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Abstract
This paper focuses on two aspects of feedrate optimization via linear programming methods. Namely, the effect of curve 
sampling on time optimality of the resultant feedrate profile and a method of feedrate profile adaptation in response to a 
feedrate override command. A comparison of three distinct curve sampling approaches (uniform in parameter, uniform in arc 
length and curvature adaptive) is performed on a series of standard tool path curves. Results show that the curvature-adaptive 
sampling approach leads to substantial machining time reduction for tool path curves displaying high degree of curvature 
variation. Secondly, a method by which a new feedrate profile can be calculated in response to a feedrate override command 
is developed. The method formulates a new set of boundary conditions on the control point sequence of the feedrate curve in 
such a way that the resulting profile is guaranteed to coincide with the currently active profile up to the moment of override 
command, while minimizing the arc length necessary for transition to the newly commanded feedrate.

Keywords Linear programming · Feedrate optimization · Feedrate override · NURBS curve · Curve sampling

Nomenclature

Acronyms
ADA  Adaptive Sampling
CAD  Computer Aided Design
CAM  Computer Aided Manufacturing
CNC  Computer Numberical Control
FIR  Finite Arc Length Sampling
LEN  Uniform Arc Length Sampling
LP  Linear Programming
NURBS  Non-Uniform Rational B-Spline
PAR  Uniform Parameter Sampling
VPOp  Velocity Profile Optimization

Symbols
L  Total length of toolpath
r′, r′′, r′′′  First, second and third derivative of toolpath 

vector with respect to arc length
u  Toolpath curve parameter
vmax  Tangential velocity limit (feedrate)
amax  Tangential acceleration limit
jmax  Tangential jerk limit
vmax  Vector of axial velocity limits
amax  Vector of axial acceleration limits
jmax  Vector of axial jerk limits
s  Arc length parameter
ṡ  Tangential velocity (feedrate)
s̈  Tangential acceleration
s⃛  Tangential jerk
q(s)  Squared feedrate expressed as a cubic B-spline
d  Order of B-spline
Ni,2  i-th second order B-spline basis function
a  Vector of B-spline control points
c  Uniformly distributed vector of weights
q̂  Pseudojerk curve
M̂  Matrix of constraints of LP problem without 

considering jerk constraints
M  Matrix of constraints of LP problem with jerk 

constraints included
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Γ  Sampling of the arc length interval
U  B-spline knot vector
G  Vector of Greville points
m  Desired number of sampling points
�K  Minimum integrated curvature amount to be 

taken into account by ADA algorithm
�s, �k  Contributions of arc length and curvature, 

respectively, to the density of the set of sam-
pling points

q, g  Knot vector and evaluation points vector of 
the squared feedrate curve

Symbols
N  Number of control points of the squared fee-

drate curve
K  Number of evaluation points of the squared 

feedrate curve
F(i), a(i)  Feedrate and acceleration at the i-th evaluation 

point
Fcur  Currently active commanded feedrate
cur, ovr  Subscripts used for parameters related to the 

currently active feedrate profile and profile 
realizing the override command, respectively

high, low  Subscripts used for parameters related to 
feedrate profiles globally limited by the over-
ride command feedrate in cases of override 
acceleration and deceleration, respectively

Fhigh,Flow  Commanded feedrates imposed by feedrate 
override in case of acceleration and decelera-
tion, respectively

Ixyz+  Index of specific control point of feedrate 
curve specified by subscript xyz

Jxyz  Index of specific evaluation point of feedrate 
curve specified by subscript xyz

1 Introduction

Interpolator is a component of the computer numerical 
control (CNC) system, which governs axial servo drives by 
providing position commands. Vectors of axis positions are 
being sent to servo drives at specified frequency. In a preci-
sion and high-speed machining environment, interpolator is 
required to optimize axial movement, so that maximum accu-
racy and shortest machining time are achieved. Considerable 
effort has been put by researchers into developing algorithms 
capable of interpolating tool paths which are determined by 
parametric curves such as NURBS]NURBSNon-Uniform 
Rational B-Spline. NURBS curves (and surfaces) are a staple 
in computer assisted design due to their compact represen-
tation and efficient evaluation. The necessity of generating 
feedrate profiles on NURBS tool paths has led to the develop-
ment of a variety of distinctive interpolation methods.

To create efficient feedrate profiles for NURBS curve tool 
paths, it is necessary to consider the relationship between the 
curve’s parameter and its arc length. This relationship does 
not have a closed form solution in general and disregarding 
it can lead to undesirable feedrate oscillations. This problem 
was typically solved using Taylor series expansion (see, e.g. 
[1]). This, of course, introduces errors caused by omitting 
higher order terms. As a possible solution to this problem, 
the so-called Pythagorean hodograph curves have been pro-
posed as an alternative to NURBS curve representations (for 
a comprehensive study of Pythagorean hodograph curves see 
[2]). Pythagorean hodograph curves enjoy the nice property 
of polynomial dependence of arc length on curve parameter, 
making them particularly useful for CNC interpolations. 
However, due to the widespread use of NURBS curves in 
CAD systems, Pythagorean hodograph curves still have not 
found wide application in common practice.

In order to solve the problem of parameter-to-arc length 
relationship in NURBS curves, it is necessary to devise 
approximation methods. In [3], the authors develop a recur-
sive approximation algorithm to interpolate quintic spline 
tool paths with constant distance increment. The feedrate 
profile is constructed by varying the interpolation period, 
which is then reconstructed in the control loop period by fit-
ting a fifth-degree polynomial. Another method that approxi-
mates the relationship between the spline parameter and its 
arc length is presented in [4]. The main idea is to use a 
seventh-degree polynomial (feed correction polynomial) to 
approximate this relationship. The coefficients of this poly-
nomial are estimated using least squares. This initial approx-
imation is then further refined using the Newton-Raphson 
iterative method. This method has been further modified in 
[5], where the parameter-to-arc length relationship is first 
approximated for a series of discrete points using the adap-
tive Simpson rule and this discrete representation is then 
used to fit a series of feedrate polynomials depending on 
a maximal allowed deviation. Due to the adaptive nature 
of this algorithm, it can approximate the parameter-to-arc 
length relationship with arbitrary precision. This particular 
algorithm was used for the purposes of this paper.

The most common approaches to feedrate optimization 
found in current literature are: composing the feedrate pro-
file by connecting S-shaped feedrate profiles with piecewise 
constant jerk (constructed analytically or by using FIR]
FIRFinite Impulse Response filters), brute force optimiza-
tion methods and utilization of linear programming (LP). 
The last mentioned approach combines computational effi-
ciency with the ability to construct nearly time-optimal 
feedrate profiles. First presented in [6], this method of fee-
drate optimization is based on the use of tool path discre-
tization followed by reformulation of the feedrate optimi-
zation problem where the feedrate function is represented 
by a B-spline curve whose control points serve as the free 
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variables. Finding the control points poses a non-linear opti-
mization problem, which requires the introduction of the 
so-called pseudojerk, that serves as an upper bound to the 
jerk inequality, thus allowing to linearize the optimization 
problem. This upper bound is precomputed using only axial 
velocity and acceleration limits. The proximity of this solu-
tion to true optimal feedrate profile is limited by the finite 
number of control points for feedrate profile curve and the 
pseudo-jerk relaxation. This method was further expanded 
on in [7], where a windowing based parallelization method 
was developed in order to further improve the computational 
efficiency of the original algorithm.

