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Abstract
With the constant increase of energy costs and environmental impacts, improving the process efficiency is considered a 
priority issue for the manufacturing field. A wide knowledge about materials, energy, machinery, and auxiliary equipment 
is required in order to optimize the overall performance of manufacturing processes. Sustainability needs to be assessed in 
order to find an optimal compromise between technical quality of products and environmental compatibility of processes. In 
this new Industry 4.0 era, innovative manufacturing technologies, as the additive manufacturing, are taking a predominant 
role. The aim of this work is to give an insight into how thermodynamic laws contribute at the same time to improve energy 
efficiency of manufacturing resources and to provide a methodological support to move towards a smart and sustainable 
additive process. In this context, a fundamental step is the proper design of a sensing and real-time monitoring framework 
of an additive manufacturing process. This framework should be based on an accurate modelling of the physical phenomena 
and technological aspects of the considered process, taking into account all the sustainability requirements. To this end, a 
thermodynamic model for the direct laser metal deposition (DLMD) process was proposed as a test case. Finally, an exer-
getic analysis was conducted on a prototype DLMD system to validate the effectiveness of an ad-hoc monitoring system 
and highlight the limitations of this process. What emerged is that the proposed framework provided significant advantages, 
since it represents a valuable approach for finding suitable process management strategies to identify sustainable solutions 
for innovative manufacturing procedures.

Keywords Additive manufacturing · Direct laser metal deposition · Exergetic analysis · Thermodynamic model · 
Monitoring system · Sustainable manufacturing

Nomenclature
c  Specific heat [J/kg K]
ṁ   Mass flow rate [kg/s]
Ex   Exergy [J]
Ėx   Exergy flow [W]
h   Specific enthalpy [J/kg]
Ḣ   Enthalpy flow rate [W]
Q̇   Heat transfer rate [W]
s   Specific entropy [J/kg K]
T  Temperature [K]
Ẇ    Workflow rate [W]

�   Exergy efficiency [%]
AM  Additive manufacturing
CERA  Cumulative energy requirements analysis
DLMD  Direct laser metal deposition
EA  Exergetic analysis
LCA  Life cycle assessment
MFA  Material flow analysis

Subscripts and superscripts
0  Dead state
c  Number of total enthalpy flows
d  Number of total workflows
e  Equilibrium
eq  Equivalent
g  General
i  State point at the inlet of system/sub-system
k  Number of total mass flows
loss  Flow rate loss during the sub-processes
n  Net use
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o  State point at the outlet of system/sub-system
p  Number of total heat transfer flows
tot  Total of useful and wasted energy flows

1 Introduction

The focus on digitalization, process technology innovation, 
and sustainability has increased exponentially within the 
Industry 4.0 paradigm (I4.0 from now on) [1]. The recent 
introduction of disruptive innovative technologies and infra-
structures, such as the Internet of Things and Cyber Physical 
Systems, is leading to new organizational, technological, and 
eco-compatible challenges in manufacturing contexts [2].

Among the Key Enabling Technologies of I4.0, addi-
tive manufacturing (AM) is considered a key factor for the 
implementation of a new production paradigm [3, 4]. In the 
Factory 4.0 ecosystem, AM plays an important role among 
the advanced manufacturing systems for the development 
of prototypes or for producing customized components. 
The concurrent development of hardware, software, and the 
intense research for adopting new materials (metals, poly-
mers, ceramics, and multi-material composites) has been the 
key to success of AM technologies, leading to an expansion 
of the application fields. Currently, aerospace, automotive, 
biomedical, and digital architectural design are the indus-
trial sectors with the greatest interests towards AM processes 
[5], although these sectors are not inclined to accept process 
failure or low-quality products. In this context, the develop-
ment of adequate monitoring systems is strictly connected 
to the increase of reliability of the AM processes, in order to 
achieve stable and effective process conditions.

The value of sensing and monitoring systems for I4.0 
has been accepted and acknowledged by various authors, 
as stated in [6]. Similar to the fourth industrial revolution, 
Peter Krause coined the term “Sensor 4.0” to indicate the 
evolution of this technological field (in chronological order: 
mechanical sensors, electrical sensors, electronic sensors, 
and smart sensors), remarking the idea of how measurement 
systems have been influenced by the industrial evolution [7]. 
Sensors are the enabling elements to build up a framework 
for the assessment of the sustainability of manufacturing 
technologies, in terms of technical quality of products and 
environmental compatibility of processes.

Regarding the sustainability of AM technologies, these 
are typically seen as “cleaner” than traditional manufactur-
ing processes. In fact, these comply with some of the sus-
tainability principles [8] such as “reducing” or “redesigning” 
and other benefits related to potential social impacts, such 
as new opportunities from the circular economy. Although, 
according to several studies, sustainability of AM technol-
ogies is not always assured “tout court” [9], it should be 
assessed from different perspectives in order to consider all 

process aspects comprising machine tool life cycle, tooling 
supply chain, energy management, product usage impacts, 
end-of-life issues, recycling rates, disposal costs, pollu-
tions, etc. Various approaches have been developed over 
the years to encourage the sustainability evaluation of the 
abovementioned aspects of manufacturing processes [10]. 
With such a diverse spectrum of developing technologies, it 
is critical to examine which techniques are most suited for 
qualitative and quantitative assessing of their sustainability. 
Among these, models based on thermodynamic analyses 
represent an innovative and interesting strategy for analyz-
ing and maximizing the sustainability of the manufacturing 
system performances, facilitating the management of smart 
manufacturing processes.

