
Vol.:(0123456789)1 3

https://doi.org/10.1007/s00170-021-08047-6

CRITICAL REVIEW

Technology development and commercial applications of industrial 
fault diagnosis system: a review

Chengze Liu1 · Andrzej Cichon2 · Grzegorz Królczyk3 · Zhixiong Li3

Received: 24 May 2021 / Accepted: 12 September 2021 
© The Author(s) 2021

Abstract
Machinery will fail due to complex and tough working conditions. It is necessary to apply reliable monitoring technology to 
ensure their safe operation. Condition-based maintenance (CBM) has attracted significant interest from the research com-
munity in recent years. This paper provides a review on CBM of industrial machineries. Firstly, the development of fault 
diagnosis systems is introduced systematically. Then, the main types of data in the field of the fault diagnosis are summa-
rized. After that, the commonly used techniques for the signal processing, fault diagnosis, and remaining useful life (RUL) 
prediction are discussed, and the advantages and disadvantages of these existing techniques are explored for some specific 
applications. Typical fault diagnosis products developed by corporations and universities are surveyed. Lastly, discussions 
on current developing situation and possible future trends are in the CBM performed.

Keywords  Condition-based monitoring · Fault diagnosis system · Signal processing · Diagnostics and prognostics · 
Commercialization

1  Introduction

1.1 � Background

In modern industry, machines develop towards being more 
complicated, and intelligent, and are subject to growingly 
demanding operation conditions. Slight performance dete-
rioration or security risks may bring serious consequences, 
which can lead to sudden breakdown or even devastating 
accident with enormous financial losses and casualties if 
not detected early [1–7]. For example, an air crash caused 
by mechanical failures (e.g., an engine fault), a wind tur-
bine that collapsed due to mechanical failures, and Volvo 
repeatedly recalling cars due to mechanical failures. In order 
to keep the machinery running with high reliability and 

maintain a low downtime, it is very important to identify the 
existence and severity of faults in the machinery accurately.

In the literature, maintenance techniques are separated into 
three types [8], including the breakdown maintenance, pre-
ventive maintenance, and condition-based maintenance. The 
breakdown maintenance is a strategy that is applied to repair 
the components/machinery only after a fault has occurred. 
Therefore, it would not be able to avoid any faults. Preven-
tive maintenance performs maintenance activities at a fixed-
length interval regardless of the practical machine condition 
[8]. The time interval is generally determined by experience 
and original equipment manufacturer recommendations, which 
will cause over-maintenance when the periodical interval is too 
short or lead to an unexpected failure when the chosen interval 
is too long. Breakdown maintenance and preventive mainte-
nance are disappearing from the real industrial application 
because of these problems. CBM (also called predictive main-
tenance) is a maintenance procedure that takes maintenance 
actions based on the information indicated in the condition 
of machinery instead of regular time interval, which achieves 
objectives of cost reduction and reliability improvement. The 
main advantage of CBM is to recommend maintenance activ-
ity only when there is evidence of abnormal behaviors of a 
machine for avoiding unnecessary maintenance tasks and to 
not interrupt normal operations [9–11]. As a result, CBM has 
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attracted more and more attentions from academic researchers 
and industrial operators over the past few years.

Figure 1 presents three important processes of CBM [12]:

(1)	 Data acquisition, to collect and store useful data from 
targeted physical assets.

(2)	 Data processing, to process and analyze the date col-
lected in step 1.

(3)	 Maintenance decision-making, to take useful mainte-
nance actions.

The key of a CBM program is the maintenance decision-
making where maintenance actions are recommended through 
diagnosis and prognosis. Fault diagnosis aims at identifying 
the fault mode of the machinery after detection and prognos-
tics commonly oriented towards identifying and quantifying 
the fault. The latter is also capable of predicting the process 
of degradation. Thus, a maintenance decision is determined 
with reliable prediction. It may be noted that prognostics is 
much more efficient than diagnostics to achieve maintenance 
of machinery. While correct diagnosis significantly reduces the 
downtime by detecting a fault in incipient stage and identifying 
the faulty location, prognosis directly estimates how soon and 
how likely a fault will occur. However, prognostics is usually 
difficult to acquire a 100% prediction result. Diagnostics can 
be a complementary tool to provide maintenance decision sup-
port when prediction approach fails and a fault occurs.

1.2 � Development of fault diagnosis system

To ensure the safe operation of the machine, fault diagnosis 
system is exploited. With progresses of condition monitoring 
theory and detection technology, especially network technol-
ogy, fault diagnosis system can be roughly grouped into three 
categories: single fault diagnosis system, distribution fault 
diagnosis system, and remote fault diagnosis system. These 
systems will be discussed in the following three subsections, 
respectively.

1.2.1 � Single fault diagnosis system

Single fault diagnosis system aims to provide real-time help 
for users, which allows the health state of a specific machin-
ery to be evaluated independently of any connected assets. 
It is a common situation to find multiple faults in a single 
component; there is no one-to-one relationship between the 

fault symptom and the fault itself. Moreover, the degree and 
response rate of each fault are different. As a result, we should 
integrate various techniques to ensure the accuracy and effec-
tivity of fault diagnosis in a single fault diagnosis system. 
Hsueh et al. [13] proposed a novel methodology to monitor 
the condition of a three-phase induction motor. They applied 
the empirical wavelet transform as a preprocessor to transform 
the raw signal into two-dimensional grayscale images and used 
a deep convolutional neural network to automatically extract 
robust features from the grayscale images to diagnose the 
faults. Zhang et al. [14] developed a method based on permu-
tation entropy, ensemble empirical mode decomposition, and 
support vector machines to detect motor bearing faults. Liu 
et al. [15] combined the least squares support vector machines 
(LSSVM) and empirical mode decomposition to improve the 
accuracy of bearing fault diagnosis. However, machines are 
composed of a series of connected components that continu-
ously interact with one another. In order to simplify diagnosis 
analysis, single fault diagnosis systems ignore the complex-
ity and uncertainty caused by the interactions among com-
ponents and detect each component in isolation, which may 
reduce confidence in the outputs of the system, or even lead 
to misdiagnosis.

1.2.2 � Distributed fault diagnosis system

The characteristics of production equipment in modern 
industry are upsizing, complex, continuous, and automa-
tion, which generate severe challenges to effective mainte-
nance. Distributed fault diagnosis mode has received much 
attention, because it combines diagnostic information from 
different components to improve the reliability of the condi-
tion monitoring of each individual component and the whole 
system. A distributed fault diagnosis system is comprised 
of several different diagnostic sub-systems, which decom-
poses the fault diagnosis task of the entire system into the 
fault diagnosis task of part sub-systems according to the idea 
“disassemble-synthesizing.” Each sub-system independently 
diagnoses the fault in their local areas. If the sub-system can-
not achieve the task, the information from the entire system 
is used to resolve the problem. Jiang et al. [16] proposed a 
distributed monitoring scheme based on multivariate sta-
tistical analysis and Bayesian method for large-scale plant-
wide processes. Shahnazari et al. [17] designed a distributed 
detection and isolation architecture to detect the faults of 
heating, ventilation, and air conditioning systems. Chen et al. 
[18] proposed a distributed fast fault diagnosis method based 
on deterministic learning theory for multi-machine power 
system fault detection. They established a knowledge bank 
and gradually updated it. However, distributed fault diag-
nosis systems apply computer local area network to transfer 
information. Different large-scale systems are required to 
repeatedly construct their own local area network.

Data 

acquisition

Data 

processing

Maintenance 

decision 

making

Fig. 1   General CBM process
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1.2.3 � Remote fault diagnosis system

The progresses of network and communication technology 
provide the opportunity to develop remote fault diagnosis 
system. Compared with traditional diagnosis system, remote 
fault diagnosis system has many good characteristics such 
as open architecture, resource sharing, and high efficiency. 
Remote fault diagnosis systems apply Internet to transfer the 
fault information to the central maintenance station. Then, 
the diagnosis result and maintenance suggestions are sent 
to users via the Internet. Consequently, users can access the 
performance of machinery from anywhere in the world by 
remote fault diagnosis system. For the applications of remote 
fault diagnosis system, readers can refer to Refs. [19–21]. 
However, the current fault diagnosis systems are difficult to 
share and exchange information because of different archi-
tectures. To eliminate information island and improve the 
cross-platform interoperability, some international stand-
ards and advanced technologies have been proposed. Wang 
et al. [22] proposed a remote fault diagnosis system that took 
Extensible Markup Language (XML) as a core and exploited 
it to encode diagnostic data. Zhao et al. [23] introduced the 
progress of remote fault diagnosis system based on the 
service-oriented architecture (SOA). The architecture is the 
integration of multiple technologies (e.g., Web Services, 
Smart Client, and XML).

2 � Data acquisition

For any maintenance practice, data acquisition is one of the 
most important steps. Data collection can be divided into 
two categories: condition monitoring data and event data. 
The condition monitoring data are the measurements related 
to the health condition of the targeted machinery. The event 
data include the information about the maintenance adjust-
ments and operational changes (e.g., installation, repair, oil 
change, etc.) [12]. Event data and condition monitoring data 
are equally important in CBM. However, the latter has gotten 
more attention which the collection of event data in practical 
application is often ignored. One possible reason is that the 
event data are not regarded as the same value as the condi-
tion monitoring data during the monitoring process. This 
is incorrect since the event data are critical for researchers/
engineers in consideration of system redesign and improve-
ment of condition indicators. Hence, it is a must to combine 
the event data and condition monitoring data to build a better 
CBM model that accurately identify the health condition of 
machineries. More details about the event data can be found 
in [12, 24, 25].

So far, according to the different mechanisms of moni-
toring condition and sensors, various condition monitoring 
data can be applied to indicate the condition of mechanical 

equipment like vibration, current, acoustic emission, tem-
perature, and oil debris analysis.

2.1 � Vibration

Since vibration signals contain the dynamic characteristics 
of machinery condition, it has become a most widely used 
and effective method to evaluate operation and machinery 
condition in recent years. Failures can produce changes 
in the vibration signal. For example, a crack in a bearing 
generates a shock impulse every time the crack contacts 
another part of the machine. Then, the location and severity 
of fault can be clearly identified by the vibration signal [26]. 
Vibration signals are usually acquired by the vibration test 
equipment, such as displacement sensors, speed sensors, and 
acceleration sensors. The main advantage of vibration moni-
toring is the ability to diagnosis different types of faults, 
either mechanical or electrical faults. Moreover, inexpensive 
sensors, immediate measurement, and the ability to pinpoint 
the damage component and its location are other benefits of 
the vibration analysis [27, 28]. However, vibration measure-
ment requires access to the machine, which is hard to realize 
for complex and severe conditions such as corrosion and 
elevated temperature. Another issues of vibration monitor-
ing are that special training is required to accurately install 
vibration sensors and the output is easily be interfered by 
external noise [29].