It is of note, that the methods of linear programming have 
also been applied to the feedrate optimization problem in 
an earlier article [8], although in a substantially different 
way. The feedrate profile on a spline toolpath was defined 
as a function of time and was obtained by minimizing a 
square integral of jerk via manipulation of time durations 
of selected path segments. This solution did not, however, 
consider the influence of the parameter-to-arc length rela-
tionship. For a similar approach using time parametrization, 
see [9].

Another computationally efficient method to construct the 
feedrate profile for NURBS tool paths is based on connect-
ing piecewise jerk constant S-curve type feedrate transition 
segments. Feedrate can be modulated in this way to com-
ply with kinematic limits which are evaluated at a fixed set 
points (see [10]). Similarly, in [5] feedrate profiles for spline 
tool paths are generated by connecting constant feedrate seg-
ments by S-shaped curve transition segments according to 
a heuristic algorithm. Axis jerk and acceleration limits are 
evaluated at knot locations. For a given portion of the spline 
trajectory, which is bounded by two knots, the maximum 
feedrate is calculated based on these constraints. The algo-
rithm performs a search for maximum feedrate that is both 
achievable and respects constraints in all portions of the 
spline trajectory.

In [11], an axis movement smoothing algorithm for 5-axis 
milling is developed, which utilizes a heuristic algorithm 
to conform to contour tolerance limits. In [12], the authors 
describe a look-ahead algorithm, including analytical expres-
sions, for interpolating linear segments. The article [13] pre-
sents a corner smoothing technique for five-axis machining 
using micro splines inserted between consecutive linear 
blocks with synchronized position and tool orientation.

A method of bi-directional scan was presented in [14, 15], 
and applied in multiple subsequent works [16–18]. As the 
name suggests, the main idea of the method lies in combina-
tion of a forward and backward pass (or scan) of the tool-
path. In the first scan, the toolpath is passed in the forward 
direction while a feedrate profile is iteratively constructed by 
applying a greedy algorithm that minimizes total cycle time. 
This algorithm, however, can lead to a feedrate profile with 

higher order discontinuities. In the second backward scan, 
these discontinuities are detected and the profile is updated 
by relaxing its kinematic properties in order to achieve the 
required order of smoothness. This method can theoretically 
produce time-optimal trajectories. Its optimality and com-
putation requirements do, however, depend strongly on the 
length of the parameter step applied in the scanning process.

An alternative approach to feedrate optimization is to 
adaptively modulate the feedrate based on constraints evalu-
ated by a virtual process model. This approach was applied 
in [19] to 5-axis flank milling of a jet engine impeller, where 
feed was adaptively modulated based on multiple constraints 
such as tool deflection, maximum chip load, torque limits 
and tool shank bending stress.

Yet another approach to feedrate optimization is to con-
sider the problem as a problem of reparametrization, where 
the relation between the time and curve parameters is defined 
by a spline function whose parameters are optimized in order 
to minimize overall jerk (see [20] and [21]). In [21] this 
method is specifically applied to the problem of multi-axis 
flank milling. This type of milling presents its unique set 
of challenges when compared to end-point milling, such as 
free-form surface approximation by sweep patches [22] and 
cutting force modeling [23–25]. Flank milling is an inter-
esting alternative to end-point milling because of its higher 
material removal efficiency and because it is, by definition, 
scallop free on every sweep patch. For a detailed list of rel-
evant literature on flank milling, see [26].

An alternative approach to generating feedrate profiles 
relies on the application of sequences of FIR filters. The 
authors of [27] show that applying a sequence of moving 
average filters to the feedrate impulse produces a feedrate 
function that is equivalent to the analytically expressed 
S-shaped feedrate profile. Their work provides a relationship 
between feedrate profile and its frequency domain, which 
can be utilized to suppress vibrations on given resonant 
frequencies by adjusting filter parameters. In [28], analyti-
cally generated acceleration limited feedrate profile is com-
bined with the FIR approach to generate feedrate profile for 
arbitrary velocity and acceleration conditions. Finally, [29] 
extends this method by including circular and linear toolpath 
blending capability with confined contour error. A transition 
between linear and circular segments can thus be performed 
at nonzero feedrates by controlling the convolution overlap 
time of two consecutive feed impulses. This method was 
recently extended to 5-axis machining in [30].

Iterative method, referred to as VPOp, can be applied to 
interpolate NURBS toolpaths even in 5-axis milling. This 
method achieves short (shortest among all the mentioned 
approaches) machining times while respecting axis accelera-
tion and jerk constraints. However, its high computational 
demands severely limit its real world application. Articles 
[31] and [32] use the VPOp algorithm to interpolate directly 
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into the parametric space of the surface of the workpiece 
CAD model. This original approach removes the issue of 
CAM tolerance and interpolation tolerance stacking up.

A common method of machining free form curves(and 
surfaces) is to generate a G-code program by using CAM 
software. Such programs often consist of a sequence of line 
commands which approximate the original curve. Although 
there are methods to optimize CAM block generation with 
respect to speed and accuracy [33] in this work we focus on 
methods of interpolating free form curves directly.

To summarize the above comparison, linear programming 
methods produce results which are close to optimal even on 
complex curves. Given a sufficient number of discretiza-
tion points, the method is able to respect all the given kin-
ematic limits while maintaining computational efficiency. 
The biggest disadvantage is the necessity of linearization 
of the jerk constraint, which results in loss of optimality of 
the solution. Nevertheless, when compared to other methods 
the conciseness of the mathematical formulation, ability to 
simultaneously incorporate both tangential and axial limits 
on kinematic variables and the possibility of parallelization 
all make linear programming methods a favorable choice.

This paper is primarily focused on two research topics: 
firstly, the effects of several types of spline sampling on the 
time optimality of a feedrate function obtained via a linear 
programming feedrate optimization approach are studied and 
demonstrated with the use of several testing curves. The 
obtained results demonstrate the potential advantages of 
adaptive sampling methods on the time optimality of result-
ing feedrate profiles. Secondly, an original method of fee-
drate override (again in the context of linear programming 
feedrate optimization) is presented and its implementation 
details are discussed.

This paper is organized as follows: Section 2 reviews the 
formulation of the linear programming optimization problem 
(Section 2.1) as well as knot vector construction and evalua-
tion point selection given a general sampling of the toolpath 
curve (Section 2.2).

In Section 3, three types of curve sampling (equidistant 
in curve parameter, equidistant in arc length and adaptive) 
are presented and the effects of sampling approach on time 
optimality of the resultant feedrate are discussed based on a 
comparison for several test curves. The main original result 
of this section is that an application of a suitable adap-
tive sampling method can lead to a significant decrease of 
machining time. The section is concluded with a discussion 
of limitations and possible future research directions.