In this work, this topic is addressed by focusing on the 
technology, on the integrated sensing and monitoring sys-
tem to be designed, and on the simulation and modelling 
techniques to gather knowledge from the disaggregated data 
provided by the sensor network. The aim of this work is 
to give an insight into how thermodynamic laws can help 
improving energy efficiency and at the same time provide 
a methodological support to move towards a smart sustain-
able process. The strategy concerns the design of a real-
time monitoring framework for the direct laser metal depo-
sition (DLMD) process, beginning with the description of 
its overall technological aspects and the definition of the 
thermodynamic model for the sustainability requirements. 
The DLMD is an advanced AM process mainly employed 
in high-technological industrial fields [11]. Principally used 
for repairing and remanufacturing of worn components, it 
is recently being exploited to produce 3D parts made with 
numerous metallic materials from scratch [12].

To this end, the exergetic analysis (EA) has been consid-
ered the most suitable approach among the variety of meth-
ods for sustainability assessing. EA is a non-linear method-
ology that addresses information about the efficiency of the 
energetic and raw material resources consumption and the 
potential for improvement [13]. This method is gaining pop-
ularity because it attempts to overcome the most significant 
limitations of the most popular methods. Among all, there is 
the life cycle assessment (LCA) that is the widely used lin-
ear method for assessing a broad spectrum of environmental 
impacts, including the intensity of consumed material and 
energy, throughout the entire life cycle of the process [14]. It 
should be emphasized that, to date, no such thermodynamic 
modelling approach has been applied to the DLMD process 
in the literature, which makes this work a novelty.

The most crucial point of the sustainability assessment 
is the definition and collection of a comprehensive set of 
parameters and associated cause-effect relationships for an 
effective monitoring of the addressed process [15]. It means 
that a wide knowledge about all data related to materials, 
energy, machinery, and auxiliary equipment is mandatory 
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to optimize the overall process performances. With this aim, 
the integration of an appropriate sensing and monitoring sys-
tem into industrial machines is essential. Finally, the amount 
of technological data collected in ad-hoc structured datasets 
allows addressing the problem of prognostic health manage-
ment with a multi-model approach [16]. In particular, it can 
be achieved through the interoperability between a physics-
based model, a knowledge-based model, and a data-driven 
model, structuring the process knowledge for assuring a cor-
rect transition towards the smart manufacturing modelling 
of I4.0.

The rest of the paper is organized as follows. In Section 2, 
a brief state of the art about technological features and sus-
tainability assessment of the DLMD technology is provided. 
The criteria under which the DLMD process has been mod-
elled are also addressed. It also provided a short overview of 
the potential sensing systems for real-time state monitoring 
of dynamic manufacturing processes. The test case, concern-
ing the EA of a single-track deposition realized by means 
of the prototype DLMD system, is addressed in Section 3. 
Conclusions and further developments close the paper.

2  State of art of technological 
and sustainable modelling of DLMD

2.1  DLMD technology

The DLMD is a sub-category of the family of technologies 
named direct energy deposition (DED), in which a laser is 
employed as energy source. The laser beam is focused on a 
metal substrate generating very high temperatures that lead 
to the melting of the interested region of the workpiece. 
Material is added in the molten pool in form of wire or pow-
der. The latter is conveyed by means of an inert carrier gas 
(Ar, He,  N2), which is also used to shield the molten pool 
from oxidation. By moving a nozzle, a single-track deposi-
tion is created and, by following specific paths and strategies, 
the final component is built layer by layer. The extremely 
high-power density of the laser determines exceptional met-
allurgical properties. The temperature management during 
the process is a key feature to achieve an acceptable quality 
of the component and to improve the process efficiency. As 
other AM technologies, several materials can be processed 
by DLMD such as steel alloys, aluminum alloys, titanium 
alloys, nickel alloys, and superalloys. The DLMD involves 
many process parameters and a careful design is required for 
obtaining components in compliance with high-performance 
standards [17, 18].

In order to develop an in-depth sustainability analysis of 
the technology, an accurate description of the main parts 
composing the DLMD system is required. The core of the 
system is the laser source that can be classified by the active 

medium used to generate the laser beam. All of these sources 
have relatively low efficiencies, converting a large amount of 
electrical energy into wasted heat, which may compromise 
the operation of the laser source. Thus, heat exchangers and 
chillers are adopted to favor the heat diffusion into the envi-
ronment [19].

The filler material is usually supplied by means of spe-
cific powder feeders to dose and preheat the powders. These 
are transported by a carrier gas through a pipe system to the 
end part of the deposition head. The toolpaths are executed 
by means of 3- or 5-axis CNC machines or, in the most 
recent configurations, by anthropomorphic robots [20].

The environment in which the system operates must be 
isolated by a working chamber in order to protect the opera-
tor from damage caused by laser reflections or powder con-
taminations. The internal environment, when contaminated 
by powders and gases, must be cleaned by means of suction 
and filtering systems at the end of the processing.

The whole system is managed and supervised by one or 
more on-board computers. The monitoring of such a com-
plex system and process is usually carried out through vari-
ous sub-systems, which will be discussed in more detail in 
the next section.

2.2  Sustainability assessment of additive 
manufacturing technology

The sustainability paradigm is now widespread in any tech-
nological sector [8, 11, 21, 22]. In the literature, various 
methods and approaches have been considered to be suitable 
for assessing the sustainability of AM processes. In this sec-
tion, a brief description of these methods and an overview of 
the state of the art of such applications in the AM field are 
carried out; see [23] for more details. The critical issues of 
each method were highlighted to prove the effectiveness of 
the method proposed in this work, which focuses on ther-
modynamic analysis with the EA. In our work, we consider 
the proposed procedure as the best method to reach the goal 
of demonstrating the effectiveness of the thermodynamic 
model in an ad-hoc design of a sensing and monitoring sys-
tem for the DLMD technology, in order to improve the pro-
cess sustainability.

The material flow analysis (MFA) is a systematic exami-
nation of flows and stocks of materials within a space–time-
defined system [24]. It connects material sources, routes, 
intermediate, and ultimate sinks. However, the method 
focuses only on material flows, not considering and evalu-
ating any energy flows related to the process.