2.2 � Stator current

When a rotor system has faults (e.g., the misalignment of 
the shaft, bearing failures, etc.), it generates additional 
torque ripple. The motor will create a corresponding elec-
trical torque to balance the torque ripple [30]. Thus, faults 
of targeted physical asset could be reflected by current sig-
nals. Current signal does not require additional sensors to 
be mounted on or next to the measured machinery, which 
can be directly obtained by trapping into the existing voltage 
and current transformers that are already installed as part 
of the protection system [31]. This appealing merit there-
fore facilitates the fault diagnosis in long-distance cases. 
One major disadvantage of the current analysis is that fault 
components are subtle in the current signal where the domi-
nant components are supply frequency components. Then, 
for downstream mechanisms (e.g., gearboxes) in an elec-
tromechanical machine, the torque change caused by faults 
may have little impact on motor current. Furthermore, many 
problems will be associated in the case of current spectrum 
analysis, for example, the characteristic harmonics caused 
by air-gap variation, harmonics of eccentricity caused by the 
construction of the motor, and harmonics due to variations 
of the load and the supply frequency [31, 32].
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2.3 � Acoustic emission

Acoustic emission (AE) analysis has become an effec-
tive condition monitoring tool. AE was originally used for 
non-destructive testing of static structures, and it has been 
extended to condition monitoring of machinery (e.g., shaft 
cracks and composite material spalling, fracture, and delami-
nation of in rolling bearings) in recent years [33, 34]. In 
machinery monitoring application, AE is defined as transient 
elastic waves caused by the interface of components in rela-
tive motion [10]. Since the frequency response of acoustic 
emission is higher than vibration’s, which is within 100 kHz 
and 1 MHz, significant merit of AE monitoring over vibra-
tion methods is the ability to capture surface and subsur-
face slight damage and detect early fault [35]. However, the 
applications of AE analysis in the fault diagnosis are partly 
limited due to the difficulty in processing, interpreting, and 
classifying the obtained data. Moreover, AE signal suffers 
from severe attenuation and reflections before reaching the 
sensors, so AE sensors are required to be close to its source 
[10, 36].

2.4 � Temperature

It is well known that temperature is one of the most pow-
erful parameters for indicating the healthy condition of 
machinery. Every component has a temperature range during 
normal operation. Users can compare the actual tempera-
ture with the range to judge whether a fault has occurred. 
Nevertheless, an increase in temperature can be caused by 
various factors, such as change in working load and speed 
and degradation of lubricant oil; even if the temperature rise 
can be recognized, users should determine the cause of the 
temperature rise [35]. In addition, traditional temperature 
detection method is not sensitive for early fault. Infrared 
thermography (IRT) is a novel method that remotely meas-
ures the temperature of an object and provides the thermal 
image. Infrared detectors are the key of IRT system, which 
detects the infrared radiation emitted by an object in a non-
intrusive way and exploits Stefan-Boltzmann’s law to obtain 
the temperature [37]. However, IRT analysis should take 
time to heat up motor and process thermal images. Another 
disadvantage of IRT is that it experiences high system costs 
[37, 38].

2.5 � Oil debris monitoring

Oil debris monitoring is a well-established way to evaluate 
the quality of oil and monitor the wear condition of inter-
nal oil-wetted components, which can be roughly grounded 
into two sub-categories: oil condition monitoring and wear 

debris detection. The former interests in the degradation 
of oil properties caused by oxidation, thermal, and shear 
effects to determine whether the oil is suit for further use, 
and the latter focus on the components, contents, and mor-
phology of debris generated and its distribution for con-
firming wear state of components [9, 39]. Many debris 
detection techniques have been developed for investigating 
the health conditions of machines in the past few decades, 
which are separated into offline detection and online detec-
tion. Some offline methods are inefficient and cannot pro-
vide the wear state in real time, so online analysis becomes 
a hotspot in state analysis. There are some different types 
of online debris detection according to the measurement 
principles, for instance, optical method, inductive method, 
resistive-capacitive method, and acoustic methods [40]. 
Compared to other parameters such as vibration, oil debris 
analysis is earlier to identify loss of mechanical integrity 
and can monitor the evolution of the wear process [27]. 
In addition, it has several distinguished advantages, e.g., 
close relationship with wear surface profile, long persis-
tence of information, and powerful anti-interference capa-
bility [41]. Unfortunately, oil debris monitoring is only 
applicable to systems that have a recirculating lubricat-
ing fluid loop and cannot identify the fault from specific 
components which have a common metal element, such as 
bearings and gears.

2.6 � Epilog

Due to different detection principle, each monitoring tech-
nology has its own advantages and disadvantages as shown 
in Table 1. For example, vibration analysis is the most 
widely used technology in condition monitoring field, 
but it requires special training for accurately installing 
sensors and is not easy to detect early fault of machin-
ery; AE monitoring can overcome the latter problem but 
suffers from severe attenuation and reflections of signals 
before reaching the sensors; current detection does not 
need additional sensors but limited by low signal-to-noise 
ratio; while temperature technology and oil debris tech-
nology are only used in specified conditions or auxiliary 
use, multi-sensor information is the direction of develop-
ment of condition monitoring in the future. This paper 
will not cover the details of information fusion. One point 
the authors would like to make is that multi-sensor system 
combines all observation information based on combined 
optimization criterion to obtain the consistency interpreta-
tion and description to observation environment and create 
a new result at the same time [27]. It aims at using multi-
ple sensors to improve the estimation precision of condi-
tion. More detailed discussion and application for data 
fusion have been reported in the publications [27, 42, 43].
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3 � Signal processing

It is almost impossible to directly recognize the type of faults 
owing to the variability and richness of the original signals. 
Hence, signal processing is used to cleaning, transforming, 
and modeling data with the goal of minimizing or eliminat-
ing noise and extracting important information related to 
faults. Signal analysis techniques can be classified into three 
categories according to the different domains: time domain 
analysis, frequency domain analysis, and time–frequency 
analysis. A summary of these techniques is given in Table 2, 
which provides their advantages and disadvantages to help 
researchers who work in the field of signal processing select 
appropriate signal processing tools. This paper focuses on 
the performance of vibration signal in signal processing, 
fault diagnosis, and life prediction in the sense that vibration 
analysis is the most mature technique in condition monitor-
ing. In the following sections, signal processing techniques 
are discussed in detail.

3.1 � Time domain analysis

When the running conditions of machinery deviate from the 
normal condition, the time domain statistical features of the 
signal will be different from the normal condition. Moreover, 
the features will be different under different fault mode. Con-
sequently, the time domain features contain abundant fault 
information, and they can be served as sensitive character 
used to analyze the condition of machinery.

Table  3 shows the commonly used features in time 
domain, including dimensional statistical parameters and 
non-dimensional statistical parameters. Statistics analy-
sis has been broadly used in condition detection and fault 

diagnosis. Williams et al. [44] combined high-frequency 
resonance technology and traditional vibration metrics (e.g., 
root mean square, peak value, kurtosis, and crest factor) to 
detect damage in rolling element bearings. Lei et al. [45] 
developed two diagnostic parameters for diagnosing faults of 
planetary gearboxes. Although statistics analysis is easy to 
implement and can evaluate the performance of machinery, 
it is difficult to directly expose the occurrence and location 
of faults. In addition, feature selection is usually a challenge 
when applying statistics method to analyze signals.

Another popular time domain technique is time synchro-
nous average (TSA). It exploits the ensemble average of 
the signal separated by the exact period to obtain the sig-
nal components of interest, and any others will be reduced 
asymptotically towards zero. Zhang et al. [46] applied TSA 
and wavelet transform to identify the gear failure. However, 
TSA requires a long signal and corresponding rotation mark 
signal, and signal characteristics cannot be revealed by TSA 
under varying speeds due to the phase accumulation error. 
To combat the weakness of the TSA, Xiao et al. [47] pro-
posed an improved dynamic time synchronous averaging 
and extracted the periodic feature signal from the fluctuated 
vibration signal to diagnose the gear fault. They used the 
dynamic time warping to estimate the phase accumulation 
error among the envelop signal segments and further applied 
it to compensate the phase accumulation error between the 
intrinsic mode function segments of the reconstructed signal.

Autoregressive (AR) model has also been proved to be a 
powerful method in signal processing. The idea of AR model 
is to fit the data to a parametric time series model and extract 
features based on this parametric model [12]. The commonly 
used models include autoregressive model, moving average 
model, and autoregressive moving average model. Since the 

Table 1   Advantages and disadvantages of different monitoring parameters

Monitoring parameters Advantages Disadvantages

Vibration • At relatively low cost
• Provides immediate measurement
• Can detect different types of faults
• Pinpoints the damage component and its location

• An intrusive method
• Easily disturbed by of external noise
• Requires special training for accurately installing sensors
• Difficult to detect early fault

Current stator • A non-intrusive method
• At relatively low cost
• Suitable for long-distance cases
• Does not need additional sensors

• Sometimes provides low signal-to-noise ration
• Requires effective signal processing technology

Acoustic emission • Can detect early fault
• Can capture surface and subsurface slight damage
• Provides high signal-to-noise ration

• Difficult to process, interpret, and classify the obtained data
• Suffers from severe attenuation and reflections of signals 

before reaching the sensors
Temperature • A non-intrusive method

• Provides thermal image
• At relatively high cost
• Requires a large volume of time for heating up motor and 

processing thermal images
Oil/Debris • Can detect loss of mechanical integrity at early stage

• Closely related to wear surface profile
• Has powerful anti-interference capability

• Limited to machinery with closed-loop lubricating system
• Difficult to identify the fault from specific components 

which have a common metal element
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parameters of AR model are sensitive to the condition vari-
ation, it can be used to reflect the condition variation of a 
dynamic system. Furthermore, AR models can be applied to 
diagnose the fault without constructing mathematical models 
or studying the fault mechanisms. Wang et al. [48] extracted 

the detective features from the voltage data sequence using 
the ARMA model. Several researches have applied AR 
models combining with others methods to fight the prob-
lem of AR model in processing non-stationary signals. For 
example, Han et al. [49] proposed a joint approach based on 

Table 2   Comparison of various signal processing techniques

Domain Techniques References Advantages Disadvantages

Time Statistics analysis [44, 45] • Has simple compute process
• Can evaluate the performance of 

machinery

• Difficult to obtain detail about the fault
• No clear guidelines on the selection of 

features
TSA [46, 47] • Can improve signal-to-noise ratio by 

suppressing the asynchronous compo-
nents

• Requires a long signal and corresponding 
rotation mark signal

• Difficult to obtain signal characteristics 
under varying speed

AR model [48, 49] • Does not need knowledge of mathemati-
cal model and fault mechanisms

• Has high sensibility for condition vari-
ation

• Requires a large volume of time for deter-
mine appropriate order of model

• Inapplicability to non-stationary signals

Frequency Power spectrum [50–52] • Provides frequency information • Unable to provide phase information
Higher order spectrum [29, 53, 54] • Suppresses Gaussian noise

• Retains phase information
• Suffers from non-Gaussian noise interfer-

ence
• Heavy computation burden

Cepstrum [55, 56] • High capability to simplify and extract 
the periodic components

• Can separate transmission path from the 
real signal

• Suffers from intense background noise at 
early stage

• Unable to provide obvious features due to 
the average effect of FT

Envelope spectrum [57–60] • Provides more fault information than 
original signal

• Remarkable ability in extracting the 
characteristic frequencies

• Provides spectral and temporal represen-
tation of modulating signal

• No standard method to choose the central 
frequency and bandwidth of the bandpass

Time–frequency STFT [12, 61, 62] • Easy to understand
• Can offer local features of signal

• Lacks adaptability
• Not appropriate to analyze highly transient 

phenomena in signals
Wavelet transform [24, 63–66] • Has a zooming and adaptive window-

ing capability suited for non-stationary 
signal

• Effective in self-similar or fractal signals

• No standard method to choose wavelet 
basis

• Suffers from energy leakage

WVD [67–69] • Has the highest time–frequency resolu-
tion among all the time–frequency 
distributions

• Inevitably hindered by the cross-term 
interferences

• Suppresses cross-term at the expense of 
deteriorated time–frequency resolution

EMD [70–75] • Adaptive capability to represent arbi-
trary signals

• Provides fine time–frequency resolution
• Free of cross-term interferences

• Difficult to resolve signal components due 
to end effects and mode mixing

EEMD [14, 76, 77] • Adaptive capability to represent arbi-
trary signals

• Provides fine time–frequency resolution
• Can suppress mode mixing

• Unable to eliminate mode mixing com-
pletely

• No standard method to choose the number 
of trails and the amplitude of added noise

LMD [78–82] • Adaptive capability to represent arbi-
trary signals

• Provides fine time–frequency resolution
• Retains more variations of the frequency 

and amplitude in signals

• Difficult to resolve signal components due 
to end effects and mode mixing
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variational mode decomposition and AR model parameters 
for fault detection of rolling bearing. They decomposed the 
vibration signal into a series of stationary component signals, 
and constructed an AR model for each component mode.