Section 4 is dedicated to an original method of feedrate 
override for linear programming feedrate optimization. The 
method is divided into two distinct cases: override to a higher 
commanded feedrate (Section 4.2) and override to a lower 
commanded feedrate (Section 4.3). This method describes 
how, and under what conditions a new feedrate profile 

implementing the override command can be obtained given 
curve parameters and the currently active feedrate profile. 
The method is suitable for application purposes due to low 
memory requirements and relative ease of implementation.

The article is concluded with several closing remarks in 
Section 5 and three appendices: Appendix A (1) providing 
definitions of the test path curves used in Sections 3 and 4, 
Appendix B (2) where comparisons of test path curve trajec-
tories interpolated using methods discussed in Section 3 are 
presented and finally Appendix C (3) in which a definition 
of an auxiliary function is given.

2  Feedrate optimization ‑ a linear 
programming problem

This chapter recalls the formulation of feedrate optimization 
via linear programming (Section 2.1) while briefly discuss-
ing knot vector construction and the selection of evaluation 
points (Section 2.2).

2.1  Problem formulation

Assume that the tool path r is defined as a NURBS curve 
with at least C2 continuity (in practice this typically means 
a curve of order three or five)

In order to formulate the relations between velocity, 
acceleration and jerk along the curve, it is beneficial to 
introduce the arc length parametrization so that one can also 
express r as

where s denotes the arc length parameter and L represents 
the total length of the curve. Let vmax , amax , jmax denote 
the maximal axial limits of velocity, acceleration and jerk, 
respectively. Furthermore, let v̄max , āmax , j̄max denote the 
maximal limits of tangential velocity, tangential accelera-
tion and tangential jerk, respectively. The axial velocity, 
acceleration and jerk can be expressed as:

where r′ , r′′ and r′′′ denote the derivatives of r with respect 
to s, while ṡ , s̈ and s⃛ denote the tangential velocity (feedrate), 
tangential acceleration and tangential jerk, respectively. The 
feedrate optimization problem, i.e. derivation of time-opti-
mal feedrate profile, can then be formulated as:

r(u) = [x(u), y(u), z(u)], u ∈ [0, 1]

r(s) = [x(s), y(s), z(s)], s ∈ [0, L]

v =
dr

dt
= r�ṡ

a =
d2r

dt2
= r��ṡ2 + r�s̈

j =
d3r

dt3
= r���ṡ2 + 3r��ṡs̈ + r�s⃛
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such that

In order to linearize the above problem, the authors of [6] 
(see also [7]) apply the following substitution:

i.e. the square of feedrate is expressed as a cubic B-spline 
where a = [a1,… , aK] is the vector of control points and 
[N1,2,… ,NK,2] are the basis functions. This substitution sat-
isfies the following properties:

Using the properties (1)-(6), the optimization problem 
can be reformulated as

such that

maximize∫
L

0

ṡ ds

vmax ≥ |r�ṡ|
amax ≥ |r��ṡ2 + r�s̈|
jmax ≥ |r���ṡ2 + 3r��ṡs̈ + r�s⃛|
v̄max ≥ |ṡ|
āmax ≥ |s̈|
j̄max ≥ |⃛s|

ṡ2 = q(s) =

K∑
i=1

Ni,2(s) ⋅ ai = N(s) ⋅ a,

(1)ṡ =
√
q,

(2)ṡ2 = q,

(3)ṡ3 = q
√
q,

(4)s̈ =
dṡ

dt
=

d
√
q

ds
⋅

ds

dt
=

1

2
q�,

(5)s⃛ =
ds̈

dt
=

d(
1

2
q�)

ds
⋅

ds

dt
=

1

2
q��

√
q,

(6)ṡ ⋅ s̈ =
1

2
q�
√
q

(7)maximize∫
L

0

q(s) ds

(8)(vmax)
2 ≥ ||r�||2q

(9)amax ≥ ||||r
��q +

1

2
r�q�

||||

Except for the square root of q appearing in the inequalities 
(10) and (13), the above optimization problem can be posed 
as a linear optimization problem in which the control points ai 
represent the free variables (note that any inequality of the form 
|h| ≤ c can be equivalently expressed as the combination of 
inequalities h ≤ c and −h ≤ c ). To overcome the nonlinearities 
in jerk constraints, the optimization problem (7) is first solved 
without these constraints, leading to the LP formulation:

where the vector cT is a uniformly distributed weighting 
vector. The matrix M̂ is a constant matrix, whose terms are 
obtained via evaluation of the constraint Equations (8), (9), 
(11) and (12) at a set of evaluation points. In this way a 
solution q̂ (so-called pseudojerk) is obtained which realizes 
a larger feedrate than any other feasible solution. In the next 
step, the following constraints are substituted for the original 
jerk constraints (10) and (13), respectively.

These constraint equations are linear with respect to the 
control points ai of the squared feedrate function q. Thus, the 
approximate solution of the original optimization problem 
(7) can be formulated as an LP problem:

where the matrix M is a constant matrix whose terms are 
obtained via evaluation of the constraint equations (8), (9), 
(11), (12), (14) and (15) at a set of evaluation points. Note 
that by virtue of the pseudojerk q̂ realizing higher feedrate 
than any feasible solution, any solution of (16) is guaranteed 
to respect the axial and tangential jerk limits j̄max and jmax.

(10)jmax ≥ ����r
���q +

3

2
r��q� +

1

2
r�q��

����
√
q

(11)(v̄max)
2 ≥ q

(12)āmax ≥ ||||
1

2
q′
||||

(13)j̄max ≥ ����
1

2
q′
����
√
q

maximize cT â subject to: M̂â ≤ b̂

â ≥ 0,

(14)
jmax√
q̂
≥ ����r

���q +
3

2
r��q� +

1

2
r�q��

����

(15)
j̄max√
q̂
≥ ����

1

2
q′
����

(16)
maximize cTa subject to: Ma ≤ b

a ≥ 0,
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2.2  Linear programming ‑ evaluation points 
and knot vector construction

The process of construction of the knot vector and evalu-
ation points of the feedrate curve given a sampling of the 
toolpath r applied in the experiments described in this paper 
is briefly described below for the sake of completeness and 
reader’s convenience.

Given a sampling in the arc-length parameter s

the knot vector of the squared-feedrate function q of order 
d is defined as

Next, a sequence of evaluation points needs to be deter-
mined such that for every basis function Ni,d , there exists 
at least one point in this sequence lying in its support. A 
suitable choice is the sequence of Greville points (Greville 
abscissae) defined as

where N is the number of control points of q and d is the 
order of q (defined as degree of q + 1 ) and

The Greville point gi generally lies near the parameter 
value corresponding to the maximum of the basis function 
Ni,d [34, p. 512]. The main computational advantage of this 
particular selection of evaluation points is that the matrices 
M̂ and M (which comprise the evaluations of the respective 
constraints at points of G) become sparse band matrices with 
band equal to d, thus increasing stability and efficiency of 
linear programming optimization methods.