Alternatively, the cumulative energy requirements analy-
sis (CERA) estimates the whole demand for primary energy 
that emerges in connection with the production, consump-
tion, and disposal of an economic good (product or ser-
vice) or that can be attributed to it in a causal relationship 
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[25]. This energy requirement is the whole of the cumula-
tive energy requirements for manufacturing, consumption, 
and disposal of the economic good. The CERA calculation 
results are typically derived as ultimate energy consump-
tion. The correct determination of the balancing limits is a 
crucial basis for calculating the CERA. Because of the great 
complexity and diversity of individual process interactions, 
systematic delimitation is usually a fundamental challenge 
in energy analysis.

The LCA is a standardized tool for the assessment of the 
environmental impact of products, processes, and activities 
[14]. According to ISO 14040 [26], it consists in inventory-
ing energy and mass input and output flows and in the assess-
ment of their potential harm to the environment throughout 
the entire life cycle of a process or product [27]. Although it 
is subject to standard databases, a limitation of ISO stand-
ards is their generic nature: greater contextualization or a 
series of exemplary test cases would be preferable to avoid 
free interpretations. About LCA in the AM sector [28], the 
literature makes no mention of process modelling via LCA 
[29, 30]. The case studies consist in a comparison of alter-
natives for decision-making to choose the most sustainable 
solution for the considered process [31] or in a discussion 
on advantages and disadvantages of AM technologies [32]. 
Although AM is considered a more environmentally friendly 
process than traditional manufacturing systems, there are 
not enough LCA studies to prove it and to highlight that 
this technology is still little explored. A research involving 
a technique roughly similar to the one that will be used in 
this paper is presented in [33], where a process unit level 
model is created to provide a complete parametrical life 
cycle inventory for a further LCA of the AM process.

Exergy is defined as the maximum work that can be pro-
vided by a system when it reaches the thermodynamic equi-
librium with reference environment conditions through a 
sequence of reversible processes occurring between the con-
sidered system and its surrounding environment [34]. During 
the process, a part of the exergy is consumed or lost due to its 
irreversibility [35]. The EA in a manufacturing system aims to 
reveal the improvement potential, while the exergy efficiency 
is an important parameter for the assessment of the sustain-
ability of a manufacturing process [36]. When approached in 
this way, the concept of sustainability becomes a matter of 
thermodynamics. There are also methods that combine EA 
and LCA in various ways, as described in [37]. Few works on 
the application of EA approaches on AM technologies have 
been found in the literature. The first consists of an Em-LCA 
implementation for AM sustainability evaluation [38]. Critical 
problems and possible improvements are identified, but only 
from a sustainability perspective. Nagarajan and Haapala [39] 
attempted to identify and characterize the factors affecting the 
systemic environmental performance of AM, using EA, LCA, 
and cumulative exergy demand (CExD, an hybrid method 

between the both) for the final use of energy [40]. Neverthe-
less, there is no mention on prospective process modelling.

Based on this brief overview of the state of the art, it is 
possible to assert that the EA approach, aided by a thermody-
namic modelling of the process, can highlight the peculiarities 
of the AM technology. It provides a more in-depth sustain-
ability assessment and indicates how to improve sustainable 
performances. Moreover, this approach is not yet found in the 
literature and has not yet been applied to DLMD technology. 
In the following paragraph, the above mentioned modelling is 
analyzed more in detail.

2.3  The thermodynamic modelling: theory 
and calculation

This section explains how to define the set of parameters to 
be monitored, as well as the requirements for designing an 
ad-hoc framework to monitor the manufacturing process. As 
already introduced, the selected model-based approach among 
the I4.0 modelling techniques is the EA. This combined model 
enables the process to be efficiently split into functional units, 
which have to be adequately analyzed in order to determine 
the critical unit and to monitor the state of the key parameters.

With regard to the state of the art illustrated in Section 2.2, 
this approach is entirely innovative because EA primarily aids 
to define a model or a set of parameters that can be useful to 
extract hidden knowledge about the dynamics of the process. 
Ultimately, it provides an estimation of the quality of the pro-
cess (in terms of efficiency) and of the possible environmental 
impacts caused by the mere consumption of resources and 
energy. In the literature, only EA, or even LCA, are used as 
sustainability metrics but no one has applied this approach to 
any AM process to date.

Considering a basic control volume for a generic manufac-
turing process, Fig. 1 shows a conceptual scheme of the main 
input and output flows (materials, energy, etc.) that can occur.

The first and second laws of thermodynamics state the 
foundation of EA. The first law covers energy conservation, 
whereas the second law describes the quality of energy and 
materials. These thermodynamic laws behind the EA are fun-
damental to trace the set of parameters that need to be meas-
ured and monitored during the process, as well as the variables 
that can be calculated. Basing on Szargut’s studies [41], refer-
ence flows can be uniquely identified in the following balance 
equations.

Mass flow balance in Eq. (1) describes the balance for the 
considered system of in and out materials flows.

Energy flow balance is reported in Eq. (2). Energy is an 
extensive variable and therefore the energy of a system in a 
given state equals the sum of the energies of all sub-systems 

(1)
∑

k
ṁi

k
=
∑

k
ṁo

k
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that can be identified as a part of a given system [42]. When 
considering an isolated system, its total energy content 
cannot change as stated in the first law of thermodynam-
ics: energy is conserved [43]. As a result, energy can only be 
changed or converted from one kind to another, but the loss 
of quality of energy is not taken into account. All the out-
coming heat flows have been considered within the last term 
in Eq. (2), which represents the sum of all the heat sources 
necessary for the process and the wasted heat. An EA must 
be done to identify and quantify the irreversibility. To do 
this, closed material and energy flow balance with energy 
interactions (work and heat) between inbound and outbound 
flows from the system boundaries must be carried out.