3.2 � Frequency domain analysis

Frequency domain analysis gives information about the sig-
nal in the frequency domain. The significant merit of fre-
quency domain analysis over time domain is the ability to 
distinguish and isolate frequency components of interest. As 
shown in Fig. 2, various frequency domain techniques have 
been applied in signal processing.

3.2.1 � Power spectrum

The most commonly applied approach in frequency domain 
analysis is power spectrum. To verify the performance of 
power spectrum in fault diagnosis, Liang et al. [28] attached 
five accelerometers at the ends of the induction motor to 
measure vibration of the induction motor. The power spec-
trum of an induction without and with broken rotor bar 
fault under 0% and 100% motor load conditions is shown in 
Fig. 3. There are no visible sidebands for broken rotor fault 

under 0% motor load, in the sense that the slip is too small 
to be identified. Figure 3b shows clear sidebands for the 
same fault when the load is grown to 100%. It can be seen 
that the broken rotor bar fault can be clearly diagnosed by 
power spectrum, provided a certain amount load is exerted 
on the motor. More application examples of power spectrum 
in mechanical fault diagnosis and condition monitoring can 
be found in [50–52]. One major drawback of power spec-
trum is losing phase information.

3.2.2 � Higher order spectrum

The merit of HOS is its ability to suppress Gaussian noise 
in signal detection, parameter estimation, classification, etc. 
In addition, HOS preserves the phase information. Hence, 
HOS provides more information than the power spectrum, 
in the case of non-Gaussian signals, can detect nonlinear 
couplings, and explains the origin of certain peaks in the 
power spectrum [24]. To achieve more accurate results, 
higher order spectrum has been applied in fault diagnosis. 
Bi et al. [53] applied the improved variational mode decom-
position and bi-spectrum algorithm to distinguish the states 
of the valve clearance. Guo et al. [29] analyzed the vibration 
of the planetary gearbox based on wavelet packet energy 

Table 3   Expression and properties of time domain features

Categories Features Expressions Properties

Dimensional 
statistical 
parameters

Mean
x̄ =

N∑
i=1

xi

N

The average value of a signal

Root mean square
xrms =

�
1

N

N∑
i=1

x2
i

The measure of power contained in a signal

Standard deviation
xstd =

�
1

N−1

N∑
i=1

(xi − x̄)2
The indicator of the amount of variation or dispersion from the average

Peak value xp = max(xi) The indicator of change in a signal due to occurrence of impacts
Non-dimen-

sional statisti-
cal parameters

Kurtosis
xkur =

1

N

N∑
i=1

(x−x̄)4

x4
std

The measure of whether the distribution is peaked or flat related to a 
normal distribution

Skewness
xske =

1

N

N∑
i=1

(x−x̄)3

x3
std

The measure of lack of symmetry about its mean

Crest factor CF =
xp

xrms

The measure of the spikiness of a signal

Shape factor SF =
xrms

|x̄|
The function of the redressed signal average

Fig. 2   Frequency domain 
techniques Frequency Domain Techniques

Power 
Spectrum

Higher Order 
Spectrum Cepstrum Envelope 

Spectrum
Many 
others
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and modulation signal bi-spectrum and pointed out that the 
method was effective and feasible to identify the early fault 
diagnosis. Huang et al. [54] compared the performance of 
the conventional bi-spectrum and the modulation signal bi-
spectrum in detecting rotor faults and showed that the vari-
ant is more effective.

3.2.3 � Cepstrum

From Fig. 3, it can be observed that a lot of harmonics and 
sidebands appear in the power spectrum of the broken bar 
fault. Although these provides us some extra information 
about the faulty source, understanding what those harmonics 
and sidebands are and how they are related to each other are 
a problem. Cepstrum analysis is capable of simplifying and 
extracting the periodic components in spectrum of the vibra-
tion signal. Then, cepstrum analysis can transform the rela-
tion of the components from convolution form into addition 
form, which separates the transmission path from the real 
signal [55]. Therefore, Liang et al. [28] applied cepstrum 
to analysis the fault of induction motor as shown in Fig. 4. 
For the induction motor without broken bar fault, the cep-
strum only presents the fundamental rotating quefrency and 
its harmonics but the cepstrum of the motor with broken bar 
faults shows several extra sidebands information related to 
the fault. For most cases of early machinery failure, the spec-
trum feature is often buried in intense background noises. 
Moreover, fault feature would be further weakened by the 
average effect of Fourier transform after cepstrum process-
ing. In order to overcome the drawback, Li et al. [56] and 
Zhang et al. [55] proposed a local cepstrum technique for 

diagnosing gearbox faults, which enhances the capability of 
extracting periodical features.

3.2.4 � Envelope analysis

A well-known approach applied to extract defect frequency 
components from the signal is envelope analysis. Before 
carrying out envelope demodulation, the signal is usually 
bandpass filtered at a frequency region where there is a 
high signal-to-noise ratio. Then, Hilbert transform is per-
formed to obtain the envelop spectrum [50]. It has been 
found that envelope signals contain many more fault-related 

Fig. 3   The power spectrum of induction motor without and with broken rotor bar fault (a 0% load; b 100% load) [28]

Fig. 4   The cepstrum of induction motor without (a) and with (b) bro-
ken bar fault [28]
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information than the original signals and can be used both 
for spectral and temporal representation of modulating sig-
nal. Chacon et al. [57] combined wavelet packet analysis 
and Hilbert transform to achieve the bearing incipient fault 
detection. Abd-el-Malek et al. [58] proposed a method based 
on envelope analysis and reliably diagnosed broken rotor 
bars. However, central frequency and bandwidth of the 
bandpass filter are usually specified based on the experi-
ence of researchers, and their values will significantly affect 
the accuracy of analysis result. In order to overcome the 
problem, some researchers apply several methods to decom-
pose signal into a set of single component amplitude-mod-
ulated and frequency-modulated signals as a preprocessor, 
thus avoiding demodulation error. For example, Du et al. 
[59] employed empirical mode decomposition to preproc-
ess bearing vibration signals and applied the Wigner-Ville 
distribution and envelope analysis to recognize bearing fault 
types. Wang et al. [60] combined variational mode decom-
position and envelope analysis to detect incipient bearing 
faults.

3.3 � Time–frequency analysis

On the one hand, time domain methods cannot obtain the 
frequency information of the signal. On the other hand, fre-
quency domain methods cannot reveal the local features in 
both time and frequency domains simultaneously. Moreover, 
most of the traditional techniques are based on the stationary 
assumption, which is incapable of analyzing non-stationary 
signals. Joint time–frequency analysis is an effective method 
to resolve these problems, which represents the signal in a 
time–frequency-amplitude/energy density three-dimensional 
space to reveal the frequency components and their time var-
iation characteristics for more accurate diagnostics [83]. Up 
to now, various time–frequency approaches have been pro-
posed, including linear time–frequency distributions, e.g., 
short-time Fourier transform (STFT) and wavelet transform; 
bilinear time–frequency distributions like Wigner-Ville dis-
tribution (WVD) and its variants; and adaptive non-para-
metric approaches such as empirical mode decomposition 
(EMD), ensemble empirical mode decomposition (EEMD), 
and local mean decomposition (LMD). We will give a dis-
cussion on these techniques in the following sections.

3.3.1 � Short‑time Fourier transform

In essence, linear time–frequency methods are a process 
of decomposing signals into a weighted sum of a series of 
components in both time and frequency domains, which 
is different from bilinear time–frequency distribution in 
the fact that they are free from cross-term interferences. 
However, the time and frequency resolutions cannot reach 
the best simultaneously owing to the effect of Heisenberg 

uncertainty principle [84]. The idea of STFT is to segre-
gate a signal into parts with short-time windows and apply 
FFT to each part. The window can move along time; thus, 
STFT adds a time variable to the Fourier spectrum and 
then the time-varying nature of a signal can be revealed 
by the local spectrum.

STFT is the earliest time–frequency approach; many 
researchers have applied it to fault signature process [12, 
61, 62]. It overcomes the defect that traditional Fourier 
transform cannot reveal the local features of a signal. Once 
the window size is chosen, however, STFT only provides 
constant time–frequency resolution. Consequently, STFT 
is not suitable to be applied to process non-stationary sig-
nals with high change at the scale of the window (e.g., 
impulses).

3.3.2 � Wavelet transform

Wavelet transform uses wavelets instead of sine function 
as the basis and applies the scale parameter and the time 
parameter to express the signal in a series of signal compo-
nents with different frequencies at different time [12, 83]. 
Wavelet analysis can adjust window size through the selec-
tion of the mother wavelet and approximation scales, thus 
overcoming the disadvantage of STFT.

Wavelet analysis has been successfully applied to machin-
ery fault diagnosis. Gangsar et al. [63] studied the impact of 
different wavelet function to the fault diagnosis of induction 
motor. Jaber et al. [64] proposed a signal analysis approach 
based on the discrete wavelet transform and artificial neural 
network for industrial robot joints fault detection. Talhaoui 
et al. [65] utilized discrete wavelet transform to process sta-
tor current signals of induction machine and obtained the 
envelope spectrum via Hilbert transform for broken rotor 
bars. For other references on the theoretical background of 
wavelet transform, application of the wavelet to machinery 
fault diagnosis, and new research trend, readers can refer 
to [24, 66]. The variable time and frequency resolution of 
wavelet analysis make it have a great performance for non-
stationary signal processing. Although wavelet analysis is 
capable to iteratively decompose the approximation sig-
nals, it cannot further process the detail signals. In order to 
solve this problem, wavelet packet transform is proposed to 
increase the frequency resolution for high-frequency compo-
nents so that the detail signals can also be iteratively decom-
posed [83]. As a result, the signal is transformed into multi-
ple equal frequency bands, which can get a better time and 
frequency resolution. Up to now, a lot of wavelet basis have 
been proposed. However, the standard method of choosing 
wavelet basis has not been established. Then, the energy 
leakage is inevitable because of the fact that wavelet analysis 
is an adjustable windowed FT essentially.
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3.3.3 � Wigner‑Ville distribution

The Wigner-Ville distribution is the basis of almost all bilin-
ear time–frequency distribution, which is not based on sig-
nal segmentation so that has the best resolution. However, 
for multi-component signals, it is inevitably disturbed by 
cross-terms, and auto-terms and cross-terms may overlap on 
the time–frequency plane, which will make it more difficult 
to identify the time–frequency features [83]. Therefore, the 
WVD is not suitable to be applied to analyze the non-station-
ary signal directly. Figure 5 shows the WVD of a synthetic 
signal. It can analyze the time–frequency structures of two 
components with the highest resolution. It can be observed 
that the signal is seriously interfered by cross-terms. The 
cross-terms may make it difficult to understand the signal 
structure without a priori knowledge of the signal.

In order to suppress the cross-terms interferences, 
researchers have proposed various solution like the pseudo 
Wigner-Ville distribution (PWVD), Cohen class distribu-
tions, and affine class distributions. Guan et al. [67] studied 
planetary gearbox fault diagnosis based on the Cohen class 
distribution. Fan et al. [68] applied EMD-PWVD to trans-
form vibration signals into contour time–frequency images 
and combined with FCM clustering to detect bearing faults. 
Li et al. [69] used the smoothed pseudo Wigner-Ville dis-
tribution to detect induction motor failures. However, the 
Wigner-Ville distribution’s variants suppress cross-terms 

will lead to reduced time–frequency resolution and may 
create extra interference.