The method described above is not the only method of 
knot vector construction available. In fact, the topic of knot 
vector construction continues to draw attention, especially 
in the context of curve interpolation and approximation and 
many methods of knot construction have been proposed. In 
these methods parameter values are typically associated with 
sampling points and the knot vector is then constructed so 
as to satisfy the Schoenberg-Whitney condition [35]. The 
approaches to knot vector construction include sampling 
point averaging [34], dominant point selection [36, 37] 
application of support vector machines [38], genetic algo-
rithms [39] and others [40, 41]. The applications of knot 
vector construction method are not exclusively limited to 
curve interpolation or approximation, see e.g. [42, 43].

Γ = {s1 = 0, s2,… , sK−1, sK = L}, K ∈ ℕ

(17)
U = {0,… , 0

⏟⏟⏟
×d

, s2,… , sK−1, L,… , L
⏟⏟⏟

×d

}.

G =
{
g1,… , gN−d

}
, N ∈ ℕ

(18)gi =
1

d − 1

(
ui+1 +⋯ + ui+d−1

)
,i ∈ {1,… , (N − d)}.

The knot construction method described in this section 
was selected because the knot vector distribution corre-
sponds to the distribution of sampling points in the arclength 
parameter. In future research, it would be interesting to focus 
on the effects of the various knot construction methods in 
the context of LP feedrate optimization. Further comments 
on this topic can be found in Section 3.2.

3  Curve sampling methods

The simplest way to sample the toolpath curve is to sample 
the curve parameter interval uniformly, i.e.

This sampling technique is denoted as PAR in the 
following.

Sampling uniform in the curve parameter (PAR) has been 
considered in literature dealing with feedrate optimization 
via the LP approach (see e.g. [6, 44–46] and [47]). It is of 
note, however, that in [6] the authors remark that a nonuni-
form subdivision of the tool path that would take into con-
sideration its local shape could result in a better performance 
of the algorithm.

An alternative to the uniform parameter sampling is the 
uniform arc length sampling (denoted as LEN)

such that

To apply this sampling technique the information about 
the parameter to arc length relation is required. As this rela-
tion cannot be computed analytically in general, it is nec-
essary to find a sufficiently close approximation. To this 
end, the method described in [5] was used (note that this 
does not pose an extra requirement, as the arc length evalu-
ation is also used in the formulation of the LP optimization 
problem).

The LEN sampling was previously applied in feedrate 
optimization (see [48]) and in the context of LP feedrate 
optimization specifically (see [49]). In [50] arc length para-
metrization was also applied, though without specifying a 
specific sampling method.

Intuitively, one would expect that a sampling technique 
would produce a set of sampling points with density that is 
proportional to the curvature of the sampled curve, while 
maintaining some minimal point density in areas of zero cur-
vature so that the degree of control over the squared feedrate 

Γu
M
=

{
0,

1

M − 1
,… ,

M − 2

M − 1
, 1
}
, M ∈ ℕ.

Γs
M
= {s1 = 0,… , sM = 1},

arc length of r[si, si+1] =
L

M
, i ∈ {1,… , (M − 1)}.
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function q correlates with the local geometric properties of 
the toolpath curve.

An adaptive algorithm with precisely those proper-
ties was proposed (along with a detailed description of its 
implementation) in [51, p. 1471-1476]. The inputs of this 
algorithm are: m, the desired number of sampling points, 
non-negative weights �s, �� satisfying �s + �� = 1 and a 
threshold parameter 𝜀𝜅 > 0 denoting a minimum integrated 
curvature amount to be taken into account by the algorithm. 
The values of �s and �� represent contributions of arc length 
and curvature, respectively, to the density of the set of sam-
pling points. Thus, the combination �s = 1 , �� = 0 results 
in a uniform arc length sampling, while the combination 
�s = 0 , �� = 1 results in a sampling set with zero point den-
sity in areas of zero curvature.

In the following, this adaptive algorithm is referred to 
as ADA.

For a comparison of the outputs of the three sampling 
variants see Figs. 1, 2, 3 and 4.

3.1  Sampling techniques ‑ comparison of results

In this section, the effects of the PAR, LEN and ADA sam-
pling techniques on the total machining time of the LP opti-
mization output are presented and discussed. The algorithm 
was programmed in Matlab2017a software in combination 
with C++ code for the LP optimization and NURBS curve 
evaluation via the MEX interface. The COIN-OR Linear 
programming solver [52] has been used to solve the LP opti-
mization task, while the C++ openNURBSⓇ library [53] has 
been used to construct the NURBS curves and evaluate their 
derivatives. All computations were performed on a computer 
with an IntelⓇ CoreTM i7-7700K processor and Windows 10 
operating system.

Please note that all the results presented in this section 
have been obtained from an offline simulation.

In order to compare the optimization results several test-
ing curves have been used. These include the Trident curve, 
the Butterfly curve, the Pentacle curve and the Phobos curve 
(see Appendix A, Figs. 16, 17, 18, 19 and Tables 2, 3, 4, 5).  
With the exception of the Phobos curve, all of the testing 
curves have been previously used in articles concerning fee-
drate interpolation and optimization. All the curves are third 
degree continuous and display different behaviors regarding 
maximal and minimal values of curvature and its rate of 
variation. The Trident and Phobos curve comprise segments 
of zero curvature and segments of slowly varying curva-
ture. The curvature of the Pentacle curve varies slowly, while 
the Butterfly curve displays both highest absolute values  

Fig. 1  PAR sampling with m = 65 Fig. 2  LEN sampling with m = 65

Fig. 3  ADA sampling with m = 65 , �s = 0.8 , �� = 0.2
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of curvature and highest rates of its variation. The Phobos 
curve represents a spline smoothed contour curve of a blade 
cross section designed in a commercial CAD system.

While all of the chosen testing curves are 2D curves, this 
does not mean that the algorithms discussed throughout the 
article are in any way limited to 2D curves only. As was 
mentioned above, the testing curves were chosen mainly on 
the basis of being previously used in associated research as 
well as for being relatively simple to visualize.

For each curve, the LP feedrate optimization has been 
performed with the kinematic limits configuration presented 
in Table 1. This configuration corresponds to one used on a 
AXA VCC 1200 machining center equipped with a MEFI 
CNC872 iTQ-E numerical control system (developed in part 
by the authors). Each curve was then sampled with increas-
ingly larger values of sampling density (defined as number 
of points per mm of arc length). For every such sampling 
density the PAR, LEN and ADA sampling methods were 
used, the respective machining times were recorded and 
the relative percentage differences (rounded to the near-
est percentage point) of the PAR and LEN methods with 
respect to the ADA method were calculated. The param-
eters of the ADA method were chosen as �s = �� = 0.5 and 

�� = 1 ⋅ 10−3 . The results for individual curves are presented 
in Figs, 5, 6, 7 and 8. A comparison of feedrate functions is 
presented in Figs. 9, 10, 11 and 12, respectively.