Exergy flow balance is stated in Eq. (3). The concept of 
equilibrium is often questionable since it is not observable 
or even possible in nature. Exergy, unlike energy, is not con-
served. It is instead consumed or destroyed to some amount 
in any real process. As a result, by accounting for all of the 
exergy streams in the system, the amount to which the sys-
tem destroys exergy may be determined. The exergy loss is 
proportional to the entropy generated; the destroyed exergy, 
or produced entropy, is accountable for the less-than-theo-
retical efficiency of the system. The exergy destruction rate 
( Ėxloss ) may be determined by balancing the exergy between 
inbound and outbound flows when work is exchanged, or 
heat transfers occur.

where in 
(

1 −
T0

Te

)

 , T0 is the reference temperature of the 
dead state and Te is the equilibrium temperature, as 
described in Eq. (4).

The enthalpy flow rate (Eq. (5)), the specific entropy 
(Eq. (6)), and the exergy (Eq. (7)) are calculated respectively:
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Ẇo

d
+
∑

p

(

1 −
T
0

Te

)

Q̇o
p
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The performance metrics of the process or its components 
are described in the following net and general efficiencies 
(Eqs. (8) and (9), respectively), depending on whether the 
objective is to evaluate the portion of useful exergy for the 
realization of the final product or to evaluate the overall 
exergy of the process:

Other types of information, such as upstream processes 
for the supply of raw materials and resources needed for 
the process and downstream processes about emissions 
treatments and waste scenarios, have been neglected in this 
assessment. The optimization criteria involve the minimi-
zation of the term  Exloss that is the cause of the less-than-
theoretical efficiency of the process. Temperature variations 
play a key role in the exergetic equilibrium. The greater the 
disparity in temperatures in two transition phases, the greater 
the energy produced.

The energy balance in Eq. (2) is also important in terms 
of product quality optimization. A very illustrative example 
can be the one in [44] where the authors concluded that 
energy is linked to the thickness of the finished product 
through an inverse proportion. This means that energy analy-
sis makes possible at the same time to increase the quality 
of the finished product, to control its characteristics and to 
reduce the energy costs of the process [45].

According to the EA data inventory of the overall DLMD 
process, the set of essential thermodynamic parameters to be 

(5)Ḣ = ṁ ∙ c ∙
(

T − T0
)

(6)s = c ∙ ��

(

T

T0

)

(7)Ėx = ṁ ∙ [h − h0 − T0 ∙ (s − s0)]

(8)�n =

∑

Exproduct

∑

Exin

(9)�g =

∑

Exout

∑

Exin

Fig. 1  Control volume of a 
generic manufacturing process
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measured (M) and those calculated (C) by means of thermo-
dynamic laws are shown in Table 1.

2.4  Sensing systems for monitoring of AM 
processes

As stated in the AM roadmap [46], one of the most challeng-
ing goals for scientists is the in situ real-time monitoring of 
AM parameters. In the last years, the development of in-
process monitoring methods has enhanced the final quality 
of AM products and, consequently, the possibility to adopt 
AM technologies for high-value applications where com-
ponent failure cannot be tolerated. Actually, the in-process 
monitoring allows achieving a clear picture of physical, ther-
modynamic, and mechanical behaviors of AM processes, 
thus improving energy and technological performance and 
being the keystone to find a compromise between technical 
quality and sustainability [8].

This is achieved by directly measuring deposition char-
acteristics (temperatures, melting pool size, track height, 
etc.; see Section 2.1) during the process and by correlat-
ing all of them to the input process parameters [47]. Sev-
eral monitoring methods are adopted, both through thermal 
measurements and via visible light-based measurements, 
which can have different configurations. In literature, the 
sensing systems for DLMD processes mainly focus on in situ 
monitoring of the melt pool in terms of temperature and size 
[48, 49], sensors to monitor material flow rate, and in situ 
monitoring of the clad geometry (height and width) [50, 51].

All the abovementioned monitoring methods and instru-
ments are necessary for a better understanding of the process 
dynamics as well as for the implementation of adaptive and 
closed-loop control systems [52]. However, these are often 
investigated separately, providing only partial information 
about the process under the selected operating conditions. 
Moreover, the abovementioned parameters and the corre-
sponding monitoring tools are more focused on the process 
performances in terms of quality of the final product, often 
disregarding other aspects such as the environmental issues.

The ideal approach should consider, then, an integration 
between quality and environmental aspects. This is achieved 
by combining different types of information derived from 
specific acquisition devices such as in situ images, clad pro-
files, and temperatures, as well as material and energy flows, 
in other words, a multi-sensor and holistic approach based 
on geometrical, thermal, and environmental controls [53].

The monitoring system proposed in the present work is 
based on a multi-sensor approach capable to acquire the 
most relevant information for the thermodynamic model 
and exergy analysis, but also relevant information about 
the quality of the process. This is the main advantage of 
the proposed approach with respect to other conventional 
monitoring practices. To encourage and make easier such a 
multi-sensor approach, a suited hardware and software plat-
form is needed, which is capable to acquire and synchronize 
data coming from different sources both on-line and off-line. 
The choice of a multi-sensor platform is not a trivial task, as 
it needs to be carefully evaluated. Several commercial data 
acquisition device (DAQ from now on) systems are available 
from National Instruments (NI), DEWESoft, dSpace, Micro-
star Laboratories, MCCDAQ, and many others. An example 
of a NI acquisition board is presented in [54].

As an alternative to commercial DAQ systems and thanks 
to the development of open source software and low-cost 
hardware, researchers have the opportunity to realize self-
made custom acquisition systems, as reported in [55] where 
a low-cost multi-sensor acquisition platform based on 
Arduino has been used for the monitoring of a wire-arc AM 
manufacturing process.