3.3.4 � Empirical mode decomposition

The calculation of instantaneous frequency is one of the 
major problems in time–frequency distribution construc-
tion, and EMD is extensively used to accurately estimate 
the instantaneous frequency. For mono-component signals, 
the instantaneous frequency is computed by the derivative 
of phase relative to time, but most signals are composed of 
multiple components in real applications. EMD can decom-
pose the signal into a series of complete and almost orthogo-
nal components, called intrinsic mode function (IMF)[85]. 
An IMF is a function that satisfies the following two condi-
tions: (1) in the whole data set, the number extrema and the 
number of zero-crossings must either equal or differ at most 
by one, and (2) at any point, the mean value of the envelope 
defined by the local maxima and the envelope defined by the 
local minima is zero [70].

EMD has several merits. Firstly, EMD is a self-adaptive 
signal analysis approach; there is no need to construct any 
basis function to match the signal characteristic structure. 
Then, EMD is free from cross-term interferences, which is 
because the original signal is represented as a linear super-
position of a series of IMFs. Many researchers have applied 
EMD to fault diagnosis of bearing and gearbox. Ben Ali 

Fig. 5   Wigner-Ville distribution 
of a synthetic signal [83]
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et al. [71] extracted fault features by EMD energy entropy 
and used it to train the artificial neural network to detect 
bearing faults. They found that the method can identify 
the severity of the fault successfully. He et al. [72] applied 
a hybrid method based on EMD, Fast ICA, and a sample 
entropy measure to gear defect detection. Xu et al. [74] used 
time-varying filtering for EMD and a high-order energy 
operator to identify bearing defect. Zhao et al. [73] applied 
an improved approach of orthogonal empirical mode decom-
position to extract the fault feature of gearbox. Although 
EMD have a good performance in analyzing non-stationary 
signals, it also has some weakness such as end effects, sifting 
stop criterion, and mode mixing. Feng et al. [75] and Bokde 
et al. [70] reviewed the EMD algorithm and its problems and 
the corresponding solutions. Then, it described the possible 
research directions in the future.

3.3.5 � Ensemble empirical mode decomposition

In the mode mixing problem, different frequency compo-
nents are decomposed into the same IMF or the same fre-
quency components are decomposed into different IMFs, 
which allow the EMD fails to represent the fault charac-
teristics of a signal accurately. EEMD was developed from 
EMD by Wu and Huang to overcome the problem of mode 
mixing [76]. The principle of the EEMD can be given as 
follows. The added white noise of finite amplitude populates 
the whole time–frequency space uniformly, and a signal is 
provided to this background. The result of each trial is com-
posed of a signal and an added white noise. In the ensemble 
mean of sufficient trials, the noise can be completely reduced 
due to the fact that it is different in separate trials. With more 
and more trials being added in the ensemble, the last remain-
ing part is the signal component of interest [70, 83, 85].

To verify the effectiveness of EEMD in overcoming the 
mode mixing drawback, Lei et al. [85] applied EEMD and 
EMD to analyze a simulation signal, which is a sine signal 
attached by small impulses. Figure 6 shows that the decom-
position result of EMD suffers from mode mixing. The sine 
signal and the impulses are decomposed into the same IMF, 
and the sine signal is decomposed into two IMFs. However, 
EEMD decomposed the simulation signal into two IMFs 
accurately, which succeeded in representing the real char-
acteristics of the signal. Studies on EEMD applied to fault 
diagnosis have been increasing steadily in the past few years. 
Tabrizi et al. [76] developed a method based on EEMD and 
wavelet packet decomposition for fault detection of rolling 
element bearings. Zhang et al. [14] presented a novel hybrid 
model which combined EEMD and permutation entropy in 
motor bearing fault diagnosis. Luo et al. [77] proposed a 
hybrid system based on EEMD for fault diagnosis of roll-
ing element bearings and noticed that the method had better 
classification accuracy than its original version. In order to 

improve the accuracy of EEMD, two factors should be con-
cerned: the number of ensemble trails and the amplitude of 
added noise. If the amplitude is too small, then it may not 
improve mode mixing. On the other hand, if the amplitude is 
too large, it will produce several redundant IMFs. Moreover, 
it should be noticed that too many trials would add burden to 
the computational procedure [14, 85]. However, there is still 
no available standard that can determine these parameters.

3.3.6 � Local mean decomposition

LMD was proposed by Smith to analyze non-stationary 
signals in 2005, which has the similar principles as EMD 
[80]. LMD is applied to decompose a multicomponent 
signal into a sequence of product functions (PFs) with the 
physical significance. Each PF is the product of amplitude 
envelope signal and a pure frequency-modulated signal 
[81]. One main advantage of LMD is that it can directly 
obtain the instantaneous amplitude and the instantaneous 
frequency of the signal without Hilbert transform. Then, 
LMD does not use the cubic spline but uses smoothed 
local means and local magnitudes to fit lower and upper 
envelope in the iteration process, so as to avoid the enve-
lope errors. Moreover, LMD obtained more concentrated 
information compared with EMD [79, 81].

Until now, LMD-based approaches have been widely 
applied in the field of condition monitoring of various 
machineries. Cheng et al. [78] used LMD to identify gear 
and bearing work condition. Then, LMD is compared with 
EMD and the results show the superiority of the LMD 
approach. Liu et al. [79] proposed a hybrid fault diagnosis 
approach using LMD and the second-generation wavelet 
de-noising to extract fault features of gearboxes and roll-
ing bearings. However, like EMD, LMD still suffers from 
the end effects and mode mixing. The former can alleviate 
through extending the waveform based on spectral coher-
ence [50]. To solve the problem of mode mixing of LMD, 
Wang et al. [80] applied the ensemble local mean decom-
position (ELMD) for fault diagnosis of the gearbox and 
noted that the method achieved a good result. Essentially, 
ELMD is a noise-assisted LMD, using the statistical char-
acteristic of Gaussian white noise to improve the distribu-
tion of extreme points in original signal. When the ensem-
ble mean of PF components in each trial is calculated, the 
added noise in each PF can be eliminated automatically, 
thus solving the mode mixing problem. However, ELMD 
is limited by the number of added white leading to the fact 
that the noise cannot be canceled out completely, which 
further cause the growth in reconstruction errors. Based 
on the above problems, Wang et al. [81] added white noise 
in pairs to optimize ELMD for composite fault diagnosis 
of gearboxes.
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4 � Diagnostics

Machinery unavoidably generates various faults due to 
long-term operating under complex and severe condition 
such as heavy load, high speed, and corrosion. Accurate 
fault diagnosis of the machinery is important to avoid 
or minimize the unplanned breakdown and catastrophic 
accidents. Fault diagnosis is also called patter recognition, 
which is a procedure of mapping the information obtained 
in the feature space to machine faults in the fault space 
[12]. In recent decades, using fault diagnosis approaches 
to monitor the health conditions of machines has attracted 
much attention. A lot of technologies have been developed. 
Unfortunately, it is difficult for users to assess each specific 
method and its variants, respectively. Motivated by this, 
several publications [12, 86–90] reviewed a large volume 
of effective fault diagnosis methods and separated them 

into various categories for discussing collectively similar 
techniques as shown in.

Table 4. Through studying and comparing the meaning 
and coverage of different categories from these papers, we 
classify the fault diagnosis techniques into three catego-
ries: physical models, knowledge-based models, and artifi-
cial intelligence models. Table 5 illustrates the advantages 
and disadvantages of some commonly used fault diagnosis 
approaches in order.

4.1 � Physical models

Physical models quantitatively characterize the behav-
ior of a failure mode using physical laws, which implies 
a thorough understanding of the system behavior in 
response to stress, at both macroscopic and microscopic 
levels [90]. Through quantifying the differences between 

Fig. 6   a A simulation signal, 
b IMFs decomposed by EMD, 
and c IMFs decomposed by 
EEMD [85]
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measurements from the real process and the outputs of the 
model, the condition of a fault can be identified accurately. 
The main advantage of physical model is the ability to pro-
vide most accurate condition estimation when the model 
is developed with complete knowledge of system behav-
ior and appropriate parameters. In addition, the output of 
physical model can be easily understood. Each physical 
model is usually specific to an application, so this paper 
does not further subdivide physical models. Jung et al. 
[91] combined model-based residuals and incremental 
anomaly classifiers to identify unknown faults of internal 
combustion engine. Gao et al. [92] developed a physical 
model based on coil sub-element for the fault detection 
of winding short-circuit in a direct-drive permanent mag-
net synchronous motor. They can evaluate motor perfor-
mances under various winding short-circuit faults without 
changing the internal structure of the model. However, 
for a complex system, it is difficult to obtain an accurate 
model due to detailed and complete knowledge of system 
behavior required. Another weakness of physical model is 
that different models need to be established for different 
applications [87, 90]. Therefore, the application in fault 
diagnosis of physical model is limited.

4.2 � Knowledge‑based models

Knowledge-based approaches evaluate the similarity 
between the observed condition and a database of previ-
ously defined failures to deduce the health of machinery 
[93]. Sub-categories are separated into expert systems and 
fuzzy systems.

4.2.1 � Expert systems

Expert system takes advantage of the computer to solve the 
complex problems normally solved by experts, which gener-
ally consists of a knowledge base and an inference engine. 
The knowledge base contains all facts, procedures, and rules 
(e.g., precise IF–THEN statements), which are accumulated 
through experience from one or more experts over a num-
ber of years [94, 95]. The inference engine used the knowl-
edge base to analyze each case. Owing to the merits such as 
simple to development, easy to understand and transparent 
reasoning, expert systems have been successfully used in 
fault diagnosis. For example, Hussain et al. [94] developed 
an expert system to diagnose power circuit breakers and on-
load tap changers. They found that the expert system can 
not only identify the health of the testing device but also 
locate the cause of each anomaly. Xu et al. [96] proposed a 
new belief rule-based expert system to identify fault modes 
that may co-exist in marine diesel engines. Xu et al. [95] 
combined expert system and Bayesian network to analyze 
fault types of generation system. In order to be powerful, 
expert systems must offer only one output for each set of any 
possible combination of inputs. However, as the growth of 
the number of inputs and expected outputs, the number of 
rules required also increases, which can lead to “combinato-
rial explosion.” Moreover, the knowledge base needs to be 
updated with increasing knowledge are obtained [93, 97].

4.2.2 � Fuzzy systems

Fuzzy systems also apply IF–THEN rules obtained from 
knowledge of experts to solve problems, but unlike expert 
systems that use true or false as a logic to precisely define 
sets and related membership, they partition a feature space 
into fuzzy sets and use imprecise rules for reasoning [87, 
88]. Since one fuzzy rule can replace a large number of con-
ventional rules, fuzzy systems need fewer rules to achieve 
inference than expert systems. Fuzzy logic is rarely used 
as the main approach for fault diagnosis, which is usually 
combined with other methods for improving the perfor-
mance of diagnostics. Adaptive neuro-fuzzy inference sys-
tem (ANFIS) can take full advantage of the learning ability 
of neural network and inference ability of fuzzy logic and 
its fuzzy membership functions and rules are obtained by 
self-learning rather than reliance on experience [90, 98, 
99]. Chen et al. [98] applied fuzzy entropy of local mean 
decomposition and adaptive neuro-fuzzy inference system 
to classify fault patterns of planetary gears. They used fuzzy 
entropy to reflect the complexity and irregularity of each PF 
components. Parey et al. [99] introduced a method based on 
adaptive neuro-fuzzy inference system for a single stage spur 
gearbox damage diagnosis.