The results presented in Figs. 5-8 support the following 
conclusions: For curves with low curvature variation such 
as the Trident, Pentacle and Phobos curves, the ADA sam-
pling technique leads to machining times that are compara-
ble ( ±5% ) with the PAR and LEN methods, while typically 
being a few percent faster. On the other hand, for curves 
with high curvature variation, such as the Butterfly curve, 
the ADA sampling technique leads to machining times that 
are faster (up to 12% ) than the LEN and ADA methods. This 
behavior is due to the higher density of knot points of the 
squared feedrate function in areas of high curvature. Thus, 
the feedrate profile can reflect the local changes of toolpath 
geometry more closely in these regions, leading to shorter 
machining times (while still respecting the kinematic lim-
its). Interpolated trajectory, with details of errors in points 
of high curvature, can be found in Appendix B (Figs. 20, 
21, 22, 23). As can be seen from the presented graphs, the 
contour errors are quite miniscule.

Fig. 4  ADA sampling with m = 65 , �s = 0.2 , �� = 0.8

Table 1  Kinematic limits configuration

Parameter Value Units

v̄max 10 m/min
āmax 1500 mm∕s2

j̄max 16000 mm∕s3

vmax [10, 10, 10] m/min
amax [1500, 1500, 1500] mm∕s2

jmax [16000, 16000, 16000] mm∕s3

Fig. 5  Butterfly curve - sampling method comparison

Fig. 6  Trident curve - sampling method comparison
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In conclusion, the ADA sampling technique in combina-
tion with the LP optimization approach described in Sec-
tion 2.1 can lead to significantly shorter machining times 
when interpolating spline toolpaths with both high curvature 
variation and high maximal curvature. Such toolpaths are 
typically encountered in practice in machining of injection 
molds and in side milling (specifically in trimming opera-
tions). In case of side milling, however, jerk optimization is a 
complex topic as jerk needs to be considered along the tool’s 
contact curve with the machined surface (for additional com-
mentary, see Section 3.2)

3.2  Discussion and limitations

In the described implementation, the knot vector is defined 
via one of several methods of sampling of the toolpath curve 
and then considered as a fixed input during the feedrate 
optimization process. The locations of knot points could, 
however, be also considered as optimization variables. The 
optimization of knot distribution has primarily been dealt 
with in curve interpolation/approximation research, where 

the methods applied include particle swarm optimization 
[54], gaussian-mixture models [55] and multi-objective 
genetic algorithms [56] (see also commentaries in Sec-
tion 2.2 for additional references on knot construction tech-
niques). Besides approximation/interpolation, the issue of 
optimal knot distribution has also been recently studied in 
the context of isogeometric analysis [42, 43]. It seems that 
not much attention has been given to the topic of knot vec-
tor optimization in feedrate optimization related literature 
so far, however, in [21] the problematic of optimal knot 
placement was considered in the context of generation of 
jerk-minimizing toolpaths via reparametrization (see also 
[20] for additional details). Several possible methods of knot 
optimization could be considered in future research such 
as global optimization methods (genetic algorithms, simu-
lated annealing, etc.) or local optimization such as gradient 
descent-based sequential quadratic programming.

In any case, the application of the above-mentioned opti-
mization methods would incur substantial computational 
costs unless a method of determination of a suitable initial 
knot vector distribution which would produce near optimal 

Fig. 7  Pentacle curve - sampling method comparison

Fig. 8  Phobos curve - sampling method comparison

Fig. 9  Butterfly curve - feedrate function comparison at 1 p/mm sam-
pling density

Fig. 10  Trident curve - feedrate function comparison at 1 p/mm sam-
pling density
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results without the necessity of a large number of additional 
iterations is devised (as in [21]). In future research, it would 
be interesting to compare the effectiveness of the presented 
sampling methods in producing a good initial estimate of the 
knot vector distribution for subsequent optimization.

As has been noted at the end of the previous section, jerk 
optimization in side milling is a challenging problem. First 
of all, a 5-axis variation of the presented LP optimization 
method would have to be applied (such as a modified ver-
sion of the algorithm presented in [6]). Secondly, it would 
be necessary to consider the kinematic constraints along the 
contact curve of the tool with the machined surface. This 
could theoretically be solved by considering a discrete sam-
pling of the tool axis and incorporating the kinematic con-
straints at these points into the LP formulation. It would also 
be interesting to consider the incorporation of the objective 
function that minimizes the weighted sum of jerks of the 
respective boundary curves [21] into the LP formulation. 
This would require some sort of a linear approximation of 
the jerk integrals, possibly by applying Gaussian quadrature 
rules (see, e.g. [57]).

4  Feedrate override

One of the standard commands in machining is the feedrate 
override command. With this command, the machine tool 
operator can change the value of commanded feedrate Fcmd 
to a different value expressed as a percentage of the origi-
nally programmed value.

The aim of this section is to present techniques by which 
the squared feedrate function that was obtained using meth-
ods described in Section 2 can be appropriately modified in 
response to an issued feedrate override command.

This chapter is divided into three section: notation is sum-
marized in Section 4.1, method of override acceleration is 
presented in Section 4.2 and, finally, method of override 
deceleration is presented in Section 4.3.

4.1  Notation

Most of the notation in the following sections follows that 
introduced in Section 2. Parameters associated with pseudo-
jerk are distinguished by the use of the hat symbol. The knot 
vector of the squared feedrate curve is denoted by q and the 
evaluation point vector is denoted by g. The number of con-
trol points is denoted by N, while the number of evaluation 
points is denoted by K (note that K = (N − d) , see (18)). For 
the sake of brevity the feedrate and acceleration at the i-th 
evaluation point are denoted by F(i) and a(i), respectively. 
The currently active commanded feedrate is denoted by Fcur , 
while the commanded feedrate imposed by feedrate override 
is denoted as Fhigh in case of override acceleration and Flow 
in case of override deceleration.

Subscripts are used to distinguish parameters pertaining 
to individual feedrate profiles. Specifically, parameters of the 
currently active feedrate profile are denoted by the subscript 
cur and parameters related to the feedrate profile realizing 
the override command are denoted by the subscript ovr. 
Parameters related to feedrate profiles globally limited by 
the override command feedrate in cases of override accelera-
tion and deceleration are distinguished by subscripts high 
and low, respectively.

Specific control point indices defined in the subsequent 
section are denoted by Ixyz , while evaluation point indices 
are denoted by Jxyz . Finally, the phrase ”up to” means ”up to 
but not including” in the following text.

4.2  Override acceleration

The process of override transition to a new feedrate limit 
Fhigh = 𝛼ovr ⋅ Fcur > Fcur is performed in several steps: first, 
a feedrate profile with commanded velocity given by Fhigh 
is found; second, a feedrate profile that realizes the over-
ride command is computed using the information from  
both the currently used profile and the profile limited by 

Fig. 11  Pentacle curve - feedrate function comparison at 1  p/mm 
sampling density

Fig. 12  Phobos curve - feedrate function comparison at 1 p/mm sam-
pling density
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Fhigh . The process is described in detail in the rest of this 
section.