In this context, both Python and Raspberry have recently 
increased their popularity [56]. Worldwide communities 
constantly support the development of Raspberry [57] and 
Python scientific [58] applications. A monitoring system 
based on the combination of both can represent a reasonable 
choice to realize a sensing framework for the DLMD, where 
a high technological flexibility, to deal with devices of dif-
ferent manufactures, and the implementation of on-line and 
off-line elaboration algorithms are required. Anyway, this 

Table 1  Essential 
thermodynamic parameters of 
DLMD process

Material/energy Parameter in Variable Parameter out Variable M/C

Metal powder Mass flow [kg/s] ṁin
Powder

Mass flow [kg/s] ṁout

Powder
M

Temperature [K] Tin
Powder

Temperature [K] Tout

Powder
M

Gases Volume flow [l/s] ṁin
Argon

Volume flow [l/s] ṁout
Argon

M
Temperature [K] Tin

Argon
Temperature [K] Tout

Argon
M

Cooling fluid Volume flow [l/s] ṁin
H2O

Volume flow [l/s] ṁout

H2O
M

Temperature [K] Tin
H2O

Temperature [K] Tout

H2O
M

Electricity Electric power [W] Ẇel
M

Heat Heat loss [W] Q̇loss
C

Exergy Exergy loss [W] Exloss C
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approach can also be complementary and integrated with 
standard scientific NI acquisition boards [59] and MATLAB 
algorithms [60].

In conclusion, in order to prove to be well suited for the 
proposed holistic multi-sensor approach, the architecture of 
the monitoring system should combine the capabilities of all 
sensing units and at the same time be effective in terms of 
flexibility and adaptability.

3  Test case: materials and methods

The AM process addressed to prove the effectiveness of the 
above-described approach is the DLMD. Figure 2a shows 
a schematic representation of the prototype system located 
at the Polytechnic University of Bari, consisting of the 
following:

– A fiber laser source with a nominal power of 4 kW and 
a wavelength of 1.070 μm (YLS 4000 IPG Photonics 
Ytterbium Laser System)

– A 5-axis machine equipped with a deposition head and a 
coaxial nozzle

– A 11.57-kW chiller system for the laser source (chiller 
for core from now on)

– A 1.4-kW chiller system for the nozzle and the optics 
(chiller for nozzle from now on)

– A 600-W chiller system for the fiber optics cables (chiller 
for fiber from now on)

– An external pre-heated powder feeder

– A 2.2-kW powder suction system and a gravimetric dis-
penser

In order to protect operators and avoid environmental 
pollution, the working area is surrounded by a glove-box 
chamber. Inside it, in addition to the laser deposition head 
shown in Fig. 2b, monitoring systems such as a coaxial cam-
era and a pyrometer are also located. For the purpose of this 
work, an AISI 316L stainless steel powder was deposited 
on a substrate of the same material. Argon was employed 
as carrier gas for the powder and as shielding gas to prevent 
clad oxidation. In order to assess the feasibility of the pro-
posed thermodynamic model and monitoring framework, 
a single-track deposition was realized as represented in 
Fig. 2c. Single-track depositions are the basis of the most 
complex deposition patterns, and their analysis is crucial for 
the DLMD process. The main process parameters used for 
the deposition test were chosen basing on a previous work 
on the feasibility of DLMD [61], which explored different 
materials and setups, and are shown in Table 2.

3.1  The thermodynamic model of DLMD system

The thermodynamic model of the prototype DLMD system 
was developed starting from the guidelines provided in 
Section 2.3 and also its optimal sub-unit partitioning and 
all the specific in and out flows have been established. The 
model results in a set of parameters that can be monitored 
in real time or at a sampling rate high enough to identify 
trends in energy/exergy consumption and losses that make 
the process less efficient and less sustainable.

Fig. 2  a Schematic representa-
tion of the prototype DLMD, b 
deposition head, and c single-
track deposition
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In Fig. 3, the design of the DLMD process model is 
shown. This schematic representation is also useful to 
highlight the interconnections inside the complex net-
work of sub-units composing the model and the param-
eters analyzed by EA. The main sub-unit is the glove-box 
(cooled by the chiller for nozzle) inside of which the laser 
deposition process is carried out. The laser beam is gener-
ated by the laser source connected to two chiller systems 
(chiller for core and chiller for fiber). In parallel, the pow-
der flow is regulated by the powder feeder. Ultimately, 
there is the suction system that purifies the post-deposition 
environment.

The inventory of the data required to implement the EA 
highlights the numerous key points of the DLMD system. 

The main controlled parameters to be monitored were 
chosen in a first stage, such as the electrical energy con-
sumptions and the temperature of the melt pool during the 
deposition. In the model, it is noted how the material flows 
(powder, gas, and water) travel through the several sub-units 
of the system, eventually changing their physical proprie-
ties at each stage. However, at certain operational phases, 
the difficulty in monitoring temperatures and flow rates of 
in and out mass flows was recorded. This drawback shows 
how well, before carrying out the analysis, the thermody-
namic modelling has been useful for the detection of the 
monitoring framework requirements. A network of sensors 
is necessary to compose a database with values of all the 
parameters needed for the analysis. It was also pointed out 
how seeking greater accuracy in the analysis inevitably leads 
to a consequent complexity of the monitoring framework, 
bringing to a possible inclusion of additional sensors in each 
sub-unit. Complexity grows further considering the sam-
pling frequency, which becomes another important require-
ment to synchronize all parameters that could be detected by 
the sensing framework. Finally, it can be asserted that, once 
the objective of the analysis has been defined, modelling is 
fundamental to determine boundaries and limitations of the 
system under consideration.