Table 4   Classification approaches related to fault diagnosis

References Years Categories of fault diagnosis approaches

Jardine et al. [12] 2006 • Statistical approaches
• AI approaches
• Other approaches

Cibulka et al. [86] 2012 • Model-based approaches
• Signal processing–based approaches

Gao et al. [87] 2015 • Model-based methods
• Signal-based methods
• Knowledge-based methods
• Hybrid methods
• Active fault diagnosis methods

Xu et al. [88] 2017 • Knowledge-driven methods
• Data-driven methods
• Value-driven methods

Wei et al. [89] 2019 • Fault frequency–based methods
• Artificial intelligence–based methods

Dai et al. [90] 2019 • Model-based methods
• Knowledge-based methods
• Signal-based methods
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4.3 � Artificial intelligence models

The Fourth Industrial Revolution and the industrial Inter-
net have enhanced the importance and complexity of 
machinery, which make it difficult to maintain the diagno-
sis accuracy and ensure the sensitivity to faults by physi-
cal models and knowledge-based models [100]. Artificial 
intelligence approaches apply the information from previ-
ously collected data to monitor the current damage state 
and estimating the future trend instead of building models 
based on the expert experience or failure mechanisms. The 
most popular AI techniques in the field of fault diagnosis 
include k-nearest neighbor (KNN), artificial neural net-
work (ANN), support vector machine (SVM), and deep 
learning.

4.3.1 � k‑Nearest neighbor

The KNN is one of the most simply implemented AI algo-
rithms, which classifies the objects according to the princi-
ple that the instances within a dataset will usually exist in 
close proximity to other instances with similar properties 
[26]. Key elements to KNN algorithm include the following: 
the value of k and the distance metric, which may greatly 
affect the algorithm performance. The most commonly used 
distance metric is Euclidean distance, and other distance 
functions such as Manhattan, Mahalanobis, and Minkowski 
can also obtain similar results [52, 101, 102]. However, 
KNN has high computational complexity for high dimen-
sional data because of the fact that the performance of KNN 
relies on the number of dimensions.

Table 5   Advantages and disadvantages of diagnostic techniques

Categories Techniques Advantages Disadvantages

Physical models Physical models • Provide most accurate and precise esti-
mates among all diagnosis techniques

• Outputs can be easily understood

• Require detailed and complete knowledge 
of system behavior

• Provide specific models for different 
applications

• Difficult to establish an accurate model for 
a complex system

Knowledge-based models Expert systems • Develop the knowledge base by human 
experts

• Easy to implement
• Provide a transparent reasoning process

• Rely entirely on knowledge of human 
experts

• Require precise input and a lot of rules

Fuzzy systems • Develop the knowledge base by human 
experts

• Easy to implement
• Provide a transparent reasoning process

• Rely entirely on knowledge of human 
experts

• Require precise input and a lot of rules

Artificial intelligence models KNNs • Have a simple architecture
• Easy to implement

• Have high computational complexity for 
high dimension

• No clear guidelines on the selection of k 
value and distance metric

ANNs • Can model complex, multi-dimensional, 
and non-linear systems

• Have high performance in approxima-
tion, classification, and noise immunity 
by non-linear information processing

• Provide condition information of machin-
ery without a priori knowledge

• Can use any type of input data
• Remarkable ability in multivariate 

analysis

• Suffer from vanishing or exploding gradi-
ent problems

• Require a lot of training data
• Not clear about how decisions are made in 

a network
• Require largely trial and error to determine 

the most appropriate model
• No standard method to determine optimal 

structure and parameters

SVMs • Can obtain robust and accurate results 
with high dimension or non-linear input 
data

• Suitable for small samples and real-time 
analysis

• Can guarantee good generalization 
performance

• No standard method to choose the kernel 
function

• Need to adjust parameters for specific 
problems

• Classification and regression results by 
SVM as point estimates only

Deep learning models • Can learn features automatically
• More capable of learning complex 

structure from data due to the deep 
architecture

• Do not need the feature extractor

• Require a large volume of data
• Take a long time for training
• No physical meaning
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The KNN has been applied in the fault diagnosis. Safiza-
deh et al. [26] used KNN to identify the condition of bear-
ing based on vibration signal and load signal. As shown in 
Fig. 7, three real states of bearing were analyzed: bearing 
healthy condition, ball fault, and outer race way fault. It 
can be seen that KNN is useful to detect the position of the 
faults. Toma et al. [101] used genetic algorithm to select the 
most optimal features to reduce complexity of KNN. They 
compared properties of KNN, decision tree, and random 
forest by the motor current signals, and observed that all 
classification algorithms successfully evaluate the bearing 
faults. Glowacz et al. [102] applied KNN, K-means cluster-
ing, and the linear perceptron to detect early stator faults in 
a single-phase induction motor. Islam et al. [103] combined 
KNN and genetic algorithm to identify the bearing fault con-
dition. They found that the proposed method outperforms 
the existing average distance-based methods with regard to 
classification accuracy.

4.3.2 � Artificial neural network

ANN is a computational model that mimics the work-
ing process of human brains which has powerful pattern 
classification and faults recognition capabilities. Network 
architectures applied for fault diagnosis can be separated 
as follows: (a) static (i.e., feed-forward) network in which 
the inputs for each layer only rely on the outputs of the pre-
vious layer and (b) dynamic network in which the inputs 
to a specific layer depend on the outputs of the previous 
layer and the previous iterations of the network itself [97]. 
Most ANN approaches proposed to date have been based 
on static networks, including the multi-layer perceptron 
(MPL) [52, 104–106], radial basis function network (RBF) 

[97, 107, 108], and general regression neural network 
(GRNN) [25]. Several dynamic networks (e.g., recurrent 
neural network) have been developed for fault diagnosis. 
Since recurrent neural network (RNN) store temporal 
information by the additional feedback in the form of time-
delayed inputs, it is suitable to apply both the historical 
conditions and sensing data to diagnose with low model 
complexity [97, 109].

Most papers applied a MPL to monitor the condition of 
machinery. Moosavian et al. [110] extracted features from 
the power spectral density values of signals, and compared 
the performance of ANN and KNN in fault diagnosis of 
bearing. Han et al. [104] used improved EMD and a MPL 
neural network to improve the performance of fault diag-
nosis. Glowacz [105] used the nearest neighbor classifier, 
backpropagation neural network (BPNN) and modified clas-
sifier based on words coding to identify the real state of a 
three-phase induction motor by acoustic signals. Taimoor 
et al. [106] exploited the extended Kalman filter to update 
the weight parameters of MLP neural network for improving 
the fault diagnosis capabilities, which is applied to detect an 
aircraft actuators and sensors fault. Compared with MLP, 
RBF trains quicker than MPL. Zhou et al. [107] combined 
unscented Kalman filter and RBF to detect fault in the pump-
ing unit. Jin et al. [108] applied radial basis function neural 
network with power spectrum of Welch method to bearing 
fault diagnosis and further discussed the limit performance 
of the neural network. RNN outperforms MPL and RBF due 
to the ability to consider temporal dependencies via local 
or global feedback connections in the network. An et al. 
[111] proposed a novel model based on RNN and transfer 
learning to classify the health condition of bearing, which 
has the ability of processing variable size sequences under 
different working conditions. However, one main limitation 
of RNN is that it is difficult to store information for a long 
time. To solve this problem, researches have proposed some 
variants such as long short-term memory networks [112, 
113] and echo state networks [114]. ANNs have a good 
performance in approximation, classification, and noise-
immunity of complex systems. However, they still have 
their own problems. As the depth of the network increases, 
neural networks easily suffer from vanishing or exploding 
gradient problems, which causes the training process dif-
ficult to converge. To alleviate this issue, Zhang et al. [115] 
employed RNN with residual connection to learn representa-
tive features. They compared the performance of the RNN 
with and without residual connection. As shown in Fig. 8, 
the method with residual connection provides higher clas-
sification accuracy in almost every epoch, and residual con-
nection make the training process more stable in the last few 
epochs, which contributes to improve the accuracy of fault 
diagnosis. ANNs need a large amount of training data, but 
it is not always available in reality [97]. Moreover, standard 

Fig. 7   Illustration of class borders for KNN classification on bearing 
condition [26]
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method of choosing ANN’s structure and parameters is still 
a challenge.

4.3.3 � Support vector machine

SVM is an AI method based on statistical learning theory 
proposed by Vapnik in the early 1990s, which attempts to 
find an optimal separating hyperplane with the maximum 
distance between the plane and the nearest data to classify 
the data [52, 109, 116]. In the standard SVM, it is assumed 
that the data is divided into two classes: positive and nega-
tive. Users can refer to [25, 117] for more fundamentals and 
the basic about the standard SVM.

SVM models have been successfully applied to fault 
diagnosis in existing publications. Singh et al. [118] applied 

Stockwell transform and SVM to detect bearing fault in a 
three-phase induction motor. Han et al. [119] proposed a 
fault diagnosis method based on the improved Fast-ICA 
algorithm, the wavelet packet energy spectrum and SVM, 
which is used to recognize the slight damage and fracture of 
a bearing. Several improved SVMs have been developed to 
satisfy the demands in real application. Ma et al. [120] pro-
posed a novel algorithm based on the scattering transform 
and the least squares recursive projection twin support vector 
machine (LSPTSVM). The algorithm can overcome problem 
of traditional approaches which are noise sensitive in feature 
extraction. They compared the performance of this algo-
rithm with the proximal support vector machine (PSVM) 
and SVM in bearing fault diagnosis. The results are shown in 
Fig. 9; for various numbers of training samples, LSPTSVM 
provides the highest accuracy and the smallest variance. 
Moreover, the calculation time of LSPTSVM is close to that 
of PSVM and approximately 1/4 that of traditional SVM. 
It means that the classification performance of LSPTSVM 
is better than that of PSVM and SVM. Liu et  al. [121] 
applied particle swarm optimization to optimize unknown 
parameters of wavelet support vector machine (WSVM) for 
monitoring the condition of rolling element bearings. They 
found that the WSVM achieved a greater accuracy than the 
traditional SVM. Xu and Chen [116] proposed an intelli-
gent fault identification approach of bearings using improved 
least squares support vector machine (LS-SVM). Moosavian 
et al. [122] applied ANN and LS-SVM for fault diagnosis 
of spark plug in an internal combustion engine and used 
D-S evidence theory to increase the fault detection accu-
racy. SVM has better performance in terms of dealing with 
small simple size than ANN. However, when the number of 
training sample is small but the number of features is huge, 

Fig. 8   Effect of residual connection on classification accuracy [115]

Fig. 9   Classification accuracy (a) and computation times (b) of LSPTSVM, PSVM, and SVM [120]
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then it is not necessary that all available features are of equal 
importance in the classification context. Ghosh et al. [123] 
proposed a method based on import vector classifier to select 
an optimal set of features, so as to get good classification 
performance. Huang et al. [124] imports feature clustering 
to enhance support vector machine recursive feature elimina-
tion for feature selection. Jalalian et al. [125] used potential 
SVM and Gaussian dynamic time warping to eliminate the 
fixed-length limitation of feature vectors in training data for 
enhancing classification performance. The performance of 
SVM is highly dependent on the selected kernel function, 
but standard methods of selecting kernel function have not 
been established. Then, more advanced search techniques 
should be developed to improve the simplicity and accuracy 
of parameter estimations [25, 109].

4.3.4 � Deep learning

Machine learning methods like ANN and SVM requires the 
feature is extracted and selected manually by users, which 
largely depends on the knowledge of signal processing and 
user experience. Nevertheless, it is difficult to know what 
features should be provided to model for a complex machin-
ery. Deep learning algorithm is capable to overcome the 
problem mentioned above, which automatically learn fea-
tures by the deep architectures composed of multiple levels 
of non-linear operations, so as to allow a system to learn 
complex functions for mapping the input data to the output 
data directly with a small error [52, 126]. The difference of 
traditional machine learning and deep learning is shown in 
Fig. 10.