Let s ∈ [0, L] be the displacement where feedrate override 
command is received and let n ∈ {1,… ,N − 1} such that 
sn ≤ s < sn+1 , where si ∈ U are knots of the feedrate curve 
(17). Denote by d the order of the feedrate curve (in all dis-
cussed cases d = 4 is assumed). To construct the override 
profile, it is first necessary to establish the range of control 
points of the feedrate curve which need to be fixed in order 
to guarantee that the override profile coincides with the cur-
rent profile on some neighborhood of s. This range can be 
identified as {aIf ,… , aIl} , where

The range of control points given by (19) defines the max-
imal range of basis functions of the feedrate profile whose 
supports intersect the interval [sn, sn+1) and which therefore 
influence the values of the feedrate profile on this neighbor-
hood of s. In the case where Il ≥ (N − 1) , the computation 
of the override profile is skipped, since the override com-
mand was received at the very end of the tool path curve. 
If Il < (N − 1) , it is further necessary to check whether the 
rest of the feedrate profile reaches current commanded fee-
drate Fcur and whether the override command was not issued 
during, or immediately before, the final deceleration phase 
of the current feedrate profile. To check this, consider the 
point gJs where

The point gJs is the first evaluation point after the point of 
override for which the corresponding value of the feedrate 
profile is unaffected by the choice of {aIf ,… , aIl} . If the fee-
drate at the end of the curve is fixed, then if the rest of the 
feedrate profile does not reach the current commanded fee-
drate, i.e.

the computation of the override profile can be skipped. Simi-
larly, if the override command has been issued during (or 
immediately before) the final deceleration phase, i.e.

the computation of the override profile is skipped. This fol-
lows from the time-optimality of the current feedrate profile 
(the deceleration starts as late as possible considering the 
acceleration and jerk limits). Obviously, the previous two 
arguments do not apply if the end feedrate is allowed to rise 
above Fcur.

As a second step, the feedrate profile with maximal fee-
drate given by Fhigh is constructed. The override profile 

(19)
If = max{1, n − (d − 1)},

Il = min{N, n + (d − 1)}.

(20)Js = min{k ∶ gk ≥ sIl}.

max{qcur(gj), j ∈ {Js,… ,K}} < F2
cur
,

(21)qcur(gJs ) > qcur(gJs+1) > ⋯ > qcur(gK),

(denoted by the subscript ovr) is then constructed in two 
steps. Firstly, the pseudojerk q̂ovr of the override profile is 
constructed by solving the LP optimization problem:

where

and

The feedrate limitation of the right-hand side ̂bovr is given 
by the feedrate values of the current feedrate profile up to gJs 
and by Fhigh from gJs onward.

The override profile qovr is then found by solving the LP 
problem:

where the velocity-acceleration part of bovr is equal to b̂ovr , 
while the jerk part is constructed using the values of q̂cur up 
to gJs and the values of q̂ovr from gJs onward.

For an example of override acceleration, see Fig. 13.

4.3  Override deceleration

The process of override transition to a new feedrate limit 
Flow = 𝛼ovr ⋅ Fcur < Fcur requires a more involved approach 
than the case of override transition to a higher feedrate limit. 
The main idea is the following: first, as in Section 4.2, the 
first evaluation point gJs at which the override profile is 
allowed to deviate from the original profile is found. Then, 
for each following evaluation point gnext , the arc length nec-
essary to transition from the current profile’s feedrate at gJs 
to the feedrate value of the Flow-commanded feedrate profile 
at gnext is estimated. The first evaluation point for which this 
arc length estimate is not higher than the actual arc length 
between gJs and gnext is then used in the LP formulation of 
the override profile to define the range of control points to 

(22)
maximize cT âovr subject to: M̂âovr ≤ b̂ovr l̂bovr ≤ âovr ≤ ûbovr,

l̂bi =

⎧
⎪⎪⎨⎪⎪⎩

F2
start

, i = 1,

0, i ∈ {2, ..., If − 1},

(acur)i, i ∈ {If , ..., Il},

0, i ∈ {Il + 1, ...,N − 1},

F2
end

, i = N

ûbi =

⎧⎪⎨⎪⎩

F2
start

, i = 1,

(acur)i, i ∈ {2, ..., Il},

�i, i ∈ {Il + 1,N − 1},

F2
end

, i = N,

such that

�i = min
�
F2
high

, max
�
(acur)i, (ahigh)i

��
.

maximize cTaovr subject to: Maovr ≤ bovr

l̂bovr ≤ aovr ≤ ûbovr
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be bounded from above by the respective values of the Flow

-commanded profile’s control points. The rest of this section 
explains the algorithm in detail.

As in Section 4.2, the first order of business is to define 
the range of control points of the override profile which 
need to be fixed (19) and the index Js of the first evaluation 
point at which the current profile and the override profile are 
allowed to deviate (20).

Secondly, as in Chapter 4.2, if the override command was 
issued during or immediately before the final deceleration 
phase (21), the override profile’s construction should be 
skipped. This follows from the time optimality of the cur-
rent feedrate profile (the deceleration is as fast as possible 
considering the acceleration and jerk limits).

If the override command was issued before the final 
deceleration phase, a feedrate profile qlow with commanded 
feedrate given by Flow is constructed. The final velocity of 
qlow is defined as

Next, the feedrate and tangential acceleration values 
of qcur and qlow are evaluated at the point gJs . These val-
ues are denoted as [Fcur(Js), acur(Js)] and [Flow(Js), alow(Js)] , 
respectively. The exact form of the override algorithm then 
depends on whether Fcur(Js) ≤ Flow(Js) (Section 4.3.1), or 
Fcur(Js) > Flow(Js) (Section 4.3.2).

4.3.1  Case I: Fcur(Js) ≤ Flow(Js)

In this case, it is not necessary to compute any kind of esti-
mate of the arc length necessary to transition from the cur-
rent profile’s feedrate to the feedrate of qlow . Instead, it is 
sufficient to take the appropriate range of control points of 

Fendlow
= min

{
Fendcur

,Flow

}
.

the qlow profile as the upper boundary in construction of the 
override profile. To this end, define an index It as

If It ≥ (N − 1) , the rest of the trajectory is not long 
enough to decelerate below the commanded feedrate. Oth-
erwise, q̂ovr is constructed by solving the LP problem (22), 
where

and

The feedrate limitation of the right-hand side ̂bovr is given 
by the feedrate values of the current feedrate profile up to gJs 
and by Fnew from gJs onward. The override profile qovr is then 
found by solving the LP problem:

where the velocity-acceleration part of bovr is equal to b̂ovr , 
while the jerk part is constructed using the values of q̂ovr.

For an example of case I override, see Fig. 14.