Table 2  DLMD process parameters

Process parameter Value Unit

Laser power 600 W
Laser spot diameter 1.50 mm
Scanning speed 500 mm/min
Powder feed rate 10 g/min
Argon gas flow rate 10 l/min

Fig. 3  DLMD thermodynamic model
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3.2  Description of the monitoring framework 
of DLMD

A monitoring system has been developed based on Rasp-
berry Pi [62] and Python v. 3.8 [63] to meet the thermo-
dynamic model requirements. The first is characterized by 
several advantages such as small dimensions, low cost, and 
high flexibility due to the large set of software and hardware 
tools available. The latter is a quite recent multiplatform 
interpreter widely used by the scientific community in real-
time applications, robotics, deep learning, image processing, 
database server, and monitoring systems. In the last decade, 
it has climbed to the top of most used scientific software, 
thanks to its easy intuitive syntax and its flexibility. In this 
specific application, the Raspberry Pi 4 has been selected, 
showing the following specifications:

– Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 
64-bit SoC at 1.5 GHz

– 2 GB, 4 GB, or 8 GB LPDDR4-3200 SDRAM (depend-
ing on the model)

– Gigabit Ethernet

This choice guarantees both hardware and software flex-
ibility to perform the EA. The aim of the proposed monitor-
ing framework is to include different sensing units such as 
energy meters, flow sensors, and thermal sensors in order 
to characterize the entire DLMD process. In particular, the 
measurement of the process temperature was carried out 
through an off-axis pyrometer (CellaTemp®, Keller ITS) 
attached to the deposition head, in order to capture the ther-
mal parameters of the whole process. The emissivity value 
for AISI 316L stainless steel has been set based on previous 
works and literature data relating to laser processing [64].

A coaxial CCD camera (IDS®, uEye RE) integrated into 
the deposition head was employed to monitor the melt pool 
throughout the deposition process. With a maximum frame 
rate of 40 Hz, it is useful to verify the consistency of the 
process and detect the size of the treated area.

A set of energy meters (Siemens Sentron PAC 3200) were 
employed for electrical energy measurements. The energy 
meter had more of 200 parameters as float numbers. The 
acquired variables are active power [kW], reactive power 
[kVAr], active energy [kWh], reactive energy [kVArh], and 
voltage and current harmonics. The measuring accuracy of 
actual power is in the order of 0.5% [65].

The communication performances of the monitoring sys-
tem have been tested with the Siemens Sentron PAC 3200 
energy meter to evaluate the maximum acquisition rate. As 
a result of a preliminary test, the monitoring system was 
capable to acquire from a Modbus TCP device an amount 
of 100 word registers at 149 Hz. This result was due to an 
appropriate acquisition strategy. In order to speed up the 

acquisition process, firstly, the Python script continuously 
read data on the device port 502, and later, data were elabo-
rated and stored in a database. A schematic draw of the sys-
tem architecture is shown in Fig. 4.

In addition to the aforementioned main sensors, the moni-
toring framework made use of several sensors embedded 
within each process unit. These were useful for the purposes 
of EA, allowing monitoring of secondary parameters such 
as temperatures and water flows in chiller systems. These 
parameters had smaller variation regimes than the main 
parameters, thus being considered a constant throughout the 
carried analysis. Although these have a marginal impact on 
the overall assessment, these are essential for determining 
the efficiency of each process unit.

Finally, the greatest difficulties from the measurement 
point of view were found in the real-time evaluation of the 
powder flow during the deposition process. This parameter is 
fundamental for the quality and the sustainability assessment 
of the laser deposition process because it strongly impacts 
on the deposited track. In the literature, the real-time meas-
urement of this parameter remains an open challenge [66] 
also because there are few commercial devices capable of 
measuring it. As no suitable sensor was available, the pow-
der flow assessment was carried out by means of a prelimi-
nary series of flow tests. These tests allowed the quantitative 
estimation of the powder mass flow rate, which was kept 
constant throughout the deposition process. The main vari-
ables of the EA and the related sensing units used to measure 
them are summarized in Table 3.

3.3  Electrical energy and temperature acquisition 
test

Electrical energy and power acquisition tests were per-
formed by the Siemens Sentron PAC 3200, connected to 
each sub-unit of the prototype DLMD system. Figure 5 
shows input and output power of the laser source during a 
testing deposition cycle of 2.4 s at a constant power for the 
laser output of 600 W. The acquisition frequency of the DAQ 
system was 40 Hz.

The energy meter update frequency is about 4 Hz. Since 
the acquisition update frequency of the device is 10 times 
lower than the frequency of the DAQ system, the plot has 
a typical stepped shape. The input power reached a steady 
value after about 2 s, since the laser source consists of an 
energy pumping mechanism that maintains the active mate-
rial in an excited state in standby condition. This allowed 
a gradually increase in input power to provide a constant 
output power. The laser deposition is a process that usu-
ally operates in conduction mode requiring lower powers 
than laser welding, in which very high energy densities are 
necessary to work in keyhole mode and instantly vaporize 
the material [67]. The 4-kW laser source mounted in the 
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DLMD system is then used with powers close to the lowest 
limit available for stable processing, equal to 10% of the 
nominal power.

On the other hand, Fig. 6a shows the input power of the 
chiller system for the laser source. The plot shows a basic 
power consumption of the machine of 4800 W with load 
cycles reaching peaks of 6800 W. The trend and frequency 
of the peaks are strictly related to the laser source activity 
and the output laser power required by the processing. Fig-
ure 6b shows the input power of the chiller system for the 
fiber. The device can be outlined as a simple heat exchanger 
without any input power control system. In fact, this power 
is not affected by working cycles of the source and stands 
at a constant value of 450 W. Figure 6c plots the trend of 
the incoming electrical power for the chiller system for the 
nozzle: similar to the core chiller, this device has load cycles 
influenced by the deposition process and mainly by the ther-
mal energy reflected by the melt pool, which overheats the 