Recent models based on deep learning (e.g., autoencoder, 
deep belief network) have been proven successful in fault 
diagnosis. Autoencoder consists of two parts: encoder net-
work and decoder network. The former transforms the input 
data to a low-dimensional space and the latter reconstructs 
the inputs from the corresponding codes [52]. Shao et al. 
[127] proposed a novel deep autoencoder feature learning 
approach for monitoring faults of gearbox and roller bear-
ing. Deep belief network (DBN) is constructed by multi-
layer restricted Boltzmann machine, which can be used to 
approximate complex nonlinear function with small error. 

Tao et al. [128] applied deep belief network to adaptively 
fuse multi-feature data and diagnose various bearing faults. 
The result showed that the method based on DBN obtained 
higher identification accuracy than SVM, KNN, and BPNN. 
Tran et al. [129] investigated DBN for diagnosing valves 
faults in reciprocating compressors and noticed that their 
approach was more powerful than relevant vector machine 
and backpropagation neuron networks. However, several 
powerful deep learning models require fixed-size inputs 
like images. Qin et al. [130] proposed a novel deep learn-
ing framework, namely, attention-based discrete sequence 
anomaly detection, to extract features from a series of rela-
tively long and variable length sequence, in which the atten-
tion mechanism is used to improve the interpretability. Data 
plays a very important role in deep learning algorithms. The 
need of data is a challenge to implement deep learning in 
practical applications. Moreover, it is noticed that the deep 
architecture increases the number of parameters, thus gen-
erating the risk of over-fitting [131, 132].

5 � Prognostics

Prognostics calculates the remaining useful life (RUL) 
of an asset based on condition monitoring information to 
provide sufficient lead time for maintenance planning. The 
RUL is defined as the time left before the health condition 
of asset crosses a failure threshold [133]. At present, the 
widely used methods for failure threshold determination 
are based on some ISO standards, such as the ISO7919 
and ISO8688 series, or some standards specially designed 
for certain industries, such as VDI/3834 for wind turbines 
[25]. For example, according to the recommendation of the 
ISO 8688–2, Zhang et al. [134] predetermined the cutting 
tool life by the flank wears value. RUL prediction plays a 
significant role in a CBM program. A suitable prediction 
technology is expected to simplify the prognostic modeling 
and produce accurate prediction results. There are two major 
issues related to the RUL prediction: (1) how to forecast the 
RUL based on the condition monitoring data and (2) how to 
evaluate the predict accuracy of different technologies. Many 
technologies applied to RUL estimation have been published 
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in recent years. As shown in There is no unified standard for 
RUL prediction metrics. According to different requirements 
of researchers and operators, various RUL prediction metrics 
have been developed to evaluate the prediction results from 
different aspects. Therefore, users are suggested to choose 
proper prediction metrics based on their own requirement. 
There are some useful metrics developed by [25, 139, 140]. 
This section will not discuss the prediction metrics.

Table 6, references [8, 12, 25, 97, 109, 135–138] have 
described commonly used RUL prediction methods and clas-
sified them into different categories based on different crite-
ria. In order to avoid confusing readers in the classification, 
the existing prognostics models are divided into four main 
categories in this paper based on their basic techniques and 
methodologies: physical models, knowledge-based models, 
stochastic models, and AI models. These techniques have 
their respective advantages and disadvantages, as summa-
rized in Table 7. The following sub-sections emphasize the 
basis and achievement of these techniques in recent years. 
There is no unified standard for RUL prediction metrics. 
According to different requirements of researchers and 
operators, various RUL prediction metrics have been devel-
oped to evaluate the prediction results from different aspects. 

Therefore, users are suggested to choose proper prediction 
metrics based on their own requirement. There are some 
useful metrics developed by [25, 139, 140]. This section will 
not discuss the prediction metrics.

5.1 � Physical models

Physical models estimate the RUL of machinery by solving 
a deterministic equation or set of equations derived from 
extensive empirical data [97]. The parameters of physical 
models are generally identified by scientific knowledge and 
specific laboratory or field experimentation. The advantage 
of this method in prognostics is that it can provide confi-
dence limits. Paris-Erdogan (PE) model is one of the most 
popular physical models in the RUL prediction of machin-
ery, which was first used to identify the crack magnitudes 
in [25]. Then, various versions are proposed to estimate the 
RUL of machinery [97, 141, 142]. There are still some other 
physics model–based approaches in the field of machinery 
prognostics. For example, Hu et al. [143] proposed a RUL 
forecasting method based on the Norton law to study the 
degradation of turbine blade and aluminum electrolytic 
capacitor. Chao et  al. [144] developed a novel method 
based on time-dependent crack growth models and used it 
for turbo propulsion systems condition prognostics. How-
ever, an industrial system generally has a complex structure 
that includes a lot of components. It is difficult to establish 
an accurate model to describe the behaviors of all potential 
components for a complex system.

5.2 � Knowledge‑based models

Knowledge-based models evaluate the RUL of machinery 
by using the specific expertise and experience in long-term 
accumulation. It is further grouped into expert systems and 
fuzzy systems.

5.2.1 � Expert systems

Expert system is an experience-based system aiming to aid 
non-specialist users in evaluating the RUL of machinery by 
designing reasoning and decision-making mechanism. One 
main advantage of expert system is its ability to establish 
reasoning for a specific result. However, it is noticed that 
expert systems are not feasible to provide exact RUL output 
and confidence limits, which limits their application in the 
field of predicting RUL. Expert system is usually combined 
with other prognostic models to assess the RUL of indus-
trial equipment. For example, Xiahou et al. [145] combines 
expert knowledge and condition monitoring data for RUL 
prediction of bearing under the belief function theory frame-
work. Alamaniotis et al. [146] applied expert’s experience 

Table 6   Classification approaches related to RUL prediction

References Years Categories of RUL prediction approaches

Jardine et al. [12] 2006 • Statistical approaches
• Model-based approaches
• AI approaches

Heng et al. [135] 2009 • Traditional reliability approaches
• Physics-based models
• Data-driven models
• Integrated approaches

Sikorska et al. [97] 2011 • Knowledge-based models
• Life expectancy models
• ANN
• Physical models

Xu et al. [136] 2013 • Model-based approaches
• Experience-based approaches
• Data-driven approaches

Lee et al. [137] 2014 • Model-based approaches
• Data-driven approaches
• Hybrid prognostic approaches

Kan et al. [109] 2015 • Model-based methods
• Data-driven models
• Combination models

Ben Ali et al. [8] 2015 • Physical models
• Expert systems
• Data-driven models

Bai et al. [138] 2016 • Model-based approaches
• Data-driven approaches

Lei et al. [25] 2018 • Physics model–based approaches
• Statistical model–based approaches
• AI approaches
• Hybrid approaches
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Table 7   Advantages and disadvantages of prognostic techniques

Categories Techniques Advantages Disadvantages

Physical models Physical models • Provide most accurate and precise esti-
mates among all prediction techniques

• Outputs can be easily understood
• Provide confidence limits

• Require detailed and complete knowledge 
of system behavior

• Provide specific models for different appli-
cations

• Difficult to establish an accurate model for 
a complex system

Knowledge-based models Expert systems • Develop the knowledge base by human 
experts

• Establish reasoning for a specific result
• Easy to implement

• Unable to provide exact RUL output and 
confidence limits

• Rely entirely on knowledge of human 
experts

• Require precise input and a lot of rules
Fuzzy systems • Require fewer rules than expert systems

• Deal with imprecise or incomplete data
• Provide confidence limits on the output

• Require domain experts to develop the 
fuzzy rules

Stochastic models PHMs • Easy to develop
• Provide confidence limits

• Require historical data which is pertaining 
to failure modes

• No standard method to choose parameters
• Select parameters manually

HMMs and HSMMs • Suitable for modeling degradation process 
of non-linear and non- stationary system

• Can model spatial and temporal data
• Do not need specific knowledge of failure 

mechanism progression
• Manage incomplete data sets
• Provide confidence limits

• Require a lot of training data
• Heavy computation workload

KFs • Basic KF is computationally efficient
• Suitable for incomplete and noisy meas-

urements
• Variants can accommodate non-linear 

system

• Some variants diverge easily
• Require Gaussian noise assumption
• Variants is expensive in computational time

PFs • Can model multivariate and dynamic 
processes

• Suitable for non-linear system, non-linear 
and/or non-Gaussian noise

• Offer higher accuracy than other filtering 
algorithms

• Suffer from sample degeneracy
• Require a lot of data and computation time

Artificial intelligence models ANNs • Can model complex, multi-dimensional, 
and non-linear systems

• Have high performance in approximation, 
classification, and noise-immunity by 
non-linear information processing

• Provide condition information of machin-
ery without a priori knowledge

• Can use any type of input data
• Remarkable ability in multivariate 

analysis

• Require a lot of training data
• Not clear about how decisions are made in 

a network
• Require largely trial and error to determine 

the most appropriate model
• No standard method to determine optimal 

structure and parameters

SVMs • Can obtain robust and accurate results 
with high dimension or non-linear input 
data

• Suitable for small samples and real-time 
analysis

• Can guarantee good generalization per-
formance

• No standard method to choose the kernel 
function

• Need to adjust parameters for specific 
problems

• Classification and regression results by 
SVM as point estimates only

• Difficult to provide the RUL directly
GPR models • Suitable for handling high-dimensional 

data and small size sample
• Can model the degradation process of 

nonlinear dynamic systems
• Allow non-parametric learning of a 

regression function from noisy data

• Heavy computational demand
• Difficult to find optimal value of parameters
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and expertise to compensate for a potential lack of historical 
data for RUL prediction of power plant components.

5.2.2 � Fuzzy systems

Fuzzy systems can deal with incomplete/imprecise data and 
complex systems. In the RUL estimation, fuzzy systems can 
provide confidence limits on the output. Majidian and Saidi 
[147] applied fuzzy logic and a neural network to forecast 
the RUL of boiler tubes. Although they found that the neural 
network was easier to develop, the prediction results of fuzzy 
system have more advantages. Researchers usually combine 
fuzzy logic with other techniques for getting better prognosis 
performance. Kang et al. [148] applied fuzzy evaluation-
Gaussian process regression model to estimate the RUL in 
the case of limited data. Cheng et al. [149] developed a novel 
RUL prediction method using adaptive neuro-fuzzy infer-
ence system (AFNIS) and particle filtering to automatically 
detect gearboxes faults in wind turbines.

5.3 � Stochastic models

Mechanical systems usually degrade stochastically. There-
fore, their degradation processes can be modeled as stochas-
tic processes. The uncertainty of machinery degradation 
processes is mainly caused by four variability sources: the 
temporal variability, the unit-to-unit variability, the nonlin-
ear variability, and the measurement variability [150]. An 
appropriate stochastic process model is supposed to include 
the four variability sources simultaneously. At present, vari-
ous stochastic models have been developed to estimate the 
RUL of machinery. This section focuses on several com-
monly used stochastic models in the field of RUL prediction.

5.3.1 � Proportional hazards model

Proportional hazards model (PHM) was first proposed by 
Cox, which is one of the most popular models of prognostics 
[97]. It assumes that the hazard rate of a system is composed 
of two multiplicative factors, i.e., a baseline hazard function 
and a covariate function [25]. Qiu et al. [151] proposed a 
health indicator construction algorithm to characterize bear-
ing degradation and applied support vector regression (SVR) 
and Weibull proportional hazards model to predict bearing 
RUL. Du et al. [152] built a PHM to calculate the failure 
risk of the lubricating oil. Man et al. [153] proposed a novel 
method based on a joint modeling framework to forecast 
the RUL of systems subject to hard failures. A Wigner pro-
cess is applied to model stochastic degradation signals and 
the PH model is applied to model time-to-event data. Wang 
et al. [154] applied kernel principal component analysis and 
Weibull proportional hazards model to assess the reliabil-
ity of bearings. The result verified the effectiveness of the 

method in predicting the machinery RUL. Other application 
can be found in the following Refs. [155–157]. For a PHM, 
however, it is difficult to obtain sufficient data that contained 
rich information about machinery condition. Additionally, 
PHM needs other methods (e.g., Markov model) to describe 
the covariate functions, which further increases the compu-
tation workload [195].