It = Il + d.

l̂bi =

⎧
⎪⎪⎨⎪⎪⎩

F2
start

, i = 1,

0, i ∈ {2, ..., If − 1},

(acur)i, i ∈ {If , ..., Il},

0, i ∈ {Il + 1,N − 1},

F2
endlow

, i = N

ûbi =

⎧
⎪⎪⎨⎪⎪⎩

F2
start

, i = 1,

(acur)i, i ∈ {2, ..., Il},

F2
cur
, i ∈ {Il + 1, It − 1},

(alow)i, i ∈ {It,… ,N − 1},

F2
endlow

, i = N.

maximize cTaovr subject to: Maovr ≤ bovr

l̂bovr ≤ aovr ≤ ûbovr

Fig. 13  Example of override acceleration - Butterfly curve, 
Fcur = 4000 mm/s , Fhigh = 5000 mm/s , �ovr = 125%

Fig. 14  Example of override deceleration, case I - Butterfly curve, 
Fcur = 5000 mm/s , Flow = 1500 mm/s , �ovr = 30%
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4.3.2  Case II: Fcur(Js) > Flow(Js)

To formulate the upper and lower boundaries of the LP solu-
tion of the override profile, an upper estimate of the arc 
length necessary to realize the transition from Fcur(Js) to 
Flow(k) (for some as yet unknown index k) is required.

First, define an index Jl as

(i.e. the index of the first evaluation point after gJs for which 
qcur is bounded from above by qlow . If no such point exists, 
the index is set as the index of the last evaluation point).

Next, to estimate the minimal arc length necessary for a 
transition from qcur to qlow , the following algorithm is used:

(for the definition of the ArcLen function, see Appen-
dix 3, Algorithm 3 and Algorithm 4). Algorithm 1 searches 
for the closest evaluation point after which the feedrate tran-
sition can already be finalized. The search stops at the index 
Jl . As a next step consider the index Je defined as

If Je = K , the remaining arc length of the path curve is 
not sufficient to realize the feedrate transition and the over-
ride command should be skipped (or postponed to the start 
of the following path segment). Otherwise, a control point 
index It is defined as

Index It denotes the first control point for which the sup-
port of the corresponding basis function lies past the evalu-
ation point g(Je) . If It is undefined or It ≥ K , the remaining 

Jl = min
({

k > Js ∶ qcur(gk) ≤ qlow(gk)
}
∪ {K}

)

Je = min
{
Jl, Jk

}
.

It = min{k ∶ sk ≥ g(Je)} + (d − 1).

arc length of the path curve is not sufficient to realize the 
feedrate transition and the override command should be 
skipped (or postponed to the start of the following path seg-
ment). Otherwise, the q̂ovr profile is constructed using the 
following LP-optimization problem:

where the lower and upper boundaries of âovr are defined as

and

respectively. The feedrate solution qovr is then found by solv-
ing the LP problem:

where bovr is constructed from b̂ovr and q̂ovr in a standard 
fashion.

For an example of case II override, see Fig. 15.

maximize cT âovr subject to: M̂âovr ≤ b̂cur

l̂bovr ≤ âovr ≤ ûbovr,

l̂bi =

⎧
⎪⎪⎨⎪⎪⎩

F2
start

, i = 1,

0, i ∈ {2, ..., If − 1},

(acur)i, i ∈ {If , ..., Il},

0, i ∈ {Il + 1,N − 1},

F2
endlow

, i = N

ûbi =

⎧
⎪⎪⎨⎪⎪⎩

F2
start

, i = 1,

(acur)i, i ∈ {2, ..., Il},

F2
cur
, i ∈ {Il + 1, It − 1},

(alow)i, i ∈ {It,… ,N − 1},

F2
endlow

, i = N,

maximize cTaovr subject to: Maovr ≤ bovr

l̂bovr ≤ aovr ≤ ûbovr,

Fig. 15  Example of override deceleration, case II - Trident curve, 
Fcur = 5000 mm/s , Flow = 1750 mm/s , �ovr = 35%
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4.3.3  Case II: Convergence failure

The LP formulations associated with the construction of q̂ovr 
or qovr described in the previous section can occasionally fail 
to converge to a solution. This is due to the fact that the func-
tion ArcLen assumes a so-called “bang-bang”transition1 
feedrate profile, which exhibits maximal absolute values of 
either acceleration or jerk. When applied to general spline 
toolpaths this behavior is not always possible, due to limita-
tions posed by local geometry. This convergence failure thus 
sometimes occurs when the override command was issued 
during or immediately before a dip in feedrate caused by a 
significant change in curvature. In such cases the override 
profile can still be obtained by setting a new point of over-
ride as the nearest local extreme of the feedrate curve and 
repeating the override computation.1

Specifically, supposing that either of the LP problems 
failed to converge, the nearest local extreme point of qcur 
defined as an evaluation point gJext can be found via Algo-
rithm 3. The index Jext is well defined since the override 
formulation is skipped whenever the override command is 
issued during the final deceleration phase.

Note that in the case of repeated override calculation, the 
feedrate profile qlow and its values at evaluation points have 
already been obtained and do not need to be recalculated.

5  Conclusions

This paper comprises two original results related to feedrate 
optimization via linear programming techniques: the effects 
of curve sampling methods on time optimality of the result-
ing feedrate profile (Section 3) and a technique by which a 
feedrate override profile can be implemented (Section 4).

This paper demonstrates that the effect of toolpath 
sampling can be substantial (when combined with linear 
programming feedrate planning) and suggests a suitable 
sampling method. This method can be integrated into the 
feedrate planning process with low computational overhead, 
thus making it an interesting choice for practical applica-
tions. Note that while the adaptive method requires the 
approximation of the relation between the curve’s natural 
parameter and its arc length as a prerequisite, the existence 
of this approximation is already required for the formulation 
of the feedrate LP optimization problem itself. Thus the use 
of the adaptive method does not substantially increase the 
computational complexity of the presented feedrate LP opti-
mization technique. In addition, both the approximation and 
the sampling itself can (should) be performed in the preproc-
essing stage of feedrate planning and therefore do not add to 
the computational complexity of the online stage. Given the 
scope of this paper, sampling methods were compared using 
only plain axis position data generated by the algorithm. 
Further comparison could be performed on a CNC machine 
in the future with the application of a combined speed and 
error comparison method [59].

In order to successfully apply linear programming tech-
niques to real world feedrate planning, a method capable of 
recalculating feedrate profile in reaction to a feedrate over-
ride command is essential. This topic, however, has not been 
dealt with in the past. Thus, a possible implementation of 
such a method is presented in this paper. While this method 
does require the computation of two additional feedrate pro-
files (one bounded by the newly issued commanded feedrate 
and second that realizes the desired feedrate transition), the 
majority of prerequisites for the computation of these pro-
files are shared with the original profile. Specifically: the 
knot vector associated with the feedrate profile, its evalu-
ation points and the constant matrices of both the pseudo-
jerk and feedrate curve optimization problems can be stored 
in memory the first time they are computed and reused in 
subsequent optimizations. Main part of the computational 
complexity is therefore due to the use of linear program-
ming solvers as all the additional computations required are 
either index manipulations, or simple analytic formulas. The 
method is therefore suitable for application purposes due to 
its low memory requirements and simplicity of auxiliary 
calculations, as long as a suitably fast linear programming 
solver is available.

