://doi.org/10.4028/www.scientific.net/AMR.829.136

    Article  Google Scholar 

  158. Dehkordi OB, Hadian AM (2016) Effect of time and temperature on TLP bonding of alumina using a bismuth oxide interlayer. Ceram Int 42(1):1705–1712. https://doi.org/10.1016/j.ceramint.2015.09.127

    Article  Google Scholar 

  159. Simões SJM (2018) Recent progress in the joining of titanium alloys to ceramics 8(11):876

    Google Scholar 

  160. Torrisi V, Ruffino FJS, Technology C (2017) Nanoscale structure of submicron-thick sputter-deposited Pd films: effect of the adatoms diffusivity by the film-substrate interaction 315:123–129

    Google Scholar 

Download references

Funding

This research work is supported by the National Natural Science Foundation of China (Grant No. 51805416), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2019QNRC001), Hunan Provincial Natural Science Foundation for Excellent Young Scholars (Grant No. 2021JJ20059), Huxiang High-Level Talent Gathering Project of Hunan Province (Grant No. 2019RS1002), and the Fundamental Research Funds for the Central Universities of Central South University (Grant No. CX20210217).

Author information

Authors and Affiliations

Authors

Contributions

Chao Chen and Yuxiang Li analyzed the data; Chao Chen and Ruixiang Yi contributed reagents/materials/analysis tools; Chao Chen, Yuxiang Li, and Linzhe He wrote the paper.

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, C., Yi, R. et al. The brazing of Al2O3 ceramic and other materials. Int J Adv Manuf Technol 120, 59–84 (2022). https://doi.org/10.1007/s00170-022-08789-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-022-08789-x

Keywords

Navigation