5.3.2 � Hidden Markov models and semi‑hidden Markov 
models

Hidden Markov model (HMM) is a stochastic method based 
on the principle of Markov chains for modeling signals that 
evolve through a finite number of states [109]. Compared 
with Markov model, not all states in HMM can be observed 
directly, so the corresponding transition probability cannot 
be assigned directly. An HMM is characterized by the fol-
lowing: (1) the number of states in the model; (2) the num-
ber of distinct observation symbols per state; (3) the state 
transition probability distribution; (4) the observation sym-
bol probability distribution in state; and (5) the initial state 
distribution [97]. HMM was first applied to RUL prediction 
by Bunks et al. [158]. The main advantages of HMM is that 
it enables modeling of both spatial and temporal phenomena. 
If the number of states is enough, HMM can classify time 
series data without expertise. In addition, HMM is applica-
ble to nonlinear and non-stationary systems [97]. Therefore, 
HMM is obtaining more attention in recent years [97, 109, 
159–161]. Du et al. [159] proposed a technique based on 
HMM for estimating the RUL of lubricant oil. They assumed 
that the process of lubricant oil degradation can be modeled 
by a HMM with three states. Soualhi et al. [160] developed 
a probabilistic approach based on HMM to model the deg-
radation states of a system for the prediction of impending 
faults. They suggested that a prognostic method is not only 
limited to the prediction of RUL but is also improved to 
estimate the risk of future failure. Tao et al. [161] combined 
long short-term memory network and hidden Markov model 
to calculate the RUL of tool and the associated confidence 
interval. However, the Markov chain assumptions limit the 
practicability of the technology. Hidden semi-Markov model 
(HSMM) is an improvement to the HMM, which is not 
bound by the assumption of the Markov chain. Moreover, 
it allows for the modeling of state duration with an explicit 
distribution that need not be exponential and thus is more 
powerful in estimation RUL [97]. Zhu et al. [162] developed 
an improved HSMM by learning the duration parameters and 
RUL distribution database and used it for RUL prediction of 
tool. Liu et al. [163] applied a HSMM to obtain estimation 
of degradation state and the distribution of RUL and proved 
its high accuracy in tool wearing diagnosis and prognosis. 
One main weakness of all forms of Markov model is heavy 
computation workload, even for the simplest models with 
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few states. Another limitation on the application of Markov 
model is the selection of state sequence and parameters [97].

5.3.3 � Kalman filter

Kalman filter is an effective recursive digital process-
ing technique, which is applied to estimate the state of a 
dynamic system by minimizing mean squared error from 
a series of incomplete data with noise [97]. Kalman filter 
has been extensively used with satisfactory performance 
in the field of RUL prediction [150, 164, 165]. Tradition-
ally, Kalman filter is used to describe a linear degradation 
process. Extended Kalman filter (EKF) is the most popular 
Kalman variant in the state estimation of non-linear sys-
tem. It performs state estimation through the lineariza-
tion procedure of local approximation to the current mean 
and covariance [109]. However, EKF transforms the noise 
into non-Gaussian and thus invalidating one of the origi-
nal assumptions, so it performs poorly when trying to 
approximate non-Gaussian processes. In addition, EKF is 
expensive in computational time because all covariance and 
model parameters are required to be recalculated in each 
iteration and then the filter can also diverge easily [97]. To 
solve problems mentioned, several modified versions of 
EKF has been proposed, such as unscented Kalman filter 
(UKF) and Monte-Carlo Kalman filter (MCKF) [166, 167]. 
Cui et al. [168] proposed a novel approach based on switch-
ing unscented Kalman filter (SUKF) for bearing RUL pre-
diction. They selected measurement error as the standard 
deviation of RMS in the degradation stage in order to make 
the filtering results of condition monitoring data smoother. 
Figure 11 presents the results of RUL prediction. It can be 
seen that traditional switching Kalman filter (SKF) cannot 
predict RUL during the period when the condition moni-
toring data shows a downward trend. However, the results 
provided by SUKF are very close to the actual RUL and 
most of the prediction results fall within the 30% accuracy 
bound. Unfortunately, these variants are still limited by the 
Gaussian noise assumption.

5.3.4 � Particle filter

Particle filter (PF) is an alternative to Kalman filter for 
estimation the posterior distribution in Bayesian network 
models, which is applicable to non-linear system with non-
Gaussian noise, and it does not degrade the filter perfor-
mance [109]. With enough samples, the forecasting accu-
racy of PF is higher than either the EKF or UKF. Because 
of these advantages, there has been great interest in using 
the PF method to predict the RUL of machinery. Li et al. 
[169] proposed a dual filter prediction method based on 
LSSVM and unscented particle filtering (UPF). To identify 
the effectiveness of the proposed dual filters fusion method 

for lithium-ion battery RUL prediction, they compare it with 
UPF-LSSVM and LSSVM. Figure 12 shows the RUL pre-
diction results at different prediction starting points. It can 
be seen that the dual UPF-LSSVM provides smaller pre-
dicted RUL fluctuation and prediction error with the increase 
of training data. Qian et al. [170] applied an enhanced par-
ticle filter method to predict RUL of rolling bearings and 
compared the performance of this method with traditional 
particle filter and SVR. A detailed discussion on the appli-
cation of RUL prognosis using particle filters is given in 
[97, 171]. Unfortunately, PF suffers from one long-standing 
limitation: sample degeneracy. After a few iterations in the 
particle propagation process, the weight will concentrate on 
a few particles only and most particles will have the negli-
gible weight [172]. Consequently, the particles degrade into 
poor distribution and lots of computational resources are 
wasted as to update particles that are ineffective for condi-
tion estimation. Researchers have proposed two commonly 
used approaches to address the problem: resampling and 
selection of importance density function [97, 172, 173].

5.4 � Artificial intelligence

AI attempts to characterize the machinery degradation pat-
terns using implicit information obtained by signal process-
ing or data mining, so as to make maintenance decisions 
automatically. Many AI techniques have been used to predict 
RUL of machinery over the few years.

5.4.1 � Artificial neural network

ANNs can directly or indirectly calculate the RUL of 
machinery by observing information without specific knowl-
edge of the problem. Among various types of networks, 

Fig. 11   SUKF and SKF predicted RULs compared with actual RUL 
[168]
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feed-forward neural network (FFNN) is the most popular 
of all kinds of neural networks. Most papers used FFNN 
to learn the relationship between the health indictors and 
the RUL [174–176]. Zhang et al. [177] used correlation 
analysis methods to extract the indicators of health status 
from the partial incremental capacity curves and established 
two ANN to estimate the state of health and RUL of bat-
tery synchronously. The RUL prediction results are shown 
in Fig. 13. The real RUL is represented by the dotted line, 
and the predicted RUL is represented by the solid line. As 
we can see, they show good consistence with each other. It 
means that the ANN model can provide great generaliza-
tion ability and high accuracy for RUL estimation. Bastami 
et al. [178] used wavelet packet transform to extract features 
and MPL to predict RUL of bearings. General regression 
neural network is incredibly fast to train, and it can be used 
to estimate a continuous distribution. Huang et al. [179] 
applied the genetic algorithm/GRNN for proactive assess-
ments of lifetime of a wafer-handling robot arm. Compared 
with RBFN and MPL, RNN has stronger ability to process 
nonlinear dynamic information by local/global feedback 
connection in the network. Zhang et al. [180] used a long 
short-term memory recurrent neural network to learn the 
long-term dependencies among the degraded capacities of 
lithium-ion batteries for estimating the RUL.

5.4.2 � Support vector machine

SVM was originally applied in the research of pattern rec-
ognition and was not used to the nonlinear regression esti-
mation and time series prediction until the introduction of 
Vapnik’s ε insensitive loss function [109]. Various modified 
versions of original SVM algorithm have been developed for 
RUL prediction. Maior et al. [181] applied EMD and wavelet 
transform to improve input quality and used particle swarm 

optimized support vector machines to prediction the RUL 
of bearing. Dong et al. [182] proposed a novel approach 
based on principal component analysis and least square 
SVM to achieve bearing degradation prediction. Ordonez 
et al. [183] combined an auto-regressive integrated moving 
average (ARIMA) model and SVM to predict the RUL of 
aircraft engines. SVR is the common application form of 
SVM in the field of prognostics. Benkedjouh et al. [184] 
proposed a bearing life prediction method with the combi-
nation of SVR and the isometric feature mapping reduction 
technique. From Fig. 14, it is noticeable that the RUL in the 
middle of predictions is under the real RUL value, so this 
method is suitable for making maintenance interventions 
before the real time of a failure. Other applications of SVR 
can be found in [185–187].

5.4.3 � Gaussian process regression

Gaussian process (GP) is defined as a cumulative damage 
process of random variables with joint multivariate Gauss-
ian distribution, which can achieve non-parametric learning 
of regression functions from noisy data [25, 109]. Gaussian 
process regression (GPR) is one of the applications of GP. 
It weights targets with respect to distance between training 
and test input to predict the output. In contrast to approaches 
mentioned, GPR is suitable for dealing with the RUL esti-
mation issue of small data sets and multi-dimensional 
operating space [188]. Aye et al. [189] used affine mean 
Gaussian process regression (AMGPR) to predict the RUL 
of slow speed bearing. This method provided an excellent 
fit to data by an integration of simple mean and covariance 
functions. Figure 15 presents that the AMGPR traced the 
actual whole life of the bearing quite closely and most pre-
diction results all within 95% confidence interval. Jia et al. 
[190] combined GPR and probability predictions to predict 

Fig. 12   The RUL prediction results with different prediction starting point and prediction methods [169]
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the short-term state of health of lithium-ion batteries and 
applied GPR model to assess the RUL by the mapping rela-
tionship between state of health and RUL. Kang et al. [148] 
used Gaussian process regression based on fuzzy evaluation 
to achieve RUL estimation of the lithium battery. They found 
that the proposed approach can avoid over-fitting in the case 
of finite data. Ismail et al. [191] proposed a GPR-based 
method to extract the degradation behavior of insulated gate 
bipolar transistor for faults prognosis. Readers can find more 
theoretical details and applications of this approach in Refs. 
[109, 192, 193]. One major problem of GPR is the huge 
computational demand due to its non-parametric nature.

All in all, the aforementioned techniques for RUL predic-
tion will be subject to available training data, which is the 

key for the success of a CBM system. Generally, useful data 
sets are very limited in many applications, although many 
numerical simulation and experimental methods have been 
introduced to generate as much as possible data sets. Exist-
ing technical limitations of the most solutions in practice 
still remains in the following aspects: (a) RUL prediction 
where limited data are available; (b) RUL prediction under 
the big-data situation; (c) RUL prediction of a single compo-
nent involving multiple faults; (d) how to manage the uncer-
tainties in RUL prediction; and (e) in the case when you have 
little information environment, a little time, you have few 
numbers of data to live in Environment. These challenging 

Fig. 13   The RUL prediction results of ANN model [177]

Fig. 14   RUL prediction result of a bearing based on SVR [184]
Fig. 15   RUL prediction result for bearing with 95% CI [189]
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tasks must be addressed in the future to develop practical 
RUL prediction techniques.