Fig. 4  Sensing units and moni-
toring system architecture

Table 3  Measured parameters 
of DLMD process

Material/energy Parameter Variable Equipment

Metal powders Mass flow [kg/s] ṁin
Powder

;ṁout

Powder
Mass flow test

Temperature [K] Tin
Powder

;Tout

Powder
Thermal sensor

Gases Volume flow [l/s] ṁin
Argon

;ṁout
Argon

Flow meter
Temperature [K] Tin

Argon
;Tout

Argon
Thermal sensor

Cooling fluids Volume flow [l/s] ṁin
H2O

;ṁout

H2O
Embedded flow meter

Temperature [K] Tin
H2O

;Tout

H2O
Embedded thermal sensor

Electricity Electric power [W] Ẇel
Energy meter

Deposition track Temperature [K] Tin
Powder

;Tin
Argon

Tout

Powder,loss
;Tout

Powder,dep
;Tout

Argon

Pyrometer

Volume  [mm3] Vdep CCD camera
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Fig. 5  Laser beam input and output power during deposition cycle
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nozzle and the optics. During process downtime, the chiller 
handles a limited temperature variation of the deposition 
head, which allows the system to be kept on standby for a 
long time. This is less clear on the core chiller because dur-
ing the standby of the laser source, the pumping mechanism 
still produces a certain amount of waste heat which is man-
aged by the chiller.

In Fig. 6d, the consumptions of the glove-box are plot-
ted. This apparatus is an agglomeration of various devices 
useful for DLMD operations, such as a PC, a laser head 
handling system, and monitoring systems. The trend over 
time of the electrical input power is irregular because it is 
influenced by the activity sequences of components during 
the deposition process. However, there is a maximum input 
power value that reaches 900 W and a minimum value that 
is around 300 W.

The power values recorded by means of the energy meter 
during preliminary tests on components constituting the 
DLMD system and employed in the EA are summarized in 
Table 4. Maximum and minimum values have been listed 
because not all components were active during the deposi-
tion process. For example, the suction system is activated 
only at the end of the processing cycle, to clean the glove-
box environment from argon and the fraction of floating 
wasted metal particles. In fact, the system is coupled with 
a gravimetric dispenser which doses the calcium carbonate 
to reduce the risk of explosions deriving from processing of 
fine metal powder.

The EA is a method mainly based on thermodynamics 
that evaluates the energetic behavior of manufacturing sys-
tems by comparing them to the Carnot cycle. In order to 
obtain energy and exergy values of the system, it is essential 
to record the main thermal parameters of the material flows. 

Table 5 lists temperature, pressure, and specific heat values 
for argon, AISI 316L metal powder, and water for chiller 
systems. The dead state corresponds to the thermal equilib-
rium between the system and its surroundings.

Therefore, it is essential for EA to evaluate the tempera-
ture variations during processing. These data were obtained 
for each component of the system in different ways: directly, 
through the usage of primary monitoring systems such as 
pyrometers or through monitoring systems embedded into 
the sub-units, and indirectly from literature, data sheets, and 

Fig. 6  a Chiller for core, b 
chiller for fiber, c chiller for 
nozzle, and d glove-box input 
electrical power during deposi-
tion cycles
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Table 4  Electrical power distribution

Device Parameter Unit Max value Min value

Powder feeder ẆF

El,in
W 240 240

Laser source ẆLS

El,in
W 2820 400

Chiller for fiber Ẇ
Ch,Fiber

El,in
W 450 450

Chiller for core Ẇ
Ch,Core

El,in
W 6800 4800

Glove-box ẆGB

El,in
W 900 300

Chiller for nozzle Ẇ
Ch,Nozzle

El,in
W 1200 500

Suction system ẆS

El,in
W 1500 300

Table 5  Material properties

State functions Symbol Unit Metal powder Argon Water

Dead state tem-
perature

T0 K 298.15 293.15 293.15

Dead state pres-
sure

P0 atm 0.987 4.935 0.987

Specific heat cp J/kg K 500 520 4186
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simulations. Figure 7 shows the plot of the maximum tem-
perature of the single-track deposition process measured by 
the pyrometer.

3.4  Exergetic analysis: results and discussion

The purpose of the proposed analysis is to prove the effec-
tiveness of the monitoring system designed by applying the 
thermodynamic model. The current equipment and frame-
work provided upstream and downstream process flow data 
and information for validation (or partial model simulation) 
of the EA.

By considering negligible leakage in the chiller systems 
during the process, and that the water flow inside the chillers 
runs cyclically, it is possible to assume that the mass balance 
will always be equal to zero. Therefore, the mass balance of 
argon and AISI 316L powder only was considered.

Concerning the graph in Fig. 8a and b, the argon flow was 
considered to be entirely necessary for the production of the 

deposition clad, and for this reason, although it is not materi-
ally part of the final component, its output quantity was not 
considered a loss. On the contrary, for a coaxial nozzle, the 
powder was considered 60% useful for cladding according 
to the deposition efficiency calculation provided by [68] and 
40% was considered wasted inside the glove-box and was 
therefore considered lost mass.

In order to simplify the process analysis, some assump-
tions have been made: (a) the system operates under steady 
state conditions, (b) the pressure drops related to all losses 
along the system are negligible, and (c) each processing unit 
is insulated, and thus the heat transfer to the environment 
is negligible. The graphs in Fig. 8 were obtained through 
Eq. (1) introduced in Section 2.3, while the graphs in Fig. 9 
were obtained via the Eqs. (2) and (3), respectively, by inte-
grating every single equation over the deposition cycle time.