1 In a so called “bang-bang” feedrate profile (see, e.g. [58]) at least 
one of the machine axes always operates at one of its kinematic limits 
(i.e. maximum absolute jerk, acceleration or velocity). This property 
allows for analytic expression of the feedrate function.
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Table 2  Parameters of the 
Pentacle test curve

Parameters Values

Control points (0,120,0); (-30,80,0); (-80,80,0); (-40,40,0);(-50,0,0); (0,30,0); 
(50,0,0); (40,40,0); (80,80,0); (30,80,0); (0,120,0);

Knot vector [0, 0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1, 1]
Weight vector [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
Order 4

Table 3  Parameters of the Trident test curve

Parameters Values

Control points (0,0,0); (20,40,0); (4,16,0); 
(0,40,0); (-4,16,0); (-20,40,0); 
(0,0,0);

Knot vector [0,0,0,0,0.25,0.5,0.75,1,1,1,1]
Weight vector [1, 1, 1, 1, 1, 1, 1]
Order 4

Table 4  Parameters of the Phobos test curve

Parameters Values

Control points (-0.45492,6.2779,0); (-0.49971,6.3975,0); (-0.68117,6.8746,0); (-1.1578,8.0587,0); 
(-1.9497,9.8028,0); (-3.1389,12.063,0); (-4.6134,14.456,0); (-6.4198,16.933,0); 
(-8.5788,19.458,0); (-10.765,21.609,0); (-13.107,23.585,0); (-15.783,25.554,0); 
(-19.296,27.648,0); (-23.963,29.76,0); (-28.406,30.986,0); (-32.899,31.942,0); 
(-36.881,32.85,0); (-41.877,33.899,0); (-46.387,34.777,0); (-50.908,35.597,0); 
(-54.933,36.285,0); (-58.463,36.843,0); (-61.491,37.3,0); (-63.513,37.589,0); 
(-65.535,37.878,0); (-67.16,38.216,0); (-68.634,38.645,0); (-69.929,39.192,0); 
(-70.923,39.776,0); (-71.887,40.635,0); (-72.523,41.952,0); (-72.264,43.567,0); 
(-71.383,45.129,0); (-70.166,46.458,0); (-68.418,47.949,0); (-66.298,49.384,0); 
(-62.707,51.334,0); (-57.94,53.224,0); (-51.982,54.7,0); (45.867,55.358,0); (-39.731,55.245,0); 
(-32.626,54.381,0); (-24.639,52.567,0); (-15.976,49.444,0); (-7.9015,44.909,0); 
(-1.79,39.401,0); (3.8241,32.068,0); (7.4947,24.751,0); (11.252,17.481,0); (12.751,13.68,0); 
(13.5,11.779,0);

Knot vector [0,0,0,0,0.0019531,0.0078125,0.019531, 0.03125,0.046875,0.0625,0.078
125, 0.097656,0.10938,0.125,0.14844, 0.17188,0.20313,0.21875,0.2421
9, 0.26563,0.29688,0.3125,0.33594, 0.35938,0.36719,0.38281,0.39063, 
0.39844,0.4082,0.41406,0.41992, 0.42578,0.43359,0.44141,0.44922, 0.46094,0.46875,0.484
38,0.5,0.53125, 0.5625,0.59375,0.625,0.65625,0.70313, 0.75,0.79688,0.84375,0.875,0.9375, 
0.96875,1,1,1,1]

Weight vector [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
Order 4
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Appendix A

Pentacle curve

Trident curve

Phobos curve

Butterfly curve

Fig. 16  Pentacle test curve

Fig. 17  Trident test curve

Fig. 18  Phobos test curve

Fig. 19  Butterfly test curve

Table 5  Parameters of the Butterfly test curve

Parameters Values

Control points (0,52.139,0); (1.014,52.139,0); (1.589,49.615,0); (2.287,44.971,0);(15.082,51.358,0); 
(23.293,58.573,0); (36.033,67.081,0); (51.48,63.801,0); (45.907,47.326,0); (40.074,39.913,0); 
(37.876,30.485,0); (57.894,67.514,0); (37.489,28.509,0); (34.951,20.393,0); (143.63,77.23,0); 
(99.384,14.49,0); (26.452,9.267,0); (27.875,15.989,0); (21.581,8.522,0); (15.69,12.55,0); 
(9.678,16.865,0); (5.5,22.122,0); (1.187,36.359,0); (2.432,24.995,0); (5.272,19.828,0); 
(0,14.94,0); (-5.273,19.828,0); (-2.433,24.994,0); (-1.188,36.359,0); (-5.501,22.122,0); 
(-9.679,16.865,0); (-15.691,12.551,0); (-21.582,8.521,0); (-25.341,14.535,0); (-26.453,9.267,0); 
(-99.387,14.49,0); (-143.63,77.235,0); (-34.954,20.391,0); (-37.396,28.512,0); (-57.912,67.5,0); 
(-37.891,30.496,0); (-40.294,39.803,0); (-45.825,47.408,0); (-51.493,63.794,0); 
(-36.028,67.084,0); (-23.296,58.572,0); (-15.082,51.358,0); (-2.289,44.971,0); 
(-1.589,49.614,0); (-1.015,52.139,0); (-0.001,52.139,0);

Knot vector [0,0,0,0,0.0083,0.015,0.0361,0.0855, 0.1293,0.1509,0.1931,0.2273,0.2435, 0.2561,0.2692,0.2889,
0.317,0.3316, 0.3482,0.3553,0.3649,0.3837,0.4005, 0.4269,0.451,0.466,0.4891,0.5, 0.5109,0.53
4,0.5489,0.5731,0.5994, 0.6163,0.6351,0.6447,0.6518,0.6683, 0.683,0.7111,0.7307,0.7439,0.75
65, 0.7729,0.8069,0.8491,0.8707,0.9145, 0.9639,0.985,0.9917,1,1,1,1]

Weight vector [1,1,1,1,1,1,1,1,1,1,1,2,1,1,5,3,1,1.1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,5,1,1,2,1,1,1,1,1,1,1,1,1,1,1]
Order 4
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Appendix B

Pentacle curve

Trident curve

Fig. 20  Pentacle test curve 
- interpolated trajectory com-
parison

Fig. 21  Trident test curve 
- interpolated trajectory com-
parison

3641The International Journal of Advanced Manufacturing Technology (2022) 120:3625–3646



1 3

Phobos curve

Butterfly curve

Appendix C

This section contains the definition of the ArcLen function 
used in Section 4.3.2, Algorithm 1. The ArcLen function cal-
culates an estimate of the arc length necessary to decelerate 
from starting feedrate Fs to end feedrate Fe with zero accelera-
tion and limits on tangential acceleration and jerk given by 
amax and jmax , respectively. The arc length estimate is obtained 

Fig. 23  Butterfly test curve 
- interpolated trajectory com-
parison

Fig. 22  Phobos test curve 
- interpolated trajectory com-
parison

via a so-called “bang-bang” feedrate profile, i.e. a profile that 
maximizes the absolute value of either jerk or acceleration at 
every point. In case the maximization of acceleration would 
lead to reaching the end feedrate Fe with nonzero acceleration, 
a new maximal deceleration value amid is calculated, so that 
the end feedrate can be reached with exactly zero acceleration 
with amid replacing amax as a new acceleration limit (see code 
blocks starting at lines A and B in Algorithms 3 and 4 below).
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