6 � Commercialization of fault diagnosis 
system

Fault diagnosis technology originated in the end of the 
1960s, so as to reduce the incidence of mechanical fault 
through improving design methodology and to meet 
improved reliability, greater safety, and financial savings. 
The USA established mechanical fault prevention group 
(MFPG) in 1967 to solve many accidents caused by machin-
ery failures since the Apollo program. The purpose of MFPG 
is to effectively interchange technical information among 
segments of scientific and engineering communities for get-
ting a better understanding of the processes of mechanical 
failures [194]. Then, the UK established machine health and 
condition monitoring association (MHMG & CMA) to study 
the fault diagnosis technology in the 1960s–1970s, mainly 
focused on friction and wear, automotive and aircraft genera-
tor monitoring, and diagnosis. Japan developed productive 
maintenance since 1971 and reached a leading position in 
the steel, chemical, and railway fields [12, 50, 195]. Other 
countries also gradually pay attention to the research of fault 
diagnosis, e.g., study on the failure detection of the marine 
diesel engines in Switzerland, the Swedish AGEMA infrared 
thermography, and the vibration monitoring system of the 
Danish B & K [195, 196]. At the middle of the 1980s, fault 
diagnosis technology had entered a new stage (i.e., intel-
ligence fault diagnosis) with the development of artificial 
intelligence such as neural network and the application of 
computer technology. However, China began late in study-
ing fault diagnosis. Some universities and institutes did not 
absorb advanced diagnostic theory and technology until the 
late 1970s and developed its own fault diagnosis device by 
researching new detection methods and summarizing the 
experience [50, 197].

Up to now, the Internet of Things (IOT), cloud storage, 
dynamic data analysis, and other advanced technologies have 
played an increasingly important role in CBM. Recent study 
has shown that IOT and big data analysis based on cloud 
platform can improve the efficiency of predictive mainte-
nance by 25–30%. Moreover, the compound annual growth 
rate of predictive maintenance will be 39% from 2016 to 
2022 according to the report on global predictive mainte-
nance issued by IOT Analytics. Under this increase rate, 
the market size will reach 73.45 billion yuan in 2022 [198]. 
Consequently, it is critical for manufacturers provided main-
tenance service to develop advanced fault diagnosis system 
and expand the market as soon as possible. Table 8 provides 
a summary of some available and popular fault diagnosis 
systems.

7 � Conclusions and future challenges

Diagnosis and prognosis are necessary actions in industries 
to estimate the condition of machinery and optimize the 
usage of machinery. By predicting the failure possibility of 
components or the entire system, downtime and economic 
loss can be reduced as much as possible. CBM is an effec-
tive and robust maintenance strategy used to avoid over-
maintenance or under-maintenance. This paper has reviewed 
recent research and development in machinery diagnosis and 
prognostics following the three processes of the CBM pro-
gram, namely, data acquisition, data processing, and mainte-
nance decision-making. In the data acquisition section, five 
detection technologies are discussed. Each technology has 
its own advantages and disadvantages due to the different 
monitoring principle. The signal processing section reviews 
signal processing methods in existing publications from the 
theoretical background and real application and gives a list 
of the advantages and disadvantages for these technologies. 
The diagnostics section summarizes the related publica-
tions by separating them into three categories, i.e., physical 
models, knowledge-based models, and AI models. In the 
prognostics section, RUL prediction techniques are roughly 
classified following four categories and their achievements 
are discussed. It is also noticed that some commercial cor-
porations and universities take enormous efforts to develop 
fault diagnosis systems, and acquire dramatic achievement 
in recent years.

Although much advancement has been achieved in the 
CBM, there are still some aspects which require to be further 
developed. The last of this paper aims to give the challenges 
and opportunities in this field, which is hoped to point out 
the future research directions and provide some suggestions 
for researchers.

(1)	 Lack of high-quality data
	   Data acquisition is a challenging task in condition 

monitoring, especially for deep learning. As a rule of 
thumb, the number of samples should be at least ten 
times bigger than the number of parameters in a deep 
learning model [213]. With the increase of the installed 
sensors, the volume of the collected data is rapidly 
grown than ever before, but it also comes to bring nega-
tive effects. In many applications, lots of factors may 
pollute the collected data, such as sensor placement, the 
interruption of data transmission, and machine vibra-
tion [131]. The quality of data is more important than 
its quantity. When the incorrect data are directly used 
to train the diagnosis model, it will produce unreliable 
diagnosis result. Therefore, it is necessary to develop 
effective approach to clear anomaly data and further 
improve its quality, such as clustering algorithms and 
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Table 8   Commercially available fault diagnosis systems

Supplier Product Properties Monitoring technology

Bently [199] 3500 series • A flexible, scalable platform for continuous, 
online monitoring of most critical machinery 
as well as all other machine assets used in 
plant-wide processes

• Provides automatic protection value by trip-
ping monitored machines

• Provides continuous condition monitoring 
information for use in a proactive maintenance 
program

• Incorporates the industry’s most extensive 
selection of machinery measurement parame-
ters combined with software configuration for 
virtually all machinery monitoring scenarios

• Vibration
• Temperature

Trendmaster series • Links hundreds of permanently mounted 
transducers and measurement points to a 
single-cable sensor network

• Optimized for cost-effective monitoring of 
machines of intermediate criticality, i.e., 
machines that do not demand immediate 
shutdown protection, but for which monthly 
portables-based monitoring would be insuf-
ficient

Suitable for use in the most hazardous environ-
ments (i.e. explosive gases)

• Vibration
• Temperature

AnomAlert series • Testing for and recording existing and any 
potential faults on or within motors, genera-
tors, or the equipment they belong to

• Applies model-based method

• Current and voltage

Ranger Pro series • Leverages IoT to improve uptime, productiv-
ity, and safety with wireless vibration sensor

• Can work in hazardous environments
• Has long battery life

• Vibration
• Temperature

Collins Aerospace [200] HUMS series • Automatically monitors hundreds of aircraft 
signals through a network of advanced sensors 
and onboard computers

• Integrates current and historical flight data 
into a comprehensive database with full 
reporting capabilities

• Vibration

STI [201] CMCP series • Suitable for cooling towers, fans, motors, 
turbines, compressors, and pump vibration 
monitoring

• Allows remote viewing (or editing) by any 
internet connected PC or Smart Phone

• Vibration
• Temperature

Rockwell [202] Dynamix series • Provides machinery protection and condition 
monitoring of rotating and reciprocating assets

• Approved for electrical safety and hazardous 
areas

• Offers expansion modules for additional 
capabilities

• Vibration

PCH Engineering [203] PCH series • Simple integration to existing monitoring 
systems (e.g., SCADA)

• Detects misalignment and bearing faults in 
rotating machinery

• Stores vibration data locally or online

• Vibration

SKF [204] Multilog series • Provides a complete system for initiation of 
machinery shutdown, early fault detection, 
and diagnosis

• Provides automated advice for correcting 
existing or impending conditions

• Vibration
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Bayesian model. Moreover, few suppliers would like to 
publish their run-to-failure data due to military secret 
or commercial competition [25]. We can find that most 
experiments were carried out through the bearing data 
published by Case Western Reserve University and 
University of Cincinnati; some others were conducted 
by self-established test-bed [126]. In practical applica-
tions, various faults occur, and the proposed techniques 
may not necessarily perform well on field operating 
machine. To facilitate the development of monitoring 
technologies, the public database should be established 
that collects a lot of datasets specially produced for 
demonstration of condition monitoring.

(2)	 Lack of standard method to choose signal processing 
technology

	   Different technologies of signal processing have their 
respective advantages and disadvantages and perform 
differently in different cases. There is no clear way to 
select, design, or implement a signal processing tech-
nology in real applications. Some authors, e.g., Moosa-
vian et al. [110], Bastami et al. [178], and Maior et al. 
[181], have not discussed the reason why they have pre-
ferred to implement their solution using their selected 
technology. This could be a result of a drive within 
experience to ensure that these technologies as logi-
cally and accurately as possible. However, researchers, 
who may be beginners to condition monitoring, are not 

Table 8   (continued)

Supplier Product Properties Monitoring technology

Alta solution [205] AS series • An open architecture web-based machinery 
condition monitoring system

• Provides live machine status, dynamic wave-
forms (time and spectrum), and historical data 
trending

• Provides modular system for easy upgrading 
and replacement

• Vibration

B&K Vibro [206] VC-8000 series • Provides one full year of condition monitoring 
data even without a CM server

• Allows you to access the VC-8000 machinery 
protection system at any time, from anywhere 
in the world

• Suitable for critical rotating and reciprocating 
machinery

• Vibration
• Acoustic
• Temperature

Tangzhi Science and Technology [207] JK460 series • Developed for critical components of wind 
turbines

• Based on generalized resonance/resonance 
demodulation fault diagnosis technology

• More sensitive to early fault due to compound 
monitoring of vibration and shock

• Vibration

Inventec Appliances [208] EN-8000 series • Suitable for online dynamic monitoring and 
fault diagnosis of large rotating equipment

• Provides trend analysis and back-up database

• Vibration
• Temperature

Beijing Ryongson International [209] LC-8000 series • Can display various technical parameters such 
as acceleration, speed, displacement, and 
kurtosis

• Suitable for automatic diagnosis of rotating 
machinery and AC asynchronous motors

• Vibration

China Orient Institute of Noise and Vibration 
[210]

DASP series • Provides offline and online analysis
• Uses neural network to offer preliminary 

diagnosis results

• Vibration
• Temperature

Southeast University [211] MFD series • Applies global logic reasoning and local 
neural network to offer fault information and 
suggestions

• Save on-site information in the event of 
unforeseen accidents

• Realize the whole cycle parallel collection of 
multiple vibration signals according to the 
speed signal

• Vibration

Wuhan University of Technology [212] MSD-3 series • Uses instantaneous speed method to diagnose 
faults of diesel engine

• Vibration
• Oil debris monitoring
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always clear as to which technology will work better, so 
they need to take a lot of time to review related litera-
ture and do corresponding trials. Future research should 
focus on developing a standard scoring system that 
ranks the performance of different techniques. After 
identifying the type of collected data, system applies 
various evaluation parameters (e.g., computing time, 
the ability to process non-linear signal) to assess and 
rank different techniques, which can give researchers 
an insight into the performance of each technology to 
choose a proper one.

(3)	 Improvement of interpretability of the deep learn algo-
rithm

	   Although deep learning algorithms have achieved 
good results in the field of fault diagnosis and life pre-
diction, an open issue of black box for deep hierarchi-
cal networks still confuses researchers. It is difficult or 
even impossible to have physical explanations of the 
model’s outputs. Moreover, as model grows in size, 
the structure and parameters of model can become a 
complicated issue. They are constructed by experimen-
tal trials once and once again rather than the strictly 
theoretical background [131, 214]. To improve the 
interpretability of the deep learning algorithms, two 
research directions are recommended to be concerned 
[131]. (a) Different from the ANN, the statistical learn-
ing theories, such as SVM and HMM, are beneficial to 
construct models with easily-understand outputs due to 
the rigorous theory grounds. (b) The process of learn-
ing features by deep learning is similar to the filtering 
process. As a result, adaptive filter theory might be 
used to explain the physical meaning of deep learning 
models, and visualization technologies are expected 
to intuitively express what the models have learned 
from the input data. However, these still require a lot 
of researcher effort.

(4)	 Development of a universal platform
	   The upsurge and progressive maturity of new infor-

mation and communication technologies used to indus-
trial processes and products has propelled “smartiza-
tion” of manufacturing industries. In this context, some 
fault diagnosis systems have been developed, which 
monitors abnormal behaviors of specific assets [43]. 
They always follow the three main steps of a CBM 
program, i.e., data acquisition, signal processing, and 
maintenance decision-making. In order to make full use 
of resources, we believe that it is necessary to develop a 
universal platform to deal with the data collected from 
different sources in future CBM research [215, 216]. 
For instance, data may come in various forms, such as 
vibration signals, current signals, and AE signals. For 
different types of data, the platform allows extracting 
relevant knowledge from targeted assets by automati-

cally selecting proper intelligent monitoring and data 
fusion strategies, as well as by applying proper fault 
diagnosis and life prediction technologies.
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