Any activity or process that involves a work necessitates 
the use of energy, which manifests itself primarily in two 
types: work and heat. In general, for each energy transfor-
mation, its performance can be calculated as the percentage 
of the input energy that is converted into the desired final 
type. In the work, in order to compare the efficiency of the 
process based on the energy and the exergy analysis, two 
categories of allocations for the output energy have been 
defined. Taking as a reference the differentiation between 
exergy out  (Exout) and exergy loss  (Exloss) introduced in 
Eq. (3), the amount of energy useful for the production of 
the final product  (Enout,dep) and the amount of energy unnec-
essary for manufacturing the component and thus destinated 
to wasted materials and emissions  (Enout,waste) have been 
defined. Figure 9 shows that nearly 70% of the incoming 
energy (see Fig. 9a) was converted to heat, which was dissi-
pated in the environment during the process and was useless 
for the production of the deposition track and almost 92% of 
the incoming exergy (see Fig. 9b) was lost as well. The input 
fraction was determined by the electrical and material flows, 
which contribute to the balance through enthalpy, depending 
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Fig. 8  Mass balances of a argon 
and b AISI 316L powder
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on both the specific heat and the temperature difference 
between the dead state and the incoming temperature (see 
Eq. (5) in Section 2.3). The lost fraction corresponds to all 
the dispersed energy, which was not useful for the deposition 
process. As can be seen from the graphs, the three chiller 
systems appear to be the most energy-demanding units. The 
situation is slightly different regarding exergies, as the most 
active processing unit appears to be the chiller for core, fol-
lowed by the laser source.

Figure 10 shows the exergetic efficiency of each process-
ing unit. The substantial difference between net use and gen-
eral efficiency lies in the fact that the former considers only 
the exergies useful for the implementation of the deposition 
process, whereas in the latter, all incoming and outgoing 
exergies are considered expressed in Eqs. (8) and (9) in Sec-
tion 2.3. Figure 10 also shows the overall efficiencies of the 
entire process.

The laser source has an efficiency of about 21%, consist-
ent with the literature on solid state laser sources. As could 
be expected, the efficiencies of the chillers turn out to be low, 
as these absorb more electrical power than the power needed 
to produce the useful work for the process. The devices are 
oversized related to the process under consideration, as the 

system is multipurpose and must also cover the needs arising 
from different processes such as laser welding.

On the right, Fig. 10 shows the exergetic efficiency of the 
actual deposition process which takes place inside the glove-
box, but deserves a specific study, as at this stage, the tem-
perature differences of the materials may change abruptly. 
The value represents the energy (related to the laser beam) 
provided to the deposition point in order to create the track, 
but also wasted to heat up other elements involved in this 
phase of the process, i.e., the powder dispersed in the glove-
box, the substrate, and the argon that is dropped out by the 
suction system. Temperatures were measured by means of 
the pyrometer but a reference was made to [69] to approxi-
mate the overheating of the substrate and to quantify the 
energy lost during the deposition.

Exergetic efficiencies are more complex than energy effi-
ciencies because they consider the useful work generated 
during the process and related to the maximum work of the 
Carnot cycle. By controlling energy yields, these are higher 
and in line with the usual values: for example, the energy 
efficiency of the chiller systems ranges from 25 to 40%.

Analyzing the energy balance, the larger fraction of the 
consumed energy can be allocated to the generation of the 
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laser beam. This result is consistent with other works in the 
literature [70] that describe the DLMD process as the most 
energetic AM technology currently existing (considering an 
average energy demand of 7,779 MJ per every kg of depos-
ited mass).

Another food for thought regarding the obtained results 
is the lack of bibliographical studies on the environmental 
impact on DLMD systems that considers all components 
of the system acting in the process. For example, there is 
an almost total lack of studies on the impact of chillers on 
the efficiency of laser beam generation and on the overall 
process.

Works carried out through exergetic modelling have the 
advantage of assessing both the general impact of the laser 
deposition process and the decomposition of the system into 
processing units so as to be capable to identify the energy 
and exergetic contribution for each of them. In addition, it 
was possible to define the efficiency of the individual devices 
to plan for improvement on the most energy-intensive pro-
cessing units and therefore to prioritize the components that 
need to be modified.

4  Conclusions and further developments

In view of the aforementioned discussion, an appropriate 
system was developed to store, collect, and analyze a com-
prehensive set of parameters. The novel system framework, 
applied for the first time in the additive manufacturing field, 
has proved to be effective in carrying out an accurate quality 
and sustainability assessment of the DLMD process under 
analysis. The main outcomes obtained from the exergetic 
analysis were the following:

• The energy and exergy balance showed almost 70% of 
the energy and 92% of the exergy incoming to the system 
were lost during the process.

• Chiller systems were the most energy-intensive sub-units 
of the system, requiring 88% of the total incoming energy 
and 64% of the incoming exergy.

• The deposition process reported a very low exergy effi-
ciency (about 10% of net and 22% of general), while at 
system level, the efficiency of the DLMD system fell to 
5% of net and 8% of general efficiency.

The thermodynamic process modelling, as well as the 
analysis itself, has made possible to identify the open issues 
and criticalities related to the monitoring and control sys-
tem designed in this work in view to a further real-time 
monitoring and control procedure of the DLMD process: 
(a) the problem of synchronization of sampling frequencies 

will be studied in depth, as well as the possibility of inte-
grating data from new devices into a single database; (b) 
the analysis of complex deposition strategies, focusing on 
the idle time between contiguous subphases throughout the 
process to detect variations in energy/exergy loss for each 
sub-unit; (c) the analysis could even focus on environmental 
sustainability through the implementation of a full EA-LCA 
model. Given the benefits in coupling EA with LCA for this 
kind of process analysis, the thermodynamic model to be 
implemented may be much more effective if coupled with 
the LCA: at first, this can provide more objective-oriented 
outcomes of the assessment; on a second instance, this will 
become a helpful tool for decision-making policies aimed at 
developing evolutionary solutions, thus enabling the process 
to automatically prevent any possible failure. The imple-
mentation of a comprehensive EA-LCA approach, which 
relates the environmental impacts to the quality of compo-
nents made through DLMD process, will be the focus of 
the next work. Moreover, the full EA-LCA model with a 
proper sensing and monitoring system may enable any prac-
titioner to restructure both process hardware and software 
to smart I4.0 standards almost in real time, thus improving 
the cost-efficiency.
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